Wetting and motion behaviors of water droplet on graphene under thermal-electric coupling field
Wetting dynamics and motion behaviors of a water droplet on graphene are characterized under the electric-thermal coupling field using classical molecular dynamics simulation method. The water droplet on graphene can be driven by the temperature gradient, while the moving direction is dependent on t...
Saved in:
Published in | Journal of applied physics Vol. 117; no. 7 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
21.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wetting dynamics and motion behaviors of a water droplet on graphene are characterized under the electric-thermal coupling field using classical molecular dynamics simulation method. The water droplet on graphene can be driven by the temperature gradient, while the moving direction is dependent on the electric field intensity. Concretely, the water droplet on graphene moves from the low temperature region to the high temperature region for the relatively weak electric field intensity. The motion acceleration increases with the electric field intensity on graphene, whereas the moving direction switches when the electric field intensity increases up to a threshold. The essence is the change from hydrophilic to hydrophobic for the water droplet on graphene at a threshold of the electric field intensity. Moreover, the driven force of the water droplet caused by the overall oscillation of graphene has important influence on the motion behaviors. The results are helpful to control the wettability of graphene and further develop the graphene-based fluidic nanodevices. |
---|---|
AbstractList | Wetting dynamics and motion behaviors of a water droplet on graphene are characterized under the electric-thermal coupling field using classical molecular dynamics simulation method. The water droplet on graphene can be driven by the temperature gradient, while the moving direction is dependent on the electric field intensity. Concretely, the water droplet on graphene moves from the low temperature region to the high temperature region for the relatively weak electric field intensity. The motion acceleration increases with the electric field intensity on graphene, whereas the moving direction switches when the electric field intensity increases up to a threshold. The essence is the change from hydrophilic to hydrophobic for the water droplet on graphene at a threshold of the electric field intensity. Moreover, the driven force of the water droplet caused by the overall oscillation of graphene has important influence on the motion behaviors. The results are helpful to control the wettability of graphene and further develop the graphene-based fluidic nanodevices. |
Author | Dong, Xin Zhang, Zhong-Qiang Ding, Jian-Ning Ye, Hong-Fei Ling, Zhi-Yong Cheng, Guang-Gui |
Author_xml | – sequence: 1 givenname: Zhong-Qiang orcidid: 0000-0002-3485-777X surname: Zhang fullname: Zhang, Zhong-Qiang – sequence: 2 givenname: Xin surname: Dong fullname: Dong, Xin – sequence: 3 givenname: Hong-Fei surname: Ye fullname: Ye, Hong-Fei – sequence: 4 givenname: Guang-Gui surname: Cheng fullname: Cheng, Guang-Gui – sequence: 5 givenname: Jian-Ning surname: Ding fullname: Ding, Jian-Ning – sequence: 6 givenname: Zhi-Yong surname: Ling fullname: Ling, Zhi-Yong |
BookMark | eNptkEtLAzEUhYMo2FYX_oOAKxfT5jGZmSyl-IKCG8VlSJObNmWajJmM4r93SrsSV3dxvnMufFN0HmIAhG4omVNS8QWdl5JyRuozNKGkkUUtBDlHE0IYLRpZy0s07fsdIZQ2XE6Q-oCcfdhgHSzex-xjwGvY6i8fU4-jw986Q8I2xa6FjMd0k3S3hQB4CHZM8hbSXrcFtGBy8gabOHTtYdF5aO0VunC67eH6dGfo_fHhbflcrF6fXpb3q8IwUeeCWyJLrQWjsLalaKACZ5zTDSdG80pUa-GEaCorhDOCyNqykjBguualBEP5DN0ed7sUPwfos9rFIYXxpWKUlY1sSMlG6u5ImRT7PoFTXfJ7nX4UJergT1F18jeyiz-s8VkfBOWkfftP4xePvnQa |
CitedBy_id | crossref_primary_10_3389_fchem_2019_00788 crossref_primary_10_1021_acsami_9b09219 crossref_primary_10_1021_acs_jpcc_9b02326 crossref_primary_10_1063_1_4974921 crossref_primary_10_1016_j_apsusc_2021_151235 crossref_primary_10_1039_D2CP03421B crossref_primary_10_1063_1_5021547 crossref_primary_10_1016_j_enbuild_2021_111704 crossref_primary_10_1038_s41427_020_0203_1 crossref_primary_10_1016_j_commatsci_2016_07_026 crossref_primary_10_1021_acs_langmuir_4c02642 |
Cites_doi | 10.1063/1.2766952 10.1002/smll.200500095 10.1002/asia.200800486 10.1103/PhysRevLett.103.137801 10.1021/bi00483a001 10.1021/ar040224c 10.1038/nmat856 10.1021/jp0268112 10.1103/PhysRevLett.100.206001 10.1088/0953-8984/14/4/312 10.1103/PhysRevLett.86.803 10.1103/PhysRevLett.96.066001 10.1021/jp065419b 10.1063/1.3292682 10.1073/pnas.96.7.3358 10.1021/la901402f 10.1063/1.3621858 10.1103/PhysRevLett.96.114502 10.1063/1.445869 10.1209/epl/i1999-00479-1 10.1021/jp991256y 10.1063/1.3693334 10.1021/nl9031617 10.1016/0021-9991(77)90098-5 10.1103/PhysRevLett.94.026101 10.1038/nmat1849 10.1063/1.4893674 10.1103/PhysRevA.40.1144 10.1126/science.1102896 10.1038/nature04162 10.1021/nn204661d 10.1021/ja074418+ 10.1039/b412803f 10.1103/PhysRevE.79.026312 10.1016/S0009-2614(01)01066-1 10.1021/la100231u 10.1103/PhysRevE.71.041608 10.1103/PhysRevE.80.036302 10.1021/jp805802w 10.1016/S0065-3233(08)60608-7 10.1103/PhysRevLett.95.014502 |
ContentType | Journal Article |
Copyright | 2015 AIP Publishing LLC. |
Copyright_xml | – notice: 2015 AIP Publishing LLC. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/1.4913207 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
ExternalDocumentID | 10_1063_1_4913207 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 29J 4.4 53G 5GY 5VS 85S AAAAW AABDS AAGWI AAIKC AAMNW AAPUP AAYIH AAYXX ABFTF ABJGX ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D0L DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS RXW SC5 TAE TN5 TWZ UHB UPT WH7 XSW YQT YZZ ZCA ~02 8FD H8D L7M |
ID | FETCH-LOGICAL-c257t-3d094aa521ebd458e6efcffa830ca3656b5f5586d55fc5097d2402e2a7349ec13 |
ISSN | 0021-8979 |
IngestDate | Mon Jun 30 01:59:28 EDT 2025 Thu Apr 24 23:00:43 EDT 2025 Tue Jul 01 03:49:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c257t-3d094aa521ebd458e6efcffa830ca3656b5f5586d55fc5097d2402e2a7349ec13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3485-777X |
PQID | 2124898042 |
PQPubID | 2050677 |
ParticipantIDs | proquest_journals_2124898042 crossref_primary_10_1063_1_4913207 crossref_citationtrail_10_1063_1_4913207 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-21 20150221 |
PublicationDateYYYYMMDD | 2015-02-21 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Journal of applied physics |
PublicationYear | 2015 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | (2023063022144667300_c36) 2002; 14 (2023063022144667300_c19) 2005; 1 (2023063022144667300_c27) 2005; 95 (2023063022144667300_c30) 2001; 86 (2023063022144667300_c2) 2007; 6 (2023063022144667300_c17) 1999; 48 (2023063022144667300_c41) 2009; 103 (2023063022144667300_c9) 2005; 38 (2023063022144667300_c13) 1959; 14 (2023063022144667300_c25) 2006; 96 (2023063022144667300_c21) 2009; 25 (2023063022144667300_c4) 2009; 4 (2023063022144667300_c7) 2003; 2 (2023063022144667300_c43) 2014; 116 (2023063022144667300_c39) 1977; 23 (2023063022144667300_c42) 2012; 136 (2023063022144667300_c11) 2005; 94 (2023063022144667300_c28) 2007; 127 (2023063022144667300_c3) 2001; 348 (2023063022144667300_c15) 2005; 437 (2023063022144667300_c33) 2010; 132 (2023063022144667300_c8) 2005; 15 (2023063022144667300_c5) 2008; 112 (2023063022144667300_c32) 2011; 1 (2023063022144667300_c22) 2012; 6 (2023063022144667300_c34) 2005; 71 (2023063022144667300_c23) 2008; 130 (2023063022144667300_c29) 1989; 40 (2023063022144667300_c18) 2006; 96 (2023063022144667300_c24) 2007; 111 (2023063022144667300_c12) 1980 (2023063022144667300_c40) 2003; 107 (2023063022144667300_c20) 2010; 26 (2023063022144667300_c35) 2008; 100 (2023063022144667300_c37) 1983; 79 (2023063022144667300_c38) 1989 (2023063022144667300_c1) 2004; 306 (2023063022144667300_c16) 1999; 103 (2023063022144667300_c10) 1999; 96 (2023063022144667300_c31) 2009; 79 (2023063022144667300_c6) 2010; 10 (2023063022144667300_c14) 1990; 29 (2023063022144667300_c26) 2009; 80 |
References_xml | – volume: 127 start-page: 074706 year: 2007 ident: 2023063022144667300_c28 publication-title: J. Chem. Phys. doi: 10.1063/1.2766952 – volume: 1 start-page: 959 year: 2005 ident: 2023063022144667300_c19 publication-title: Small doi: 10.1002/smll.200500095 – volume: 4 start-page: 855 year: 2009 ident: 2023063022144667300_c4 publication-title: Chem. - Asian J. doi: 10.1002/asia.200800486 – volume: 103 start-page: 137801 year: 2009 ident: 2023063022144667300_c41 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.137801 – volume: 29 start-page: 7133 year: 1990 ident: 2023063022144667300_c14 publication-title: Biochemistry doi: 10.1021/bi00483a001 – volume: 38 start-page: 644 year: 2005 ident: 2023063022144667300_c9 publication-title: Acc. Chem. Res. doi: 10.1021/ar040224c – volume: 2 start-page: 301 year: 2003 ident: 2023063022144667300_c7 publication-title: Nature Mater. doi: 10.1038/nmat856 – volume: 107 start-page: 1345 year: 2003 ident: 2023063022144667300_c40 publication-title: J. Phys. Chem. B doi: 10.1021/jp0268112 – volume: 100 start-page: 206001 year: 2008 ident: 2023063022144667300_c35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.206001 – volume: 14 start-page: 783 year: 2002 ident: 2023063022144667300_c36 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/14/4/312 – volume: 86 start-page: 803 year: 2001 ident: 2023063022144667300_c30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.803 – volume: 96 start-page: 066001 year: 2006 ident: 2023063022144667300_c18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.066001 – volume: 111 start-page: 1323 year: 2007 ident: 2023063022144667300_c24 publication-title: J. Phys. Chem. C doi: 10.1021/jp065419b – volume: 132 start-page: 024507 year: 2010 ident: 2023063022144667300_c33 publication-title: J. Chem. Phys. doi: 10.1063/1.3292682 – volume: 96 start-page: 3358 year: 1999 ident: 2023063022144667300_c10 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.96.7.3358 – volume: 25 start-page: 11078 year: 2009 ident: 2023063022144667300_c21 publication-title: Langmuir doi: 10.1021/la901402f – volume: 1 start-page: 032108 year: 2011 ident: 2023063022144667300_c32 publication-title: AIP Adv. doi: 10.1063/1.3621858 – volume: 96 start-page: 114502 year: 2006 ident: 2023063022144667300_c25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.114502 – volume: 79 start-page: 926 year: 1983 ident: 2023063022144667300_c37 publication-title: J. Chem. Phys. doi: 10.1063/1.445869 – volume: 48 start-page: 286 year: 1999 ident: 2023063022144667300_c17 publication-title: Eur. Phys. Lett. doi: 10.1209/epl/i1999-00479-1 – volume: 103 start-page: 9576 year: 1999 ident: 2023063022144667300_c16 publication-title: J. Phys. Chem. B doi: 10.1021/jp991256y – volume: 136 start-page: 114506 year: 2012 ident: 2023063022144667300_c42 publication-title: J. Chem. Phys. doi: 10.1063/1.3693334 – volume: 10 start-page: 1144 year: 2010 ident: 2023063022144667300_c6 publication-title: Nano Lett. doi: 10.1021/nl9031617 – volume: 23 start-page: 327 year: 1977 ident: 2023063022144667300_c39 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(77)90098-5 – volume: 94 start-page: 026101 year: 2005 ident: 2023063022144667300_c11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.026101 – volume: 6 start-page: 183 year: 2007 ident: 2023063022144667300_c2 publication-title: Nature Mater. doi: 10.1038/nmat1849 – volume: 116 start-page: 074307 year: 2014 ident: 2023063022144667300_c43 publication-title: J. Appl. Phys. doi: 10.1063/1.4893674 – start-page: 246 year: 1980 ident: 2023063022144667300_c12 article-title: The Hydrophobic Effect – volume: 40 start-page: 1144 year: 1989 ident: 2023063022144667300_c29 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.40.1144 – volume: 306 start-page: 666 year: 2004 ident: 2023063022144667300_c1 publication-title: Science doi: 10.1126/science.1102896 – volume: 437 start-page: 640 year: 2005 ident: 2023063022144667300_c15 publication-title: Nature doi: 10.1038/nature04162 – volume: 6 start-page: 2401 year: 2012 ident: 2023063022144667300_c22 publication-title: ACS Nano doi: 10.1021/nn204661d – volume: 130 start-page: 1871 year: 2008 ident: 2023063022144667300_c23 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja074418+ – volume: 15 start-page: 1689 year: 2005 ident: 2023063022144667300_c8 publication-title: J. Mater. Chem. doi: 10.1039/b412803f – volume: 79 start-page: 026312 year: 2009 ident: 2023063022144667300_c31 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.79.026312 – volume: 348 start-page: 17 year: 2001 ident: 2023063022144667300_c3 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(01)01066-1 – volume: 26 start-page: 3798 year: 2010 ident: 2023063022144667300_c20 publication-title: Langmuir doi: 10.1021/la100231u – volume: 71 start-page: 041608 year: 2005 ident: 2023063022144667300_c34 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.71.041608 – volume: 80 start-page: 036302 year: 2009 ident: 2023063022144667300_c26 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.80.036302 – volume: 112 start-page: 15704 year: 2008 ident: 2023063022144667300_c5 publication-title: J. Phys. Chem. C doi: 10.1021/jp805802w – start-page: 425 year: 1989 ident: 2023063022144667300_c38 article-title: Computer Simulation Using Particles – volume: 14 start-page: 1 year: 1959 ident: 2023063022144667300_c13 publication-title: Adv. Protein Chem. doi: 10.1016/S0065-3233(08)60608-7 – volume: 95 start-page: 014502 year: 2005 ident: 2023063022144667300_c27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.014502 |
SSID | ssj0011839 |
Score | 2.2394881 |
Snippet | Wetting dynamics and motion behaviors of a water droplet on graphene are characterized under the electric-thermal coupling field using classical molecular... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
SubjectTerms | Applied physics Coupling (molecular) Droplets Electric fields Graphene Molecular dynamics Nanotechnology devices Switches Temperature gradients Thermal coupling Water drops Wettability Wetting |
Title | Wetting and motion behaviors of water droplet on graphene under thermal-electric coupling field |
URI | https://www.proquest.com/docview/2124898042 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fixMxEA7aQ9AH0VPx9JQgPgiServZZLOPx3m1SO8UbLH3tGSzyVE42uPcIvjXO_m5rVRRX5YlSUPIfJ3MZr6ZQei1NE3ZUs6JVJKTQnFFKi4qwvNG0qxhReMkfXbOx7Pi45zNe0qQiy7pmqH6sTOu5H-kCm0gVxsl-w-STZNCA7yDfOEJEobnX8n4q_asZXv57cvxpLB7x9D4Ll0B8BtLEu-sW8Clpwbt5qrfOnoh6OUr4mvhLNRbtVpfu_h0R2z7jeEqg-HqL0X6wvSB3DtfJLyNoYmMtCMMXCQEncAKLi02ofPDetFfXS_IRZhjEg_UcB-R-fjuDW5HdDRtkR0-b6woRhFkRFS-kMxQe-V7BCApmU9Em7SzD-0MMCx3an0ws-wFxLCobEB42R9t0Z1__qkezSaTeno6n95Gezl8UuQDtHf8_mzyJfmcrK3oCUF-ZTEPFafv0tTb1sv24e0skukDdD9IBB97XDxEt_RyH93bSDC5j-6EHXmE6oAVDFjBHis4YQWvDHZYwQErGHojVrDDCv4VKzhiBTusPEaz0en0ZExCcQ2iQEt3hLbwYS8lWG-6aQsmNNdGGSMFPVKSgpXfMMOY4C1jRoFVWbbWD6dzWdKi0iqjT9BguVrqpwiLKjeashaUuyiaVoiKV_BLnhcGhkp9gN7ETatVyDxvC6Bc1Y4BwWmd1WF_D9CrNPTap1vZNegw7nwd_o3fajDBClEJOIOe_bn7Obrbw_YQDbqbtX4BhmXXvAyI-An0PH0P |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wetting+and+motion+behaviors+of+water+droplet+on+graphene+under+thermal-electric+coupling+field&rft.jtitle=Journal+of+applied+physics&rft.au=Dong%2C+Xin&rft.au=Hong-Fei%2C+Ye&rft.au=Cheng+Guang-Gui&rft.au=Zhi-Yong%2C+Ling&rft.date=2015-02-21&rft.pub=American+Institute+of+Physics&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=117&rft.issue=7&rft_id=info:doi/10.1063%2F1.4913207&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |