Wetting and motion behaviors of water droplet on graphene under thermal-electric coupling field

Wetting dynamics and motion behaviors of a water droplet on graphene are characterized under the electric-thermal coupling field using classical molecular dynamics simulation method. The water droplet on graphene can be driven by the temperature gradient, while the moving direction is dependent on t...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 117; no. 7
Main Authors Zhang, Zhong-Qiang, Dong, Xin, Ye, Hong-Fei, Cheng, Guang-Gui, Ding, Jian-Ning, Ling, Zhi-Yong
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 21.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wetting dynamics and motion behaviors of a water droplet on graphene are characterized under the electric-thermal coupling field using classical molecular dynamics simulation method. The water droplet on graphene can be driven by the temperature gradient, while the moving direction is dependent on the electric field intensity. Concretely, the water droplet on graphene moves from the low temperature region to the high temperature region for the relatively weak electric field intensity. The motion acceleration increases with the electric field intensity on graphene, whereas the moving direction switches when the electric field intensity increases up to a threshold. The essence is the change from hydrophilic to hydrophobic for the water droplet on graphene at a threshold of the electric field intensity. Moreover, the driven force of the water droplet caused by the overall oscillation of graphene has important influence on the motion behaviors. The results are helpful to control the wettability of graphene and further develop the graphene-based fluidic nanodevices.
AbstractList Wetting dynamics and motion behaviors of a water droplet on graphene are characterized under the electric-thermal coupling field using classical molecular dynamics simulation method. The water droplet on graphene can be driven by the temperature gradient, while the moving direction is dependent on the electric field intensity. Concretely, the water droplet on graphene moves from the low temperature region to the high temperature region for the relatively weak electric field intensity. The motion acceleration increases with the electric field intensity on graphene, whereas the moving direction switches when the electric field intensity increases up to a threshold. The essence is the change from hydrophilic to hydrophobic for the water droplet on graphene at a threshold of the electric field intensity. Moreover, the driven force of the water droplet caused by the overall oscillation of graphene has important influence on the motion behaviors. The results are helpful to control the wettability of graphene and further develop the graphene-based fluidic nanodevices.
Author Dong, Xin
Zhang, Zhong-Qiang
Ding, Jian-Ning
Ye, Hong-Fei
Ling, Zhi-Yong
Cheng, Guang-Gui
Author_xml – sequence: 1
  givenname: Zhong-Qiang
  orcidid: 0000-0002-3485-777X
  surname: Zhang
  fullname: Zhang, Zhong-Qiang
– sequence: 2
  givenname: Xin
  surname: Dong
  fullname: Dong, Xin
– sequence: 3
  givenname: Hong-Fei
  surname: Ye
  fullname: Ye, Hong-Fei
– sequence: 4
  givenname: Guang-Gui
  surname: Cheng
  fullname: Cheng, Guang-Gui
– sequence: 5
  givenname: Jian-Ning
  surname: Ding
  fullname: Ding, Jian-Ning
– sequence: 6
  givenname: Zhi-Yong
  surname: Ling
  fullname: Ling, Zhi-Yong
BookMark eNptkEtLAzEUhYMo2FYX_oOAKxfT5jGZmSyl-IKCG8VlSJObNmWajJmM4r93SrsSV3dxvnMufFN0HmIAhG4omVNS8QWdl5JyRuozNKGkkUUtBDlHE0IYLRpZy0s07fsdIZQ2XE6Q-oCcfdhgHSzex-xjwGvY6i8fU4-jw986Q8I2xa6FjMd0k3S3hQB4CHZM8hbSXrcFtGBy8gabOHTtYdF5aO0VunC67eH6dGfo_fHhbflcrF6fXpb3q8IwUeeCWyJLrQWjsLalaKACZ5zTDSdG80pUa-GEaCorhDOCyNqykjBguualBEP5DN0ed7sUPwfos9rFIYXxpWKUlY1sSMlG6u5ImRT7PoFTXfJ7nX4UJergT1F18jeyiz-s8VkfBOWkfftP4xePvnQa
CitedBy_id crossref_primary_10_3389_fchem_2019_00788
crossref_primary_10_1021_acsami_9b09219
crossref_primary_10_1021_acs_jpcc_9b02326
crossref_primary_10_1063_1_4974921
crossref_primary_10_1016_j_apsusc_2021_151235
crossref_primary_10_1039_D2CP03421B
crossref_primary_10_1063_1_5021547
crossref_primary_10_1016_j_enbuild_2021_111704
crossref_primary_10_1038_s41427_020_0203_1
crossref_primary_10_1016_j_commatsci_2016_07_026
crossref_primary_10_1021_acs_langmuir_4c02642
Cites_doi 10.1063/1.2766952
10.1002/smll.200500095
10.1002/asia.200800486
10.1103/PhysRevLett.103.137801
10.1021/bi00483a001
10.1021/ar040224c
10.1038/nmat856
10.1021/jp0268112
10.1103/PhysRevLett.100.206001
10.1088/0953-8984/14/4/312
10.1103/PhysRevLett.86.803
10.1103/PhysRevLett.96.066001
10.1021/jp065419b
10.1063/1.3292682
10.1073/pnas.96.7.3358
10.1021/la901402f
10.1063/1.3621858
10.1103/PhysRevLett.96.114502
10.1063/1.445869
10.1209/epl/i1999-00479-1
10.1021/jp991256y
10.1063/1.3693334
10.1021/nl9031617
10.1016/0021-9991(77)90098-5
10.1103/PhysRevLett.94.026101
10.1038/nmat1849
10.1063/1.4893674
10.1103/PhysRevA.40.1144
10.1126/science.1102896
10.1038/nature04162
10.1021/nn204661d
10.1021/ja074418+
10.1039/b412803f
10.1103/PhysRevE.79.026312
10.1016/S0009-2614(01)01066-1
10.1021/la100231u
10.1103/PhysRevE.71.041608
10.1103/PhysRevE.80.036302
10.1021/jp805802w
10.1016/S0065-3233(08)60608-7
10.1103/PhysRevLett.95.014502
ContentType Journal Article
Copyright 2015 AIP Publishing LLC.
Copyright_xml – notice: 2015 AIP Publishing LLC.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.4913207
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 10_1063_1_4913207
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAGWI
AAIKC
AAMNW
AAPUP
AAYIH
AAYXX
ABFTF
ABJGX
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D0L
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
8FD
H8D
L7M
ID FETCH-LOGICAL-c257t-3d094aa521ebd458e6efcffa830ca3656b5f5586d55fc5097d2402e2a7349ec13
ISSN 0021-8979
IngestDate Mon Jun 30 01:59:28 EDT 2025
Thu Apr 24 23:00:43 EDT 2025
Tue Jul 01 03:49:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-3d094aa521ebd458e6efcffa830ca3656b5f5586d55fc5097d2402e2a7349ec13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3485-777X
PQID 2124898042
PQPubID 2050677
ParticipantIDs proquest_journals_2124898042
crossref_primary_10_1063_1_4913207
crossref_citationtrail_10_1063_1_4913207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-21
20150221
PublicationDateYYYYMMDD 2015-02-21
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-21
  day: 21
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Journal of applied physics
PublicationYear 2015
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References (2023063022144667300_c36) 2002; 14
(2023063022144667300_c19) 2005; 1
(2023063022144667300_c27) 2005; 95
(2023063022144667300_c30) 2001; 86
(2023063022144667300_c2) 2007; 6
(2023063022144667300_c17) 1999; 48
(2023063022144667300_c41) 2009; 103
(2023063022144667300_c9) 2005; 38
(2023063022144667300_c13) 1959; 14
(2023063022144667300_c25) 2006; 96
(2023063022144667300_c21) 2009; 25
(2023063022144667300_c4) 2009; 4
(2023063022144667300_c7) 2003; 2
(2023063022144667300_c43) 2014; 116
(2023063022144667300_c39) 1977; 23
(2023063022144667300_c42) 2012; 136
(2023063022144667300_c11) 2005; 94
(2023063022144667300_c28) 2007; 127
(2023063022144667300_c3) 2001; 348
(2023063022144667300_c15) 2005; 437
(2023063022144667300_c33) 2010; 132
(2023063022144667300_c8) 2005; 15
(2023063022144667300_c5) 2008; 112
(2023063022144667300_c32) 2011; 1
(2023063022144667300_c22) 2012; 6
(2023063022144667300_c34) 2005; 71
(2023063022144667300_c23) 2008; 130
(2023063022144667300_c29) 1989; 40
(2023063022144667300_c18) 2006; 96
(2023063022144667300_c24) 2007; 111
(2023063022144667300_c12) 1980
(2023063022144667300_c40) 2003; 107
(2023063022144667300_c20) 2010; 26
(2023063022144667300_c35) 2008; 100
(2023063022144667300_c37) 1983; 79
(2023063022144667300_c38) 1989
(2023063022144667300_c1) 2004; 306
(2023063022144667300_c16) 1999; 103
(2023063022144667300_c10) 1999; 96
(2023063022144667300_c31) 2009; 79
(2023063022144667300_c6) 2010; 10
(2023063022144667300_c14) 1990; 29
(2023063022144667300_c26) 2009; 80
References_xml – volume: 127
  start-page: 074706
  year: 2007
  ident: 2023063022144667300_c28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2766952
– volume: 1
  start-page: 959
  year: 2005
  ident: 2023063022144667300_c19
  publication-title: Small
  doi: 10.1002/smll.200500095
– volume: 4
  start-page: 855
  year: 2009
  ident: 2023063022144667300_c4
  publication-title: Chem. - Asian J.
  doi: 10.1002/asia.200800486
– volume: 103
  start-page: 137801
  year: 2009
  ident: 2023063022144667300_c41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.137801
– volume: 29
  start-page: 7133
  year: 1990
  ident: 2023063022144667300_c14
  publication-title: Biochemistry
  doi: 10.1021/bi00483a001
– volume: 38
  start-page: 644
  year: 2005
  ident: 2023063022144667300_c9
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar040224c
– volume: 2
  start-page: 301
  year: 2003
  ident: 2023063022144667300_c7
  publication-title: Nature Mater.
  doi: 10.1038/nmat856
– volume: 107
  start-page: 1345
  year: 2003
  ident: 2023063022144667300_c40
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0268112
– volume: 100
  start-page: 206001
  year: 2008
  ident: 2023063022144667300_c35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.206001
– volume: 14
  start-page: 783
  year: 2002
  ident: 2023063022144667300_c36
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/14/4/312
– volume: 86
  start-page: 803
  year: 2001
  ident: 2023063022144667300_c30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.803
– volume: 96
  start-page: 066001
  year: 2006
  ident: 2023063022144667300_c18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.066001
– volume: 111
  start-page: 1323
  year: 2007
  ident: 2023063022144667300_c24
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp065419b
– volume: 132
  start-page: 024507
  year: 2010
  ident: 2023063022144667300_c33
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3292682
– volume: 96
  start-page: 3358
  year: 1999
  ident: 2023063022144667300_c10
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.96.7.3358
– volume: 25
  start-page: 11078
  year: 2009
  ident: 2023063022144667300_c21
  publication-title: Langmuir
  doi: 10.1021/la901402f
– volume: 1
  start-page: 032108
  year: 2011
  ident: 2023063022144667300_c32
  publication-title: AIP Adv.
  doi: 10.1063/1.3621858
– volume: 96
  start-page: 114502
  year: 2006
  ident: 2023063022144667300_c25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.114502
– volume: 79
  start-page: 926
  year: 1983
  ident: 2023063022144667300_c37
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445869
– volume: 48
  start-page: 286
  year: 1999
  ident: 2023063022144667300_c17
  publication-title: Eur. Phys. Lett.
  doi: 10.1209/epl/i1999-00479-1
– volume: 103
  start-page: 9576
  year: 1999
  ident: 2023063022144667300_c16
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp991256y
– volume: 136
  start-page: 114506
  year: 2012
  ident: 2023063022144667300_c42
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3693334
– volume: 10
  start-page: 1144
  year: 2010
  ident: 2023063022144667300_c6
  publication-title: Nano Lett.
  doi: 10.1021/nl9031617
– volume: 23
  start-page: 327
  year: 1977
  ident: 2023063022144667300_c39
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(77)90098-5
– volume: 94
  start-page: 026101
  year: 2005
  ident: 2023063022144667300_c11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.026101
– volume: 6
  start-page: 183
  year: 2007
  ident: 2023063022144667300_c2
  publication-title: Nature Mater.
  doi: 10.1038/nmat1849
– volume: 116
  start-page: 074307
  year: 2014
  ident: 2023063022144667300_c43
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4893674
– start-page: 246
  year: 1980
  ident: 2023063022144667300_c12
  article-title: The Hydrophobic Effect
– volume: 40
  start-page: 1144
  year: 1989
  ident: 2023063022144667300_c29
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.40.1144
– volume: 306
  start-page: 666
  year: 2004
  ident: 2023063022144667300_c1
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 437
  start-page: 640
  year: 2005
  ident: 2023063022144667300_c15
  publication-title: Nature
  doi: 10.1038/nature04162
– volume: 6
  start-page: 2401
  year: 2012
  ident: 2023063022144667300_c22
  publication-title: ACS Nano
  doi: 10.1021/nn204661d
– volume: 130
  start-page: 1871
  year: 2008
  ident: 2023063022144667300_c23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja074418+
– volume: 15
  start-page: 1689
  year: 2005
  ident: 2023063022144667300_c8
  publication-title: J. Mater. Chem.
  doi: 10.1039/b412803f
– volume: 79
  start-page: 026312
  year: 2009
  ident: 2023063022144667300_c31
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.79.026312
– volume: 348
  start-page: 17
  year: 2001
  ident: 2023063022144667300_c3
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(01)01066-1
– volume: 26
  start-page: 3798
  year: 2010
  ident: 2023063022144667300_c20
  publication-title: Langmuir
  doi: 10.1021/la100231u
– volume: 71
  start-page: 041608
  year: 2005
  ident: 2023063022144667300_c34
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.041608
– volume: 80
  start-page: 036302
  year: 2009
  ident: 2023063022144667300_c26
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.80.036302
– volume: 112
  start-page: 15704
  year: 2008
  ident: 2023063022144667300_c5
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp805802w
– start-page: 425
  year: 1989
  ident: 2023063022144667300_c38
  article-title: Computer Simulation Using Particles
– volume: 14
  start-page: 1
  year: 1959
  ident: 2023063022144667300_c13
  publication-title: Adv. Protein Chem.
  doi: 10.1016/S0065-3233(08)60608-7
– volume: 95
  start-page: 014502
  year: 2005
  ident: 2023063022144667300_c27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.014502
SSID ssj0011839
Score 2.2394881
Snippet Wetting dynamics and motion behaviors of a water droplet on graphene are characterized under the electric-thermal coupling field using classical molecular...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Applied physics
Coupling (molecular)
Droplets
Electric fields
Graphene
Molecular dynamics
Nanotechnology devices
Switches
Temperature gradients
Thermal coupling
Water drops
Wettability
Wetting
Title Wetting and motion behaviors of water droplet on graphene under thermal-electric coupling field
URI https://www.proquest.com/docview/2124898042
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fixMxEA7aQ9AH0VPx9JQgPgiServZZLOPx3m1SO8UbLH3tGSzyVE42uPcIvjXO_m5rVRRX5YlSUPIfJ3MZr6ZQei1NE3ZUs6JVJKTQnFFKi4qwvNG0qxhReMkfXbOx7Pi45zNe0qQiy7pmqH6sTOu5H-kCm0gVxsl-w-STZNCA7yDfOEJEobnX8n4q_asZXv57cvxpLB7x9D4Ll0B8BtLEu-sW8Clpwbt5qrfOnoh6OUr4mvhLNRbtVpfu_h0R2z7jeEqg-HqL0X6wvSB3DtfJLyNoYmMtCMMXCQEncAKLi02ofPDetFfXS_IRZhjEg_UcB-R-fjuDW5HdDRtkR0-b6woRhFkRFS-kMxQe-V7BCApmU9Em7SzD-0MMCx3an0ws-wFxLCobEB42R9t0Z1__qkezSaTeno6n95Gezl8UuQDtHf8_mzyJfmcrK3oCUF-ZTEPFafv0tTb1sv24e0skukDdD9IBB97XDxEt_RyH93bSDC5j-6EHXmE6oAVDFjBHis4YQWvDHZYwQErGHojVrDDCv4VKzhiBTusPEaz0en0ZExCcQ2iQEt3hLbwYS8lWG-6aQsmNNdGGSMFPVKSgpXfMMOY4C1jRoFVWbbWD6dzWdKi0iqjT9BguVrqpwiLKjeashaUuyiaVoiKV_BLnhcGhkp9gN7ETatVyDxvC6Bc1Y4BwWmd1WF_D9CrNPTap1vZNegw7nwd_o3fajDBClEJOIOe_bn7Obrbw_YQDbqbtX4BhmXXvAyI-An0PH0P
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wetting+and+motion+behaviors+of+water+droplet+on+graphene+under+thermal-electric+coupling+field&rft.jtitle=Journal+of+applied+physics&rft.au=Dong%2C+Xin&rft.au=Hong-Fei%2C+Ye&rft.au=Cheng+Guang-Gui&rft.au=Zhi-Yong%2C+Ling&rft.date=2015-02-21&rft.pub=American+Institute+of+Physics&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=117&rft.issue=7&rft_id=info:doi/10.1063%2F1.4913207&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon