Third-order intermodulation distortion in graphene resonant channel transistors
Third-order intermodulation distortion (IM3) is an important metric for electromechanical resonators used in radio frequency signal processing applications since it characterizes the nonlinearity of the device, and the amount of in-band interference it generates when subject to unwanted, out-of-band...
Saved in:
Published in | Applied physics letters Vol. 106; no. 7 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
16.02.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-6951 1077-3118 |
DOI | 10.1063/1.4913462 |
Cover
Loading…
Abstract | Third-order intermodulation distortion (IM3) is an important metric for electromechanical resonators used in radio frequency signal processing applications since it characterizes the nonlinearity of the device, and the amount of in-band interference it generates when subject to unwanted, out-of-band signals. In this letter, we measure and model IM3 in a strain-engineered graphene mechanical resonator operated as a graphene resonant channel transistor (G-RCT). The device analyzed in this work has a voltage third-order intercept point (VIIP3) of 69.5 dBm V at a gate-to-source DC bias (Vgs) of 2.5 V, which drops to 52.1 dBm V at Vgs = 4.5 V when driven with two out-of-band input tones spaced 5 and 10 MHz from the resonant frequency. The decrease in the VIIP3 with Vgs coincides with an increase in the transmission response (S21) of the device, illustrating a trade-off between transduction efficiency and linearity. In addition, we find that conventional micro-electro-mechanical systems theory for IM3 calculation does not accurately describe our measurement data. To resolve this discrepancy, we develop a model for IM3 in G-RCTs that takes into account all of the output current terms present in the embedded transistor structure, as well as an effective Duffing parameter (αeff). |
---|---|
AbstractList | Third-order intermodulation distortion (IM3) is an important metric for electromechanical resonators used in radio frequency signal processing applications since it characterizes the nonlinearity of the device, and the amount of in-band interference it generates when subject to unwanted, out-of-band signals. In this letter, we measure and model IM3 in a strain-engineered graphene mechanical resonator operated as a graphene resonant channel transistor (G-RCT). The device analyzed in this work has a voltage third-order intercept point (VIIP3) of 69.5 dBm V at a gate-to-source DC bias (Vgs) of 2.5 V, which drops to 52.1 dBm V at Vgs = 4.5 V when driven with two out-of-band input tones spaced 5 and 10 MHz from the resonant frequency. The decrease in the VIIP3 with Vgs coincides with an increase in the transmission response (S21) of the device, illustrating a trade-off between transduction efficiency and linearity. In addition, we find that conventional micro-electro-mechanical systems theory for IM3 calculation does not accurately describe our measurement data. To resolve this discrepancy, we develop a model for IM3 in G-RCTs that takes into account all of the output current terms present in the embedded transistor structure, as well as an effective Duffing parameter (αeff). |
Author | Cha, Wujoon Shepard, Kenneth Lee, Sunwoo Hone, James Lekas, Michael |
Author_xml | – sequence: 1 givenname: Michael surname: Lekas fullname: Lekas, Michael – sequence: 2 givenname: Sunwoo surname: Lee fullname: Lee, Sunwoo – sequence: 3 givenname: Wujoon orcidid: 0000-0001-7010-943X surname: Cha fullname: Cha, Wujoon – sequence: 4 givenname: James surname: Hone fullname: Hone, James – sequence: 5 givenname: Kenneth surname: Shepard fullname: Shepard, Kenneth |
BookMark | eNptkD1vwjAQhq2KSgXaof8gUqcOAZ8_knisUL8kJBY6Wyaxi1Gw6dkM_fdNganqdHfSc3d6nwkZhRgsIfdAZ0ArPoeZUMBFxa7IGGhdlxygGZExpZSXlZJwQyYp7YZRMs7HZLXeeuzKiJ3FwodscR-7Y2-yj6HofMoRT60PxSeaw9YGW6BNMZiQi3ZrQrB9kdGEdGLTLbl2pk_27lKn5OPleb14K5er1_fF07JsmaxzyQ1wENJ1plKMWr6hFkCANKbpHHOKO6k2G2aU5bV1vJayZk3rHK0oa51ifEoezncPGL-ONmW9i0cMw0vNgAlFGyrEQD2eqRZjSmidPqDfG_zWQPWvLw364mtg53_Y1ueThyGe7__Z-AHwHW7K |
CitedBy_id | crossref_primary_10_1109_TEMC_2017_2705082 crossref_primary_10_1109_TMTT_2017_2698458 crossref_primary_10_1063_5_0034697 |
Cites_doi | 10.1038/nnano.2011.71 10.1021/nl102713c 10.1021/nl500879k 10.1063/1.4793302 10.1143/APEX.5.117201 10.1021/nl1042227 10.1109/MMM.2008.927633 10.1063/1.3528341 10.1038/nnano.2009.267 10.1126/science.1235126 10.1109/JMEMS.2013.2283720 10.1063/1.4868129 10.1038/nnano.2013.232 10.1038/ncomms1740 10.1002/9783527626359 |
ContentType | Journal Article |
Copyright | 2015 AIP Publishing LLC. |
Copyright_xml | – notice: 2015 AIP Publishing LLC. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/1.4913462 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_1_4913462 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAGWI AAGZG AAPUP AAYIH AAYXX ABFTF ABJGX ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D0L EBS EJD F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UPT WH7 XJE YZZ ~02 8FD H8D L7M |
ID | FETCH-LOGICAL-c257t-3a13145fda6920e3b0e11415aa8df2f93f59bb2a9e37ef3755728cff0602cf923 |
ISSN | 0003-6951 |
IngestDate | Mon Jun 30 03:12:30 EDT 2025 Tue Jul 01 04:19:22 EDT 2025 Thu Apr 24 23:05:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c257t-3a13145fda6920e3b0e11415aa8df2f93f59bb2a9e37ef3755728cff0602cf923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7010-943X |
PQID | 2124908044 |
PQPubID | 2050678 |
ParticipantIDs | proquest_journals_2124908044 crossref_primary_10_1063_1_4913462 crossref_citationtrail_10_1063_1_4913462 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-16 20150216 |
PublicationDateYYYYMMDD | 2015-02-16 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2015 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | (2023061716174917000_c11) 2014; 14 (2023061716174917000_c21) 2010; 97 (2023061716174917000_c2) 2013; 102 (2023061716174917000_c6) 2013 (2023061716174917000_c8) 2010; 10 (2023061716174917000_c19) 2005 (2023061716174917000_c10) 2009; 4 (2023061716174917000_c17) 1959 (2023061716174917000_c20) 2001 (2023061716174917000_c1) 2013; 340 (2023061716174917000_c14) 2013; 8 (2023061716174917000_c3) 2012; 5 2023061716174917000_c23 (2023061716174917000_c15) 2008; 9 Schuster (2023061716174917000_c22) 2008 (2023061716174917000_c13) 2014; 104 (2023061716174917000_c4) 2013 (2023061716174917000_c12) 2011; 6 (2023061716174917000_c7) 2014; 23 2023061716174917000_c18 (2023061716174917000_c5) 2012; 3 (2023061716174917000_c9) 2011; 11 (2023061716174917000_c16) 1970 |
References_xml | – ident: 2023061716174917000_c18 – ident: 2023061716174917000_c23 – start-page: 543 year: 2013 ident: 2023061716174917000_c4 – volume: 6 start-page: 339 year: 2011 ident: 2023061716174917000_c12 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.71 – volume: 10 start-page: 4869 year: 2010 ident: 2023061716174917000_c8 publication-title: Nano Lett. doi: 10.1021/nl102713c – volume: 14 start-page: 2854 year: 2014 ident: 2023061716174917000_c11 publication-title: Nano Lett. doi: 10.1021/nl500879k – start-page: 46 volume-title: Theory of Elasticity year: 1970 ident: 2023061716174917000_c16 – volume: 102 start-page: 153101 year: 2013 ident: 2023061716174917000_c2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4793302 – volume: 5 start-page: 117201 year: 2012 ident: 2023061716174917000_c3 publication-title: Appl. Phys. Express doi: 10.1143/APEX.5.117201 – volume: 11 start-page: 1232 year: 2011 ident: 2023061716174917000_c9 publication-title: Nano Lett. doi: 10.1021/nl1042227 – volume: 9 start-page: 65 year: 2008 ident: 2023061716174917000_c15 publication-title: IEEE Microwave Mag. doi: 10.1109/MMM.2008.927633 – start-page: 1 year: 2013 ident: 2023061716174917000_c6 – volume: 97 start-page: 243111 year: 2010 ident: 2023061716174917000_c21 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3528341 – volume: 4 start-page: 861 year: 2009 ident: 2023061716174917000_c10 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.267 – volume: 340 start-page: 1073 year: 2013 ident: 2023061716174917000_c1 publication-title: Science doi: 10.1126/science.1235126 – start-page: 228 year: 2001 ident: 2023061716174917000_c20 – volume: 23 start-page: 636 year: 2014 ident: 2023061716174917000_c7 publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2013.2283720 – volume: 104 start-page: 103109 year: 2014 ident: 2023061716174917000_c13 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4868129 – volume: 8 start-page: 923 year: 2013 ident: 2023061716174917000_c14 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.232 – volume: 3 start-page: 734 year: 2012 ident: 2023061716174917000_c5 publication-title: Nat. Commun. doi: 10.1038/ncomms1740 – volume-title: Theory of Plates and Shells year: 1959 ident: 2023061716174917000_c17 – start-page: 1592 year: 2005 ident: 2023061716174917000_c19 – start-page: 10 volume-title: Reviews of Nonlinear Dynamics and Complexity, Vol. 1 year: 2008 ident: 2023061716174917000_c22 doi: 10.1002/9783527626359 |
SSID | ssj0005233 |
Score | 2.1732886 |
Snippet | Third-order intermodulation distortion (IM3) is an important metric for electromechanical resonators used in radio frequency signal processing applications... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
SubjectTerms | Applied physics Embedded structures Graphene Intermodulation distortion Linearity Mechanical systems Radio signals Resonant frequencies Resonators Semiconductor devices Signal processing Strain System theory Systems theory Third order intercept point Transistors |
Title | Third-order intermodulation distortion in graphene resonant channel transistors |
URI | https://www.proquest.com/docview/2124908044 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_rHYL3IHoqnp5SxAdhydk2X-3jcd6xyN6dcLu4byVJE_w4d4_9ePGvd5Km3VQWUV9KaUMomV8nM5PfzCD0VlGVK5MRXJeaYCqUwBJ2McwyaSzlhVDMJThfXvHRlH6csdlgcBOxljZrdaJ_7swr-R-pwjOQq8uS_QfJdpPCA7gH-cIVJAzXv5Tx12WNffVMX_dh-WNRh3Zc7uQF3OmWyujrUoNaG4J3vXDcF5_xOzeOaQ6blR-7ig3V1jptIh-r4a1P--kM8LH53mSCxbR7f7bkSDze2TcdZM6-yOHnzbfF9sR_tGgCqZ6jGwceMp_I3eRFRlx_Oe-zGj41X9VTuQTzMlSVNY2WTYULjgbF26rhlEd4EzvVO9hTLtJwQh1fIGjxXgntq-vqYjoeV5Pz2eQe2s-FcGf3-6cfLsc3EfOHkLaRovuytuAUJ--7qftmSn-X9qbH5BF6GHyG5LQBwGM0MPNDdBBVkjxE98OKPEHXESiS30CRbEEBr5IWFEkLiiSAIolA8RRNL84nZyMcumZgDep3jYnMSEaZrSUv89QQlRrweTMmZVHb3JbEslKpXJaGCGOJYEzkhbY25WmuLdj7z9DeHFDwHCU8talWGmbikhaskHWhRa00_M1lrig7Qu_aRap0KCnvOpvcVp7awEmVVWE9j9CbbuhdU0dl16DjdqWr8Jutqty1Rwe_htIXf379Ej3YwvQY7a2XG_MKLMa1eh0Q8AuzIXHg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Third-order+intermodulation+distortion+in+graphene+resonant+channel+transistors&rft.jtitle=Applied+physics+letters&rft.au=Lekas%2C+Michael&rft.au=Sunwoo%2C+Lee&rft.au=Cha+Wujoon&rft.au=Hone%2C+James&rft.date=2015-02-16&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=106&rft.issue=7&rft_id=info:doi/10.1063%2F1.4913462&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |