Third-order intermodulation distortion in graphene resonant channel transistors

Third-order intermodulation distortion (IM3) is an important metric for electromechanical resonators used in radio frequency signal processing applications since it characterizes the nonlinearity of the device, and the amount of in-band interference it generates when subject to unwanted, out-of-band...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 106; no. 7
Main Authors Lekas, Michael, Lee, Sunwoo, Cha, Wujoon, Hone, James, Shepard, Kenneth
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 16.02.2015
Subjects
Online AccessGet full text
ISSN0003-6951
1077-3118
DOI10.1063/1.4913462

Cover

Loading…
Abstract Third-order intermodulation distortion (IM3) is an important metric for electromechanical resonators used in radio frequency signal processing applications since it characterizes the nonlinearity of the device, and the amount of in-band interference it generates when subject to unwanted, out-of-band signals. In this letter, we measure and model IM3 in a strain-engineered graphene mechanical resonator operated as a graphene resonant channel transistor (G-RCT). The device analyzed in this work has a voltage third-order intercept point (VIIP3) of 69.5 dBm V at a gate-to-source DC bias (Vgs) of 2.5 V, which drops to 52.1 dBm V at Vgs = 4.5 V when driven with two out-of-band input tones spaced 5 and 10 MHz from the resonant frequency. The decrease in the VIIP3 with Vgs coincides with an increase in the transmission response (S21) of the device, illustrating a trade-off between transduction efficiency and linearity. In addition, we find that conventional micro-electro-mechanical systems theory for IM3 calculation does not accurately describe our measurement data. To resolve this discrepancy, we develop a model for IM3 in G-RCTs that takes into account all of the output current terms present in the embedded transistor structure, as well as an effective Duffing parameter (αeff).
AbstractList Third-order intermodulation distortion (IM3) is an important metric for electromechanical resonators used in radio frequency signal processing applications since it characterizes the nonlinearity of the device, and the amount of in-band interference it generates when subject to unwanted, out-of-band signals. In this letter, we measure and model IM3 in a strain-engineered graphene mechanical resonator operated as a graphene resonant channel transistor (G-RCT). The device analyzed in this work has a voltage third-order intercept point (VIIP3) of 69.5 dBm V at a gate-to-source DC bias (Vgs) of 2.5 V, which drops to 52.1 dBm V at Vgs = 4.5 V when driven with two out-of-band input tones spaced 5 and 10 MHz from the resonant frequency. The decrease in the VIIP3 with Vgs coincides with an increase in the transmission response (S21) of the device, illustrating a trade-off between transduction efficiency and linearity. In addition, we find that conventional micro-electro-mechanical systems theory for IM3 calculation does not accurately describe our measurement data. To resolve this discrepancy, we develop a model for IM3 in G-RCTs that takes into account all of the output current terms present in the embedded transistor structure, as well as an effective Duffing parameter (αeff).
Author Cha, Wujoon
Shepard, Kenneth
Lee, Sunwoo
Hone, James
Lekas, Michael
Author_xml – sequence: 1
  givenname: Michael
  surname: Lekas
  fullname: Lekas, Michael
– sequence: 2
  givenname: Sunwoo
  surname: Lee
  fullname: Lee, Sunwoo
– sequence: 3
  givenname: Wujoon
  orcidid: 0000-0001-7010-943X
  surname: Cha
  fullname: Cha, Wujoon
– sequence: 4
  givenname: James
  surname: Hone
  fullname: Hone, James
– sequence: 5
  givenname: Kenneth
  surname: Shepard
  fullname: Shepard, Kenneth
BookMark eNptkD1vwjAQhq2KSgXaof8gUqcOAZ8_knisUL8kJBY6Wyaxi1Gw6dkM_fdNganqdHfSc3d6nwkZhRgsIfdAZ0ArPoeZUMBFxa7IGGhdlxygGZExpZSXlZJwQyYp7YZRMs7HZLXeeuzKiJ3FwodscR-7Y2-yj6HofMoRT60PxSeaw9YGW6BNMZiQi3ZrQrB9kdGEdGLTLbl2pk_27lKn5OPleb14K5er1_fF07JsmaxzyQ1wENJ1plKMWr6hFkCANKbpHHOKO6k2G2aU5bV1vJayZk3rHK0oa51ifEoezncPGL-ONmW9i0cMw0vNgAlFGyrEQD2eqRZjSmidPqDfG_zWQPWvLw364mtg53_Y1ueThyGe7__Z-AHwHW7K
CitedBy_id crossref_primary_10_1109_TEMC_2017_2705082
crossref_primary_10_1109_TMTT_2017_2698458
crossref_primary_10_1063_5_0034697
Cites_doi 10.1038/nnano.2011.71
10.1021/nl102713c
10.1021/nl500879k
10.1063/1.4793302
10.1143/APEX.5.117201
10.1021/nl1042227
10.1109/MMM.2008.927633
10.1063/1.3528341
10.1038/nnano.2009.267
10.1126/science.1235126
10.1109/JMEMS.2013.2283720
10.1063/1.4868129
10.1038/nnano.2013.232
10.1038/ncomms1740
10.1002/9783527626359
ContentType Journal Article
Copyright 2015 AIP Publishing LLC.
Copyright_xml – notice: 2015 AIP Publishing LLC.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.4913462
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_1_4913462
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAGWI
AAGZG
AAPUP
AAYIH
AAYXX
ABFTF
ABJGX
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D0L
EBS
EJD
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UPT
WH7
XJE
YZZ
~02
8FD
H8D
L7M
ID FETCH-LOGICAL-c257t-3a13145fda6920e3b0e11415aa8df2f93f59bb2a9e37ef3755728cff0602cf923
ISSN 0003-6951
IngestDate Mon Jun 30 03:12:30 EDT 2025
Tue Jul 01 04:19:22 EDT 2025
Thu Apr 24 23:05:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-3a13145fda6920e3b0e11415aa8df2f93f59bb2a9e37ef3755728cff0602cf923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7010-943X
PQID 2124908044
PQPubID 2050678
ParticipantIDs proquest_journals_2124908044
crossref_primary_10_1063_1_4913462
crossref_citationtrail_10_1063_1_4913462
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-16
20150216
PublicationDateYYYYMMDD 2015-02-16
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-16
  day: 16
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2015
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References (2023061716174917000_c11) 2014; 14
(2023061716174917000_c21) 2010; 97
(2023061716174917000_c2) 2013; 102
(2023061716174917000_c6) 2013
(2023061716174917000_c8) 2010; 10
(2023061716174917000_c19) 2005
(2023061716174917000_c10) 2009; 4
(2023061716174917000_c17) 1959
(2023061716174917000_c20) 2001
(2023061716174917000_c1) 2013; 340
(2023061716174917000_c14) 2013; 8
(2023061716174917000_c3) 2012; 5
2023061716174917000_c23
(2023061716174917000_c15) 2008; 9
Schuster (2023061716174917000_c22) 2008
(2023061716174917000_c13) 2014; 104
(2023061716174917000_c4) 2013
(2023061716174917000_c12) 2011; 6
(2023061716174917000_c7) 2014; 23
2023061716174917000_c18
(2023061716174917000_c5) 2012; 3
(2023061716174917000_c9) 2011; 11
(2023061716174917000_c16) 1970
References_xml – ident: 2023061716174917000_c18
– ident: 2023061716174917000_c23
– start-page: 543
  year: 2013
  ident: 2023061716174917000_c4
– volume: 6
  start-page: 339
  year: 2011
  ident: 2023061716174917000_c12
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.71
– volume: 10
  start-page: 4869
  year: 2010
  ident: 2023061716174917000_c8
  publication-title: Nano Lett.
  doi: 10.1021/nl102713c
– volume: 14
  start-page: 2854
  year: 2014
  ident: 2023061716174917000_c11
  publication-title: Nano Lett.
  doi: 10.1021/nl500879k
– start-page: 46
  volume-title: Theory of Elasticity
  year: 1970
  ident: 2023061716174917000_c16
– volume: 102
  start-page: 153101
  year: 2013
  ident: 2023061716174917000_c2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4793302
– volume: 5
  start-page: 117201
  year: 2012
  ident: 2023061716174917000_c3
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.5.117201
– volume: 11
  start-page: 1232
  year: 2011
  ident: 2023061716174917000_c9
  publication-title: Nano Lett.
  doi: 10.1021/nl1042227
– volume: 9
  start-page: 65
  year: 2008
  ident: 2023061716174917000_c15
  publication-title: IEEE Microwave Mag.
  doi: 10.1109/MMM.2008.927633
– start-page: 1
  year: 2013
  ident: 2023061716174917000_c6
– volume: 97
  start-page: 243111
  year: 2010
  ident: 2023061716174917000_c21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3528341
– volume: 4
  start-page: 861
  year: 2009
  ident: 2023061716174917000_c10
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.267
– volume: 340
  start-page: 1073
  year: 2013
  ident: 2023061716174917000_c1
  publication-title: Science
  doi: 10.1126/science.1235126
– start-page: 228
  year: 2001
  ident: 2023061716174917000_c20
– volume: 23
  start-page: 636
  year: 2014
  ident: 2023061716174917000_c7
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2013.2283720
– volume: 104
  start-page: 103109
  year: 2014
  ident: 2023061716174917000_c13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4868129
– volume: 8
  start-page: 923
  year: 2013
  ident: 2023061716174917000_c14
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.232
– volume: 3
  start-page: 734
  year: 2012
  ident: 2023061716174917000_c5
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1740
– volume-title: Theory of Plates and Shells
  year: 1959
  ident: 2023061716174917000_c17
– start-page: 1592
  year: 2005
  ident: 2023061716174917000_c19
– start-page: 10
  volume-title: Reviews of Nonlinear Dynamics and Complexity, Vol. 1
  year: 2008
  ident: 2023061716174917000_c22
  doi: 10.1002/9783527626359
SSID ssj0005233
Score 2.1732886
Snippet Third-order intermodulation distortion (IM3) is an important metric for electromechanical resonators used in radio frequency signal processing applications...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Applied physics
Embedded structures
Graphene
Intermodulation distortion
Linearity
Mechanical systems
Radio signals
Resonant frequencies
Resonators
Semiconductor devices
Signal processing
Strain
System theory
Systems theory
Third order intercept point
Transistors
Title Third-order intermodulation distortion in graphene resonant channel transistors
URI https://www.proquest.com/docview/2124908044
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_rHYL3IHoqnp5SxAdhydk2X-3jcd6xyN6dcLu4byVJE_w4d4_9ePGvd5Km3VQWUV9KaUMomV8nM5PfzCD0VlGVK5MRXJeaYCqUwBJ2McwyaSzlhVDMJThfXvHRlH6csdlgcBOxljZrdaJ_7swr-R-pwjOQq8uS_QfJdpPCA7gH-cIVJAzXv5Tx12WNffVMX_dh-WNRh3Zc7uQF3OmWyujrUoNaG4J3vXDcF5_xOzeOaQ6blR-7ig3V1jptIh-r4a1P--kM8LH53mSCxbR7f7bkSDze2TcdZM6-yOHnzbfF9sR_tGgCqZ6jGwceMp_I3eRFRlx_Oe-zGj41X9VTuQTzMlSVNY2WTYULjgbF26rhlEd4EzvVO9hTLtJwQh1fIGjxXgntq-vqYjoeV5Pz2eQe2s-FcGf3-6cfLsc3EfOHkLaRovuytuAUJ--7qftmSn-X9qbH5BF6GHyG5LQBwGM0MPNDdBBVkjxE98OKPEHXESiS30CRbEEBr5IWFEkLiiSAIolA8RRNL84nZyMcumZgDep3jYnMSEaZrSUv89QQlRrweTMmZVHb3JbEslKpXJaGCGOJYEzkhbY25WmuLdj7z9DeHFDwHCU8talWGmbikhaskHWhRa00_M1lrig7Qu_aRap0KCnvOpvcVp7awEmVVWE9j9CbbuhdU0dl16DjdqWr8Jutqty1Rwe_htIXf379Ej3YwvQY7a2XG_MKLMa1eh0Q8AuzIXHg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Third-order+intermodulation+distortion+in+graphene+resonant+channel+transistors&rft.jtitle=Applied+physics+letters&rft.au=Lekas%2C+Michael&rft.au=Sunwoo%2C+Lee&rft.au=Cha+Wujoon&rft.au=Hone%2C+James&rft.date=2015-02-16&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=106&rft.issue=7&rft_id=info:doi/10.1063%2F1.4913462&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon