DT-GWO: A hybrid decision tree and GWO-based algorithm for multi-objective task scheduling optimization in cloud computing

Cloud computing faces significant challenges in task management, particularly in balancing server loads to prevent both overload and underload conditions while meeting diverse quality of service requirements. The need to manage multiple criteria further increases the complexity of this problem. Addi...

Full description

Saved in:
Bibliographic Details
Published inSustainable computing informatics and systems Vol. 47; p. 101138
Main Authors Selselejoo, Mohaymen, Ahmadifar, HamidReza
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.09.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cloud computing faces significant challenges in task management, particularly in balancing server loads to prevent both overload and underload conditions while meeting diverse quality of service requirements. The need to manage multiple criteria further increases the complexity of this problem. Additionally, the heterogeneity of cloud resources often complicates efficient task scheduling. To overcome these challenges, this paper introduces a hybrid model that integrates the decision tree approach with the Grey Wolf Optimization (GWO) algorithm for the scheduling of independent tasks. The model aims to optimize makespan, reduce total cost, enhance resource utilization, and maintain load balance. In the proposed approach, tasks are first classified using a decision tree, after which the GWO algorithm allocates resources to the selected tasks. Simulations are conducted using the CloudSim toolkit, in a heterogeneous environment. The experiments consider various input scenarios, ranging from 200 to 3200 tasks. Compared to the standalone GWO algorithm, the proposed DT-GWO hybrid model achieves improvements of at least 18.5 % in makespan, 3.4 % in average resource utilization, and 12.7 % in total cost, all while maintaining load balance. •Developed a novel hybrid model combining Decision Tree and GWO algorithms.•Customized the proposed hybrid model for balanced task scheduling in a cloud computing environment.•Tailored the model to address multi-objective task scheduling.•Analyzed the model's performance using CloudSim tools.
AbstractList Cloud computing faces significant challenges in task management, particularly in balancing server loads to prevent both overload and underload conditions while meeting diverse quality of service requirements. The need to manage multiple criteria further increases the complexity of this problem. Additionally, the heterogeneity of cloud resources often complicates efficient task scheduling. To overcome these challenges, this paper introduces a hybrid model that integrates the decision tree approach with the Grey Wolf Optimization (GWO) algorithm for the scheduling of independent tasks. The model aims to optimize makespan, reduce total cost, enhance resource utilization, and maintain load balance. In the proposed approach, tasks are first classified using a decision tree, after which the GWO algorithm allocates resources to the selected tasks. Simulations are conducted using the CloudSim toolkit, in a heterogeneous environment. The experiments consider various input scenarios, ranging from 200 to 3200 tasks. Compared to the standalone GWO algorithm, the proposed DT-GWO hybrid model achieves improvements of at least 18.5 % in makespan, 3.4 % in average resource utilization, and 12.7 % in total cost, all while maintaining load balance. •Developed a novel hybrid model combining Decision Tree and GWO algorithms.•Customized the proposed hybrid model for balanced task scheduling in a cloud computing environment.•Tailored the model to address multi-objective task scheduling.•Analyzed the model's performance using CloudSim tools.
ArticleNumber 101138
Author Selselejoo, Mohaymen
Ahmadifar, HamidReza
Author_xml – sequence: 1
  givenname: Mohaymen
  surname: Selselejoo
  fullname: Selselejoo, Mohaymen
– sequence: 2
  givenname: HamidReza
  orcidid: 0000-0002-4933-8446
  surname: Ahmadifar
  fullname: Ahmadifar, HamidReza
  email: ahmadifar@guilan.ac.ir
BookMark eNp9kM1OwzAQhH0oEqX0DTj4BVJs558DUlWgIFXqpYijtfFP65DEle1UKk9PonBmLyvtaEaz3x2adbZTCD1QsqKEZo_1yvde2HbFCEvHE42LGZozRkmUxnl5i5be12SYNKNlnMzRz8sh2n7tn_Aan66VMxJLJYw3tsPBKYWhk3jQowq8khiao3UmnFqsrcNt3wQT2apWIpiLwgH8N_bipGTfmO6I7TmY1vxAGNNMh0Vje4mHeuc-DPo9utHQeLX82wv0-fZ62LxHu_32Y7PeRYKleYgYKKIllCRO0iKFMmcM8opIWWqhU6EzXVQZJJLQikrIAEgViyJjBZSqzEDHC5RMucJZ753S_OxMC-7KKeEjNl7zCRsfsfEJ22B7nmxq6HYxynEvjOqEksYND3Npzf8Bv5fIfnk
Cites_doi 10.1109/ACCESS.2024.3353052
10.1109/TPDS.2023.3317388
10.1007/s00500-018-3657-0
10.1016/j.jpdc.2020.05.002
10.1007/s13369-021-06076-7
10.1002/spe.995
10.1109/ACCESS.2022.3149955
10.1007/s11277-019-06360-8
10.1007/s00607-023-01171-z
10.1016/j.procs.2021.03.016
10.1109/CC.2016.7464133
10.1007/s11277-019-06566-w
10.1016/j.jpdc.2024.104847
10.1109/ACCESS.2020.3016762
10.1016/j.aej.2024.01.040
10.1109/ACCESS.2023.3308054
10.1007/s11277-019-06817-w
10.1016/j.jpdc.2020.03.022
10.1016/j.jpdc.2023.104766
10.1016/j.jksuci.2020.01.012
10.1007/s10586-020-03075-5
10.1109/ACCESS.2023.3241279
10.1007/s10723-023-09665-y
10.1109/ACCESS.2019.2946216
10.1016/j.aej.2021.04.051
10.1016/j.asoc.2024.111746
10.1016/j.asoc.2024.112002
10.1109/ACCESS.2018.2870915
10.1016/j.datak.2022.102138
10.1007/s00521-021-06002-w
10.1007/s11227-021-03977-0
10.1007/s11227-023-05714-1
10.1109/ACCESS.2015.2508940
10.1016/j.swevo.2024.101517
10.1016/j.jpdc.2021.07.019
10.1007/s40747-021-00479-7
10.1007/s11280-015-0335-3
10.1016/S0022-0000(75)80008-0
10.1007/s10586-022-03809-7
10.1016/j.advengsoft.2013.12.007
10.1016/j.procs.2023.03.027
10.1007/s11227-023-05489-5
10.1016/j.asoc.2024.111342
10.1007/s10922-017-9425-0
10.1007/s40747-021-00528-1
10.1109/ACCESS.2022.3163273
10.1016/j.future.2013.12.024
10.1016/j.cirpj.2022.11.003
10.1007/s11042-023-16008-2
10.1016/j.jnca.2019.02.005
10.1016/j.parco.2017.01.002
10.1109/TCC.2023.3315014
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright_xml – notice: 2025 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.suscom.2025.101138
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_suscom_2025_101138
S2210537925000599
GroupedDBID --K
--M
.~1
0R~
1~.
4.4
457
4G.
7-5
8P~
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BELTK
BKOJK
BLXMC
BNPGV
EBS
EFJIC
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HZ~
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSH
SSR
SSV
SSZ
T5K
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c257t-2ae0fda9034585a9722a7b0dd9fcf5cf6f8b6a4d01b1da6aa0b3c8628a9e96af3
IEDL.DBID .~1
ISSN 2210-5379
IngestDate Tue Jul 01 04:49:40 EDT 2025
Sat Jun 28 18:18:18 EDT 2025
IsPeerReviewed false
IsScholarly true
Keywords Multi-objective task scheduling
Decision tree approach
Load balancing
GWO algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c257t-2ae0fda9034585a9722a7b0dd9fcf5cf6f8b6a4d01b1da6aa0b3c8628a9e96af3
ORCID 0000-0002-4933-8446
ParticipantIDs crossref_primary_10_1016_j_suscom_2025_101138
elsevier_sciencedirect_doi_10_1016_j_suscom_2025_101138
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Sustainable computing informatics and systems
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Liu, Wang (bib4) 2020; 8
Liu, Fan, Buyya (bib60) 2018; 6
Shirvani, Talouki (bib16) 2022; 8
Zhang, Guo, Ding (bib43) 2024; 154
Senthil Kumar, Venkatesan (bib59) 2019; 107
Somasundaram, Govindarajan (bib10) 2014; 34
Cheng, Cao, Zhang (bib42) 2024; 80
Chraibi, Ben Alla, Touhafi (bib62) 2023; 79
Tong, Chen, Deng, Li, Li (bib27) 2019; 23
Lu, Liu, Zhu, Mao, Lio, Hui (bib30) 2023; 34
Narwal, Dhingra (bib19) 2023; 145
Li, Liu, Wang, Liu, Tang, Guo, Xu (bib32) 2024; 161
Siddiqui, Ahmed, Nayak (bib29) 2024; 32
Calheiros, Ranjan, Beloglazov, De Rose, Buyya (bib37) 2011; 41
Li, Lu, Shi (bib65) 2023; 105
Li, Zheng, Wang (bib39) 2023; 26
Zuo, Shu, Dong, Zhu, Hara (bib50) 2015; 3
Pang, Li, He, Shan, Wang (bib53) 2019; 7
Mangalampalli, Swain, Mangalampalli (bib49) 2022; 47
Cui, Zhao, Wu, Qin, Li (bib57) 2023; 11
Abualigah, Diabat (bib58) 2021; 24
Behera, Sobhanayak (bib24) 2024; 183
Gohil, Patel (bib20) 2018
Waikato Environment for Knowledge Analysis (WEKA), [Online]. Available
Ullman (bib2) 1975; 10
.
Comer (bib1) 2021
Abdullahi, Ngadi, Dishing (bib61) 2019; 133
Mangalampalli, Karri, Kumar (bib44) 2024; 83
He, Xu, Pang, Zhao (bib47) 2016; 13
Khan, Rasool (bib3) 2024; 187
Rostami, Goli-Bidgoli (bib22) 2023; 11
Hasani Zade, Mansouri, Javidi (bib26) 2022; 202
Mirjalili, Mirjalili, Lewis (bib8) 2014; 69
Janakiraman, Priya (bib25) 2023; 38
Jacob, Pradeep (bib64) 2019; 109
Ibrahim, Rashid, Akinsolu (bib14) 2020; 143
Patel, Patra, Sahoo (bib21) 2020
Zhang, Wu, Sun (bib51) 2022; 8
Sofia, GaneshKumar (bib63) 2018; 26
Li, Zheng, Yin (bib67) 2023; 40
Zuo, Shu, Dong, Zhu, Hara (bib5) 2015; 3
Abdullahi, Ngadi (bib13) 2016; 11
Pirozmand, Hosseinabadi, Farrokhzad (bib54) 2021; 33
Lee, Park, Kim (bib31) 2024; 164
Yang, Shen (bib35) 2022; 33
Swarup, Shakshuki, Yasar (bib41) 2021; 184
Al Reshan (bib23) 2023; 11
Shirvani (bib15) 2020; 90
Ramezani, Lu, Taheri (bib45) 2015; 18
Tang, Jia, Zhou, Yang, You (bib34) 2022; 8
Guo (bib46) 2021; 60
Mahmoud, Thabet, Khafagy, Omara (bib28) 2022; 10
Verma, Kaushal (bib55) 2017; 62
Lee, Chng, Tong, Tseu (bib7) 2023; 220
Natesan, Chokkalingam (bib48) 2020; 110
Müller, Schneider, Bonilha, De Souza, Da Cruz, Mavrovouniotis (bib9) 2024; 12
Gupta, Sahoo, Veeravalli (bib12) 2021; 158
von Winterfeldt, Edwards (bib36) 1986
Hu, Wu, Dong (bib52) 2023; 21
Jena, Das, Kabat (bib18) 2022; 34
Sharma, Sonal, Garg (bib6) 2022; 24
Krishnadoss, Jacob (bib11) 2018; 11
Song, Wu, Guo (bib66) 2024; 86
Amer, Attiya, Zeidan (bib56) 2022; 78
Alsubaei, Hamed, Hassan, Mohery, Elnahary (bib33) 2024; 89
Devaraj, Elhoseny, Dhanasekaran, Lydia, Shankar (bib17) 2020; 142
Kruekaew, Kimpan (bib40) 2022; 10
Song (10.1016/j.suscom.2025.101138_bib66) 2024; 86
Behera (10.1016/j.suscom.2025.101138_bib24) 2024; 183
Abdullahi (10.1016/j.suscom.2025.101138_bib61) 2019; 133
Lee (10.1016/j.suscom.2025.101138_bib31) 2024; 164
Mirjalili (10.1016/j.suscom.2025.101138_bib8) 2014; 69
Narwal (10.1016/j.suscom.2025.101138_bib19) 2023; 145
Pang (10.1016/j.suscom.2025.101138_bib53) 2019; 7
Zuo (10.1016/j.suscom.2025.101138_bib5) 2015; 3
Shirvani (10.1016/j.suscom.2025.101138_bib15) 2020; 90
Hasani Zade (10.1016/j.suscom.2025.101138_bib26) 2022; 202
Li (10.1016/j.suscom.2025.101138_bib67) 2023; 40
Amer (10.1016/j.suscom.2025.101138_bib56) 2022; 78
Lu (10.1016/j.suscom.2025.101138_bib30) 2023; 34
Ramezani (10.1016/j.suscom.2025.101138_bib45) 2015; 18
Gupta (10.1016/j.suscom.2025.101138_bib12) 2021; 158
Sofia (10.1016/j.suscom.2025.101138_bib63) 2018; 26
Devaraj (10.1016/j.suscom.2025.101138_bib17) 2020; 142
Rostami (10.1016/j.suscom.2025.101138_bib22) 2023; 11
Kruekaew (10.1016/j.suscom.2025.101138_bib40) 2022; 10
Senthil Kumar (10.1016/j.suscom.2025.101138_bib59) 2019; 107
Li (10.1016/j.suscom.2025.101138_bib39) 2023; 26
Tang (10.1016/j.suscom.2025.101138_bib34) 2022; 8
Verma (10.1016/j.suscom.2025.101138_bib55) 2017; 62
Shirvani (10.1016/j.suscom.2025.101138_bib16) 2022; 8
Khan (10.1016/j.suscom.2025.101138_bib3) 2024; 187
Müller (10.1016/j.suscom.2025.101138_bib9) 2024; 12
10.1016/j.suscom.2025.101138_bib38
Guo (10.1016/j.suscom.2025.101138_bib46) 2021; 60
Gohil (10.1016/j.suscom.2025.101138_bib20) 2018
Li (10.1016/j.suscom.2025.101138_bib65) 2023; 105
Patel (10.1016/j.suscom.2025.101138_bib21) 2020
Comer (10.1016/j.suscom.2025.101138_bib1) 2021
Krishnadoss (10.1016/j.suscom.2025.101138_bib11) 2018; 11
Calheiros (10.1016/j.suscom.2025.101138_bib37) 2011; 41
He (10.1016/j.suscom.2025.101138_bib47) 2016; 13
Ullman (10.1016/j.suscom.2025.101138_bib2) 1975; 10
Lee (10.1016/j.suscom.2025.101138_bib7) 2023; 220
Cheng (10.1016/j.suscom.2025.101138_bib42) 2024; 80
Liu (10.1016/j.suscom.2025.101138_bib60) 2018; 6
Jacob (10.1016/j.suscom.2025.101138_bib64) 2019; 109
Somasundaram (10.1016/j.suscom.2025.101138_bib10) 2014; 34
Zuo (10.1016/j.suscom.2025.101138_bib50) 2015; 3
Abualigah (10.1016/j.suscom.2025.101138_bib58) 2021; 24
Zhang (10.1016/j.suscom.2025.101138_bib43) 2024; 154
Yang (10.1016/j.suscom.2025.101138_bib35) 2022; 33
Mahmoud (10.1016/j.suscom.2025.101138_bib28) 2022; 10
Pirozmand (10.1016/j.suscom.2025.101138_bib54) 2021; 33
Chraibi (10.1016/j.suscom.2025.101138_bib62) 2023; 79
Abdullahi (10.1016/j.suscom.2025.101138_bib13) 2016; 11
Al Reshan (10.1016/j.suscom.2025.101138_bib23) 2023; 11
Liu (10.1016/j.suscom.2025.101138_bib4) 2020; 8
Ibrahim (10.1016/j.suscom.2025.101138_bib14) 2020; 143
Zhang (10.1016/j.suscom.2025.101138_bib51) 2022; 8
Mangalampalli (10.1016/j.suscom.2025.101138_bib44) 2024; 83
Alsubaei (10.1016/j.suscom.2025.101138_bib33) 2024; 89
Siddiqui (10.1016/j.suscom.2025.101138_bib29) 2024; 32
Jena (10.1016/j.suscom.2025.101138_bib18) 2022; 34
Cui (10.1016/j.suscom.2025.101138_bib57) 2023; 11
Sharma (10.1016/j.suscom.2025.101138_bib6) 2022; 24
Mangalampalli (10.1016/j.suscom.2025.101138_bib49) 2022; 47
Tong (10.1016/j.suscom.2025.101138_bib27) 2019; 23
Janakiraman (10.1016/j.suscom.2025.101138_bib25) 2023; 38
von Winterfeldt (10.1016/j.suscom.2025.101138_bib36) 1986
Li (10.1016/j.suscom.2025.101138_bib32) 2024; 161
Swarup (10.1016/j.suscom.2025.101138_bib41) 2021; 184
Natesan (10.1016/j.suscom.2025.101138_bib48) 2020; 110
Hu (10.1016/j.suscom.2025.101138_bib52) 2023; 21
References_xml – volume: 109
  start-page: 315
  year: 2019
  end-page: 331
  ident: bib64
  article-title: A multi-objective optimal task scheduling in cloud environment using cuckoo particle swarm optimization
  publication-title: Wirel. Pers. Commun.
– volume: 142
  start-page: 36
  year: 2020
  end-page: 45
  ident: bib17
  article-title: Hybridization of firefly and improved multi-objective particle swarm optimization algorithm for energy-efficient load balancing in cloud computing environments
  publication-title: J. Parallel Distrib. Comput.
– volume: 38
  year: 2023
  ident: bib25
  article-title: Hybrid grey wolf and improved particle swarm optimization with adaptive inertial weight-based multi-dimensional learning strategy for load balancing in cloud environments
  publication-title: Sustain. Comput. Inform. Syst.
– volume: 33
  start-page: 3003
  year: 2022
  end-page: 3014
  ident: bib35
  article-title: Deep reinforcement learning enhanced greedy optimization for online scheduling of batched tasks in cloud HPC systems
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– start-page: 655
  year: 2020
  end-page: 659
  ident: bib21
  article-title: GWO based task allocation for load balancing in containerized cloud
  publication-title: Proc. 2020 Int. Conf. Invent. Comput. Technol. (ICICT), Coimbatore, India
– volume: 47
  start-page: 1821
  year: 2022
  end-page: 1830
  ident: bib49
  article-title: Multi objective task scheduling in cloud computing using cat swarm optimization algorithm
  publication-title: Arab. J. Sci. Eng.
– start-page: 63
  year: 1986
  end-page: 89
  ident: bib36
  article-title: Decision trees
  publication-title: Decision Analysis and Behavioral Research
– volume: 8
  start-page: 4475
  year: 2022
  end-page: 4482
  ident: bib51
  article-title: EHEFT-R: multi-objective task scheduling scheme in cloud computing
  publication-title: Complex Intell. Syst.
– volume: 90
  year: 2020
  ident: bib15
  article-title: A hybrid meta-heuristic algorithm for scientific workflow scheduling in heterogeneous distributed computing systems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 34
  start-page: 47
  year: 2014
  end-page: 65
  ident: bib10
  article-title: CLOUDRB: a framework for scheduling and managing high-performance computing (HPC) applications in science cloud
  publication-title: Future Gener. Comput. Syst.
– volume: 11
  start-page: 97037
  year: 2023
  end-page: 97056
  ident: bib22
  article-title: TMaLB: A tolerable many-objective load balancing technique for IoT workflows allocation
  publication-title: IEEE Access
– volume: 143
  start-page: 77
  year: 2020
  end-page: 87
  ident: bib14
  article-title: An energy-efficient service composition mechanism using a hybrid meta-heuristic algorithm in a mobile cloud environment
  publication-title: J. Parallel Distrib. Comput.
– volume: 187
  year: 2024
  ident: bib3
  article-title: A multi-objective grey-wolf optimization-based approach for scheduling on cloud platforms
  publication-title: J. Parallel Distrib. Comput.
– volume: 183
  year: 2024
  ident: bib24
  article-title: Task scheduling optimization in heterogeneous cloud computing environments: a hybrid GA-GWO approach
  publication-title: J. Parallel Distrib. Comput.
– volume: 18
  start-page: 1737
  year: 2015
  end-page: 1757
  ident: bib45
  article-title: Evolutionary algorithm-based multi-objective task scheduling optimization model in cloud environments
  publication-title: World Wide Web
– volume: 10
  start-page: 36140
  year: 2022
  end-page: 36151
  ident: bib28
  article-title: Multiobjective task scheduling in cloud environment using decision tree algorithm
  publication-title: IEEE Access
– volume: 10
  start-page: 17803
  year: 2022
  end-page: 17818
  ident: bib40
  article-title: Multi-objective task scheduling optimization for load balancing in cloud computing environment using hybrid artificial bee colony algorithm with reinforcement learning
  publication-title: IEEE Access
– volume: 8
  start-page: 150878
  year: 2020
  end-page: 150890
  ident: bib4
  article-title: Collaborative optimization scheduling of cloud service resources based on improved genetic algorithm
  publication-title: IEEE Access
– volume: 33
  start-page: 13075
  year: 2021
  end-page: 13088
  ident: bib54
  article-title: Multi-objective hybrid genetic algorithm for task scheduling problem in cloud computing
  publication-title: Neural Comput. Appl.
– reference: Waikato Environment for Knowledge Analysis (WEKA), [Online]. Available:
– volume: 24
  start-page: 205
  year: 2021
  end-page: 223
  ident: bib58
  article-title: A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments
  publication-title: Clust. Comput.
– start-page: 185
  year: 2018
  end-page: 191
  ident: bib20
  article-title: A hybrid GWO-PSO algorithm for load balancing in cloud computing environment
  publication-title: Proc. 2nd Int. Conf. Green. Comput. Internet Things (ICGCIoT)
– volume: 13
  start-page: 162
  year: 2016
  end-page: 171
  ident: bib47
  article-title: AMTS: Adaptive multi-objective task scheduling strategy in cloud computing
  publication-title: China Commun.
– volume: 32
  year: 2024
  ident: bib29
  article-title: A decision tree approach for enhancing real-time response in exigent healthcare unit using edge computing
  publication-title: Meas. Sens.
– volume: 105
  start-page: 1717
  year: 2023
  end-page: 1743
  ident: bib65
  article-title: Energy-aware scheduling for spark job based on deep reinforcement learning in cloud
  publication-title: Computing
– volume: 8
  start-page: 795
  year: 2022
  end-page: 808
  ident: bib34
  article-title: Representation and reinforcement learning for task scheduling in edge computing, IEEE Trans
  publication-title: Big Data
– volume: 89
  start-page: 1
  year: 2024
  end-page: 30
  ident: bib33
  article-title: Kh., Machine learning approach to optimal task scheduling in cloud communication
  publication-title: Alexandria Eng. J
– volume: 161
  year: 2024
  ident: bib32
  article-title: A K-means-teaching learning based optimization algorithm for parallel machine scheduling problem
  publication-title: Appl. Soft Comput.
– volume: 8
  start-page: 1085
  year: 2022
  end-page: 1114
  ident: bib16
  article-title: Bi-objective scheduling algorithm for scientific workflows on cloud computing platform with makespan and monetary cost minimization approach
  publication-title: Complex Intell. Syst.
– volume: 23
  start-page: 11035
  year: 2019
  end-page: 11054
  ident: bib27
  article-title: A novel task scheduling scheme in a cloud computing environment using hybrid biogeography-based optimization
  publication-title: Soft Comput.
– volume: 12
  start-page: 20867
  year: 2024
  end-page: 20884
  ident: bib9
  article-title: GATeS: a hybrid algorithm based on genetic algorithm and tabu search for the direct marketing problem
  publication-title: IEEE Access
– volume: 78
  start-page: 2793
  year: 2022
  end-page: 2818
  ident: bib56
  article-title: Elite learning Harris hawk’s optimizer for multi-objective task scheduling in cloud computing
  publication-title: J. Supercomput.
– volume: 184
  start-page: 42
  year: 2021
  end-page: 51
  ident: bib41
  article-title: Task scheduling in cloud using deep reinforcement learning
  publication-title: Procedia Comput. Sci.
– year: 2021
  ident: bib1
  article-title: The Cloud Computing Book: The Future of Computing Explained, 1st ed., Kindle Edition
– volume: 154
  year: 2024
  ident: bib43
  article-title: An adaptive multi-objective multi-task scheduling method by hierarchical deep reinforcement learning
  publication-title: Appl. Soft Comput.
– volume: 7
  start-page: 146379
  year: 2019
  end-page: 146389
  ident: bib53
  article-title: An EDA-GA hybrid algorithm for multi-objective task scheduling in cloud computing
  publication-title: IEEE Access
– volume: 26
  start-page: 4051
  year: 2023
  end-page: 4067
  ident: bib39
  article-title: A multi-objective task offloading based on BBO algorithm under deadline constrain in mobile edge computing
  publication-title: Clust. Comput.
– volume: 133
  start-page: 60
  year: 2019
  end-page: 74
  ident: bib61
  article-title: An efficient symbiotic organism’s search algorithm with chaotic optimization strategy for multi-objective task scheduling problems in cloud computing environment
  publication-title: J. Netw. Comput. Appl.
– volume: 11
  year: 2016
  ident: bib13
  article-title: Hybrid symbiotic organisms search optimization algorithm for scheduling of tasks on cloud computing environment
  publication-title: PLoS ONE
– volume: 83
  start-page: 8359
  year: 2024
  end-page: 8387
  ident: bib44
  article-title: DRLBTSA: deep reinforcement learning based task-scheduling algorithm in cloud computing
  publication-title: Multimed. Tools Appl.
– volume: 79
  start-page: 21368
  year: 2023
  end-page: 21423
  ident: bib62
  article-title: A novel dynamic multi-objective task scheduling optimization based on dueling DQN and PER
  publication-title: J. Supercomput.
– volume: 60
  start-page: 5603
  year: 2021
  end-page: 5609
  ident: bib46
  article-title: Multi-objective task scheduling optimization in cloud computing based on fuzzy self-defense algorithm
  publication-title: Alex. Eng. J.
– volume: 62
  start-page: 1
  year: 2017
  end-page: 19
  ident: bib55
  article-title: A hybrid multi-objective particle swarm optimization for scientific workflow scheduling
  publication-title: Parallel Comput.
– volume: 202
  year: 2022
  ident: bib26
  article-title: A two-stage scheduler based on new caledonian crow learning algorithm and reinforcement learning strategy for cloud environment
  publication-title: J. Netw. Comput. Appl.
– volume: 6
  start-page: 52982
  year: 2018
  end-page: 52996
  ident: bib60
  article-title: A deadline-constrained multi-objective task scheduling algorithm in mobile cloud environments
  publication-title: IEEE Access
– volume: 3
  start-page: 2687
  year: 2015
  end-page: 2699
  ident: bib50
  article-title: A multi-objective optimization scheduling method based on the ant colony algorithm in cloud computing
  publication-title: IEEE Access
– volume: 34
  start-page: 2332
  year: 2022
  end-page: 2342
  ident: bib18
  article-title: Hybridization of meta-heuristic algorithm for load balancing in cloud computing environment
  publication-title: J. King Saud. Univ. Comput. Inf. Sci.
– volume: 41
  start-page: 23
  year: 2011
  end-page: 50
  ident: bib37
  article-title: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms, Softw
  publication-title: Softw. Pract. Exp.
– volume: 26
  start-page: 463
  year: 2018
  end-page: 485
  ident: bib63
  article-title: Multi-objective task scheduling to minimize energy consumption and makespan of cloud computing using NSGA-II
  publication-title: J. Netw. Syst. Manag.
– volume: 10
  start-page: 384
  year: 1975
  end-page: 393
  ident: bib2
  article-title: NP-complete scheduling problems
  publication-title: J. Comput. Syst. Sci.
– volume: 164
  year: 2024
  ident: bib31
  article-title: An incremental learning approach to dynamic parallel machine scheduling with sequence-dependent setups and machine eligibility restrictions
  publication-title: Appl. Soft Comput.
– volume: 158
  start-page: 80
  year: 2021
  end-page: 93
  ident: bib12
  article-title: Dynamic fault-tolerant scheduling with response time minimization for multiple failures in cloud
  publication-title: J. Parallel Distrib. Comput.
– volume: 80
  start-page: 6917
  year: 2024
  end-page: 6945
  ident: bib42
  article-title: Multi objective dynamic task scheduling optimization algorithm based on deep reinforcement learning
  publication-title: J. Supercomput.
– volume: 145
  year: 2023
  ident: bib19
  article-title: A novel approach for credit-based resource aware load balancing algorithm (CB-RALB-SA) for scheduling jobs in cloud computing
  publication-title: Data Knowl. Eng.
– volume: 40
  start-page: 75
  year: 2023
  end-page: 101
  ident: bib67
  article-title: Deep reinforcement learning in smart manufacturing: a review and prospects
  publication-title: CIRP J. Manuf. Sci. Technol.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: bib8
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 220
  start-page: 195
  year: 2023
  end-page: 201
  ident: bib7
  article-title: Optimizing energy consumption on smart home task scheduling using particle swarm optimization
  publication-title: Procedia Comput. Sci.
– volume: 24
  year: 2022
  ident: bib6
  article-title: Ant colony-based optimization model for QoS-based task scheduling in cloud computing environment
  publication-title: Meas. Sens.
– volume: 107
  start-page: 1835
  year: 2019
  end-page: 1848
  ident: bib59
  article-title: Multi-objective task scheduling using hybrid genetic-ant colony optimization algorithm in cloud environment
  publication-title: Wirel. Pers. Commun.
– volume: 3
  start-page: 2687
  year: 2015
  end-page: 2699
  ident: bib5
  article-title: A multi-objective optimization scheduling method based on the ant colony algorithm in cloud computing
  publication-title: IEEE Access
– volume: 11
  start-page: 271
  year: 2018
  end-page: 279
  ident: bib11
  publication-title: OCSA: Task. Sched. Algorithm Cloud Comput. Environ., Int. J. Intell. Eng. Syst.
– reference: .
– volume: 86
  year: 2024
  ident: bib66
  article-title: Reinforcement learning-assisted evolutionary algorithm: a survey and research opportunities
  publication-title: Swarm Evolut. Comput.
– volume: 11
  start-page: 11390
  year: 2023
  end-page: 11404
  ident: bib23
  article-title: A fast converging and globally optimized approach for load balancing in cloud computing
  publication-title: IEEE Access
– volume: 21
  start-page: 31
  year: 2023
  ident: bib52
  article-title: A two-stage multi-objective task scheduling framework based on invasive tumor growth optimization algorithm for cloud computing
  publication-title: J. Grid Comput.
– volume: 11
  start-page: 3685
  year: 2023
  end-page: 3699
  ident: bib57
  article-title: Multi-objective cloud task scheduling optimization based on evolutionary multi-factor algorithm
  publication-title: IEEE Trans. Cloud Comput.
– volume: 34
  start-page: 3266
  year: 2023
  end-page: 3279
  ident: bib30
  article-title: RLPTO: a reinforcement learning-based performance-time optimized task and resource scheduling mechanism for distributed machine learning
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 110
  start-page: 1887
  year: 2020
  end-page: 1913
  ident: bib48
  article-title: Multi-objective task scheduling using hybrid whale genetic optimization algorithm in heterogeneous computing environment
  publication-title: Wirel. Pers. Commun.
– volume: 12
  start-page: 20867
  year: 2024
  ident: 10.1016/j.suscom.2025.101138_bib9
  article-title: GATeS: a hybrid algorithm based on genetic algorithm and tabu search for the direct marketing problem
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3353052
– volume: 34
  start-page: 3266
  issue: 12
  year: 2023
  ident: 10.1016/j.suscom.2025.101138_bib30
  article-title: RLPTO: a reinforcement learning-based performance-time optimized task and resource scheduling mechanism for distributed machine learning
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2023.3317388
– volume: 23
  start-page: 11035
  year: 2019
  ident: 10.1016/j.suscom.2025.101138_bib27
  article-title: A novel task scheduling scheme in a cloud computing environment using hybrid biogeography-based optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3657-0
– volume: 143
  start-page: 77
  year: 2020
  ident: 10.1016/j.suscom.2025.101138_bib14
  article-title: An energy-efficient service composition mechanism using a hybrid meta-heuristic algorithm in a mobile cloud environment
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2020.05.002
– volume: 47
  start-page: 1821
  year: 2022
  ident: 10.1016/j.suscom.2025.101138_bib49
  article-title: Multi objective task scheduling in cloud computing using cat swarm optimization algorithm
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-021-06076-7
– volume: 41
  start-page: 23
  issue: 1
  year: 2011
  ident: 10.1016/j.suscom.2025.101138_bib37
  article-title: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms, Softw
  publication-title: Softw. Pract. Exp.
  doi: 10.1002/spe.995
– volume: 10
  start-page: 17803
  year: 2022
  ident: 10.1016/j.suscom.2025.101138_bib40
  article-title: Multi-objective task scheduling optimization for load balancing in cloud computing environment using hybrid artificial bee colony algorithm with reinforcement learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3149955
– ident: 10.1016/j.suscom.2025.101138_bib38
– volume: 107
  start-page: 1835
  year: 2019
  ident: 10.1016/j.suscom.2025.101138_bib59
  article-title: Multi-objective task scheduling using hybrid genetic-ant colony optimization algorithm in cloud environment
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-019-06360-8
– volume: 105
  start-page: 1717
  year: 2023
  ident: 10.1016/j.suscom.2025.101138_bib65
  article-title: Energy-aware scheduling for spark job based on deep reinforcement learning in cloud
  publication-title: Computing
  doi: 10.1007/s00607-023-01171-z
– volume: 184
  start-page: 42
  year: 2021
  ident: 10.1016/j.suscom.2025.101138_bib41
  article-title: Task scheduling in cloud using deep reinforcement learning
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.03.016
– volume: 13
  start-page: 162
  issue: 4
  year: 2016
  ident: 10.1016/j.suscom.2025.101138_bib47
  article-title: AMTS: Adaptive multi-objective task scheduling strategy in cloud computing
  publication-title: China Commun.
  doi: 10.1109/CC.2016.7464133
– volume: 109
  start-page: 315
  year: 2019
  ident: 10.1016/j.suscom.2025.101138_bib64
  article-title: A multi-objective optimal task scheduling in cloud environment using cuckoo particle swarm optimization
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-019-06566-w
– volume: 187
  year: 2024
  ident: 10.1016/j.suscom.2025.101138_bib3
  article-title: A multi-objective grey-wolf optimization-based approach for scheduling on cloud platforms
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2024.104847
– volume: 33
  start-page: 3003
  issue: 11
  year: 2022
  ident: 10.1016/j.suscom.2025.101138_bib35
  article-title: Deep reinforcement learning enhanced greedy optimization for online scheduling of batched tasks in cloud HPC systems
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 8
  start-page: 150878
  year: 2020
  ident: 10.1016/j.suscom.2025.101138_bib4
  article-title: Collaborative optimization scheduling of cloud service resources based on improved genetic algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3016762
– volume: 89
  start-page: 1
  year: 2024
  ident: 10.1016/j.suscom.2025.101138_bib33
  article-title: Kh., Machine learning approach to optimal task scheduling in cloud communication
  publication-title: Alexandria Eng. J
  doi: 10.1016/j.aej.2024.01.040
– volume: 202
  year: 2022
  ident: 10.1016/j.suscom.2025.101138_bib26
  article-title: A two-stage scheduler based on new caledonian crow learning algorithm and reinforcement learning strategy for cloud environment
  publication-title: J. Netw. Comput. Appl.
– volume: 11
  year: 2016
  ident: 10.1016/j.suscom.2025.101138_bib13
  article-title: Hybrid symbiotic organisms search optimization algorithm for scheduling of tasks on cloud computing environment
  publication-title: PLoS ONE
– volume: 11
  start-page: 97037
  year: 2023
  ident: 10.1016/j.suscom.2025.101138_bib22
  article-title: TMaLB: A tolerable many-objective load balancing technique for IoT workflows allocation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3308054
– volume: 110
  start-page: 1887
  year: 2020
  ident: 10.1016/j.suscom.2025.101138_bib48
  article-title: Multi-objective task scheduling using hybrid whale genetic optimization algorithm in heterogeneous computing environment
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-019-06817-w
– volume: 142
  start-page: 36
  year: 2020
  ident: 10.1016/j.suscom.2025.101138_bib17
  article-title: Hybridization of firefly and improved multi-objective particle swarm optimization algorithm for energy-efficient load balancing in cloud computing environments
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2020.03.022
– year: 2021
  ident: 10.1016/j.suscom.2025.101138_bib1
– volume: 183
  year: 2024
  ident: 10.1016/j.suscom.2025.101138_bib24
  article-title: Task scheduling optimization in heterogeneous cloud computing environments: a hybrid GA-GWO approach
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2023.104766
– volume: 32
  year: 2024
  ident: 10.1016/j.suscom.2025.101138_bib29
  article-title: A decision tree approach for enhancing real-time response in exigent healthcare unit using edge computing
  publication-title: Meas. Sens.
– volume: 34
  start-page: 2332
  issue: 6A
  year: 2022
  ident: 10.1016/j.suscom.2025.101138_bib18
  article-title: Hybridization of meta-heuristic algorithm for load balancing in cloud computing environment
  publication-title: J. King Saud. Univ. Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2020.01.012
– volume: 24
  start-page: 205
  year: 2021
  ident: 10.1016/j.suscom.2025.101138_bib58
  article-title: A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-020-03075-5
– volume: 11
  start-page: 11390
  year: 2023
  ident: 10.1016/j.suscom.2025.101138_bib23
  article-title: A fast converging and globally optimized approach for load balancing in cloud computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3241279
– volume: 21
  start-page: 31
  year: 2023
  ident: 10.1016/j.suscom.2025.101138_bib52
  article-title: A two-stage multi-objective task scheduling framework based on invasive tumor growth optimization algorithm for cloud computing
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-023-09665-y
– start-page: 185
  year: 2018
  ident: 10.1016/j.suscom.2025.101138_bib20
  article-title: A hybrid GWO-PSO algorithm for load balancing in cloud computing environment
  publication-title: Proc. 2nd Int. Conf. Green. Comput. Internet Things (ICGCIoT)
– volume: 7
  start-page: 146379
  year: 2019
  ident: 10.1016/j.suscom.2025.101138_bib53
  article-title: An EDA-GA hybrid algorithm for multi-objective task scheduling in cloud computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2946216
– volume: 60
  start-page: 5603
  issue: 6
  year: 2021
  ident: 10.1016/j.suscom.2025.101138_bib46
  article-title: Multi-objective task scheduling optimization in cloud computing based on fuzzy self-defense algorithm
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.04.051
– volume: 161
  year: 2024
  ident: 10.1016/j.suscom.2025.101138_bib32
  article-title: A K-means-teaching learning based optimization algorithm for parallel machine scheduling problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111746
– volume: 164
  year: 2024
  ident: 10.1016/j.suscom.2025.101138_bib31
  article-title: An incremental learning approach to dynamic parallel machine scheduling with sequence-dependent setups and machine eligibility restrictions
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.112002
– volume: 6
  start-page: 52982
  year: 2018
  ident: 10.1016/j.suscom.2025.101138_bib60
  article-title: A deadline-constrained multi-objective task scheduling algorithm in mobile cloud environments
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870915
– volume: 145
  year: 2023
  ident: 10.1016/j.suscom.2025.101138_bib19
  article-title: A novel approach for credit-based resource aware load balancing algorithm (CB-RALB-SA) for scheduling jobs in cloud computing
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2022.102138
– volume: 33
  start-page: 13075
  year: 2021
  ident: 10.1016/j.suscom.2025.101138_bib54
  article-title: Multi-objective hybrid genetic algorithm for task scheduling problem in cloud computing
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06002-w
– volume: 24
  year: 2022
  ident: 10.1016/j.suscom.2025.101138_bib6
  article-title: Ant colony-based optimization model for QoS-based task scheduling in cloud computing environment
  publication-title: Meas. Sens.
– volume: 78
  start-page: 2793
  year: 2022
  ident: 10.1016/j.suscom.2025.101138_bib56
  article-title: Elite learning Harris hawk’s optimizer for multi-objective task scheduling in cloud computing
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-021-03977-0
– volume: 80
  start-page: 6917
  year: 2024
  ident: 10.1016/j.suscom.2025.101138_bib42
  article-title: Multi objective dynamic task scheduling optimization algorithm based on deep reinforcement learning
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-023-05714-1
– volume: 3
  start-page: 2687
  year: 2015
  ident: 10.1016/j.suscom.2025.101138_bib50
  article-title: A multi-objective optimization scheduling method based on the ant colony algorithm in cloud computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2015.2508940
– volume: 86
  year: 2024
  ident: 10.1016/j.suscom.2025.101138_bib66
  article-title: Reinforcement learning-assisted evolutionary algorithm: a survey and research opportunities
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2024.101517
– volume: 158
  start-page: 80
  year: 2021
  ident: 10.1016/j.suscom.2025.101138_bib12
  article-title: Dynamic fault-tolerant scheduling with response time minimization for multiple failures in cloud
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2021.07.019
– volume: 8
  start-page: 4475
  year: 2022
  ident: 10.1016/j.suscom.2025.101138_bib51
  article-title: EHEFT-R: multi-objective task scheduling scheme in cloud computing
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00479-7
– volume: 18
  start-page: 1737
  year: 2015
  ident: 10.1016/j.suscom.2025.101138_bib45
  article-title: Evolutionary algorithm-based multi-objective task scheduling optimization model in cloud environments
  publication-title: World Wide Web
  doi: 10.1007/s11280-015-0335-3
– volume: 10
  start-page: 384
  issue: 3
  year: 1975
  ident: 10.1016/j.suscom.2025.101138_bib2
  article-title: NP-complete scheduling problems
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/S0022-0000(75)80008-0
– volume: 26
  start-page: 4051
  year: 2023
  ident: 10.1016/j.suscom.2025.101138_bib39
  article-title: A multi-objective task offloading based on BBO algorithm under deadline constrain in mobile edge computing
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-022-03809-7
– volume: 11
  start-page: 271
  year: 2018
  ident: 10.1016/j.suscom.2025.101138_bib11
  publication-title: OCSA: Task. Sched. Algorithm Cloud Comput. Environ., Int. J. Intell. Eng. Syst.
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.suscom.2025.101138_bib8
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 220
  start-page: 195
  year: 2023
  ident: 10.1016/j.suscom.2025.101138_bib7
  article-title: Optimizing energy consumption on smart home task scheduling using particle swarm optimization
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2023.03.027
– volume: 79
  start-page: 21368
  year: 2023
  ident: 10.1016/j.suscom.2025.101138_bib62
  article-title: A novel dynamic multi-objective task scheduling optimization based on dueling DQN and PER
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-023-05489-5
– volume: 38
  year: 2023
  ident: 10.1016/j.suscom.2025.101138_bib25
  article-title: Hybrid grey wolf and improved particle swarm optimization with adaptive inertial weight-based multi-dimensional learning strategy for load balancing in cloud environments
  publication-title: Sustain. Comput. Inform. Syst.
– volume: 154
  year: 2024
  ident: 10.1016/j.suscom.2025.101138_bib43
  article-title: An adaptive multi-objective multi-task scheduling method by hierarchical deep reinforcement learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111342
– volume: 90
  year: 2020
  ident: 10.1016/j.suscom.2025.101138_bib15
  article-title: A hybrid meta-heuristic algorithm for scientific workflow scheduling in heterogeneous distributed computing systems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 26
  start-page: 463
  year: 2018
  ident: 10.1016/j.suscom.2025.101138_bib63
  article-title: Multi-objective task scheduling to minimize energy consumption and makespan of cloud computing using NSGA-II
  publication-title: J. Netw. Syst. Manag.
  doi: 10.1007/s10922-017-9425-0
– volume: 8
  start-page: 1085
  year: 2022
  ident: 10.1016/j.suscom.2025.101138_bib16
  article-title: Bi-objective scheduling algorithm for scientific workflows on cloud computing platform with makespan and monetary cost minimization approach
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00528-1
– volume: 10
  start-page: 36140
  year: 2022
  ident: 10.1016/j.suscom.2025.101138_bib28
  article-title: Multiobjective task scheduling in cloud environment using decision tree algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3163273
– volume: 34
  start-page: 47
  year: 2014
  ident: 10.1016/j.suscom.2025.101138_bib10
  article-title: CLOUDRB: a framework for scheduling and managing high-performance computing (HPC) applications in science cloud
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2013.12.024
– volume: 40
  start-page: 75
  year: 2023
  ident: 10.1016/j.suscom.2025.101138_bib67
  article-title: Deep reinforcement learning in smart manufacturing: a review and prospects
  publication-title: CIRP J. Manuf. Sci. Technol.
  doi: 10.1016/j.cirpj.2022.11.003
– volume: 83
  start-page: 8359
  year: 2024
  ident: 10.1016/j.suscom.2025.101138_bib44
  article-title: DRLBTSA: deep reinforcement learning based task-scheduling algorithm in cloud computing
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-16008-2
– start-page: 655
  year: 2020
  ident: 10.1016/j.suscom.2025.101138_bib21
  article-title: GWO based task allocation for load balancing in containerized cloud
  publication-title: Proc. 2020 Int. Conf. Invent. Comput. Technol. (ICICT), Coimbatore, India
– volume: 133
  start-page: 60
  year: 2019
  ident: 10.1016/j.suscom.2025.101138_bib61
  article-title: An efficient symbiotic organism’s search algorithm with chaotic optimization strategy for multi-objective task scheduling problems in cloud computing environment
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2019.02.005
– volume: 62
  start-page: 1
  year: 2017
  ident: 10.1016/j.suscom.2025.101138_bib55
  article-title: A hybrid multi-objective particle swarm optimization for scientific workflow scheduling
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2017.01.002
– volume: 3
  start-page: 2687
  year: 2015
  ident: 10.1016/j.suscom.2025.101138_bib5
  article-title: A multi-objective optimization scheduling method based on the ant colony algorithm in cloud computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2015.2508940
– volume: 8
  start-page: 795
  issue: 3
  year: 2022
  ident: 10.1016/j.suscom.2025.101138_bib34
  article-title: Representation and reinforcement learning for task scheduling in edge computing, IEEE Trans
  publication-title: Big Data
– start-page: 63
  year: 1986
  ident: 10.1016/j.suscom.2025.101138_bib36
  article-title: Decision trees
– volume: 11
  start-page: 3685
  issue: 4
  year: 2023
  ident: 10.1016/j.suscom.2025.101138_bib57
  article-title: Multi-objective cloud task scheduling optimization based on evolutionary multi-factor algorithm
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2023.3315014
SSID ssj0000561934
Score 2.3311284
Snippet Cloud computing faces significant challenges in task management, particularly in balancing server loads to prevent both overload and underload conditions while...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 101138
SubjectTerms Decision tree approach
GWO algorithm
Load balancing
Multi-objective task scheduling
Title DT-GWO: A hybrid decision tree and GWO-based algorithm for multi-objective task scheduling optimization in cloud computing
URI https://dx.doi.org/10.1016/j.suscom.2025.101138
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWVh4I8pLN7CaOonzMFvFq4CAARDdIju2aXkkiKYDDPx2znkgkBADY-ycZF3O393F9_kI2U0UxsSCWRpwxSn3jUEcVDG1ypOJJzGBUI7vfHEZDW752TAczpCDlgvjyiob7K8xvULrZqTXaLP3Mh73rn3MVsIgFn5Y3zLiGOw8dla-9-F9_WdxEbKoDpfd-9QJtAy6qsxrMp24shEffb8b8hxR5TcP9c3rHC-S-SZchH69oiUyY_JlstC2YoBmZ66Q98MbenJ3tQ99GL05EhbopnkOuGNnkLkGnKfOaWmQT_fF67gcPQOGrFDVFNJCPdTYB6WcPAImveiEHFcdCkSV54auCeMcsqdiqiGr1oDzq-T2-OjmYECbtgo0w_1ZUl8aZrUULOCYK0gR-76MFdNa2MyGmY0sfkDJNfOUp2UkJVNBholPIoURkbTBGunkRW7WCSSaJbFVgWaRzxMuEoPhENfWhFxrZlSX0FaV6Ut9e0balpU9pLXqU6f6tFZ9l8StvtMfVpAiwP8pufFvyU0y557qurEt0ilfp2YbA41S7VSWtENm-6fng8tPnsHU6Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QEu0BYQhZbOoVdrncR5mNuqD7av5cBW9BbZsU23tEnVzR7g13ecOAgkxKFXj0ayJvY3M_F8MwD7haaYWHLHEqEFE7G1hIM6Z05HqogUJRDa850vZtn0UpxepVdrcDBwYXxZZcD-HtM7tA4r42DN8f1iMf4aU7aSJrmM077LyDNY992p0hGsT07OprPfv1p8kCy792WvwrzOQKLrKr2Wq6WvHInJ_fulyHNV_uWk_nA8xxvwMkSMOOk3tQlrtt6CV8M0BgyX8zX8Opyzz9--fMIJXv_0PCw0YX4O-pdnVLVBkjPvtwyq2-_Nw6K9vkOKWrErK2SNvunhD1u1_IGU95If8nR1bAhY7gJjExc1VrfNymDV7YHkb-Dy-Gh-MGVhsgKr6Iq2LFaWO6MkTwSlC0rmcaxyzY2RrnJp5TJH31AJwyMdGZUpxXVSUe5TKGllplzyFkZ1U9t3gIXhRe50YngWi0LIwlJEJIyzqTCGW70NbDBled830CiHyrKbsjd96U1f9qbfhnywd_nXQSgJ4_-r-f7JmnvwfDq_OC_PT2ZnH-CFl_RlZDswah9WdpfijlZ_DOfqEfN415o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DT-GWO%3A+A+hybrid+decision+tree+and+GWO-based+algorithm+for+multi-objective+task+scheduling+optimization+in+cloud+computing&rft.jtitle=Sustainable+computing+informatics+and+systems&rft.au=Selselejoo%2C+Mohaymen&rft.au=Ahmadifar%2C+HamidReza&rft.date=2025-09-01&rft.issn=2210-5379&rft.volume=47&rft.spage=101138&rft_id=info:doi/10.1016%2Fj.suscom.2025.101138&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_suscom_2025_101138
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-5379&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-5379&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-5379&client=summon