DT-GWO: A hybrid decision tree and GWO-based algorithm for multi-objective task scheduling optimization in cloud computing
Cloud computing faces significant challenges in task management, particularly in balancing server loads to prevent both overload and underload conditions while meeting diverse quality of service requirements. The need to manage multiple criteria further increases the complexity of this problem. Addi...
Saved in:
Published in | Sustainable computing informatics and systems Vol. 47; p. 101138 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.09.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cloud computing faces significant challenges in task management, particularly in balancing server loads to prevent both overload and underload conditions while meeting diverse quality of service requirements. The need to manage multiple criteria further increases the complexity of this problem. Additionally, the heterogeneity of cloud resources often complicates efficient task scheduling. To overcome these challenges, this paper introduces a hybrid model that integrates the decision tree approach with the Grey Wolf Optimization (GWO) algorithm for the scheduling of independent tasks. The model aims to optimize makespan, reduce total cost, enhance resource utilization, and maintain load balance. In the proposed approach, tasks are first classified using a decision tree, after which the GWO algorithm allocates resources to the selected tasks. Simulations are conducted using the CloudSim toolkit, in a heterogeneous environment. The experiments consider various input scenarios, ranging from 200 to 3200 tasks. Compared to the standalone GWO algorithm, the proposed DT-GWO hybrid model achieves improvements of at least 18.5 % in makespan, 3.4 % in average resource utilization, and 12.7 % in total cost, all while maintaining load balance.
•Developed a novel hybrid model combining Decision Tree and GWO algorithms.•Customized the proposed hybrid model for balanced task scheduling in a cloud computing environment.•Tailored the model to address multi-objective task scheduling.•Analyzed the model's performance using CloudSim tools. |
---|---|
AbstractList | Cloud computing faces significant challenges in task management, particularly in balancing server loads to prevent both overload and underload conditions while meeting diverse quality of service requirements. The need to manage multiple criteria further increases the complexity of this problem. Additionally, the heterogeneity of cloud resources often complicates efficient task scheduling. To overcome these challenges, this paper introduces a hybrid model that integrates the decision tree approach with the Grey Wolf Optimization (GWO) algorithm for the scheduling of independent tasks. The model aims to optimize makespan, reduce total cost, enhance resource utilization, and maintain load balance. In the proposed approach, tasks are first classified using a decision tree, after which the GWO algorithm allocates resources to the selected tasks. Simulations are conducted using the CloudSim toolkit, in a heterogeneous environment. The experiments consider various input scenarios, ranging from 200 to 3200 tasks. Compared to the standalone GWO algorithm, the proposed DT-GWO hybrid model achieves improvements of at least 18.5 % in makespan, 3.4 % in average resource utilization, and 12.7 % in total cost, all while maintaining load balance.
•Developed a novel hybrid model combining Decision Tree and GWO algorithms.•Customized the proposed hybrid model for balanced task scheduling in a cloud computing environment.•Tailored the model to address multi-objective task scheduling.•Analyzed the model's performance using CloudSim tools. |
ArticleNumber | 101138 |
Author | Selselejoo, Mohaymen Ahmadifar, HamidReza |
Author_xml | – sequence: 1 givenname: Mohaymen surname: Selselejoo fullname: Selselejoo, Mohaymen – sequence: 2 givenname: HamidReza orcidid: 0000-0002-4933-8446 surname: Ahmadifar fullname: Ahmadifar, HamidReza email: ahmadifar@guilan.ac.ir |
BookMark | eNp9kM1OwzAQhH0oEqX0DTj4BVJs558DUlWgIFXqpYijtfFP65DEle1UKk9PonBmLyvtaEaz3x2adbZTCD1QsqKEZo_1yvde2HbFCEvHE42LGZozRkmUxnl5i5be12SYNKNlnMzRz8sh2n7tn_Aan66VMxJLJYw3tsPBKYWhk3jQowq8khiao3UmnFqsrcNt3wQT2apWIpiLwgH8N_bipGTfmO6I7TmY1vxAGNNMh0Vje4mHeuc-DPo9utHQeLX82wv0-fZ62LxHu_32Y7PeRYKleYgYKKIllCRO0iKFMmcM8opIWWqhU6EzXVQZJJLQikrIAEgViyJjBZSqzEDHC5RMucJZ753S_OxMC-7KKeEjNl7zCRsfsfEJ22B7nmxq6HYxynEvjOqEksYND3Npzf8Bv5fIfnk |
Cites_doi | 10.1109/ACCESS.2024.3353052 10.1109/TPDS.2023.3317388 10.1007/s00500-018-3657-0 10.1016/j.jpdc.2020.05.002 10.1007/s13369-021-06076-7 10.1002/spe.995 10.1109/ACCESS.2022.3149955 10.1007/s11277-019-06360-8 10.1007/s00607-023-01171-z 10.1016/j.procs.2021.03.016 10.1109/CC.2016.7464133 10.1007/s11277-019-06566-w 10.1016/j.jpdc.2024.104847 10.1109/ACCESS.2020.3016762 10.1016/j.aej.2024.01.040 10.1109/ACCESS.2023.3308054 10.1007/s11277-019-06817-w 10.1016/j.jpdc.2020.03.022 10.1016/j.jpdc.2023.104766 10.1016/j.jksuci.2020.01.012 10.1007/s10586-020-03075-5 10.1109/ACCESS.2023.3241279 10.1007/s10723-023-09665-y 10.1109/ACCESS.2019.2946216 10.1016/j.aej.2021.04.051 10.1016/j.asoc.2024.111746 10.1016/j.asoc.2024.112002 10.1109/ACCESS.2018.2870915 10.1016/j.datak.2022.102138 10.1007/s00521-021-06002-w 10.1007/s11227-021-03977-0 10.1007/s11227-023-05714-1 10.1109/ACCESS.2015.2508940 10.1016/j.swevo.2024.101517 10.1016/j.jpdc.2021.07.019 10.1007/s40747-021-00479-7 10.1007/s11280-015-0335-3 10.1016/S0022-0000(75)80008-0 10.1007/s10586-022-03809-7 10.1016/j.advengsoft.2013.12.007 10.1016/j.procs.2023.03.027 10.1007/s11227-023-05489-5 10.1016/j.asoc.2024.111342 10.1007/s10922-017-9425-0 10.1007/s40747-021-00528-1 10.1109/ACCESS.2022.3163273 10.1016/j.future.2013.12.024 10.1016/j.cirpj.2022.11.003 10.1007/s11042-023-16008-2 10.1016/j.jnca.2019.02.005 10.1016/j.parco.2017.01.002 10.1109/TCC.2023.3315014 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Inc. |
Copyright_xml | – notice: 2025 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.suscom.2025.101138 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_suscom_2025_101138 S2210537925000599 |
GroupedDBID | --K --M .~1 0R~ 1~. 4.4 457 4G. 7-5 8P~ AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AFJKZ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHZHX AIALX AIEXJ AIIUN AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BELTK BKOJK BLXMC BNPGV EBS EFJIC EJD FDB FIRID FNPLU FYGXN GBLVA GBOLZ HZ~ J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSH SSR SSV SSZ T5K ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c257t-2ae0fda9034585a9722a7b0dd9fcf5cf6f8b6a4d01b1da6aa0b3c8628a9e96af3 |
IEDL.DBID | .~1 |
ISSN | 2210-5379 |
IngestDate | Tue Jul 01 04:49:40 EDT 2025 Sat Jun 28 18:18:18 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Keywords | Multi-objective task scheduling Decision tree approach Load balancing GWO algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c257t-2ae0fda9034585a9722a7b0dd9fcf5cf6f8b6a4d01b1da6aa0b3c8628a9e96af3 |
ORCID | 0000-0002-4933-8446 |
ParticipantIDs | crossref_primary_10_1016_j_suscom_2025_101138 elsevier_sciencedirect_doi_10_1016_j_suscom_2025_101138 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2025 2025-09-00 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
PublicationDecade | 2020 |
PublicationTitle | Sustainable computing informatics and systems |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Liu, Wang (bib4) 2020; 8 Liu, Fan, Buyya (bib60) 2018; 6 Shirvani, Talouki (bib16) 2022; 8 Zhang, Guo, Ding (bib43) 2024; 154 Senthil Kumar, Venkatesan (bib59) 2019; 107 Somasundaram, Govindarajan (bib10) 2014; 34 Cheng, Cao, Zhang (bib42) 2024; 80 Chraibi, Ben Alla, Touhafi (bib62) 2023; 79 Tong, Chen, Deng, Li, Li (bib27) 2019; 23 Lu, Liu, Zhu, Mao, Lio, Hui (bib30) 2023; 34 Narwal, Dhingra (bib19) 2023; 145 Li, Liu, Wang, Liu, Tang, Guo, Xu (bib32) 2024; 161 Siddiqui, Ahmed, Nayak (bib29) 2024; 32 Calheiros, Ranjan, Beloglazov, De Rose, Buyya (bib37) 2011; 41 Li, Lu, Shi (bib65) 2023; 105 Li, Zheng, Wang (bib39) 2023; 26 Zuo, Shu, Dong, Zhu, Hara (bib50) 2015; 3 Pang, Li, He, Shan, Wang (bib53) 2019; 7 Mangalampalli, Swain, Mangalampalli (bib49) 2022; 47 Cui, Zhao, Wu, Qin, Li (bib57) 2023; 11 Abualigah, Diabat (bib58) 2021; 24 Behera, Sobhanayak (bib24) 2024; 183 Gohil, Patel (bib20) 2018 Waikato Environment for Knowledge Analysis (WEKA), [Online]. Available Ullman (bib2) 1975; 10 . Comer (bib1) 2021 Abdullahi, Ngadi, Dishing (bib61) 2019; 133 Mangalampalli, Karri, Kumar (bib44) 2024; 83 He, Xu, Pang, Zhao (bib47) 2016; 13 Khan, Rasool (bib3) 2024; 187 Rostami, Goli-Bidgoli (bib22) 2023; 11 Hasani Zade, Mansouri, Javidi (bib26) 2022; 202 Mirjalili, Mirjalili, Lewis (bib8) 2014; 69 Janakiraman, Priya (bib25) 2023; 38 Jacob, Pradeep (bib64) 2019; 109 Ibrahim, Rashid, Akinsolu (bib14) 2020; 143 Patel, Patra, Sahoo (bib21) 2020 Zhang, Wu, Sun (bib51) 2022; 8 Sofia, GaneshKumar (bib63) 2018; 26 Li, Zheng, Yin (bib67) 2023; 40 Zuo, Shu, Dong, Zhu, Hara (bib5) 2015; 3 Abdullahi, Ngadi (bib13) 2016; 11 Pirozmand, Hosseinabadi, Farrokhzad (bib54) 2021; 33 Lee, Park, Kim (bib31) 2024; 164 Yang, Shen (bib35) 2022; 33 Swarup, Shakshuki, Yasar (bib41) 2021; 184 Al Reshan (bib23) 2023; 11 Shirvani (bib15) 2020; 90 Ramezani, Lu, Taheri (bib45) 2015; 18 Tang, Jia, Zhou, Yang, You (bib34) 2022; 8 Guo (bib46) 2021; 60 Mahmoud, Thabet, Khafagy, Omara (bib28) 2022; 10 Verma, Kaushal (bib55) 2017; 62 Lee, Chng, Tong, Tseu (bib7) 2023; 220 Natesan, Chokkalingam (bib48) 2020; 110 Müller, Schneider, Bonilha, De Souza, Da Cruz, Mavrovouniotis (bib9) 2024; 12 Gupta, Sahoo, Veeravalli (bib12) 2021; 158 von Winterfeldt, Edwards (bib36) 1986 Hu, Wu, Dong (bib52) 2023; 21 Jena, Das, Kabat (bib18) 2022; 34 Sharma, Sonal, Garg (bib6) 2022; 24 Krishnadoss, Jacob (bib11) 2018; 11 Song, Wu, Guo (bib66) 2024; 86 Amer, Attiya, Zeidan (bib56) 2022; 78 Alsubaei, Hamed, Hassan, Mohery, Elnahary (bib33) 2024; 89 Devaraj, Elhoseny, Dhanasekaran, Lydia, Shankar (bib17) 2020; 142 Kruekaew, Kimpan (bib40) 2022; 10 Song (10.1016/j.suscom.2025.101138_bib66) 2024; 86 Behera (10.1016/j.suscom.2025.101138_bib24) 2024; 183 Abdullahi (10.1016/j.suscom.2025.101138_bib61) 2019; 133 Lee (10.1016/j.suscom.2025.101138_bib31) 2024; 164 Mirjalili (10.1016/j.suscom.2025.101138_bib8) 2014; 69 Narwal (10.1016/j.suscom.2025.101138_bib19) 2023; 145 Pang (10.1016/j.suscom.2025.101138_bib53) 2019; 7 Zuo (10.1016/j.suscom.2025.101138_bib5) 2015; 3 Shirvani (10.1016/j.suscom.2025.101138_bib15) 2020; 90 Hasani Zade (10.1016/j.suscom.2025.101138_bib26) 2022; 202 Li (10.1016/j.suscom.2025.101138_bib67) 2023; 40 Amer (10.1016/j.suscom.2025.101138_bib56) 2022; 78 Lu (10.1016/j.suscom.2025.101138_bib30) 2023; 34 Ramezani (10.1016/j.suscom.2025.101138_bib45) 2015; 18 Gupta (10.1016/j.suscom.2025.101138_bib12) 2021; 158 Sofia (10.1016/j.suscom.2025.101138_bib63) 2018; 26 Devaraj (10.1016/j.suscom.2025.101138_bib17) 2020; 142 Rostami (10.1016/j.suscom.2025.101138_bib22) 2023; 11 Kruekaew (10.1016/j.suscom.2025.101138_bib40) 2022; 10 Senthil Kumar (10.1016/j.suscom.2025.101138_bib59) 2019; 107 Li (10.1016/j.suscom.2025.101138_bib39) 2023; 26 Tang (10.1016/j.suscom.2025.101138_bib34) 2022; 8 Verma (10.1016/j.suscom.2025.101138_bib55) 2017; 62 Shirvani (10.1016/j.suscom.2025.101138_bib16) 2022; 8 Khan (10.1016/j.suscom.2025.101138_bib3) 2024; 187 Müller (10.1016/j.suscom.2025.101138_bib9) 2024; 12 10.1016/j.suscom.2025.101138_bib38 Guo (10.1016/j.suscom.2025.101138_bib46) 2021; 60 Gohil (10.1016/j.suscom.2025.101138_bib20) 2018 Li (10.1016/j.suscom.2025.101138_bib65) 2023; 105 Patel (10.1016/j.suscom.2025.101138_bib21) 2020 Comer (10.1016/j.suscom.2025.101138_bib1) 2021 Krishnadoss (10.1016/j.suscom.2025.101138_bib11) 2018; 11 Calheiros (10.1016/j.suscom.2025.101138_bib37) 2011; 41 He (10.1016/j.suscom.2025.101138_bib47) 2016; 13 Ullman (10.1016/j.suscom.2025.101138_bib2) 1975; 10 Lee (10.1016/j.suscom.2025.101138_bib7) 2023; 220 Cheng (10.1016/j.suscom.2025.101138_bib42) 2024; 80 Liu (10.1016/j.suscom.2025.101138_bib60) 2018; 6 Jacob (10.1016/j.suscom.2025.101138_bib64) 2019; 109 Somasundaram (10.1016/j.suscom.2025.101138_bib10) 2014; 34 Zuo (10.1016/j.suscom.2025.101138_bib50) 2015; 3 Abualigah (10.1016/j.suscom.2025.101138_bib58) 2021; 24 Zhang (10.1016/j.suscom.2025.101138_bib43) 2024; 154 Yang (10.1016/j.suscom.2025.101138_bib35) 2022; 33 Mahmoud (10.1016/j.suscom.2025.101138_bib28) 2022; 10 Pirozmand (10.1016/j.suscom.2025.101138_bib54) 2021; 33 Chraibi (10.1016/j.suscom.2025.101138_bib62) 2023; 79 Abdullahi (10.1016/j.suscom.2025.101138_bib13) 2016; 11 Al Reshan (10.1016/j.suscom.2025.101138_bib23) 2023; 11 Liu (10.1016/j.suscom.2025.101138_bib4) 2020; 8 Ibrahim (10.1016/j.suscom.2025.101138_bib14) 2020; 143 Zhang (10.1016/j.suscom.2025.101138_bib51) 2022; 8 Mangalampalli (10.1016/j.suscom.2025.101138_bib44) 2024; 83 Alsubaei (10.1016/j.suscom.2025.101138_bib33) 2024; 89 Siddiqui (10.1016/j.suscom.2025.101138_bib29) 2024; 32 Jena (10.1016/j.suscom.2025.101138_bib18) 2022; 34 Cui (10.1016/j.suscom.2025.101138_bib57) 2023; 11 Sharma (10.1016/j.suscom.2025.101138_bib6) 2022; 24 Mangalampalli (10.1016/j.suscom.2025.101138_bib49) 2022; 47 Tong (10.1016/j.suscom.2025.101138_bib27) 2019; 23 Janakiraman (10.1016/j.suscom.2025.101138_bib25) 2023; 38 von Winterfeldt (10.1016/j.suscom.2025.101138_bib36) 1986 Li (10.1016/j.suscom.2025.101138_bib32) 2024; 161 Swarup (10.1016/j.suscom.2025.101138_bib41) 2021; 184 Natesan (10.1016/j.suscom.2025.101138_bib48) 2020; 110 Hu (10.1016/j.suscom.2025.101138_bib52) 2023; 21 |
References_xml | – volume: 109 start-page: 315 year: 2019 end-page: 331 ident: bib64 article-title: A multi-objective optimal task scheduling in cloud environment using cuckoo particle swarm optimization publication-title: Wirel. Pers. Commun. – volume: 142 start-page: 36 year: 2020 end-page: 45 ident: bib17 article-title: Hybridization of firefly and improved multi-objective particle swarm optimization algorithm for energy-efficient load balancing in cloud computing environments publication-title: J. Parallel Distrib. Comput. – volume: 38 year: 2023 ident: bib25 article-title: Hybrid grey wolf and improved particle swarm optimization with adaptive inertial weight-based multi-dimensional learning strategy for load balancing in cloud environments publication-title: Sustain. Comput. Inform. Syst. – volume: 33 start-page: 3003 year: 2022 end-page: 3014 ident: bib35 article-title: Deep reinforcement learning enhanced greedy optimization for online scheduling of batched tasks in cloud HPC systems publication-title: IEEE Trans. Parallel Distrib. Syst. – start-page: 655 year: 2020 end-page: 659 ident: bib21 article-title: GWO based task allocation for load balancing in containerized cloud publication-title: Proc. 2020 Int. Conf. Invent. Comput. Technol. (ICICT), Coimbatore, India – volume: 47 start-page: 1821 year: 2022 end-page: 1830 ident: bib49 article-title: Multi objective task scheduling in cloud computing using cat swarm optimization algorithm publication-title: Arab. J. Sci. Eng. – start-page: 63 year: 1986 end-page: 89 ident: bib36 article-title: Decision trees publication-title: Decision Analysis and Behavioral Research – volume: 8 start-page: 4475 year: 2022 end-page: 4482 ident: bib51 article-title: EHEFT-R: multi-objective task scheduling scheme in cloud computing publication-title: Complex Intell. Syst. – volume: 90 year: 2020 ident: bib15 article-title: A hybrid meta-heuristic algorithm for scientific workflow scheduling in heterogeneous distributed computing systems publication-title: Eng. Appl. Artif. Intell. – volume: 34 start-page: 47 year: 2014 end-page: 65 ident: bib10 article-title: CLOUDRB: a framework for scheduling and managing high-performance computing (HPC) applications in science cloud publication-title: Future Gener. Comput. Syst. – volume: 11 start-page: 97037 year: 2023 end-page: 97056 ident: bib22 article-title: TMaLB: A tolerable many-objective load balancing technique for IoT workflows allocation publication-title: IEEE Access – volume: 143 start-page: 77 year: 2020 end-page: 87 ident: bib14 article-title: An energy-efficient service composition mechanism using a hybrid meta-heuristic algorithm in a mobile cloud environment publication-title: J. Parallel Distrib. Comput. – volume: 187 year: 2024 ident: bib3 article-title: A multi-objective grey-wolf optimization-based approach for scheduling on cloud platforms publication-title: J. Parallel Distrib. Comput. – volume: 183 year: 2024 ident: bib24 article-title: Task scheduling optimization in heterogeneous cloud computing environments: a hybrid GA-GWO approach publication-title: J. Parallel Distrib. Comput. – volume: 18 start-page: 1737 year: 2015 end-page: 1757 ident: bib45 article-title: Evolutionary algorithm-based multi-objective task scheduling optimization model in cloud environments publication-title: World Wide Web – volume: 10 start-page: 36140 year: 2022 end-page: 36151 ident: bib28 article-title: Multiobjective task scheduling in cloud environment using decision tree algorithm publication-title: IEEE Access – volume: 10 start-page: 17803 year: 2022 end-page: 17818 ident: bib40 article-title: Multi-objective task scheduling optimization for load balancing in cloud computing environment using hybrid artificial bee colony algorithm with reinforcement learning publication-title: IEEE Access – volume: 8 start-page: 150878 year: 2020 end-page: 150890 ident: bib4 article-title: Collaborative optimization scheduling of cloud service resources based on improved genetic algorithm publication-title: IEEE Access – volume: 33 start-page: 13075 year: 2021 end-page: 13088 ident: bib54 article-title: Multi-objective hybrid genetic algorithm for task scheduling problem in cloud computing publication-title: Neural Comput. Appl. – reference: Waikato Environment for Knowledge Analysis (WEKA), [Online]. Available: – volume: 24 start-page: 205 year: 2021 end-page: 223 ident: bib58 article-title: A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments publication-title: Clust. Comput. – start-page: 185 year: 2018 end-page: 191 ident: bib20 article-title: A hybrid GWO-PSO algorithm for load balancing in cloud computing environment publication-title: Proc. 2nd Int. Conf. Green. Comput. Internet Things (ICGCIoT) – volume: 13 start-page: 162 year: 2016 end-page: 171 ident: bib47 article-title: AMTS: Adaptive multi-objective task scheduling strategy in cloud computing publication-title: China Commun. – volume: 32 year: 2024 ident: bib29 article-title: A decision tree approach for enhancing real-time response in exigent healthcare unit using edge computing publication-title: Meas. Sens. – volume: 105 start-page: 1717 year: 2023 end-page: 1743 ident: bib65 article-title: Energy-aware scheduling for spark job based on deep reinforcement learning in cloud publication-title: Computing – volume: 8 start-page: 795 year: 2022 end-page: 808 ident: bib34 article-title: Representation and reinforcement learning for task scheduling in edge computing, IEEE Trans publication-title: Big Data – volume: 89 start-page: 1 year: 2024 end-page: 30 ident: bib33 article-title: Kh., Machine learning approach to optimal task scheduling in cloud communication publication-title: Alexandria Eng. J – volume: 161 year: 2024 ident: bib32 article-title: A K-means-teaching learning based optimization algorithm for parallel machine scheduling problem publication-title: Appl. Soft Comput. – volume: 8 start-page: 1085 year: 2022 end-page: 1114 ident: bib16 article-title: Bi-objective scheduling algorithm for scientific workflows on cloud computing platform with makespan and monetary cost minimization approach publication-title: Complex Intell. Syst. – volume: 23 start-page: 11035 year: 2019 end-page: 11054 ident: bib27 article-title: A novel task scheduling scheme in a cloud computing environment using hybrid biogeography-based optimization publication-title: Soft Comput. – volume: 12 start-page: 20867 year: 2024 end-page: 20884 ident: bib9 article-title: GATeS: a hybrid algorithm based on genetic algorithm and tabu search for the direct marketing problem publication-title: IEEE Access – volume: 78 start-page: 2793 year: 2022 end-page: 2818 ident: bib56 article-title: Elite learning Harris hawk’s optimizer for multi-objective task scheduling in cloud computing publication-title: J. Supercomput. – volume: 184 start-page: 42 year: 2021 end-page: 51 ident: bib41 article-title: Task scheduling in cloud using deep reinforcement learning publication-title: Procedia Comput. Sci. – year: 2021 ident: bib1 article-title: The Cloud Computing Book: The Future of Computing Explained, 1st ed., Kindle Edition – volume: 154 year: 2024 ident: bib43 article-title: An adaptive multi-objective multi-task scheduling method by hierarchical deep reinforcement learning publication-title: Appl. Soft Comput. – volume: 7 start-page: 146379 year: 2019 end-page: 146389 ident: bib53 article-title: An EDA-GA hybrid algorithm for multi-objective task scheduling in cloud computing publication-title: IEEE Access – volume: 26 start-page: 4051 year: 2023 end-page: 4067 ident: bib39 article-title: A multi-objective task offloading based on BBO algorithm under deadline constrain in mobile edge computing publication-title: Clust. Comput. – volume: 133 start-page: 60 year: 2019 end-page: 74 ident: bib61 article-title: An efficient symbiotic organism’s search algorithm with chaotic optimization strategy for multi-objective task scheduling problems in cloud computing environment publication-title: J. Netw. Comput. Appl. – volume: 11 year: 2016 ident: bib13 article-title: Hybrid symbiotic organisms search optimization algorithm for scheduling of tasks on cloud computing environment publication-title: PLoS ONE – volume: 83 start-page: 8359 year: 2024 end-page: 8387 ident: bib44 article-title: DRLBTSA: deep reinforcement learning based task-scheduling algorithm in cloud computing publication-title: Multimed. Tools Appl. – volume: 79 start-page: 21368 year: 2023 end-page: 21423 ident: bib62 article-title: A novel dynamic multi-objective task scheduling optimization based on dueling DQN and PER publication-title: J. Supercomput. – volume: 60 start-page: 5603 year: 2021 end-page: 5609 ident: bib46 article-title: Multi-objective task scheduling optimization in cloud computing based on fuzzy self-defense algorithm publication-title: Alex. Eng. J. – volume: 62 start-page: 1 year: 2017 end-page: 19 ident: bib55 article-title: A hybrid multi-objective particle swarm optimization for scientific workflow scheduling publication-title: Parallel Comput. – volume: 202 year: 2022 ident: bib26 article-title: A two-stage scheduler based on new caledonian crow learning algorithm and reinforcement learning strategy for cloud environment publication-title: J. Netw. Comput. Appl. – volume: 6 start-page: 52982 year: 2018 end-page: 52996 ident: bib60 article-title: A deadline-constrained multi-objective task scheduling algorithm in mobile cloud environments publication-title: IEEE Access – volume: 3 start-page: 2687 year: 2015 end-page: 2699 ident: bib50 article-title: A multi-objective optimization scheduling method based on the ant colony algorithm in cloud computing publication-title: IEEE Access – volume: 34 start-page: 2332 year: 2022 end-page: 2342 ident: bib18 article-title: Hybridization of meta-heuristic algorithm for load balancing in cloud computing environment publication-title: J. King Saud. Univ. Comput. Inf. Sci. – volume: 41 start-page: 23 year: 2011 end-page: 50 ident: bib37 article-title: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms, Softw publication-title: Softw. Pract. Exp. – volume: 26 start-page: 463 year: 2018 end-page: 485 ident: bib63 article-title: Multi-objective task scheduling to minimize energy consumption and makespan of cloud computing using NSGA-II publication-title: J. Netw. Syst. Manag. – volume: 10 start-page: 384 year: 1975 end-page: 393 ident: bib2 article-title: NP-complete scheduling problems publication-title: J. Comput. Syst. Sci. – volume: 164 year: 2024 ident: bib31 article-title: An incremental learning approach to dynamic parallel machine scheduling with sequence-dependent setups and machine eligibility restrictions publication-title: Appl. Soft Comput. – volume: 158 start-page: 80 year: 2021 end-page: 93 ident: bib12 article-title: Dynamic fault-tolerant scheduling with response time minimization for multiple failures in cloud publication-title: J. Parallel Distrib. Comput. – volume: 80 start-page: 6917 year: 2024 end-page: 6945 ident: bib42 article-title: Multi objective dynamic task scheduling optimization algorithm based on deep reinforcement learning publication-title: J. Supercomput. – volume: 145 year: 2023 ident: bib19 article-title: A novel approach for credit-based resource aware load balancing algorithm (CB-RALB-SA) for scheduling jobs in cloud computing publication-title: Data Knowl. Eng. – volume: 40 start-page: 75 year: 2023 end-page: 101 ident: bib67 article-title: Deep reinforcement learning in smart manufacturing: a review and prospects publication-title: CIRP J. Manuf. Sci. Technol. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: bib8 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – volume: 220 start-page: 195 year: 2023 end-page: 201 ident: bib7 article-title: Optimizing energy consumption on smart home task scheduling using particle swarm optimization publication-title: Procedia Comput. Sci. – volume: 24 year: 2022 ident: bib6 article-title: Ant colony-based optimization model for QoS-based task scheduling in cloud computing environment publication-title: Meas. Sens. – volume: 107 start-page: 1835 year: 2019 end-page: 1848 ident: bib59 article-title: Multi-objective task scheduling using hybrid genetic-ant colony optimization algorithm in cloud environment publication-title: Wirel. Pers. Commun. – volume: 3 start-page: 2687 year: 2015 end-page: 2699 ident: bib5 article-title: A multi-objective optimization scheduling method based on the ant colony algorithm in cloud computing publication-title: IEEE Access – volume: 11 start-page: 271 year: 2018 end-page: 279 ident: bib11 publication-title: OCSA: Task. Sched. Algorithm Cloud Comput. Environ., Int. J. Intell. Eng. Syst. – reference: . – volume: 86 year: 2024 ident: bib66 article-title: Reinforcement learning-assisted evolutionary algorithm: a survey and research opportunities publication-title: Swarm Evolut. Comput. – volume: 11 start-page: 11390 year: 2023 end-page: 11404 ident: bib23 article-title: A fast converging and globally optimized approach for load balancing in cloud computing publication-title: IEEE Access – volume: 21 start-page: 31 year: 2023 ident: bib52 article-title: A two-stage multi-objective task scheduling framework based on invasive tumor growth optimization algorithm for cloud computing publication-title: J. Grid Comput. – volume: 11 start-page: 3685 year: 2023 end-page: 3699 ident: bib57 article-title: Multi-objective cloud task scheduling optimization based on evolutionary multi-factor algorithm publication-title: IEEE Trans. Cloud Comput. – volume: 34 start-page: 3266 year: 2023 end-page: 3279 ident: bib30 article-title: RLPTO: a reinforcement learning-based performance-time optimized task and resource scheduling mechanism for distributed machine learning publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 110 start-page: 1887 year: 2020 end-page: 1913 ident: bib48 article-title: Multi-objective task scheduling using hybrid whale genetic optimization algorithm in heterogeneous computing environment publication-title: Wirel. Pers. Commun. – volume: 12 start-page: 20867 year: 2024 ident: 10.1016/j.suscom.2025.101138_bib9 article-title: GATeS: a hybrid algorithm based on genetic algorithm and tabu search for the direct marketing problem publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3353052 – volume: 34 start-page: 3266 issue: 12 year: 2023 ident: 10.1016/j.suscom.2025.101138_bib30 article-title: RLPTO: a reinforcement learning-based performance-time optimized task and resource scheduling mechanism for distributed machine learning publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2023.3317388 – volume: 23 start-page: 11035 year: 2019 ident: 10.1016/j.suscom.2025.101138_bib27 article-title: A novel task scheduling scheme in a cloud computing environment using hybrid biogeography-based optimization publication-title: Soft Comput. doi: 10.1007/s00500-018-3657-0 – volume: 143 start-page: 77 year: 2020 ident: 10.1016/j.suscom.2025.101138_bib14 article-title: An energy-efficient service composition mechanism using a hybrid meta-heuristic algorithm in a mobile cloud environment publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2020.05.002 – volume: 47 start-page: 1821 year: 2022 ident: 10.1016/j.suscom.2025.101138_bib49 article-title: Multi objective task scheduling in cloud computing using cat swarm optimization algorithm publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-021-06076-7 – volume: 41 start-page: 23 issue: 1 year: 2011 ident: 10.1016/j.suscom.2025.101138_bib37 article-title: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms, Softw publication-title: Softw. Pract. Exp. doi: 10.1002/spe.995 – volume: 10 start-page: 17803 year: 2022 ident: 10.1016/j.suscom.2025.101138_bib40 article-title: Multi-objective task scheduling optimization for load balancing in cloud computing environment using hybrid artificial bee colony algorithm with reinforcement learning publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3149955 – ident: 10.1016/j.suscom.2025.101138_bib38 – volume: 107 start-page: 1835 year: 2019 ident: 10.1016/j.suscom.2025.101138_bib59 article-title: Multi-objective task scheduling using hybrid genetic-ant colony optimization algorithm in cloud environment publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-019-06360-8 – volume: 105 start-page: 1717 year: 2023 ident: 10.1016/j.suscom.2025.101138_bib65 article-title: Energy-aware scheduling for spark job based on deep reinforcement learning in cloud publication-title: Computing doi: 10.1007/s00607-023-01171-z – volume: 184 start-page: 42 year: 2021 ident: 10.1016/j.suscom.2025.101138_bib41 article-title: Task scheduling in cloud using deep reinforcement learning publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2021.03.016 – volume: 13 start-page: 162 issue: 4 year: 2016 ident: 10.1016/j.suscom.2025.101138_bib47 article-title: AMTS: Adaptive multi-objective task scheduling strategy in cloud computing publication-title: China Commun. doi: 10.1109/CC.2016.7464133 – volume: 109 start-page: 315 year: 2019 ident: 10.1016/j.suscom.2025.101138_bib64 article-title: A multi-objective optimal task scheduling in cloud environment using cuckoo particle swarm optimization publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-019-06566-w – volume: 187 year: 2024 ident: 10.1016/j.suscom.2025.101138_bib3 article-title: A multi-objective grey-wolf optimization-based approach for scheduling on cloud platforms publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2024.104847 – volume: 33 start-page: 3003 issue: 11 year: 2022 ident: 10.1016/j.suscom.2025.101138_bib35 article-title: Deep reinforcement learning enhanced greedy optimization for online scheduling of batched tasks in cloud HPC systems publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 8 start-page: 150878 year: 2020 ident: 10.1016/j.suscom.2025.101138_bib4 article-title: Collaborative optimization scheduling of cloud service resources based on improved genetic algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3016762 – volume: 89 start-page: 1 year: 2024 ident: 10.1016/j.suscom.2025.101138_bib33 article-title: Kh., Machine learning approach to optimal task scheduling in cloud communication publication-title: Alexandria Eng. J doi: 10.1016/j.aej.2024.01.040 – volume: 202 year: 2022 ident: 10.1016/j.suscom.2025.101138_bib26 article-title: A two-stage scheduler based on new caledonian crow learning algorithm and reinforcement learning strategy for cloud environment publication-title: J. Netw. Comput. Appl. – volume: 11 year: 2016 ident: 10.1016/j.suscom.2025.101138_bib13 article-title: Hybrid symbiotic organisms search optimization algorithm for scheduling of tasks on cloud computing environment publication-title: PLoS ONE – volume: 11 start-page: 97037 year: 2023 ident: 10.1016/j.suscom.2025.101138_bib22 article-title: TMaLB: A tolerable many-objective load balancing technique for IoT workflows allocation publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3308054 – volume: 110 start-page: 1887 year: 2020 ident: 10.1016/j.suscom.2025.101138_bib48 article-title: Multi-objective task scheduling using hybrid whale genetic optimization algorithm in heterogeneous computing environment publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-019-06817-w – volume: 142 start-page: 36 year: 2020 ident: 10.1016/j.suscom.2025.101138_bib17 article-title: Hybridization of firefly and improved multi-objective particle swarm optimization algorithm for energy-efficient load balancing in cloud computing environments publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2020.03.022 – year: 2021 ident: 10.1016/j.suscom.2025.101138_bib1 – volume: 183 year: 2024 ident: 10.1016/j.suscom.2025.101138_bib24 article-title: Task scheduling optimization in heterogeneous cloud computing environments: a hybrid GA-GWO approach publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2023.104766 – volume: 32 year: 2024 ident: 10.1016/j.suscom.2025.101138_bib29 article-title: A decision tree approach for enhancing real-time response in exigent healthcare unit using edge computing publication-title: Meas. Sens. – volume: 34 start-page: 2332 issue: 6A year: 2022 ident: 10.1016/j.suscom.2025.101138_bib18 article-title: Hybridization of meta-heuristic algorithm for load balancing in cloud computing environment publication-title: J. King Saud. Univ. Comput. Inf. Sci. doi: 10.1016/j.jksuci.2020.01.012 – volume: 24 start-page: 205 year: 2021 ident: 10.1016/j.suscom.2025.101138_bib58 article-title: A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments publication-title: Clust. Comput. doi: 10.1007/s10586-020-03075-5 – volume: 11 start-page: 11390 year: 2023 ident: 10.1016/j.suscom.2025.101138_bib23 article-title: A fast converging and globally optimized approach for load balancing in cloud computing publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3241279 – volume: 21 start-page: 31 year: 2023 ident: 10.1016/j.suscom.2025.101138_bib52 article-title: A two-stage multi-objective task scheduling framework based on invasive tumor growth optimization algorithm for cloud computing publication-title: J. Grid Comput. doi: 10.1007/s10723-023-09665-y – start-page: 185 year: 2018 ident: 10.1016/j.suscom.2025.101138_bib20 article-title: A hybrid GWO-PSO algorithm for load balancing in cloud computing environment publication-title: Proc. 2nd Int. Conf. Green. Comput. Internet Things (ICGCIoT) – volume: 7 start-page: 146379 year: 2019 ident: 10.1016/j.suscom.2025.101138_bib53 article-title: An EDA-GA hybrid algorithm for multi-objective task scheduling in cloud computing publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2946216 – volume: 60 start-page: 5603 issue: 6 year: 2021 ident: 10.1016/j.suscom.2025.101138_bib46 article-title: Multi-objective task scheduling optimization in cloud computing based on fuzzy self-defense algorithm publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.04.051 – volume: 161 year: 2024 ident: 10.1016/j.suscom.2025.101138_bib32 article-title: A K-means-teaching learning based optimization algorithm for parallel machine scheduling problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.111746 – volume: 164 year: 2024 ident: 10.1016/j.suscom.2025.101138_bib31 article-title: An incremental learning approach to dynamic parallel machine scheduling with sequence-dependent setups and machine eligibility restrictions publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.112002 – volume: 6 start-page: 52982 year: 2018 ident: 10.1016/j.suscom.2025.101138_bib60 article-title: A deadline-constrained multi-objective task scheduling algorithm in mobile cloud environments publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870915 – volume: 145 year: 2023 ident: 10.1016/j.suscom.2025.101138_bib19 article-title: A novel approach for credit-based resource aware load balancing algorithm (CB-RALB-SA) for scheduling jobs in cloud computing publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2022.102138 – volume: 33 start-page: 13075 year: 2021 ident: 10.1016/j.suscom.2025.101138_bib54 article-title: Multi-objective hybrid genetic algorithm for task scheduling problem in cloud computing publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06002-w – volume: 24 year: 2022 ident: 10.1016/j.suscom.2025.101138_bib6 article-title: Ant colony-based optimization model for QoS-based task scheduling in cloud computing environment publication-title: Meas. Sens. – volume: 78 start-page: 2793 year: 2022 ident: 10.1016/j.suscom.2025.101138_bib56 article-title: Elite learning Harris hawk’s optimizer for multi-objective task scheduling in cloud computing publication-title: J. Supercomput. doi: 10.1007/s11227-021-03977-0 – volume: 80 start-page: 6917 year: 2024 ident: 10.1016/j.suscom.2025.101138_bib42 article-title: Multi objective dynamic task scheduling optimization algorithm based on deep reinforcement learning publication-title: J. Supercomput. doi: 10.1007/s11227-023-05714-1 – volume: 3 start-page: 2687 year: 2015 ident: 10.1016/j.suscom.2025.101138_bib50 article-title: A multi-objective optimization scheduling method based on the ant colony algorithm in cloud computing publication-title: IEEE Access doi: 10.1109/ACCESS.2015.2508940 – volume: 86 year: 2024 ident: 10.1016/j.suscom.2025.101138_bib66 article-title: Reinforcement learning-assisted evolutionary algorithm: a survey and research opportunities publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2024.101517 – volume: 158 start-page: 80 year: 2021 ident: 10.1016/j.suscom.2025.101138_bib12 article-title: Dynamic fault-tolerant scheduling with response time minimization for multiple failures in cloud publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2021.07.019 – volume: 8 start-page: 4475 year: 2022 ident: 10.1016/j.suscom.2025.101138_bib51 article-title: EHEFT-R: multi-objective task scheduling scheme in cloud computing publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00479-7 – volume: 18 start-page: 1737 year: 2015 ident: 10.1016/j.suscom.2025.101138_bib45 article-title: Evolutionary algorithm-based multi-objective task scheduling optimization model in cloud environments publication-title: World Wide Web doi: 10.1007/s11280-015-0335-3 – volume: 10 start-page: 384 issue: 3 year: 1975 ident: 10.1016/j.suscom.2025.101138_bib2 article-title: NP-complete scheduling problems publication-title: J. Comput. Syst. Sci. doi: 10.1016/S0022-0000(75)80008-0 – volume: 26 start-page: 4051 year: 2023 ident: 10.1016/j.suscom.2025.101138_bib39 article-title: A multi-objective task offloading based on BBO algorithm under deadline constrain in mobile edge computing publication-title: Clust. Comput. doi: 10.1007/s10586-022-03809-7 – volume: 11 start-page: 271 year: 2018 ident: 10.1016/j.suscom.2025.101138_bib11 publication-title: OCSA: Task. Sched. Algorithm Cloud Comput. Environ., Int. J. Intell. Eng. Syst. – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.suscom.2025.101138_bib8 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 220 start-page: 195 year: 2023 ident: 10.1016/j.suscom.2025.101138_bib7 article-title: Optimizing energy consumption on smart home task scheduling using particle swarm optimization publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2023.03.027 – volume: 79 start-page: 21368 year: 2023 ident: 10.1016/j.suscom.2025.101138_bib62 article-title: A novel dynamic multi-objective task scheduling optimization based on dueling DQN and PER publication-title: J. Supercomput. doi: 10.1007/s11227-023-05489-5 – volume: 38 year: 2023 ident: 10.1016/j.suscom.2025.101138_bib25 article-title: Hybrid grey wolf and improved particle swarm optimization with adaptive inertial weight-based multi-dimensional learning strategy for load balancing in cloud environments publication-title: Sustain. Comput. Inform. Syst. – volume: 154 year: 2024 ident: 10.1016/j.suscom.2025.101138_bib43 article-title: An adaptive multi-objective multi-task scheduling method by hierarchical deep reinforcement learning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.111342 – volume: 90 year: 2020 ident: 10.1016/j.suscom.2025.101138_bib15 article-title: A hybrid meta-heuristic algorithm for scientific workflow scheduling in heterogeneous distributed computing systems publication-title: Eng. Appl. Artif. Intell. – volume: 26 start-page: 463 year: 2018 ident: 10.1016/j.suscom.2025.101138_bib63 article-title: Multi-objective task scheduling to minimize energy consumption and makespan of cloud computing using NSGA-II publication-title: J. Netw. Syst. Manag. doi: 10.1007/s10922-017-9425-0 – volume: 8 start-page: 1085 year: 2022 ident: 10.1016/j.suscom.2025.101138_bib16 article-title: Bi-objective scheduling algorithm for scientific workflows on cloud computing platform with makespan and monetary cost minimization approach publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00528-1 – volume: 10 start-page: 36140 year: 2022 ident: 10.1016/j.suscom.2025.101138_bib28 article-title: Multiobjective task scheduling in cloud environment using decision tree algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3163273 – volume: 34 start-page: 47 year: 2014 ident: 10.1016/j.suscom.2025.101138_bib10 article-title: CLOUDRB: a framework for scheduling and managing high-performance computing (HPC) applications in science cloud publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2013.12.024 – volume: 40 start-page: 75 year: 2023 ident: 10.1016/j.suscom.2025.101138_bib67 article-title: Deep reinforcement learning in smart manufacturing: a review and prospects publication-title: CIRP J. Manuf. Sci. Technol. doi: 10.1016/j.cirpj.2022.11.003 – volume: 83 start-page: 8359 year: 2024 ident: 10.1016/j.suscom.2025.101138_bib44 article-title: DRLBTSA: deep reinforcement learning based task-scheduling algorithm in cloud computing publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-16008-2 – start-page: 655 year: 2020 ident: 10.1016/j.suscom.2025.101138_bib21 article-title: GWO based task allocation for load balancing in containerized cloud publication-title: Proc. 2020 Int. Conf. Invent. Comput. Technol. (ICICT), Coimbatore, India – volume: 133 start-page: 60 year: 2019 ident: 10.1016/j.suscom.2025.101138_bib61 article-title: An efficient symbiotic organism’s search algorithm with chaotic optimization strategy for multi-objective task scheduling problems in cloud computing environment publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2019.02.005 – volume: 62 start-page: 1 year: 2017 ident: 10.1016/j.suscom.2025.101138_bib55 article-title: A hybrid multi-objective particle swarm optimization for scientific workflow scheduling publication-title: Parallel Comput. doi: 10.1016/j.parco.2017.01.002 – volume: 3 start-page: 2687 year: 2015 ident: 10.1016/j.suscom.2025.101138_bib5 article-title: A multi-objective optimization scheduling method based on the ant colony algorithm in cloud computing publication-title: IEEE Access doi: 10.1109/ACCESS.2015.2508940 – volume: 8 start-page: 795 issue: 3 year: 2022 ident: 10.1016/j.suscom.2025.101138_bib34 article-title: Representation and reinforcement learning for task scheduling in edge computing, IEEE Trans publication-title: Big Data – start-page: 63 year: 1986 ident: 10.1016/j.suscom.2025.101138_bib36 article-title: Decision trees – volume: 11 start-page: 3685 issue: 4 year: 2023 ident: 10.1016/j.suscom.2025.101138_bib57 article-title: Multi-objective cloud task scheduling optimization based on evolutionary multi-factor algorithm publication-title: IEEE Trans. Cloud Comput. doi: 10.1109/TCC.2023.3315014 |
SSID | ssj0000561934 |
Score | 2.3311284 |
Snippet | Cloud computing faces significant challenges in task management, particularly in balancing server loads to prevent both overload and underload conditions while... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 101138 |
SubjectTerms | Decision tree approach GWO algorithm Load balancing Multi-objective task scheduling |
Title | DT-GWO: A hybrid decision tree and GWO-based algorithm for multi-objective task scheduling optimization in cloud computing |
URI | https://dx.doi.org/10.1016/j.suscom.2025.101138 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWVh4I8pLN7CaOonzMFvFq4CAARDdIju2aXkkiKYDDPx2znkgkBADY-ycZF3O393F9_kI2U0UxsSCWRpwxSn3jUEcVDG1ypOJJzGBUI7vfHEZDW752TAczpCDlgvjyiob7K8xvULrZqTXaLP3Mh73rn3MVsIgFn5Y3zLiGOw8dla-9-F9_WdxEbKoDpfd-9QJtAy6qsxrMp24shEffb8b8hxR5TcP9c3rHC-S-SZchH69oiUyY_JlstC2YoBmZ66Q98MbenJ3tQ99GL05EhbopnkOuGNnkLkGnKfOaWmQT_fF67gcPQOGrFDVFNJCPdTYB6WcPAImveiEHFcdCkSV54auCeMcsqdiqiGr1oDzq-T2-OjmYECbtgo0w_1ZUl8aZrUULOCYK0gR-76MFdNa2MyGmY0sfkDJNfOUp2UkJVNBholPIoURkbTBGunkRW7WCSSaJbFVgWaRzxMuEoPhENfWhFxrZlSX0FaV6Ut9e0balpU9pLXqU6f6tFZ9l8StvtMfVpAiwP8pufFvyU0y557qurEt0ilfp2YbA41S7VSWtENm-6fng8tPnsHU6Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QEu0BYQhZbOoVdrncR5mNuqD7av5cBW9BbZsU23tEnVzR7g13ecOAgkxKFXj0ayJvY3M_F8MwD7haaYWHLHEqEFE7G1hIM6Z05HqogUJRDa850vZtn0UpxepVdrcDBwYXxZZcD-HtM7tA4r42DN8f1iMf4aU7aSJrmM077LyDNY992p0hGsT07OprPfv1p8kCy792WvwrzOQKLrKr2Wq6WvHInJ_fulyHNV_uWk_nA8xxvwMkSMOOk3tQlrtt6CV8M0BgyX8zX8Opyzz9--fMIJXv_0PCw0YX4O-pdnVLVBkjPvtwyq2-_Nw6K9vkOKWrErK2SNvunhD1u1_IGU95If8nR1bAhY7gJjExc1VrfNymDV7YHkb-Dy-Gh-MGVhsgKr6Iq2LFaWO6MkTwSlC0rmcaxyzY2RrnJp5TJH31AJwyMdGZUpxXVSUe5TKGllplzyFkZ1U9t3gIXhRe50YngWi0LIwlJEJIyzqTCGW70NbDBled830CiHyrKbsjd96U1f9qbfhnywd_nXQSgJ4_-r-f7JmnvwfDq_OC_PT2ZnH-CFl_RlZDswah9WdpfijlZ_DOfqEfN415o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DT-GWO%3A+A+hybrid+decision+tree+and+GWO-based+algorithm+for+multi-objective+task+scheduling+optimization+in+cloud+computing&rft.jtitle=Sustainable+computing+informatics+and+systems&rft.au=Selselejoo%2C+Mohaymen&rft.au=Ahmadifar%2C+HamidReza&rft.date=2025-09-01&rft.issn=2210-5379&rft.volume=47&rft.spage=101138&rft_id=info:doi/10.1016%2Fj.suscom.2025.101138&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_suscom_2025_101138 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-5379&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-5379&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-5379&client=summon |