Lighting dark images with linear attention and decoupled network

Nighttime photography encounters escalating challenges in extremely low-light conditions, primarily attributable to the ultra-low signal-to-noise ratio. For real-world deployment, a practical solution must not only produce visually appealing results but also require minimal computation. However, mos...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 170; p. 111930
Main Authors Zheng, Jiazhang, Liao, Qiuping, Li, Lei, Li, Cheng, Liu, Yangxing
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2026
Subjects
Online AccessGet full text
ISSN0031-3203
DOI10.1016/j.patcog.2025.111930

Cover

Loading…
Abstract Nighttime photography encounters escalating challenges in extremely low-light conditions, primarily attributable to the ultra-low signal-to-noise ratio. For real-world deployment, a practical solution must not only produce visually appealing results but also require minimal computation. However, most existing methods are either focused on improving restoration performance or employ lightweight models at the cost of quality. This paper proposes a lightweight network that outperforms existing state-of-the-art (SOTA) methods in low-light enhancement tasks while minimizing computation. The proposed network incorporates Siamese Self-Attention Block (SSAB) and Skip-Channel Attention (SCA) modules, which enhance the model’s capacity to aggregate global information and are well-suited for high-resolution images. Additionally, based on our analysis of the low-light image restoration process, we propose a Two-Stage Framework that achieves superior results. Our model can restore a UHD 4K resolution image with minimal computation while keeping SOTA restoration quality. •Lightweight network restores 4K ultra-dark images with SOTA quality and efficiency.•SSAB aggregates compact global context with linear scaling to image size.•SCA fuses encoder-decoder cues to resolve cross-layer ambiguity and enhance quality.•Two-stage RAW-sRGB pipeline decouples noise and brightness for superior results.
AbstractList Nighttime photography encounters escalating challenges in extremely low-light conditions, primarily attributable to the ultra-low signal-to-noise ratio. For real-world deployment, a practical solution must not only produce visually appealing results but also require minimal computation. However, most existing methods are either focused on improving restoration performance or employ lightweight models at the cost of quality. This paper proposes a lightweight network that outperforms existing state-of-the-art (SOTA) methods in low-light enhancement tasks while minimizing computation. The proposed network incorporates Siamese Self-Attention Block (SSAB) and Skip-Channel Attention (SCA) modules, which enhance the model’s capacity to aggregate global information and are well-suited for high-resolution images. Additionally, based on our analysis of the low-light image restoration process, we propose a Two-Stage Framework that achieves superior results. Our model can restore a UHD 4K resolution image with minimal computation while keeping SOTA restoration quality. •Lightweight network restores 4K ultra-dark images with SOTA quality and efficiency.•SSAB aggregates compact global context with linear scaling to image size.•SCA fuses encoder-decoder cues to resolve cross-layer ambiguity and enhance quality.•Two-stage RAW-sRGB pipeline decouples noise and brightness for superior results.
ArticleNumber 111930
Author Li, Cheng
Liu, Yangxing
Li, Lei
Zheng, Jiazhang
Liao, Qiuping
Author_xml – sequence: 1
  givenname: Jiazhang
  surname: Zheng
  fullname: Zheng, Jiazhang
– sequence: 2
  givenname: Qiuping
  surname: Liao
  fullname: Liao, Qiuping
– sequence: 3
  givenname: Lei
  surname: Li
  fullname: Li, Lei
– sequence: 4
  givenname: Cheng
  surname: Li
  fullname: Li, Cheng
– sequence: 5
  givenname: Yangxing
  surname: Liu
  fullname: Liu, Yangxing
  email: yangxing.liu@tcl.com
BookMark eNp9j8tOAyEYRlnUxLb6Bi54gRn5Gea2MZrGW9LETfeEws-UtkIDaOPbO824dvWtzpdzFmTmg0dC7oCVwKC535cnlXUYSs54XQJAX7EZmTNWQVFxVl2TRUp7xqAFwefkce2GXXZ-oEbFA3WfasBEzy7v6NF5VJGqnNFnFzxV3lCDOnydjmiox3wO8XBDrqw6Jrz92yXZvDxvVm_F-uP1ffW0LjSv21xwoaGxnWgtbIXuQWy5bW03KndMjTLGWNWarumht8KiVl3FalvXnVCNEqZaEjHd6hhSimjlKY6y8UcCk5dwuZdTuLyEyyl8xB4mDEe1b4dRJu3QazQuos7SBPf_wS-gDGdX
Cites_doi 10.1109/CVPR42600.2020.00283
10.1109/ICCV.2019.00679
10.1109/TNNLS.2024.3502424
10.1109/ICCV48922.2021.00082
10.1109/CVPR52688.2022.01716
10.1145/3130800.3130816
10.1109/ICCV.2019.00260
10.1109/CVPRW53098.2021.00045
10.1109/ICCV48922.2021.00986
10.1109/CVPR52729.2023.01737
10.1109/CVPR.2018.00347
10.1109/CVPR42600.2020.00185
10.1109/TIP.2024.3390565
10.1109/CVPR.2016.207
10.1109/ICCV48922.2021.00455
10.1109/TCSVT.2024.3426527
10.1109/TBC.2022.3215249
10.1109/CVPR52688.2022.00564
10.1007/978-3-030-01234-2_1
10.1109/CVPR52729.2023.01739
10.1609/aaai.v34i07.7013
10.1109/CVPR42600.2020.00235
10.1109/CVPR52688.2022.01691
10.1145/3503161.3548186
10.1109/ICCV51070.2023.01176
10.1109/CVPR.2018.00813
10.1109/CVPR52729.2023.00571
10.1109/CVPR.2018.00745
10.1109/ICCV51070.2023.01149
10.1109/CVPR42600.2020.01155
10.1038/scientificamerican1277-108
10.1109/TBC.2022.3231101
10.1109/TIP.2022.3140610
10.1109/CVPR46437.2021.00349
10.1109/ICCVW54120.2021.00210
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2025.111930
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_patcog_2025_111930
S0031320325005904
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABWVN
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADMXK
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AAYXX
CITATION
SSH
ID FETCH-LOGICAL-c257t-24c16f847f1b4c914b2f7f810180a017ddfa7d86919f4feca8305f5584a6a4d3
IEDL.DBID AIKHN
ISSN 0031-3203
IngestDate Thu Jul 03 08:30:38 EDT 2025
Tue Jul 29 20:18:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Attention mechanism
Lightweight network
Low-light raw image enhancement
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c257t-24c16f847f1b4c914b2f7f810180a017ddfa7d86919f4feca8305f5584a6a4d3
ParticipantIDs crossref_primary_10_1016_j_patcog_2025_111930
elsevier_sciencedirect_doi_10_1016_j_patcog_2025_111930
PublicationCentury 2000
PublicationDate February 2026
2026-02-00
PublicationDateYYYYMMDD 2026-02-01
PublicationDate_xml – month: 02
  year: 2026
  text: February 2026
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References S.W. Zamir, A. Arora, S. Khan, M. Hayat, F.S. Khan, M.-H. Yang, Restormer: Efficient transformer for high-resolution image restoration, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5728–5739.
Zhou, Lan, Wei, Liao, Mao, Li, Wu, Xiang, Fang (b30) 2022; 69
X. Zhu, D. Cheng, Z. Zhang, S. Lin, J. Dai, An empirical study of spatial attention mechanisms in deep networks, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 6688–6697.
Huang, Yang, Hu, Liu, Duan (b44) 2022; 31
K. Wei, Y. Fu, J. Yang, H. Huang, A physics-based noise formation model for extreme low-light raw denoising, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 2758–2767.
Wu, Wang, Tu, Patsch, Jin (b16) 2024
C. Guo, C. Li, J. Guo, C.C. Loy, J. Hou, S. Kwong, R. Cong, Zero-reference deep curve estimation for low-light image enhancement, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 1780–1789.
M. Lamba, K. Mitra, Restoring Extremely Dark Images in Real Time, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 3487–3497.
Brateanu, Balmez, Avram, Orhei (b15) 2024
X. Chen, Y. Liu, Z. Zhang, Y. Qiao, C. Dong, Hdrunet: Single image hdr reconstruction with denoising and dequantization, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 354–363.
Wu, Zhan, Jin (b18) 2024
Zhou, Chen, Wei, Liao, Mao, Wang, Pu, Luo, Xiang, Fang (b31) 2023; 69
J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, R. Timofte, Swinir: Image restoration using swin transformer, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 1833–1844.
J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
X. Wang, R. Girshick, A. Gupta, K. He, Non-local neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7794–7803.
Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, Q. Hu, ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks, in: The IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2020.
H. Feng, L. Wang, Y. Wang, H. Huang, Learnability enhancement for low-light raw denoising: Where paired real data meets noise modeling, in: Proceedings of the 30th ACM International Conference on Multimedia, 2022, pp. 1436–1444.
Wang, Huang, Xu, Liu, Liu, Wang (b39) 2020
M. Zhu, P. Pan, W. Chen, Y. Yang, Eemefn: Low-light image enhancement via edge-enhanced multi-exposure fusion network, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 13106–13113.
X. Jin, L.-H. Han, Z. Li, C.-L. Guo, Z. Chai, C. Li, DNF: Decouple and feedback network for seeing in the dark, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 18135–18144.
Cui, Li, Gu, Su, Gao, Jiang, Qiao, Harada (b17) 2022
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly (b7) 2020
Maharjan, Li, Li, Xu, Ma, Li (b13) 2019
Y. Cai, H. Bian, J. Lin, H. Wang, R. Timofte, Y. Zhang, Retinexformer: One-stage retinex-based transformer for low-light image enhancement, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 12504–12513.
Y. Qiu, K. Zhang, C. Wang, W. Luo, H. Li, Z. Jin, MB-TaylorFormer: Multi-branch efficient transformer expanded by Taylor formula for image dehazing, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 12802–12813.
X. Dong, W. Xu, Z. Miao, L. Ma, C. Zhang, J. Yang, Z. Jin, A.B.J. Teoh, J. Shen, Abandoning the Bayer-filter to see in the dark, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17431–17440.
Zhou, Zhao, Luo, Luo, Pu, Xiang (b11) 2023; 20
Y. Wang, L. Peng, L. Li, Y. Cao, Z.-J. Zha, Decoupling-and-aggregating for image exposure correction, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 18115–18124.
Z. Wang, X. Cun, J. Bao, W. Zhou, J. Liu, H. Li, Uformer: A general u-shaped transformer for image restoration, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17683–17693.
K. Xu, X. Yang, B. Yin, R.W. Lau, Learning to restore low-light images via decomposition-and-enhancement, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 2281–2290.
Y. Zhang, H. Qin, X. Wang, H. Li, Rethinking noise synthesis and modeling in raw denoising, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 4593–4601.
Eilertsen, Kronander, Denes, Mantiuk, Unger (b36) 2017; 36
S. Gu, Y. Li, L.V. Gool, R. Timofte, Self-guided network for fast image denoising, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 2511–2520.
Lamba, Balaji, Mitra (b6) 2020
Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10012–10022.
S. Woo, J. Park, J.-Y. Lee, I.S. Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19.
Wei, Fu, Zheng, Yang (b38) 2021; 44
Land (b10) 1977; 237
C. Chen, Q. Chen, J. Xu, V. Koltun, Learning to see in the dark, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 3291–3300.
X. Chen, H. Li, M. Li, J. Pan, Learning a sparse transformer network for effective image deraining, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5896–5905.
Shen, Zhou, Luo, Li, Kwong (b32) 2024
Wang, Zhu, Zhao, Wang, Ma (b12) 2019; Vol. 1345
Jin, Wang, Luo (b21) 2024
Z. Qin, P. Zhang, F. Wu, X. Li, Fcanet: Frequency channel attention networks, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 783–792.
W. Shi, J. Caballero, F. Huszár, J. Totz, A.P. Aitken, R. Bishop, D. Rueckert, Z. Wang, Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1874–1883.
10.1016/j.patcog.2025.111930_b1
10.1016/j.patcog.2025.111930_b2
Wang (10.1016/j.patcog.2025.111930_b12) 2019; Vol. 1345
Huang (10.1016/j.patcog.2025.111930_b44) 2022; 31
10.1016/j.patcog.2025.111930_b5
Dosovitskiy (10.1016/j.patcog.2025.111930_b7) 2020
10.1016/j.patcog.2025.111930_b3
Lamba (10.1016/j.patcog.2025.111930_b6) 2020
10.1016/j.patcog.2025.111930_b4
10.1016/j.patcog.2025.111930_b9
10.1016/j.patcog.2025.111930_b8
10.1016/j.patcog.2025.111930_b40
10.1016/j.patcog.2025.111930_b41
10.1016/j.patcog.2025.111930_b20
10.1016/j.patcog.2025.111930_b42
10.1016/j.patcog.2025.111930_b43
10.1016/j.patcog.2025.111930_b22
10.1016/j.patcog.2025.111930_b34
Jin (10.1016/j.patcog.2025.111930_b21) 2024
10.1016/j.patcog.2025.111930_b35
10.1016/j.patcog.2025.111930_b14
10.1016/j.patcog.2025.111930_b37
Wu (10.1016/j.patcog.2025.111930_b16) 2024
Zhou (10.1016/j.patcog.2025.111930_b11) 2023; 20
Brateanu (10.1016/j.patcog.2025.111930_b15) 2024
10.1016/j.patcog.2025.111930_b19
Eilertsen (10.1016/j.patcog.2025.111930_b36) 2017; 36
Wei (10.1016/j.patcog.2025.111930_b38) 2021; 44
Wang (10.1016/j.patcog.2025.111930_b39) 2020
Wu (10.1016/j.patcog.2025.111930_b18) 2024
Zhou (10.1016/j.patcog.2025.111930_b30) 2022; 69
Cui (10.1016/j.patcog.2025.111930_b17) 2022
10.1016/j.patcog.2025.111930_b33
10.1016/j.patcog.2025.111930_b23
10.1016/j.patcog.2025.111930_b45
10.1016/j.patcog.2025.111930_b24
Maharjan (10.1016/j.patcog.2025.111930_b13) 2019
10.1016/j.patcog.2025.111930_b25
Land (10.1016/j.patcog.2025.111930_b10) 1977; 237
10.1016/j.patcog.2025.111930_b26
Zhou (10.1016/j.patcog.2025.111930_b31) 2023; 69
10.1016/j.patcog.2025.111930_b27
10.1016/j.patcog.2025.111930_b28
10.1016/j.patcog.2025.111930_b29
Shen (10.1016/j.patcog.2025.111930_b32) 2024
References_xml – reference: Z. Wang, X. Cun, J. Bao, W. Zhou, J. Liu, H. Li, Uformer: A general u-shaped transformer for image restoration, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17683–17693.
– reference: Y. Wang, L. Peng, L. Li, Y. Cao, Z.-J. Zha, Decoupling-and-aggregating for image exposure correction, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 18115–18124.
– reference: X. Wang, R. Girshick, A. Gupta, K. He, Non-local neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7794–7803.
– reference: Z. Qin, P. Zhang, F. Wu, X. Li, Fcanet: Frequency channel attention networks, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 783–792.
– start-page: 1
  year: 2020
  end-page: 16
  ident: b39
  article-title: Practical deep raw image denoising on mobile devices
  publication-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VI
– volume: 44
  start-page: 8520
  year: 2021
  end-page: 8537
  ident: b38
  article-title: Physics-based noise modeling for extreme low-light photography
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: M. Lamba, K. Mitra, Restoring Extremely Dark Images in Real Time, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 3487–3497.
– volume: 237
  start-page: 108
  year: 1977
  end-page: 129
  ident: b10
  article-title: The retinex theory of color vision
  publication-title: Sci. Am.
– reference: C. Chen, Q. Chen, J. Xu, V. Koltun, Learning to see in the dark, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 3291–3300.
– reference: K. Xu, X. Yang, B. Yin, R.W. Lau, Learning to restore low-light images via decomposition-and-enhancement, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 2281–2290.
– start-page: 1
  year: 2024
  end-page: 19
  ident: b18
  article-title: Understanding and improving zero-reference deep curve estimation for low-light image enhancement
  publication-title: Appl. Intell.
– reference: X. Zhu, D. Cheng, Z. Zhang, S. Lin, J. Dai, An empirical study of spatial attention mechanisms in deep networks, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 6688–6697.
– start-page: 916
  year: 2019
  end-page: 921
  ident: b13
  article-title: Improving extreme low-light image denoising via residual learning
  publication-title: 2019 IEEE International Conference on Multimedia and Expo
– year: 2024
  ident: b15
  article-title: Lyt-net: Lightweight YUV transformer-based network for low-light image enhancement
– reference: X. Dong, W. Xu, Z. Miao, L. Ma, C. Zhang, J. Yang, Z. Jin, A.B.J. Teoh, J. Shen, Abandoning the Bayer-filter to see in the dark, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17431–17440.
– reference: Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, Q. Hu, ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks, in: The IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2020.
– reference: X. Jin, L.-H. Han, Z. Li, C.-L. Guo, Z. Chai, C. Li, DNF: Decouple and feedback network for seeing in the dark, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 18135–18144.
– volume: Vol. 1345
  year: 2019
  ident: b12
  article-title: Enhancement of low-light image based on wavelet U-Net
  publication-title: Journal of Physics: Conference Series
– reference: X. Chen, H. Li, M. Li, J. Pan, Learning a sparse transformer network for effective image deraining, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5896–5905.
– reference: M. Zhu, P. Pan, W. Chen, Y. Yang, Eemefn: Low-light image enhancement via edge-enhanced multi-exposure fusion network, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 13106–13113.
– year: 2022
  ident: b17
  article-title: You only need 90k parameters to adapt light: a light weight transformer for image enhancement and exposure correction
– year: 2024
  ident: b32
  article-title: Graph-represented distribution similarity index for full-reference image quality assessment
  publication-title: IEEE Trans. Image Process.
– year: 2024
  ident: b16
  article-title: CSPN: A category-specific processing network for low-light image enhancement
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– year: 2020
  ident: b6
  article-title: Towards fast and light-weight restoration of dark images
  publication-title: BMVC
– reference: J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, R. Timofte, Swinir: Image restoration using swin transformer, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 1833–1844.
– reference: J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
– volume: 31
  start-page: 1391
  year: 2022
  end-page: 1405
  ident: b44
  article-title: Towards low light enhancement with raw images
  publication-title: IEEE Trans. Image Process.
– reference: S. Woo, J. Park, J.-Y. Lee, I.S. Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19.
– reference: Y. Cai, H. Bian, J. Lin, H. Wang, R. Timofte, Y. Zhang, Retinexformer: One-stage retinex-based transformer for low-light image enhancement, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 12504–12513.
– reference: Y. Zhang, H. Qin, X. Wang, H. Li, Rethinking noise synthesis and modeling in raw denoising, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 4593–4601.
– reference: H. Feng, L. Wang, Y. Wang, H. Huang, Learnability enhancement for low-light raw denoising: Where paired real data meets noise modeling, in: Proceedings of the 30th ACM International Conference on Multimedia, 2022, pp. 1436–1444.
– year: 2024
  ident: b21
  article-title: Colorization-inspired customized low-light image enhancement by a decoupled network
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 36
  start-page: 1
  year: 2017
  end-page: 15
  ident: b36
  article-title: HDR image reconstruction from a single exposure using deep CNNs
  publication-title: ACM Trans. Graph.
– reference: Y. Qiu, K. Zhang, C. Wang, W. Luo, H. Li, Z. Jin, MB-TaylorFormer: Multi-branch efficient transformer expanded by Taylor formula for image dehazing, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 12802–12813.
– reference: C. Guo, C. Li, J. Guo, C.C. Loy, J. Hou, S. Kwong, R. Cong, Zero-reference deep curve estimation for low-light image enhancement, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 1780–1789.
– reference: K. Wei, Y. Fu, J. Yang, H. Huang, A physics-based noise formation model for extreme low-light raw denoising, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 2758–2767.
– volume: 20
  start-page: 1
  year: 2023
  end-page: 20
  ident: b11
  article-title: Robust RGB-t tracking via adaptive modality weight correlation filters and cross-modality learning
  publication-title: ACM Trans. Multimed. Comput. Commun. Appl.
– reference: S. Gu, Y. Li, L.V. Gool, R. Timofte, Self-guided network for fast image denoising, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 2511–2520.
– volume: 69
  start-page: 369
  year: 2022
  end-page: 377
  ident: b30
  article-title: An end-to-end blind image quality assessment method using a recurrent network and self-attention
  publication-title: IEEE Trans. Broadcast.
– reference: X. Chen, Y. Liu, Z. Zhang, Y. Qiao, C. Dong, Hdrunet: Single image hdr reconstruction with denoising and dequantization, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 354–363.
– year: 2020
  ident: b7
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
– reference: W. Shi, J. Caballero, F. Huszár, J. Totz, A.P. Aitken, R. Bishop, D. Rueckert, Z. Wang, Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1874–1883.
– reference: Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10012–10022.
– volume: 69
  start-page: 396
  year: 2023
  end-page: 405
  ident: b31
  article-title: Perception-oriented U-shaped transformer network for 360-degree no-reference image quality assessment
  publication-title: IEEE Trans. Broadcast.
– reference: S.W. Zamir, A. Arora, S. Khan, M. Hayat, F.S. Khan, M.-H. Yang, Restormer: Efficient transformer for high-resolution image restoration, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5728–5739.
– ident: 10.1016/j.patcog.2025.111930_b41
  doi: 10.1109/CVPR42600.2020.00283
– ident: 10.1016/j.patcog.2025.111930_b34
  doi: 10.1109/ICCV.2019.00679
– year: 2022
  ident: 10.1016/j.patcog.2025.111930_b17
– year: 2024
  ident: 10.1016/j.patcog.2025.111930_b21
  article-title: Colorization-inspired customized low-light image enhancement by a decoupled network
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2024.3502424
– ident: 10.1016/j.patcog.2025.111930_b26
  doi: 10.1109/ICCV48922.2021.00082
– ident: 10.1016/j.patcog.2025.111930_b28
  doi: 10.1109/CVPR52688.2022.01716
– volume: 36
  start-page: 1
  issue: 6
  year: 2017
  ident: 10.1016/j.patcog.2025.111930_b36
  article-title: HDR image reconstruction from a single exposure using deep CNNs
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3130800.3130816
– ident: 10.1016/j.patcog.2025.111930_b45
  doi: 10.1109/ICCV.2019.00260
– year: 2020
  ident: 10.1016/j.patcog.2025.111930_b6
  article-title: Towards fast and light-weight restoration of dark images
– ident: 10.1016/j.patcog.2025.111930_b37
  doi: 10.1109/CVPRW53098.2021.00045
– ident: 10.1016/j.patcog.2025.111930_b9
  doi: 10.1109/ICCV48922.2021.00986
– ident: 10.1016/j.patcog.2025.111930_b20
  doi: 10.1109/CVPR52729.2023.01737
– ident: 10.1016/j.patcog.2025.111930_b1
  doi: 10.1109/CVPR.2018.00347
– volume: 44
  start-page: 8520
  issue: 11
  year: 2021
  ident: 10.1016/j.patcog.2025.111930_b38
  article-title: Physics-based noise modeling for extreme low-light photography
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 10.1016/j.patcog.2025.111930_b19
  doi: 10.1109/CVPR42600.2020.00185
– year: 2024
  ident: 10.1016/j.patcog.2025.111930_b32
  article-title: Graph-represented distribution similarity index for full-reference image quality assessment
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2024.3390565
– ident: 10.1016/j.patcog.2025.111930_b35
  doi: 10.1109/CVPR.2016.207
– ident: 10.1016/j.patcog.2025.111930_b40
  doi: 10.1109/ICCV48922.2021.00455
– year: 2024
  ident: 10.1016/j.patcog.2025.111930_b16
  article-title: CSPN: A category-specific processing network for low-light image enhancement
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2024.3426527
– volume: 69
  start-page: 369
  issue: 2
  year: 2022
  ident: 10.1016/j.patcog.2025.111930_b30
  article-title: An end-to-end blind image quality assessment method using a recurrent network and self-attention
  publication-title: IEEE Trans. Broadcast.
  doi: 10.1109/TBC.2022.3215249
– start-page: 1
  year: 2020
  ident: 10.1016/j.patcog.2025.111930_b39
  article-title: Practical deep raw image denoising on mobile devices
– ident: 10.1016/j.patcog.2025.111930_b29
  doi: 10.1109/CVPR52688.2022.00564
– ident: 10.1016/j.patcog.2025.111930_b22
  doi: 10.1007/978-3-030-01234-2_1
– volume: Vol. 1345
  year: 2019
  ident: 10.1016/j.patcog.2025.111930_b12
  article-title: Enhancement of low-light image based on wavelet U-Net
– ident: 10.1016/j.patcog.2025.111930_b5
  doi: 10.1109/CVPR52729.2023.01739
– ident: 10.1016/j.patcog.2025.111930_b43
  doi: 10.1609/aaai.v34i07.7013
– ident: 10.1016/j.patcog.2025.111930_b2
  doi: 10.1109/CVPR42600.2020.00235
– ident: 10.1016/j.patcog.2025.111930_b3
  doi: 10.1109/CVPR52688.2022.01691
– ident: 10.1016/j.patcog.2025.111930_b42
  doi: 10.1145/3503161.3548186
– ident: 10.1016/j.patcog.2025.111930_b33
  doi: 10.1109/ICCV51070.2023.01176
– start-page: 916
  year: 2019
  ident: 10.1016/j.patcog.2025.111930_b13
  article-title: Improving extreme low-light image denoising via residual learning
– ident: 10.1016/j.patcog.2025.111930_b25
  doi: 10.1109/CVPR.2018.00813
– ident: 10.1016/j.patcog.2025.111930_b27
  doi: 10.1109/CVPR52729.2023.00571
– year: 2020
  ident: 10.1016/j.patcog.2025.111930_b7
– ident: 10.1016/j.patcog.2025.111930_b24
  doi: 10.1109/CVPR.2018.00745
– ident: 10.1016/j.patcog.2025.111930_b14
  doi: 10.1109/ICCV51070.2023.01149
– ident: 10.1016/j.patcog.2025.111930_b23
  doi: 10.1109/CVPR42600.2020.01155
– volume: 237
  start-page: 108
  issue: 6
  year: 1977
  ident: 10.1016/j.patcog.2025.111930_b10
  article-title: The retinex theory of color vision
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican1277-108
– volume: 69
  start-page: 396
  issue: 2
  year: 2023
  ident: 10.1016/j.patcog.2025.111930_b31
  article-title: Perception-oriented U-shaped transformer network for 360-degree no-reference image quality assessment
  publication-title: IEEE Trans. Broadcast.
  doi: 10.1109/TBC.2022.3231101
– volume: 31
  start-page: 1391
  year: 2022
  ident: 10.1016/j.patcog.2025.111930_b44
  article-title: Towards low light enhancement with raw images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2022.3140610
– ident: 10.1016/j.patcog.2025.111930_b4
  doi: 10.1109/CVPR46437.2021.00349
– ident: 10.1016/j.patcog.2025.111930_b8
  doi: 10.1109/ICCVW54120.2021.00210
– volume: 20
  start-page: 1
  issue: 4
  year: 2023
  ident: 10.1016/j.patcog.2025.111930_b11
  article-title: Robust RGB-t tracking via adaptive modality weight correlation filters and cross-modality learning
  publication-title: ACM Trans. Multimed. Comput. Commun. Appl.
– start-page: 1
  year: 2024
  ident: 10.1016/j.patcog.2025.111930_b18
  article-title: Understanding and improving zero-reference deep curve estimation for low-light image enhancement
  publication-title: Appl. Intell.
– year: 2024
  ident: 10.1016/j.patcog.2025.111930_b15
SSID ssj0017142
Score 2.4886289
Snippet Nighttime photography encounters escalating challenges in extremely low-light conditions, primarily attributable to the ultra-low signal-to-noise ratio. For...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 111930
SubjectTerms Attention mechanism
Lightweight network
Low-light raw image enhancement
Title Lighting dark images with linear attention and decoupled network
URI https://dx.doi.org/10.1016/j.patcog.2025.111930
Volume 170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71sbDwRpRH5YHVtE7sxN6oKqry6lSkbpFjx6g80ii0K78dO3EQSIiBMZZOir_kvrtLvjsDXIShjHjMFabCZJhySrAwWmEdpMMwY5yLSu3-MIumj_R2wRYtGDe9ME5W6bm_5vSKrf3KwKM5KJZL1-Prxg4OQxvEXQclbUM3CEXEOtAd3dxNZ18_E2JC66HhIcHOoOmgq2RehWW81ZMtFAPm6EM4OfRvEepb1JnswrZPF9GovqM9aGX5Puw0RzEg75kHcHXvimwbhpCW5QtavlmaeEfuIytyeaQskZujWSkbkcw10rbq3BSvmUZ5rQM_hPnkej6eYn84AlbWy9Y4oIpExsYWQ1KqBKFpYGLDq4Fc0u5ZayNjzSNBhKEmU5JbzzbM5hsyklSHR9DJV3l2DEgFSqWxtXU9bzrWQqqAD5nSmjHJGe0BbvBIinoERtJow56TGr_E4ZfU-PUgbkBLfjzKxLL0n5Yn_7Y8hS175eXUZ9BZl5vs3GYL67QP7csP0vfvxCd2mr46
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMsDCG1GeHlhNm8RO7A1UURVoOxWpm-XYMSqPtCrtym_HlwcCCTGwJjkp-ZL77i767g7gMop0LBJhKJMuo0ywgEpnDbVh2okyLoQs1O7DUdx_ZPcTPmlAt-6FQVllxf0lpxdsXR1pV2i259Mp9vji2MFO5IM4dlCyNVhnPEpQ13f18aXzwAXf5cjwKKB4ed0_V4i85p7vZk--TAw5kodEMfRv8elbzOntwFaVLJKb8n52oZHle7BdL2IglV_uw_UAS2wfhIjVixcyffMk8U7wFyvBLFIvCE7RLHSNROeWWF9zruavmSV5qQI_gHHvdtzt02o1AjXex5Y0ZCaInY8sLkiZkQFLQ5c4UYzj0v6ZrXU6sSKWgXTMZUYL79eO-2xDx5rZ6BCa-SzPjoCY0Jg08bbY8WYTK7UJRYcbaznXgrMW0BoPNS8HYKhaGfasSvwU4qdK_FqQ1KCpHy9SeY7-0_L435YXsNEfDwdqcDd6OIFNf6YSVp9Cc7lYZWc-b1im58V38QkLNb8F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lighting+dark+images+with+linear+attention+and+decoupled+network&rft.jtitle=Pattern+recognition&rft.au=Zheng%2C+Jiazhang&rft.au=Liao%2C+Qiuping&rft.au=Li%2C+Lei&rft.au=Li%2C+Cheng&rft.date=2026-02-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.volume=170&rft_id=info:doi/10.1016%2Fj.patcog.2025.111930&rft.externalDocID=S0031320325005904
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon