Cloaking via heating: Approach to acoustic cloaking of an actuated boundary in a rarefied gas

Existing studies on sound wave propagation in rarefied gases examine sound generation by actuated boundaries subject to isothermal boundary conditions. While these conditions are simple to analyze theoretically, they are more challenging to apply in practice compared to heat-flux conditions. To stud...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 26; no. 6
Main Authors Manela, A., Pogorelyuk, L.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Existing studies on sound wave propagation in rarefied gases examine sound generation by actuated boundaries subject to isothermal boundary conditions. While these conditions are simple to analyze theoretically, they are more challenging to apply in practice compared to heat-flux conditions. To study the effect of modifying the thermal boundary conditions, the present work investigates the impact of replacing the isothermal with heat-flux conditions on propagation of acoustic waves in a microchannel. The linearized problem is formulated for an ideal hard-sphere gas, and the effect of heat-flux prescription is demonstrated through comparison with counterpart results for isothermal boundaries. Analytical solutions are obtained for a gas at collisionless (highly rarefied) and continuum-limit conditions, and validated through comparison with direct simulation Mote Carlo predictions. Remarkably, it is found that prescription of heat flux at the walls, altering the energy balance within the medium, has a significant effect on acoustic wave propagation in the gas. In particular, when optimized with respect to the boundary acoustic signal applied, the heat flux condition may be used to achieve “acoustic cloaking” of the moving wall, a much desired property in classical acoustics.
AbstractList Existing studies on sound wave propagation in rarefied gases examine sound generation by actuated boundaries subject to isothermal boundary conditions. While these conditions are simple to analyze theoretically, they are more challenging to apply in practice compared to heat-flux conditions. To study the effect of modifying the thermal boundary conditions, the present work investigates the impact of replacing the isothermal with heat-flux conditions on propagation of acoustic waves in a microchannel. The linearized problem is formulated for an ideal hard-sphere gas, and the effect of heat-flux prescription is demonstrated through comparison with counterpart results for isothermal boundaries. Analytical solutions are obtained for a gas at collisionless (highly rarefied) and continuum-limit conditions, and validated through comparison with direct simulation Mote Carlo predictions. Remarkably, it is found that prescription of heat flux at the walls, altering the energy balance within the medium, has a significant effect on acoustic wave propagation in the gas. In particular, when optimized with respect to the boundary acoustic signal applied, the heat flux condition may be used to achieve “acoustic cloaking” of the moving wall, a much desired property in classical acoustics.
Author Pogorelyuk, L.
Manela, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Manela
  fullname: Manela, A.
– sequence: 2
  givenname: L.
  surname: Pogorelyuk
  fullname: Pogorelyuk, L.
BookMark eNptUE1LAzEUDFLBtnrwHwQ8edg2H7vZxFspfkHBix5leckmbWrd1E1W8N-bUr2IpzcMM-_NvAkadaGzCF1SMqNE8DmdlVKWXKgTNKZEqqIWQowOuCaFEJyeoUmMW0IIV0yM0etyF-DNd2v86QFvLKSMb_Biv-8DmA1OAYMJQ0zeYPMrDQ5Dl_k0QLIt1mHoWui_sM8k7qG3zmd6DfEcnTrYRXvxM6fo5e72eflQrJ7uH5eLVWFYVaeCcVkK5ZysLKkNs5KAdpwq0FAxo0xFnbO64oRr4K4VWktlWs204sRZ7vgUXR335tQfg42p2Yah7_LJhlEmKkWrUmbV_KgyfYgxp2yMT7lw6FIPftdQ0hx-2NDm54fZcf3Hse_9e676j_Yb3nhzPw
CitedBy_id crossref_primary_10_1103_PhysRevFluids_6_093401
crossref_primary_10_3390_fluids6010017
crossref_primary_10_1017_jfm_2019_329
crossref_primary_10_1017_jfm_2023_819
crossref_primary_10_1007_s10404_017_2024_2
crossref_primary_10_1103_PhysRevFluids_5_033401
crossref_primary_10_1063_1_5099051
crossref_primary_10_1016_j_jsv_2018_02_007
crossref_primary_10_1103_PhysRevFluids_1_084102
crossref_primary_10_1017_jfm_2022_625
crossref_primary_10_1103_PhysRevFluids_2_093401
crossref_primary_10_1016_j_euromechflu_2021_11_006
crossref_primary_10_1063_5_0020947
crossref_primary_10_1016_j_jsv_2015_08_016
crossref_primary_10_1063_1_5022353
crossref_primary_10_1016_j_jsv_2022_117431
crossref_primary_10_1016_j_sna_2021_112997
Cites_doi 10.1063/1.3247159
10.1121/1.1908432
10.1016/j.ijheatmasstransfer.2012.12.025
10.1088/1367-2630/9/3/045
10.1063/1.869561
10.1007/BF01325690
10.1126/science.1246545
10.1364/OE.20.008207
10.1063/1.1431243
10.1121/1.3050288
10.1115/1.4002441
10.1103/PhysRevLett.19.1025
10.1063/1.3010759
10.1007/s00161-011-0202-0
10.1121/1.1490360
10.1063/1.3437602
10.1063/1.2803315
10.1103/PhysRevLett.106.253901
10.1088/0034-4885/76/12/126501
10.1121/1.2967835
10.1063/1.862669
10.1063/1.4866443
10.1016/j.jcp.2007.07.006
10.1016/j.ijheatfluidflow.2012.09.003
10.1063/1.1761218
10.1017/S0022112007008658
10.1063/1.3558887
10.1121/1.1909331
10.1016/j.jcp.2013.05.017
10.1098/rspa.2008.0076
ContentType Journal Article
Copyright 2014 AIP Publishing LLC.
Copyright_xml – notice: 2014 AIP Publishing LLC.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.4884369
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID 10_1063_1_4884369
GroupedDBID -~X
1UP
2-P
29O
4.4
5VS
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
AAYXX
ABJGX
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NPSNA
O-B
P2P
RIP
RNS
RQS
SC5
TN5
WH7
~02
8FD
H8D
L7M
ID FETCH-LOGICAL-c257t-238469ff85e07c2e80abf319aba52c9c51ffeb5303ba3fd6bb89cdb2b930fe3f3
ISSN 1070-6631
IngestDate Mon Jun 30 03:17:54 EDT 2025
Tue Jul 01 03:20:12 EDT 2025
Thu Apr 24 23:02:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-238469ff85e07c2e80abf319aba52c9c51ffeb5303ba3fd6bb89cdb2b930fe3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2126591548
PQPubID 2050667
ParticipantIDs proquest_journals_2126591548
crossref_citationtrail_10_1063_1_4884369
crossref_primary_10_1063_1_4884369
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2014
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References (2023062816343219000_c24) 2013; 59
(2023062816343219000_c29) 1994
(2023062816343219000_c5) 2011; 106
(2023062816343219000_c6) 1956; 28
(2023062816343219000_c18) 2013; 250
(2023062816343219000_c11) 1979; 22
(2023062816343219000_c10) 1967; 19
(2023062816343219000_c22) 2010; 22
(2023062816343219000_c14) 2002; 112
(2023062816343219000_c7) 1957; 149
(2023062816343219000_c17) 2012; 24
(2023062816343219000_c3) 2007; 9
(2023062816343219000_c4) 2009; 125
(2023062816343219000_c2) 2007; 91
(2023062816343219000_c23) 2010; 133
(2023062816343219000_c9) 1965; 8
(2023062816343219000_c32) 2012; 20
(2023062816343219000_c15) 2008; 124
(2023062816343219000_c28) 2007
(2023062816343219000_c12) 1998; 10
(2023062816343219000_c21) 2008; 20
(2023062816343219000_c1) 2008; 464
(2023062816343219000_c13) 2002; 14
2023062816343219000_c26
(2023062816343219000_c20) 2007; 593
(2023062816343219000_c27) 1969
(2023062816343219000_c31) 2011; 23
(2023062816343219000_c30) 2007; 226
(2023062816343219000_c19) 2014; 26
(2023062816343219000_c34) 2013; 76
(2023062816343219000_c8) 1965; 37
(2023062816343219000_c16) 2009; 21
(2023062816343219000_c25) 2012; 38
(2023062816343219000_c33) 2013; 342
References_xml – volume: 21
  start-page: 103601
  year: 2009
  ident: 2023062816343219000_c16
  article-title: Sound propagation through a rarefied gas confined between source and receptor at arbitrary Knudsen number and sound frequency
  publication-title: Phys. Fluids
  doi: 10.1063/1.3247159
– volume: 28
  start-page: 644
  year: 1956
  ident: 2023062816343219000_c6
  article-title: Propagation of sound in five monatomic gases
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1908432
– volume: 59
  start-page: 302
  year: 2013
  ident: 2023062816343219000_c24
  article-title: Transient heat transfer flow through a binary gaseous mixture confined between coaxial cylinders
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2012.12.025
– volume: 9
  start-page: 45
  year: 2007
  ident: 2023062816343219000_c3
  article-title: One path to acoustic cloaking
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/9/3/045
– volume: 10
  start-page: 289
  year: 1998
  ident: 2023062816343219000_c12
  article-title: Monte Carlo simulation and Navier-Stokes finite difference calculation of unsteady-state rarefied gas flows
  publication-title: Phys. Fluids
  doi: 10.1063/1.869561
– volume: 149
  start-page: 15
  year: 1957
  ident: 2023062816343219000_c7
  article-title: Schallausbreitung in Gasen bei hohen Frequenzen und sehr niedrigen Drucken
  publication-title: Z. Phys.
  doi: 10.1007/BF01325690
– volume: 342
  start-page: 939
  year: 2013
  ident: 2023062816343219000_c33
  article-title: Metamaterials beyond optics
  publication-title: Science
  doi: 10.1126/science.1246545
– volume: 20
  start-page: 8207
  year: 2012
  ident: 2023062816343219000_c32
  article-title: Transformation thermodynamics: Cloaking and concentrating heat flux
  publication-title: Opt. Express
  doi: 10.1364/OE.20.008207
– volume: 14
  start-page: 802
  year: 2002
  ident: 2023062816343219000_c13
  article-title: Sound wave propagation in transition-regime micro- and nanochannels
  publication-title: Phys. Fluids
  doi: 10.1063/1.1431243
– volume: 125
  start-page: 839
  year: 2009
  ident: 2023062816343219000_c4
  article-title: Acoustic metafluids
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3050288
– volume: 133
  start-page: 022404
  year: 2010
  ident: 2023062816343219000_c23
  article-title: Numerical analysis of the time-dependent energy and momentum transfers in a rarefied gas between two parallel planes based on the linearized Boltzmann equation
  publication-title: J. Heat Transfer ASME
  doi: 10.1115/1.4002441
– volume: 19
  start-page: 1025
  year: 1967
  ident: 2023062816343219000_c10
  article-title: Propagation of sound in monatomic gases
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.19.1025
– volume: 20
  start-page: 117104
  year: 2008
  ident: 2023062816343219000_c21
  article-title: Gas motion induced by unsteady boundary heating in a small-scale slab
  publication-title: Phys. Fluids
  doi: 10.1063/1.3010759
– volume-title: Molecular Gas Dynamics: Theory, Techniques, and Applications
  year: 2007
  ident: 2023062816343219000_c28
– volume: 24
  start-page: 361
  year: 2012
  ident: 2023062816343219000_c17
  article-title: Resonance in rarefied gases
  publication-title: Contin. Mech. Thermodyn.
  doi: 10.1007/s00161-011-0202-0
– volume: 112
  start-page: 395
  year: 2002
  ident: 2023062816343219000_c14
  article-title: Free molecular sound propagation
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1490360
– volume: 22
  start-page: 062001
  year: 2010
  ident: 2023062816343219000_c22
  article-title: Gas-flow animation by unsteady heating in a microchannel
  publication-title: Phys. Fluids
  doi: 10.1063/1.3437602
– volume: 91
  start-page: 183518
  year: 2007
  ident: 2023062816343219000_c2
  article-title: Acoustic cloaking in three dimensions using acoustic metamaterials
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2803315
– volume: 106
  start-page: 253901
  year: 2011
  ident: 2023062816343219000_c5
  article-title: Experimental acoustic ground cloak in air
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.253901
– volume: 76
  start-page: 126501
  year: 2013
  ident: 2023062816343219000_c34
  article-title: Metamaterials beyond electromagnetism
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/76/12/126501
– volume: 124
  start-page: 1993
  year: 2008
  ident: 2023062816343219000_c15
  article-title: Numerical modeling of the sound propagation through a rarefied gas in a semi-infinite space on the basis of linearized kinetic equation
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2967835
– volume-title: Rarefied Gas Dynamics
  year: 1969
  ident: 2023062816343219000_c27
– volume: 22
  start-page: 830
  year: 1979
  ident: 2023062816343219000_c11
  article-title: Sound-wave propagation in a rarefied gas
  publication-title: Phys. Fluids
  doi: 10.1063/1.862669
– volume-title: Molecular Gas Dynamics and the Direct Simulation of Gas Flows
  year: 1994
  ident: 2023062816343219000_c29
– volume: 26
  start-page: 032001
  year: 2014
  ident: 2023062816343219000_c19
  article-title: On the damping effect of gas rarefaction on propagation of acoustic waves in a microchannel
  publication-title: Phys. Fluids
  doi: 10.1063/1.4866443
– volume: 226
  start-page: 2341
  year: 2007
  ident: 2023062816343219000_c30
  article-title: A low-variance deviational simulation Monte Carlo for the Boltzmann equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.07.006
– volume: 38
  start-page: 190
  year: 2012
  ident: 2023062816343219000_c25
  article-title: Sound propagation through a rarefied gas: Influence of the gas-surface interaction
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2012.09.003
– ident: 2023062816343219000_c26
– volume: 8
  start-page: 259
  year: 1965
  ident: 2023062816343219000_c9
  article-title: Propagation and reflection of sound in rarefied gases. I. Theoretical
  publication-title: Phys. Fluids
  doi: 10.1063/1.1761218
– volume: 593
  start-page: 453
  year: 2007
  ident: 2023062816343219000_c20
  article-title: On the motion induced in a gas confined in a small-scale gap due to instantaneous boundary heating
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112007008658
– volume: 23
  start-page: 030606
  year: 2011
  ident: 2023062816343219000_c31
  article-title: Low-noise Monte Carlo simulation of the variable hard-sphere gas
  publication-title: Phys. Fluids
  doi: 10.1063/1.3558887
– volume: 37
  start-page: 329
  year: 1965
  ident: 2023062816343219000_c8
  article-title: Propagation of forced sound waves in rarefied gas dynamics
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1909331
– volume: 250
  start-page: 574
  year: 2013
  ident: 2023062816343219000_c18
  article-title: Moving boundary problems for a rarefied gas: Spatially one-dimensional case
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.05.017
– volume: 464
  start-page: 2411
  year: 2008
  ident: 2023062816343219000_c1
  article-title: Acoustic cloaking theory
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2008.0076
SSID ssj0003926
Score 2.2033727
Snippet Existing studies on sound wave propagation in rarefied gases examine sound generation by actuated boundaries subject to isothermal boundary conditions. While...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Acoustic propagation
Acoustic properties
Acoustic waves
Acoustics
Boundary conditions
Fluid dynamics
Gases
Heat flux
Heat transfer
Microchannels
Moving walls
Physics
Propagation
Rarefied gases
Sound generation
Sound propagation
Sound waves
Wave propagation
Title Cloaking via heating: Approach to acoustic cloaking of an actuated boundary in a rarefied gas
URI https://www.proquest.com/docview/2126591548
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9MwGLagExIXPgZoGwNZiANS5ZLEjltzqwZoQpQLm7QLimzHnipFydSlSOPX8_orXaGHwSWKLMeN8riPn9d-PxB6q0F15KYQRNSlIUxnNZGGMyJFoaZC53Vu3Inu4hs_PWdfLsqLTRVHH13Sq4n-tTOu5H9QhTbA1UXJ_gOyw6DQAPeAL1wBYbjeCeOTpvPFpMY_l9JJvhS9PL_aBEoB4_mCXWOdOruT_9Yl0VhLJzeVL6y08vF_cgy2s7FOll5Gt6EoXL2nqPZ-H7ZZL-uQ4UkIdmsrYSFb04R92slAud1ltzLNzTrUa5_c3mXI2cYbKhIjUAMBdRKaTGybCTLloWpKYtMQ_x5nDd9J0qCK3H7BBLiD0VCoZTsR9h8L1OA26A_MOa3yKj56H-0VYB4UI7Q3_7j4-n1Yg0H18eBtGt465ZTi9P3wu9tKZHsh9uri7Al6FM0CPA8YP0X3TLuPHkcTAUcCvt5HDyIOz9CPBD4G8HEE_wNO0OO-wwl6nKDHncWyxQl6nKDHS2jECXoM0D9H558_nZ2cklgrg2gg3Z6A8mJcWDsrTTbVhZllUlmgV6lkWWihy9xao0oQLEpSW3OlZkLXqlCCZtZQS1-gUdu15gBhTrPCUiumoi4Y50rCuFKB7KyFrDXTh-hd-m6VjonkXT2TpvoLn0P0Zuh6FbKn7Op0nD5-Ff9c1xUoKl4KZ08f3WWMl-jhZtYeo1G_WptXoBZ79TpOjd9JCmgO
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cloaking+via+heating%3A+Approach+to+acoustic+cloaking+of+an+actuated+boundary+in+a+rarefied+gas&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Manela%2C+A.&rft.au=Pogorelyuk%2C+L.&rft.date=2014-06-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=26&rft.issue=6&rft_id=info:doi/10.1063%2F1.4884369&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4884369
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon