Cloaking via heating: Approach to acoustic cloaking of an actuated boundary in a rarefied gas
Existing studies on sound wave propagation in rarefied gases examine sound generation by actuated boundaries subject to isothermal boundary conditions. While these conditions are simple to analyze theoretically, they are more challenging to apply in practice compared to heat-flux conditions. To stud...
Saved in:
Published in | Physics of fluids (1994) Vol. 26; no. 6 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Existing studies on sound wave propagation in rarefied gases examine sound generation by actuated boundaries subject to isothermal boundary conditions. While these conditions are simple to analyze theoretically, they are more challenging to apply in practice compared to heat-flux conditions. To study the effect of modifying the thermal boundary conditions, the present work investigates the impact of replacing the isothermal with heat-flux conditions on propagation of acoustic waves in a microchannel. The linearized problem is formulated for an ideal hard-sphere gas, and the effect of heat-flux prescription is demonstrated through comparison with counterpart results for isothermal boundaries. Analytical solutions are obtained for a gas at collisionless (highly rarefied) and continuum-limit conditions, and validated through comparison with direct simulation Mote Carlo predictions. Remarkably, it is found that prescription of heat flux at the walls, altering the energy balance within the medium, has a significant effect on acoustic wave propagation in the gas. In particular, when optimized with respect to the boundary acoustic signal applied, the heat flux condition may be used to achieve “acoustic cloaking” of the moving wall, a much desired property in classical acoustics. |
---|---|
AbstractList | Existing studies on sound wave propagation in rarefied gases examine sound generation by actuated boundaries subject to isothermal boundary conditions. While these conditions are simple to analyze theoretically, they are more challenging to apply in practice compared to heat-flux conditions. To study the effect of modifying the thermal boundary conditions, the present work investigates the impact of replacing the isothermal with heat-flux conditions on propagation of acoustic waves in a microchannel. The linearized problem is formulated for an ideal hard-sphere gas, and the effect of heat-flux prescription is demonstrated through comparison with counterpart results for isothermal boundaries. Analytical solutions are obtained for a gas at collisionless (highly rarefied) and continuum-limit conditions, and validated through comparison with direct simulation Mote Carlo predictions. Remarkably, it is found that prescription of heat flux at the walls, altering the energy balance within the medium, has a significant effect on acoustic wave propagation in the gas. In particular, when optimized with respect to the boundary acoustic signal applied, the heat flux condition may be used to achieve “acoustic cloaking” of the moving wall, a much desired property in classical acoustics. |
Author | Pogorelyuk, L. Manela, A. |
Author_xml | – sequence: 1 givenname: A. surname: Manela fullname: Manela, A. – sequence: 2 givenname: L. surname: Pogorelyuk fullname: Pogorelyuk, L. |
BookMark | eNptUE1LAzEUDFLBtnrwHwQ8edg2H7vZxFspfkHBix5leckmbWrd1E1W8N-bUr2IpzcMM-_NvAkadaGzCF1SMqNE8DmdlVKWXKgTNKZEqqIWQowOuCaFEJyeoUmMW0IIV0yM0etyF-DNd2v86QFvLKSMb_Biv-8DmA1OAYMJQ0zeYPMrDQ5Dl_k0QLIt1mHoWui_sM8k7qG3zmd6DfEcnTrYRXvxM6fo5e72eflQrJ7uH5eLVWFYVaeCcVkK5ZysLKkNs5KAdpwq0FAxo0xFnbO64oRr4K4VWktlWs204sRZ7vgUXR335tQfg42p2Yah7_LJhlEmKkWrUmbV_KgyfYgxp2yMT7lw6FIPftdQ0hx-2NDm54fZcf3Hse_9e676j_Yb3nhzPw |
CitedBy_id | crossref_primary_10_1103_PhysRevFluids_6_093401 crossref_primary_10_3390_fluids6010017 crossref_primary_10_1017_jfm_2019_329 crossref_primary_10_1017_jfm_2023_819 crossref_primary_10_1007_s10404_017_2024_2 crossref_primary_10_1103_PhysRevFluids_5_033401 crossref_primary_10_1063_1_5099051 crossref_primary_10_1016_j_jsv_2018_02_007 crossref_primary_10_1103_PhysRevFluids_1_084102 crossref_primary_10_1017_jfm_2022_625 crossref_primary_10_1103_PhysRevFluids_2_093401 crossref_primary_10_1016_j_euromechflu_2021_11_006 crossref_primary_10_1063_5_0020947 crossref_primary_10_1016_j_jsv_2015_08_016 crossref_primary_10_1063_1_5022353 crossref_primary_10_1016_j_jsv_2022_117431 crossref_primary_10_1016_j_sna_2021_112997 |
Cites_doi | 10.1063/1.3247159 10.1121/1.1908432 10.1016/j.ijheatmasstransfer.2012.12.025 10.1088/1367-2630/9/3/045 10.1063/1.869561 10.1007/BF01325690 10.1126/science.1246545 10.1364/OE.20.008207 10.1063/1.1431243 10.1121/1.3050288 10.1115/1.4002441 10.1103/PhysRevLett.19.1025 10.1063/1.3010759 10.1007/s00161-011-0202-0 10.1121/1.1490360 10.1063/1.3437602 10.1063/1.2803315 10.1103/PhysRevLett.106.253901 10.1088/0034-4885/76/12/126501 10.1121/1.2967835 10.1063/1.862669 10.1063/1.4866443 10.1016/j.jcp.2007.07.006 10.1016/j.ijheatfluidflow.2012.09.003 10.1063/1.1761218 10.1017/S0022112007008658 10.1063/1.3558887 10.1121/1.1909331 10.1016/j.jcp.2013.05.017 10.1098/rspa.2008.0076 |
ContentType | Journal Article |
Copyright | 2014 AIP Publishing LLC. |
Copyright_xml | – notice: 2014 AIP Publishing LLC. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/1.4884369 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
ExternalDocumentID | 10_1063_1_4884369 |
GroupedDBID | -~X 1UP 2-P 29O 4.4 5VS AAAAW AABDS AAGWI AAPUP AAYIH AAYXX ABJGX ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BDMKI BPZLN CITATION CS3 DU5 EBS EJD F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NPSNA O-B P2P RIP RNS RQS SC5 TN5 WH7 ~02 8FD H8D L7M |
ID | FETCH-LOGICAL-c257t-238469ff85e07c2e80abf319aba52c9c51ffeb5303ba3fd6bb89cdb2b930fe3f3 |
ISSN | 1070-6631 |
IngestDate | Mon Jun 30 03:17:54 EDT 2025 Tue Jul 01 03:20:12 EDT 2025 Thu Apr 24 23:02:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c257t-238469ff85e07c2e80abf319aba52c9c51ffeb5303ba3fd6bb89cdb2b930fe3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2126591548 |
PQPubID | 2050667 |
ParticipantIDs | proquest_journals_2126591548 crossref_citationtrail_10_1063_1_4884369 crossref_primary_10_1063_1_4884369 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2014 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | (2023062816343219000_c24) 2013; 59 (2023062816343219000_c29) 1994 (2023062816343219000_c5) 2011; 106 (2023062816343219000_c6) 1956; 28 (2023062816343219000_c18) 2013; 250 (2023062816343219000_c11) 1979; 22 (2023062816343219000_c10) 1967; 19 (2023062816343219000_c22) 2010; 22 (2023062816343219000_c14) 2002; 112 (2023062816343219000_c7) 1957; 149 (2023062816343219000_c17) 2012; 24 (2023062816343219000_c3) 2007; 9 (2023062816343219000_c4) 2009; 125 (2023062816343219000_c2) 2007; 91 (2023062816343219000_c23) 2010; 133 (2023062816343219000_c9) 1965; 8 (2023062816343219000_c32) 2012; 20 (2023062816343219000_c15) 2008; 124 (2023062816343219000_c28) 2007 (2023062816343219000_c12) 1998; 10 (2023062816343219000_c21) 2008; 20 (2023062816343219000_c1) 2008; 464 (2023062816343219000_c13) 2002; 14 2023062816343219000_c26 (2023062816343219000_c20) 2007; 593 (2023062816343219000_c27) 1969 (2023062816343219000_c31) 2011; 23 (2023062816343219000_c30) 2007; 226 (2023062816343219000_c19) 2014; 26 (2023062816343219000_c34) 2013; 76 (2023062816343219000_c8) 1965; 37 (2023062816343219000_c16) 2009; 21 (2023062816343219000_c25) 2012; 38 (2023062816343219000_c33) 2013; 342 |
References_xml | – volume: 21 start-page: 103601 year: 2009 ident: 2023062816343219000_c16 article-title: Sound propagation through a rarefied gas confined between source and receptor at arbitrary Knudsen number and sound frequency publication-title: Phys. Fluids doi: 10.1063/1.3247159 – volume: 28 start-page: 644 year: 1956 ident: 2023062816343219000_c6 article-title: Propagation of sound in five monatomic gases publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1908432 – volume: 59 start-page: 302 year: 2013 ident: 2023062816343219000_c24 article-title: Transient heat transfer flow through a binary gaseous mixture confined between coaxial cylinders publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2012.12.025 – volume: 9 start-page: 45 year: 2007 ident: 2023062816343219000_c3 article-title: One path to acoustic cloaking publication-title: New J. Phys. doi: 10.1088/1367-2630/9/3/045 – volume: 10 start-page: 289 year: 1998 ident: 2023062816343219000_c12 article-title: Monte Carlo simulation and Navier-Stokes finite difference calculation of unsteady-state rarefied gas flows publication-title: Phys. Fluids doi: 10.1063/1.869561 – volume: 149 start-page: 15 year: 1957 ident: 2023062816343219000_c7 article-title: Schallausbreitung in Gasen bei hohen Frequenzen und sehr niedrigen Drucken publication-title: Z. Phys. doi: 10.1007/BF01325690 – volume: 342 start-page: 939 year: 2013 ident: 2023062816343219000_c33 article-title: Metamaterials beyond optics publication-title: Science doi: 10.1126/science.1246545 – volume: 20 start-page: 8207 year: 2012 ident: 2023062816343219000_c32 article-title: Transformation thermodynamics: Cloaking and concentrating heat flux publication-title: Opt. Express doi: 10.1364/OE.20.008207 – volume: 14 start-page: 802 year: 2002 ident: 2023062816343219000_c13 article-title: Sound wave propagation in transition-regime micro- and nanochannels publication-title: Phys. Fluids doi: 10.1063/1.1431243 – volume: 125 start-page: 839 year: 2009 ident: 2023062816343219000_c4 article-title: Acoustic metafluids publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3050288 – volume: 133 start-page: 022404 year: 2010 ident: 2023062816343219000_c23 article-title: Numerical analysis of the time-dependent energy and momentum transfers in a rarefied gas between two parallel planes based on the linearized Boltzmann equation publication-title: J. Heat Transfer ASME doi: 10.1115/1.4002441 – volume: 19 start-page: 1025 year: 1967 ident: 2023062816343219000_c10 article-title: Propagation of sound in monatomic gases publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.19.1025 – volume: 20 start-page: 117104 year: 2008 ident: 2023062816343219000_c21 article-title: Gas motion induced by unsteady boundary heating in a small-scale slab publication-title: Phys. Fluids doi: 10.1063/1.3010759 – volume-title: Molecular Gas Dynamics: Theory, Techniques, and Applications year: 2007 ident: 2023062816343219000_c28 – volume: 24 start-page: 361 year: 2012 ident: 2023062816343219000_c17 article-title: Resonance in rarefied gases publication-title: Contin. Mech. Thermodyn. doi: 10.1007/s00161-011-0202-0 – volume: 112 start-page: 395 year: 2002 ident: 2023062816343219000_c14 article-title: Free molecular sound propagation publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1490360 – volume: 22 start-page: 062001 year: 2010 ident: 2023062816343219000_c22 article-title: Gas-flow animation by unsteady heating in a microchannel publication-title: Phys. Fluids doi: 10.1063/1.3437602 – volume: 91 start-page: 183518 year: 2007 ident: 2023062816343219000_c2 article-title: Acoustic cloaking in three dimensions using acoustic metamaterials publication-title: Appl. Phys. Lett. doi: 10.1063/1.2803315 – volume: 106 start-page: 253901 year: 2011 ident: 2023062816343219000_c5 article-title: Experimental acoustic ground cloak in air publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.253901 – volume: 76 start-page: 126501 year: 2013 ident: 2023062816343219000_c34 article-title: Metamaterials beyond electromagnetism publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/76/12/126501 – volume: 124 start-page: 1993 year: 2008 ident: 2023062816343219000_c15 article-title: Numerical modeling of the sound propagation through a rarefied gas in a semi-infinite space on the basis of linearized kinetic equation publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2967835 – volume-title: Rarefied Gas Dynamics year: 1969 ident: 2023062816343219000_c27 – volume: 22 start-page: 830 year: 1979 ident: 2023062816343219000_c11 article-title: Sound-wave propagation in a rarefied gas publication-title: Phys. Fluids doi: 10.1063/1.862669 – volume-title: Molecular Gas Dynamics and the Direct Simulation of Gas Flows year: 1994 ident: 2023062816343219000_c29 – volume: 26 start-page: 032001 year: 2014 ident: 2023062816343219000_c19 article-title: On the damping effect of gas rarefaction on propagation of acoustic waves in a microchannel publication-title: Phys. Fluids doi: 10.1063/1.4866443 – volume: 226 start-page: 2341 year: 2007 ident: 2023062816343219000_c30 article-title: A low-variance deviational simulation Monte Carlo for the Boltzmann equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.07.006 – volume: 38 start-page: 190 year: 2012 ident: 2023062816343219000_c25 article-title: Sound propagation through a rarefied gas: Influence of the gas-surface interaction publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2012.09.003 – ident: 2023062816343219000_c26 – volume: 8 start-page: 259 year: 1965 ident: 2023062816343219000_c9 article-title: Propagation and reflection of sound in rarefied gases. I. Theoretical publication-title: Phys. Fluids doi: 10.1063/1.1761218 – volume: 593 start-page: 453 year: 2007 ident: 2023062816343219000_c20 article-title: On the motion induced in a gas confined in a small-scale gap due to instantaneous boundary heating publication-title: J. Fluid Mech. doi: 10.1017/S0022112007008658 – volume: 23 start-page: 030606 year: 2011 ident: 2023062816343219000_c31 article-title: Low-noise Monte Carlo simulation of the variable hard-sphere gas publication-title: Phys. Fluids doi: 10.1063/1.3558887 – volume: 37 start-page: 329 year: 1965 ident: 2023062816343219000_c8 article-title: Propagation of forced sound waves in rarefied gas dynamics publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1909331 – volume: 250 start-page: 574 year: 2013 ident: 2023062816343219000_c18 article-title: Moving boundary problems for a rarefied gas: Spatially one-dimensional case publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.05.017 – volume: 464 start-page: 2411 year: 2008 ident: 2023062816343219000_c1 article-title: Acoustic cloaking theory publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2008.0076 |
SSID | ssj0003926 |
Score | 2.2033727 |
Snippet | Existing studies on sound wave propagation in rarefied gases examine sound generation by actuated boundaries subject to isothermal boundary conditions. While... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
SubjectTerms | Acoustic propagation Acoustic properties Acoustic waves Acoustics Boundary conditions Fluid dynamics Gases Heat flux Heat transfer Microchannels Moving walls Physics Propagation Rarefied gases Sound generation Sound propagation Sound waves Wave propagation |
Title | Cloaking via heating: Approach to acoustic cloaking of an actuated boundary in a rarefied gas |
URI | https://www.proquest.com/docview/2126591548 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9MwGLagExIXPgZoGwNZiANS5ZLEjltzqwZoQpQLm7QLimzHnipFydSlSOPX8_orXaGHwSWKLMeN8riPn9d-PxB6q0F15KYQRNSlIUxnNZGGMyJFoaZC53Vu3Inu4hs_PWdfLsqLTRVHH13Sq4n-tTOu5H9QhTbA1UXJ_gOyw6DQAPeAL1wBYbjeCeOTpvPFpMY_l9JJvhS9PL_aBEoB4_mCXWOdOruT_9Yl0VhLJzeVL6y08vF_cgy2s7FOll5Gt6EoXL2nqPZ-H7ZZL-uQ4UkIdmsrYSFb04R92slAud1ltzLNzTrUa5_c3mXI2cYbKhIjUAMBdRKaTGybCTLloWpKYtMQ_x5nDd9J0qCK3H7BBLiD0VCoZTsR9h8L1OA26A_MOa3yKj56H-0VYB4UI7Q3_7j4-n1Yg0H18eBtGt465ZTi9P3wu9tKZHsh9uri7Al6FM0CPA8YP0X3TLuPHkcTAUcCvt5HDyIOz9CPBD4G8HEE_wNO0OO-wwl6nKDHncWyxQl6nKDHS2jECXoM0D9H558_nZ2cklgrg2gg3Z6A8mJcWDsrTTbVhZllUlmgV6lkWWihy9xao0oQLEpSW3OlZkLXqlCCZtZQS1-gUdu15gBhTrPCUiumoi4Y50rCuFKB7KyFrDXTh-hd-m6VjonkXT2TpvoLn0P0Zuh6FbKn7Op0nD5-Ff9c1xUoKl4KZ08f3WWMl-jhZtYeo1G_WptXoBZ79TpOjd9JCmgO |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cloaking+via+heating%3A+Approach+to+acoustic+cloaking+of+an+actuated+boundary+in+a+rarefied+gas&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Manela%2C+A.&rft.au=Pogorelyuk%2C+L.&rft.date=2014-06-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=26&rft.issue=6&rft_id=info:doi/10.1063%2F1.4884369&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4884369 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |