Microstructure evolution of cold sprayed copper coatings based on particle diameter control and its effect on corrosion resistance of aluminum-copper contacts
Crevice corrosion of dissimilar metal contacts caused by potential difference severely hampers the technical application of the contacts. Coating technology applied to contact interfaces is an effective corrosion protection strategy, requiring a dense, well-bonded coating on the contact surface. In...
Saved in:
Published in | Surfaces and interfaces Vol. 69; p. 106743 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Crevice corrosion of dissimilar metal contacts caused by potential difference severely hampers the technical application of the contacts. Coating technology applied to contact interfaces is an effective corrosion protection strategy, requiring a dense, well-bonded coating on the contact surface. In this study, cold-sprayed copper coatings were used to improve the corrosion resistance of aluminum-copper contacts. The evolution of the coating microstructure with particle size and its effect on the corrosion resistance of the contact were experimentally investigated. In order to understand the influence of particle size on the formation of the coating microstructure, a three-dimensional finite element computational model of the deposition behavior of copper particles was established based on the consideration of the effect of particle size on particle velocity. The experimental results show that the coatings produced with smaller particles not only have lower surface roughness and porosity, but also have improved coating-substrate and inter-particle bonding, and the coatings are more corrosion resistant and their protection to the contacts is improved. The simulation results show that the deformation and deposition rates of small particles are higher during the deposition process, and the interfacial temperature between small particles is higher than that of large particles at the end of deposition. This improves coating-substrate and inter-particle bonding, and thus reducing coating porosity. This study not only reveals the influence mechanism of copper particle size on the formation of the coating structure, but also proposes an effective method to improve the corrosion resistance of aluminum-copper contacts.
[Display omitted] |
---|---|
AbstractList | Crevice corrosion of dissimilar metal contacts caused by potential difference severely hampers the technical application of the contacts. Coating technology applied to contact interfaces is an effective corrosion protection strategy, requiring a dense, well-bonded coating on the contact surface. In this study, cold-sprayed copper coatings were used to improve the corrosion resistance of aluminum-copper contacts. The evolution of the coating microstructure with particle size and its effect on the corrosion resistance of the contact were experimentally investigated. In order to understand the influence of particle size on the formation of the coating microstructure, a three-dimensional finite element computational model of the deposition behavior of copper particles was established based on the consideration of the effect of particle size on particle velocity. The experimental results show that the coatings produced with smaller particles not only have lower surface roughness and porosity, but also have improved coating-substrate and inter-particle bonding, and the coatings are more corrosion resistant and their protection to the contacts is improved. The simulation results show that the deformation and deposition rates of small particles are higher during the deposition process, and the interfacial temperature between small particles is higher than that of large particles at the end of deposition. This improves coating-substrate and inter-particle bonding, and thus reducing coating porosity. This study not only reveals the influence mechanism of copper particle size on the formation of the coating structure, but also proposes an effective method to improve the corrosion resistance of aluminum-copper contacts.
[Display omitted] |
ArticleNumber | 106743 |
Author | Tang, Qing Xing, Ya-Zhe Wang, Ke Wang, Yan |
Author_xml | – sequence: 1 givenname: Yan surname: Wang fullname: Wang, Yan – sequence: 2 givenname: Qing surname: Tang fullname: Tang, Qing – sequence: 3 givenname: Ke surname: Wang fullname: Wang, Ke – sequence: 4 givenname: Ya-Zhe orcidid: 0009-0007-9340-2349 surname: Xing fullname: Xing, Ya-Zhe email: xingyz@chd.edu.cn |
BookMark | eNp9kE1OwzAQhb0oEqX0Bix8gRTbcZJmg4Qq_qQiNrC2HHuMXCV2ZDuVehnOikMRS1ajGb15b-a7QgvnHSB0Q8mGElrfHjZxCsa6DSOsyqO64eUCLRmvtwVhJblE6xgPhBC6bdqKVkv09WpV8DGFSaUpAIaj76dkvcPeYOV7jeMY5Al0bsYRQi4yWfcZcSdjnmbhKEOyqgesrRwg_WhcCr7H0mlsU8RgDKg0a5UPOW22DxBtTNIpmJNkPw3WTUPxl-KSVCleowsj-wjr37pCH48P77vnYv_29LK73xeKVU0qaK0J6YDVRpclJ5VkpONSU0aNIbzbMt5IrepG67ZjnJdtCVveEGgbyTswrFwhfvadYcQARozBDjKcBCViRisO4oxWzGjFGW1euzuvQb7taCGIqCzkn7QN-WOhvf3f4BtDA40K |
Cites_doi | 10.1115/1.4030257 10.1016/j.actamat.2008.06.003 10.1016/j.surfcoat.2017.08.070 10.1007/s11666-024-01712-8 10.1007/s11666-023-01703-1 10.1016/j.corsci.2014.04.002 10.1063/1.4983753 10.1361/105996306X124437 10.1016/j.surfcoat.2004.08.222 10.1016/j.surfcoat.2010.11.045 10.1016/j.matdes.2014.03.054 10.1016/j.corsci.2017.02.022 10.1007/s11666-009-9454-7 10.1016/j.pmatsci.2021.100839 10.1016/j.corsci.2020.109029 10.1007/s11666-013-9951-6 10.1016/j.jmrt.2024.04.057 10.1016/j.actamat.2018.07.065 10.1016/j.jallcom.2018.11.031 10.1016/j.actamat.2020.04.044 10.3390/coatings7070087 10.1016/j.apsusc.2006.05.126 10.1016/j.actamat.2005.10.005 10.1016/j.surfcoat.2006.07.232 10.1016/j.scriptamat.2005.10.028 10.3390/met11122016 10.1016/j.apsusc.2007.03.031 10.1557/s43578-022-00764-2 10.1016/j.wear.2011.02.003 10.1016/j.apsusc.2019.01.111 10.1179/1743294414Y.0000000270 10.1016/j.actamat.2006.09.006 10.1016/j.corsci.2010.07.033 10.1016/S1359-6454(03)00274-X 10.1007/s11666-021-01245-4 10.1016/j.apsusc.2009.09.104 10.1016/j.surfcoat.2014.06.006 10.1016/j.surfcoat.2016.07.082 10.1016/j.actamat.2016.06.034 10.1016/j.surfcoat.2020.126709 10.1016/j.physe.2020.113970 10.1016/j.corsci.2024.112398 10.1007/s11666-011-9662-9 10.1016/j.surfcoat.2016.12.101 |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.surfin.2025.106743 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
ExternalDocumentID | 10_1016_j_surfin_2025_106743 S2468023025010004 |
GroupedDBID | --M 0R~ AABXZ AAEDT AAEDW AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ABNEU ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI AEBSH AEIPS AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AFXIZ AGCQF AGRNS AGUBO AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BNPGV EBS EFJIC FDB FIRID FYGXN KOM O9- ROL SPC SPCBC SSG SSH SSM SSQ SSZ T5K ~G- AAYXX CITATION EJD |
ID | FETCH-LOGICAL-c257t-16d00be26fd33405a20b4ad121ff04b8247adc67dd9b244393e8470e97a4bef23 |
IEDL.DBID | AIKHN |
ISSN | 2468-0230 |
IngestDate | Thu Jul 03 08:34:38 EDT 2025 Sat Jul 05 17:11:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Aluminum-copper contact Numerical simulation Corrosion performance Cold spray Copper coating |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c257t-16d00be26fd33405a20b4ad121ff04b8247adc67dd9b244393e8470e97a4bef23 |
ORCID | 0009-0007-9340-2349 |
ParticipantIDs | crossref_primary_10_1016_j_surfin_2025_106743 elsevier_sciencedirect_doi_10_1016_j_surfin_2025_106743 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-15 |
PublicationDateYYYYMMDD | 2025-07-15 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Surfaces and interfaces |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Assadi, Gärtner, Stoltenhoff, Kreye (bib0017) 2003; 51 Wang, Xiang, Liang, Song, Liu (bib0043) 2014; 85 Wong, Vo, Irissou, Ryabinin, Legoux, Yue (bib0015) 2013; 22 Singh, Raman, Berndt, Singh (bib0030) 2021; 11 Assadi, Schmidt, Richter, Kliemann, Binder, Gärtner, Klassen, Kreye (bib0038) 2011; 20 Li, Song, Fu, Pan (bib0041) 2019; 777 Yang, Meng, Su, Chai, Guo, Ma, Yin, Li (bib0033) 2024; 30 Luo, Li, Shang, Yang, Wang, Li (bib0008) 2014; 254 Yildirim, Muftu, Gouldstone (bib0037) 2011; 270 Kumar, Bae, Lee (bib0039) 2016; 304 Ning, Jang, Kim (bib0016) 2007; 253 Schmidt, Gärtner, Assadi, Kreye (bib0018) 2006; 54 Taherkhani, List, Keller, Kashaev, Gärtner, Klassen (bib0013) 2024; 33 Li, Luo, Li (bib0014) 2017; 328 Yang, Jiang, Zhang, Li (bib0045) 2024; 92 Wu, Huang (bib0048) 2020; 118 Jodoin, Ajdelsztajn, Sansoucy, Zúñiga, Richer, Lavernia (bib0040) 2006; 201 Meng, Elsahati, Liu, Richards (bib0047) 2017; 121 Molins, Jeandin, Arrigoni (bib0011) 2005; 197 Poza, Garrido-Maneiro (bib0007) 2022; 123 Dowding, Hassani, Sun, Veysset, Nelson, Schuh (bib0024) 2020; 194 Ang, Berndt, Cheang (bib0021) 2011; 205 Moridi, Hassani-Gangaraj, Guagliano, Dao (bib0005) 2014; 30 Adachi, Ueda (bib0029) 2017; 7 Khatake, Taluja, Sunil Kumar, Mahendar Reddy, Al-Ataby, Sood, Sonia (bib0004) 2023 Bae, Xiong, Kumar, Kang, Lee (bib0036) 2008; 56 Hassani-Gangaraj, Veysset, Nelson, Schuh (bib0025) 2019; 476 Zahiri, Fraser, Gulizia, Jahedi (bib0022) 2006; 15 Xie, Nélias, Walter-Le Berre, Ogawa, Ichikawa (bib0034) 2015; 137 Tian, Cui, Zhang, Yang, Yang, Cui (bib0042) 2024; 239 Wu, Fang, Yoon, Kim, Lee (bib0020) 2006; 54 Zhang, Xu, Li, Yang, Huang (bib0006) 2024; 33 Choi, Li, Luzin, Neiser, Gnäupel-Herold, Prask, Sampath, Gouldstone (bib0010) 2007; 55 Weiller, Delloro (bib0044) 2022; 60 Li, Liao, Li, Li, Coddet, Wang (bib0031) 2006; 253 Vera, Verdugo, Orellana, Muñoz (bib0003) 2010; 52 Assadi, Kreye, Gärtner, Klassen (bib0019) 2016; 116 King, Bae, Zahiri, Jahedi, Lee (bib0035) 2010; 19 Gravina, Pébère, Laurino, Blanc (bib0002) 2017; 119 Daroonparvar, Khan, Saadeh, Kay, Kasar, Kumar, Esteves, Misra, Menezes, Kalvala, Bakhsheshi-Rad, Gupta (bib0012) 2020; 176 Liu, Qiu, Zheng, Zhu, Tang (bib0046) 2014; 116 Winnicki, Małachowska, Baszczuk, Rutkowska-Gorczyca, Kukla, Lachowicz, Ambroziak (bib0001) 2017; 318 Hassani-Gangaraj, Veysset, Champagne, Nelson, Schuh (bib0023) 2018; 158 Rahmati, Veiga, Zúñiga, Jodoin (bib0027) 2021; 30 King, Jahedi (bib0028) 2010; 256 Shayegan, Mahmoudi, Ghelichi, Villafuerte, Wang, Guagliano, Jahed (bib0009) 2014; 60 Li, Luo, Li (bib0026) 2021; 407 Adaan-Nyiak, Tiamiyu (bib0032) 2023; 38 Zhang (10.1016/j.surfin.2025.106743_bib0006) 2024; 33 Khatake (10.1016/j.surfin.2025.106743_bib0004) 2023 King (10.1016/j.surfin.2025.106743_bib0028) 2010; 256 Adachi (10.1016/j.surfin.2025.106743_bib0029) 2017; 7 Meng (10.1016/j.surfin.2025.106743_bib0047) 2017; 121 Adaan-Nyiak (10.1016/j.surfin.2025.106743_bib0032) 2023; 38 Luo (10.1016/j.surfin.2025.106743_bib0008) 2014; 254 Li (10.1016/j.surfin.2025.106743_bib0041) 2019; 777 Winnicki (10.1016/j.surfin.2025.106743_bib0001) 2017; 318 Choi (10.1016/j.surfin.2025.106743_bib0010) 2007; 55 King (10.1016/j.surfin.2025.106743_bib0035) 2010; 19 Bae (10.1016/j.surfin.2025.106743_bib0036) 2008; 56 Yang (10.1016/j.surfin.2025.106743_bib0045) 2024; 92 Wu (10.1016/j.surfin.2025.106743_bib0048) 2020; 118 Ning (10.1016/j.surfin.2025.106743_bib0016) 2007; 253 Wu (10.1016/j.surfin.2025.106743_bib0020) 2006; 54 Dowding (10.1016/j.surfin.2025.106743_bib0024) 2020; 194 Poza (10.1016/j.surfin.2025.106743_bib0007) 2022; 123 Assadi (10.1016/j.surfin.2025.106743_bib0019) 2016; 116 Taherkhani (10.1016/j.surfin.2025.106743_bib0013) 2024; 33 Moridi (10.1016/j.surfin.2025.106743_bib0005) 2014; 30 Ang (10.1016/j.surfin.2025.106743_bib0021) 2011; 205 Weiller (10.1016/j.surfin.2025.106743_bib0044) 2022; 60 Molins (10.1016/j.surfin.2025.106743_bib0011) 2005; 197 Jodoin (10.1016/j.surfin.2025.106743_bib0040) 2006; 201 Schmidt (10.1016/j.surfin.2025.106743_bib0018) 2006; 54 Assadi (10.1016/j.surfin.2025.106743_bib0017) 2003; 51 Wong (10.1016/j.surfin.2025.106743_bib0015) 2013; 22 Singh (10.1016/j.surfin.2025.106743_bib0030) 2021; 11 Xie (10.1016/j.surfin.2025.106743_bib0034) 2015; 137 Yildirim (10.1016/j.surfin.2025.106743_bib0037) 2011; 270 Tian (10.1016/j.surfin.2025.106743_bib0042) 2024; 239 Li (10.1016/j.surfin.2025.106743_bib0014) 2017; 328 Zahiri (10.1016/j.surfin.2025.106743_bib0022) 2006; 15 Li (10.1016/j.surfin.2025.106743_bib0031) 2006; 253 Yang (10.1016/j.surfin.2025.106743_bib0033) 2024; 30 Gravina (10.1016/j.surfin.2025.106743_bib0002) 2017; 119 Li (10.1016/j.surfin.2025.106743_bib0026) 2021; 407 Liu (10.1016/j.surfin.2025.106743_bib0046) 2014; 116 Rahmati (10.1016/j.surfin.2025.106743_bib0027) 2021; 30 Shayegan (10.1016/j.surfin.2025.106743_bib0009) 2014; 60 Wang (10.1016/j.surfin.2025.106743_bib0043) 2014; 85 Daroonparvar (10.1016/j.surfin.2025.106743_bib0012) 2020; 176 Hassani-Gangaraj (10.1016/j.surfin.2025.106743_bib0023) 2018; 158 Vera (10.1016/j.surfin.2025.106743_bib0003) 2010; 52 Hassani-Gangaraj (10.1016/j.surfin.2025.106743_bib0025) 2019; 476 Assadi (10.1016/j.surfin.2025.106743_bib0038) 2011; 20 Kumar (10.1016/j.surfin.2025.106743_bib0039) 2016; 304 |
References_xml | – volume: 30 start-page: 2879 year: 2024 end-page: 2890 ident: bib0033 article-title: Particle deformation and coating deposition behavior in cold spray additive manufactured aluminum deposit on copper substrate by simulation and experiment publication-title: J. Mater. Res. Technol. – volume: 33 start-page: 341 year: 2024 end-page: 350 ident: bib0006 article-title: Effect of powder particle size on microstructure and mechanical properties of cold-sprayed pure nickel coatings publication-title: J. Therm. Spray Technol. – volume: 51 start-page: 4379 year: 2003 end-page: 4394 ident: bib0017 article-title: Bonding mechanism in cold gas spraying publication-title: Acta Mater. – volume: 253 start-page: 2852 year: 2006 end-page: 2862 ident: bib0031 article-title: On high velocity impact of micro-sized metallic particles in cold spraying publication-title: Appl. Surf. Sci. – volume: 116 year: 2014 ident: bib0046 article-title: Study on the thermal resistance in secondary particles chain of silica aerogel by molecular dynamics simulation publication-title: J. Appl. Phys. – volume: 52 start-page: 3803 year: 2010 end-page: 3810 ident: bib0003 article-title: Corrosion of aluminum in copper–aluminum couples under a marine environment: influence of polyaniline deposited onto copper publication-title: Corros. Sci. – volume: 777 start-page: 877 year: 2019 end-page: 885 ident: bib0041 article-title: Preparation of Cu- graphene coating via electroless plating for high mechanical property and corrosive resistance publication-title: J. Alloys Compd. – volume: 176 year: 2020 ident: bib0012 article-title: Modification of surface hardness, wear resistance and corrosion resistance of cold spray Al coated AZ31B Mg alloy using cold spray double layered Ta/Ti coating in 3.5 wt % NaCl solution publication-title: Corros. Sci. – volume: 56 start-page: 4858 year: 2008 end-page: 4868 ident: bib0036 article-title: General aspects of interface bonding in kinetic sprayed coatings publication-title: Acta Mater. – volume: 30 start-page: 369 year: 2014 end-page: 395 ident: bib0005 article-title: Cold spray coating: review of material systems and future perspectives publication-title: Surf. Eng. – volume: 55 start-page: 857 year: 2007 end-page: 866 ident: bib0010 article-title: Integrated characterization of cold sprayed aluminum coatings publication-title: Acta Mater. – volume: 116 start-page: 382 year: 2016 end-page: 407 ident: bib0019 article-title: Cold spraying – A materials perspective publication-title: Acta Mater. – volume: 60 year: 2022 ident: bib0044 article-title: A numerical study of pore formation mechanisms in aluminum cold spray coatings publication-title: Addit. Manuf. – volume: 239 year: 2024 ident: bib0042 article-title: Atmospheric corrosion and mechanical property degradation of 2524-T3 aluminum alloy in marine environments publication-title: Corros. Sci. – year: 2023 ident: bib0004 article-title: Cold spray coating: a review of material systems and future perspectives, Mater publication-title: Today Proc. – volume: 85 start-page: 77 year: 2014 end-page: 86 ident: bib0043 article-title: Corrosion control of copper in 3.5wt.% NaCl solution by Domperidone: experimental and theoretical study publication-title: Corros. Sci. – volume: 123 year: 2022 ident: bib0007 article-title: Cold-sprayed coatings: microstructure, mechanical properties, and wear behaviour publication-title: Prog. Mater. Sci. – volume: 11 start-page: 2016 year: 2021 ident: bib0030 article-title: Influence of cold spray parameters on bonding mechanisms: a review publication-title: Metals – volume: 30 start-page: 1777 year: 2021 end-page: 1791 ident: bib0027 article-title: A numerical approach to study the oxide layer effect on adhesion in cold spray publication-title: J. Therm. Spray Technol. – volume: 254 start-page: 11 year: 2014 end-page: 20 ident: bib0008 article-title: High velocity impact induced microstructure evolution during deposition of cold spray coatings: a review publication-title: Surf. Coat. Technol. – volume: 270 start-page: 703 year: 2011 end-page: 713 ident: bib0037 article-title: Modeling of high velocity impact of spherical particles publication-title: Wear – volume: 304 start-page: 592 year: 2016 end-page: 605 ident: bib0039 article-title: Influence of substrate roughness on bonding mechanism in cold spray publication-title: Surf. Coat. Technol. – volume: 118 year: 2020 ident: bib0048 article-title: Thermal conductivity study of SiC nanoparticle beds for thermal insulation applications publication-title: Phys. E Low-Dimens. Syst. Nanostruct. – volume: 205 start-page: 3260 year: 2011 end-page: 3267 ident: bib0021 article-title: Deposition effects of WC particle size on cold sprayed WC–Co coatings publication-title: Surf. Coat. Technol. – volume: 137 year: 2015 ident: bib0034 article-title: Simulation of the cold spray particle deposition process publication-title: J. Tribol – volume: 407 year: 2021 ident: bib0026 article-title: Improving deposition efficiency and inter-particle bonding of cold sprayed Cu through removing the surficial oxide scale of the feedstock powder publication-title: Surf. Coat. Technol. – volume: 19 start-page: 620 year: 2010 end-page: 634 ident: bib0035 article-title: An experimental and finite element study of cold spray copper impact onto two aluminum substrates publication-title: J. Therm. Spray Technol. – volume: 20 start-page: 1161 year: 2011 end-page: 1176 ident: bib0038 article-title: On parameter selection in cold spraying publication-title: J. Therm. Spray Technol. – volume: 54 start-page: 665 year: 2006 end-page: 669 ident: bib0020 article-title: The rebound phenomenon in kinetic spraying deposition publication-title: Scr. Mater. – volume: 60 start-page: 72 year: 2014 end-page: 84 ident: bib0009 article-title: Residual stress induced by cold spray coating of magnesium AZ31B extrusion publication-title: Mater. Des. – volume: 54 start-page: 729 year: 2006 end-page: 742 ident: bib0018 article-title: Development of a generalized parameter window for cold spray deposition publication-title: Acta Mater. – volume: 256 start-page: 1735 year: 2010 end-page: 1738 ident: bib0028 article-title: Relationship between particle size and deformation in the cold spray process publication-title: Appl. Surf. Sci. – volume: 158 start-page: 430 year: 2018 end-page: 439 ident: bib0023 article-title: Adiabatic shear instability is not necessary for adhesion in cold spray publication-title: Acta Mater. – volume: 38 start-page: 69 year: 2023 end-page: 95 ident: bib0032 article-title: Recent advances on bonding mechanism in cold spray process: a review of single-particle impact methods publication-title: J. Mater. Res. – volume: 15 start-page: 422 year: 2006 end-page: 430 ident: bib0022 article-title: Effect of processing conditions on porosity formation in cold gas dynamic spraying of copper publication-title: J. Therm. Spray Technol. – volume: 119 start-page: 79 year: 2017 end-page: 90 ident: bib0002 article-title: Corrosion behaviour of an assembly between an AA1370 cable and a pure copper connector for car manufacturing applications publication-title: Corros. Sci. – volume: 476 start-page: 528 year: 2019 end-page: 532 ident: bib0025 article-title: Impact-bonding with aluminum, silver, and gold microparticles: toward understanding the role of native oxide layer publication-title: Appl. Surf. Sci. – volume: 328 start-page: 304 year: 2017 end-page: 312 ident: bib0014 article-title: Dependency of deposition behavior, microstructure and properties of cold sprayed Cu on morphology and porosity of the powder publication-title: Surf. Coat. Technol. – volume: 7 start-page: 87 year: 2017 ident: bib0029 article-title: Effect of cold-spray conditions using a nitrogen propellant gas on AISI 316L stainless steel-coating microstructures publication-title: Coatings – volume: 201 start-page: 3422 year: 2006 end-page: 3429 ident: bib0040 article-title: Effect of particle size, morphology, and hardness on cold gas dynamic sprayed aluminum alloy coatings publication-title: Surf. Coat. Technol. – volume: 318 start-page: 90 year: 2017 end-page: 98 ident: bib0001 article-title: Corrosion protection and electrical conductivity of copper coatings deposited by low-pressure cold spraying publication-title: Surf. Coat. Technol. – volume: 22 start-page: 1140 year: 2013 end-page: 1153 ident: bib0015 article-title: Effect of particle morphology and size distribution on cold-sprayed pure titanium coatings publication-title: J. Therm. Spray Technol. – volume: 92 year: 2024 ident: bib0045 article-title: Quantitative analysis of microstructural evolution in cold-sprayed CuCrZr: understanding heat transfer mechanisms from room temperature to 600°C publication-title: Addit. Manuf. – volume: 197 start-page: 18 year: 2005 end-page: 27 ident: bib0011 article-title: Application of laser shock adhesion testing to the study of the interlamellar strength and coating–substrate adhesion in cold-sprayed copper coating of aluminum publication-title: Surf. Coat. Technol. – volume: 194 start-page: 40 year: 2020 end-page: 48 ident: bib0024 article-title: Particle size effects in metallic microparticle impact-bonding publication-title: Acta Mater. – volume: 121 year: 2017 ident: bib0047 article-title: Thermal resistance between amorphous silica nanoparticles publication-title: J. Appl. Phys. – volume: 253 start-page: 7449 year: 2007 end-page: 7455 ident: bib0016 article-title: The effects of powder properties on in-flight particle velocity and deposition process during low pressure cold spray process publication-title: Appl. Surf. Sci. – volume: 33 start-page: 652 year: 2024 end-page: 665 ident: bib0013 article-title: The influence of spraying parameters and powder sizes on the microstructure and mechanical behavior of cold-sprayed Inconel®625 deposits publication-title: J. Therm. Spray Technol. – volume: 137 year: 2015 ident: 10.1016/j.surfin.2025.106743_bib0034 article-title: Simulation of the cold spray particle deposition process publication-title: J. Tribol doi: 10.1115/1.4030257 – volume: 56 start-page: 4858 year: 2008 ident: 10.1016/j.surfin.2025.106743_bib0036 article-title: General aspects of interface bonding in kinetic sprayed coatings publication-title: Acta Mater. doi: 10.1016/j.actamat.2008.06.003 – volume: 328 start-page: 304 year: 2017 ident: 10.1016/j.surfin.2025.106743_bib0014 article-title: Dependency of deposition behavior, microstructure and properties of cold sprayed Cu on morphology and porosity of the powder publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2017.08.070 – volume: 33 start-page: 652 year: 2024 ident: 10.1016/j.surfin.2025.106743_bib0013 article-title: The influence of spraying parameters and powder sizes on the microstructure and mechanical behavior of cold-sprayed Inconel®625 deposits publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-024-01712-8 – volume: 33 start-page: 341 year: 2024 ident: 10.1016/j.surfin.2025.106743_bib0006 article-title: Effect of powder particle size on microstructure and mechanical properties of cold-sprayed pure nickel coatings publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-023-01703-1 – volume: 85 start-page: 77 year: 2014 ident: 10.1016/j.surfin.2025.106743_bib0043 article-title: Corrosion control of copper in 3.5wt.% NaCl solution by Domperidone: experimental and theoretical study publication-title: Corros. Sci. doi: 10.1016/j.corsci.2014.04.002 – volume: 121 year: 2017 ident: 10.1016/j.surfin.2025.106743_bib0047 article-title: Thermal resistance between amorphous silica nanoparticles publication-title: J. Appl. Phys. doi: 10.1063/1.4983753 – volume: 60 year: 2022 ident: 10.1016/j.surfin.2025.106743_bib0044 article-title: A numerical study of pore formation mechanisms in aluminum cold spray coatings publication-title: Addit. Manuf. – volume: 15 start-page: 422 year: 2006 ident: 10.1016/j.surfin.2025.106743_bib0022 article-title: Effect of processing conditions on porosity formation in cold gas dynamic spraying of copper publication-title: J. Therm. Spray Technol. doi: 10.1361/105996306X124437 – volume: 197 start-page: 18 year: 2005 ident: 10.1016/j.surfin.2025.106743_bib0011 article-title: Application of laser shock adhesion testing to the study of the interlamellar strength and coating–substrate adhesion in cold-sprayed copper coating of aluminum publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2004.08.222 – volume: 205 start-page: 3260 year: 2011 ident: 10.1016/j.surfin.2025.106743_bib0021 article-title: Deposition effects of WC particle size on cold sprayed WC–Co coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2010.11.045 – volume: 60 start-page: 72 year: 2014 ident: 10.1016/j.surfin.2025.106743_bib0009 article-title: Residual stress induced by cold spray coating of magnesium AZ31B extrusion publication-title: Mater. Des. doi: 10.1016/j.matdes.2014.03.054 – volume: 119 start-page: 79 year: 2017 ident: 10.1016/j.surfin.2025.106743_bib0002 article-title: Corrosion behaviour of an assembly between an AA1370 cable and a pure copper connector for car manufacturing applications publication-title: Corros. Sci. doi: 10.1016/j.corsci.2017.02.022 – volume: 19 start-page: 620 year: 2010 ident: 10.1016/j.surfin.2025.106743_bib0035 article-title: An experimental and finite element study of cold spray copper impact onto two aluminum substrates publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-009-9454-7 – volume: 123 year: 2022 ident: 10.1016/j.surfin.2025.106743_bib0007 article-title: Cold-sprayed coatings: microstructure, mechanical properties, and wear behaviour publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2021.100839 – volume: 176 year: 2020 ident: 10.1016/j.surfin.2025.106743_bib0012 article-title: Modification of surface hardness, wear resistance and corrosion resistance of cold spray Al coated AZ31B Mg alloy using cold spray double layered Ta/Ti coating in 3.5 wt % NaCl solution publication-title: Corros. Sci. doi: 10.1016/j.corsci.2020.109029 – volume: 22 start-page: 1140 year: 2013 ident: 10.1016/j.surfin.2025.106743_bib0015 article-title: Effect of particle morphology and size distribution on cold-sprayed pure titanium coatings publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-013-9951-6 – volume: 30 start-page: 2879 year: 2024 ident: 10.1016/j.surfin.2025.106743_bib0033 article-title: Particle deformation and coating deposition behavior in cold spray additive manufactured aluminum deposit on copper substrate by simulation and experiment publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2024.04.057 – volume: 158 start-page: 430 year: 2018 ident: 10.1016/j.surfin.2025.106743_bib0023 article-title: Adiabatic shear instability is not necessary for adhesion in cold spray publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.07.065 – volume: 777 start-page: 877 year: 2019 ident: 10.1016/j.surfin.2025.106743_bib0041 article-title: Preparation of Cu- graphene coating via electroless plating for high mechanical property and corrosive resistance publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.11.031 – volume: 194 start-page: 40 year: 2020 ident: 10.1016/j.surfin.2025.106743_bib0024 article-title: Particle size effects in metallic microparticle impact-bonding publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.04.044 – volume: 7 start-page: 87 year: 2017 ident: 10.1016/j.surfin.2025.106743_bib0029 article-title: Effect of cold-spray conditions using a nitrogen propellant gas on AISI 316L stainless steel-coating microstructures publication-title: Coatings doi: 10.3390/coatings7070087 – volume: 253 start-page: 2852 year: 2006 ident: 10.1016/j.surfin.2025.106743_bib0031 article-title: On high velocity impact of micro-sized metallic particles in cold spraying publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2006.05.126 – volume: 54 start-page: 729 year: 2006 ident: 10.1016/j.surfin.2025.106743_bib0018 article-title: Development of a generalized parameter window for cold spray deposition publication-title: Acta Mater. doi: 10.1016/j.actamat.2005.10.005 – volume: 201 start-page: 3422 year: 2006 ident: 10.1016/j.surfin.2025.106743_bib0040 article-title: Effect of particle size, morphology, and hardness on cold gas dynamic sprayed aluminum alloy coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2006.07.232 – volume: 54 start-page: 665 year: 2006 ident: 10.1016/j.surfin.2025.106743_bib0020 article-title: The rebound phenomenon in kinetic spraying deposition publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2005.10.028 – volume: 11 start-page: 2016 year: 2021 ident: 10.1016/j.surfin.2025.106743_bib0030 article-title: Influence of cold spray parameters on bonding mechanisms: a review publication-title: Metals doi: 10.3390/met11122016 – volume: 253 start-page: 7449 year: 2007 ident: 10.1016/j.surfin.2025.106743_bib0016 article-title: The effects of powder properties on in-flight particle velocity and deposition process during low pressure cold spray process publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2007.03.031 – volume: 38 start-page: 69 year: 2023 ident: 10.1016/j.surfin.2025.106743_bib0032 article-title: Recent advances on bonding mechanism in cold spray process: a review of single-particle impact methods publication-title: J. Mater. Res. doi: 10.1557/s43578-022-00764-2 – volume: 270 start-page: 703 year: 2011 ident: 10.1016/j.surfin.2025.106743_bib0037 article-title: Modeling of high velocity impact of spherical particles publication-title: Wear doi: 10.1016/j.wear.2011.02.003 – volume: 476 start-page: 528 year: 2019 ident: 10.1016/j.surfin.2025.106743_bib0025 article-title: Impact-bonding with aluminum, silver, and gold microparticles: toward understanding the role of native oxide layer publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.01.111 – volume: 30 start-page: 369 year: 2014 ident: 10.1016/j.surfin.2025.106743_bib0005 article-title: Cold spray coating: review of material systems and future perspectives publication-title: Surf. Eng. doi: 10.1179/1743294414Y.0000000270 – volume: 55 start-page: 857 year: 2007 ident: 10.1016/j.surfin.2025.106743_bib0010 article-title: Integrated characterization of cold sprayed aluminum coatings publication-title: Acta Mater. doi: 10.1016/j.actamat.2006.09.006 – volume: 52 start-page: 3803 year: 2010 ident: 10.1016/j.surfin.2025.106743_bib0003 article-title: Corrosion of aluminum in copper–aluminum couples under a marine environment: influence of polyaniline deposited onto copper publication-title: Corros. Sci. doi: 10.1016/j.corsci.2010.07.033 – volume: 51 start-page: 4379 year: 2003 ident: 10.1016/j.surfin.2025.106743_bib0017 article-title: Bonding mechanism in cold gas spraying publication-title: Acta Mater. doi: 10.1016/S1359-6454(03)00274-X – volume: 30 start-page: 1777 year: 2021 ident: 10.1016/j.surfin.2025.106743_bib0027 article-title: A numerical approach to study the oxide layer effect on adhesion in cold spray publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-021-01245-4 – volume: 92 year: 2024 ident: 10.1016/j.surfin.2025.106743_bib0045 article-title: Quantitative analysis of microstructural evolution in cold-sprayed CuCrZr: understanding heat transfer mechanisms from room temperature to 600°C publication-title: Addit. Manuf. – volume: 116 year: 2014 ident: 10.1016/j.surfin.2025.106743_bib0046 article-title: Study on the thermal resistance in secondary particles chain of silica aerogel by molecular dynamics simulation publication-title: J. Appl. Phys. – year: 2023 ident: 10.1016/j.surfin.2025.106743_bib0004 article-title: Cold spray coating: a review of material systems and future perspectives, Mater publication-title: Today Proc. – volume: 256 start-page: 1735 year: 2010 ident: 10.1016/j.surfin.2025.106743_bib0028 article-title: Relationship between particle size and deformation in the cold spray process publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2009.09.104 – volume: 254 start-page: 11 year: 2014 ident: 10.1016/j.surfin.2025.106743_bib0008 article-title: High velocity impact induced microstructure evolution during deposition of cold spray coatings: a review publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2014.06.006 – volume: 304 start-page: 592 year: 2016 ident: 10.1016/j.surfin.2025.106743_bib0039 article-title: Influence of substrate roughness on bonding mechanism in cold spray publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2016.07.082 – volume: 116 start-page: 382 year: 2016 ident: 10.1016/j.surfin.2025.106743_bib0019 article-title: Cold spraying – A materials perspective publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.06.034 – volume: 407 year: 2021 ident: 10.1016/j.surfin.2025.106743_bib0026 article-title: Improving deposition efficiency and inter-particle bonding of cold sprayed Cu through removing the surficial oxide scale of the feedstock powder publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.126709 – volume: 118 year: 2020 ident: 10.1016/j.surfin.2025.106743_bib0048 article-title: Thermal conductivity study of SiC nanoparticle beds for thermal insulation applications publication-title: Phys. E Low-Dimens. Syst. Nanostruct. doi: 10.1016/j.physe.2020.113970 – volume: 239 year: 2024 ident: 10.1016/j.surfin.2025.106743_bib0042 article-title: Atmospheric corrosion and mechanical property degradation of 2524-T3 aluminum alloy in marine environments publication-title: Corros. Sci. doi: 10.1016/j.corsci.2024.112398 – volume: 20 start-page: 1161 year: 2011 ident: 10.1016/j.surfin.2025.106743_bib0038 article-title: On parameter selection in cold spraying publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-011-9662-9 – volume: 318 start-page: 90 year: 2017 ident: 10.1016/j.surfin.2025.106743_bib0001 article-title: Corrosion protection and electrical conductivity of copper coatings deposited by low-pressure cold spraying publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2016.12.101 |
SSID | ssj0001879515 |
Score | 2.297396 |
Snippet | Crevice corrosion of dissimilar metal contacts caused by potential difference severely hampers the technical application of the contacts. Coating technology... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 106743 |
SubjectTerms | Aluminum-copper contact Cold spray Copper coating Corrosion performance Numerical simulation |
Title | Microstructure evolution of cold sprayed copper coatings based on particle diameter control and its effect on corrosion resistance of aluminum-copper contacts |
URI | https://dx.doi.org/10.1016/j.surfin.2025.106743 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZgUSUuqNBWLBTkA1ezjuO8jivEamEFB-iq3CI_pVQiRJtspf4ZfiszG4e2EuLAyXLkiZ2ZyTysz2NCzpTIlMpdwlJtPJPeS6aNtEy63KXGRr7o0Ra36Xwprx-Shy1yMZyFQVhlsP29Td9Y6_BkErg5aapqci9kitXL0InjJrXcJjsCvCsfkZ3p1WJ--3erBS_U3txlgCQMaYZDdBukV7te-QproYrkHCuqyfhtJ_WP45l9JnshYqTTflH7ZMvVB-TTBrlp2i_k-QYhdX0Z2PXKUfc7KBN98hSkbGnbrNQfZ6HTNG4FjUKoc0vRgVkKA5vwwRR05RHhMTQA2KmqLa26lvaoDxwLySrMhq-HPB1jT2AYzqTAyFX1-pG9zlJ3ynTtV7KcXf64mLNw6QIz8Pd2LEot59qJ1Ns4hmhOCa6lspGIvOdS50Jmypo0s7bQEBrERezAwXFXZEpq50X8jYzqp9odElrEXOm84NroQnoJqZiJnLeJBQ57nqsxYQOXy6avrVEOoLNfZS-VEqVS9lIZk2wQRfmfjpRg_t-lPPow5THZxR7u5kbJdzICaboTCEM6fRrUDNvF3c_FC11V4qA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVgguiKcopeADHM0mjvM69FAVql223Qut1FvwYywFqWmUZKn6Z_gT_MHObBweEuKA1FOUxM5Y801mxtbnMWNvtcy1LiAVmbFeKO-VMFY5oaCAzLrYlyPbYpXNz9Wni_Rii_2Y9sIQrTL4_tGnb7x1eDIL2py1dT37LFVG1csoiNMitQrMyiXcXOO8rT9YfECQ30l5_PHsaC7C0QLCoo0OIs5cFBmQmXdJgjmLlpFR2sUy9j5SppAq185muXOlwQCYlAmgG4-gzLUy4KnaAfr9HaqGhb_VzuFiOV_9WtqhA7w3ZyfQEAWNcdq0t2GW9evO11R7VabvqYKbSv4eFH8LdMeP2MOQofLDUQmP2RY0T9i9DVPU9k_Z91Oi8I1lZ9cdcPgWjJdfeY5W5XjfdvoGHN60LXR40USt7jkFTMexYRsUzNE2L4mOwwNhnuvG8Xro-cgyobY4OUZp9PkOesp1ESCSpNGp1s36UvyU0gzaDv0zdn4nSDxn281VAy8YL5NIm6KMjDWl8gqnfjYG71KHGvZRoXeZmLRctWMtj2oiuX2tRlQqQqUaUdll-QRF9YdNVhhu_tnz5X_3fMPuz89OT6qTxWq5xx7QG1pJjtNXbBuRhX1MgQbzOpgcZ1_u2spvAR9jHak |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure+evolution+of+cold+sprayed+copper+coatings+based+on+particle+diameter+control+and+its+effect+on+corrosion+resistance+of+aluminum-copper+contacts&rft.jtitle=Surfaces+and+interfaces&rft.au=Wang%2C+Yan&rft.au=Tang%2C+Qing&rft.au=Wang%2C+Ke&rft.au=Xing%2C+Ya-Zhe&rft.date=2025-07-15&rft.pub=Elsevier+B.V&rft.issn=2468-0230&rft.volume=69&rft_id=info:doi/10.1016%2Fj.surfin.2025.106743&rft.externalDocID=S2468023025010004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-0230&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-0230&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-0230&client=summon |