Ballistic impact response of Fe40Mn20Cr20Ni20 high-entropy alloys

High-entropy alloys (HEAs), recently emerging alloys with numerous excellent mechanical performances, may have a wide application prospect in impact engineering. The ballistic impact response of Fe40Mn20Cr20Ni20 HEA was investigated under various loading conditions. Ballistic impact tests with spher...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 132; no. 20
Main Authors Shi, Kaiwei, Cheng, Junchao, Cui, Lang, Qiao, Junwei, Huang, Junyu, Zhang, Min, Yang, Huijun, Wang, Zhihua
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 28.11.2022
Subjects
Online AccessGet full text
ISSN0021-8979
1089-7550
DOI10.1063/5.0130634

Cover

Loading…
Abstract High-entropy alloys (HEAs), recently emerging alloys with numerous excellent mechanical performances, may have a wide application prospect in impact engineering. The ballistic impact response of Fe40Mn20Cr20Ni20 HEA was investigated under various loading conditions. Ballistic impact tests with spherical projectiles and 87 type 5.8 mm small caliber bullets (DBP87 bullets) were conducted on 10 mm thick Fe40Mn20Cr20Ni20 HEA plates with varying impact velocities, compared with 20Mn23AlV steel (high manganese low magnetic steel). The relationship between microstructural details and aspects of ballistic behavior governing performance was established through experimental explorations and theoretical models. According to the findings, dense dislocation structures led to distinguishing work hardening in the HEA, and the strain-hardening capacity of the HEA enhanced dramatically with increasing strain rate under dynamic tension. Meanwhile, under 500 m/s impact velocity, twinning and microbanding had outstanding strain-hardening capabilities for the current HEA, and the cooperation of the dislocation slip and stacking faults was critical for strain hardening in the HEA when the impact velocity was increased to 930 ± 15 m / s, whereas only a small amount of dislocation sliding and twinning occurred during the dynamic deformation process of 20Mn23AlV steel at different impact velocities. These findings demonstrated that the outstanding strain-hardening capabilities of Fe40Mn20Cr20Ni20 HEA made it a promising candidate for ballistic impact engineering compared with 20Mn23AlV steel.
AbstractList High-entropy alloys (HEAs), recently emerging alloys with numerous excellent mechanical performances, may have a wide application prospect in impact engineering. The ballistic impact response of Fe40Mn20Cr20Ni20 HEA was investigated under various loading conditions. Ballistic impact tests with spherical projectiles and 87 type 5.8 mm small caliber bullets (DBP87 bullets) were conducted on 10 mm thick Fe40Mn20Cr20Ni20 HEA plates with varying impact velocities, compared with 20Mn23AlV steel (high manganese low magnetic steel). The relationship between microstructural details and aspects of ballistic behavior governing performance was established through experimental explorations and theoretical models. According to the findings, dense dislocation structures led to distinguishing work hardening in the HEA, and the strain-hardening capacity of the HEA enhanced dramatically with increasing strain rate under dynamic tension. Meanwhile, under 500 m/s impact velocity, twinning and microbanding had outstanding strain-hardening capabilities for the current HEA, and the cooperation of the dislocation slip and stacking faults was critical for strain hardening in the HEA when the impact velocity was increased to 930±15m/s, whereas only a small amount of dislocation sliding and twinning occurred during the dynamic deformation process of 20Mn23AlV steel at different impact velocities. These findings demonstrated that the outstanding strain-hardening capabilities of Fe40Mn20Cr20Ni20 HEA made it a promising candidate for ballistic impact engineering compared with 20Mn23AlV steel.
High-entropy alloys (HEAs), recently emerging alloys with numerous excellent mechanical performances, may have a wide application prospect in impact engineering. The ballistic impact response of Fe40Mn20Cr20Ni20 HEA was investigated under various loading conditions. Ballistic impact tests with spherical projectiles and 87 type 5.8 mm small caliber bullets (DBP87 bullets) were conducted on 10 mm thick Fe40Mn20Cr20Ni20 HEA plates with varying impact velocities, compared with 20Mn23AlV steel (high manganese low magnetic steel). The relationship between microstructural details and aspects of ballistic behavior governing performance was established through experimental explorations and theoretical models. According to the findings, dense dislocation structures led to distinguishing work hardening in the HEA, and the strain-hardening capacity of the HEA enhanced dramatically with increasing strain rate under dynamic tension. Meanwhile, under 500 m/s impact velocity, twinning and microbanding had outstanding strain-hardening capabilities for the current HEA, and the cooperation of the dislocation slip and stacking faults was critical for strain hardening in the HEA when the impact velocity was increased to 930 ± 15 m / s, whereas only a small amount of dislocation sliding and twinning occurred during the dynamic deformation process of 20Mn23AlV steel at different impact velocities. These findings demonstrated that the outstanding strain-hardening capabilities of Fe40Mn20Cr20Ni20 HEA made it a promising candidate for ballistic impact engineering compared with 20Mn23AlV steel.
Author Cui, Lang
Yang, Huijun
Wang, Zhihua
Huang, Junyu
Qiao, Junwei
Shi, Kaiwei
Cheng, Junchao
Zhang, Min
Author_xml – sequence: 1
  givenname: Kaiwei
  surname: Shi
  fullname: Shi, Kaiwei
  organization: College of Materials Science and Engineering, Taiyuan University of Technology
– sequence: 2
  givenname: Junchao
  surname: Cheng
  fullname: Cheng, Junchao
  organization: School of Materials Science and Engineering, Southwest Jiaotong University
– sequence: 3
  givenname: Lang
  surname: Cui
  fullname: Cui, Lang
  organization: Inner Mongolia Metallic Materials Research Institute
– sequence: 4
  givenname: Junwei
  surname: Qiao
  fullname: Qiao, Junwei
  organization: 5Institute of Applied Mechanics, College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
– sequence: 5
  givenname: Junyu
  surname: Huang
  fullname: Huang, Junyu
  organization: School of Materials Science and Engineering, Southwest Jiaotong University
– sequence: 6
  givenname: Min
  surname: Zhang
  fullname: Zhang, Min
  organization: College of Materials Science and Engineering, Taiyuan University of Technology
– sequence: 7
  givenname: Huijun
  surname: Yang
  fullname: Yang, Huijun
  organization: College of Materials Science and Engineering, Taiyuan University of Technology
– sequence: 8
  givenname: Zhihua
  surname: Wang
  fullname: Wang, Zhihua
  organization: Institute of Applied Mechanics, College of Mechanical and Vehicle Engineering, Taiyuan University of Technology
BookMark eNp9kFFLwzAUhYNMcJs--A8KPil03qRN0zzO4VSY-qLPIU0Tl9E1NemE_XsjmwoqPt0L5zvnXs4IDVrXaoROMUwwFNklnQDO4pIfoCGGkqeMUhigIQDBackZP0KjEFYAGJcZH6LplWwaG3qrErvupOoTr0Pn2qATZ5K5zuG-JTDzBB4sgWRpX5apbnvvum0SnW4bjtGhkU3QJ_s5Rs_z66fZbbp4vLmbTRepIpT1Kc5MRVgNpq4KwgppSlXUQEkUqaGV4VXFpSa1ZDijiuWYGKZNXuW6VJplZTZGZ7vczrvXjQ69WLmNb-NJQaJeMM4KHKnLHaW8C8FrI5TtZW9d_FnaRmAQHz0JKvY9Rcf5D0fn7Vr67Z_sxY4Nn6lf8Jvz36DoavMf_Dv5HRP0g50
CODEN JAPIAU
CitedBy_id crossref_primary_10_1016_j_ijmecsci_2023_108252
crossref_primary_10_1007_s10853_023_09173_0
crossref_primary_10_1126_sciadv_adf8602
crossref_primary_10_1063_5_0191748
crossref_primary_10_1016_j_eng_2024_03_023
crossref_primary_10_1016_j_jallcom_2023_169427
crossref_primary_10_1016_j_jmrt_2023_09_305
crossref_primary_10_1007_s11433_023_2226_6
crossref_primary_10_1007_s11837_024_06974_9
crossref_primary_10_1016_j_tws_2024_111875
crossref_primary_10_1063_5_0146032
crossref_primary_10_1016_j_triboint_2024_110084
crossref_primary_10_1063_5_0206773
crossref_primary_10_1016_j_intermet_2025_108665
crossref_primary_10_1016_j_ijplas_2023_103801
crossref_primary_10_1007_s42243_024_01375_3
crossref_primary_10_1016_j_msea_2025_147874
crossref_primary_10_1360_TB_2023_0191
Cites_doi 10.1016/j.matdes.2016.01.149
10.1016/j.matdes.2012.06.037
10.1016/j.ijimpeng.2012.11.002
10.1016/j.ijimpeng.2021.104008
10.1016/j.actamat.2016.08.081
10.1080/21663831.2014.912690
10.1038/s41598-021-02209-y
10.1016/0001-6160(89)90206-X
10.1016/j.ijimpeng.2006.09.089
10.1016/j.jmatprotec.2020.116806
10.1016/j.actamat.2010.05.007
10.1093/qjmam/1.1.103
10.1126/sciadv.abp9096
10.1016/j.matchemphys.2011.11.021
10.1016/j.msea.2010.02.058
10.1016/j.ijimpeng.2017.03.018
10.1016/j.actamat.2012.05.003
10.1016/j.ijimpeng.2015.06.017
10.1038/nature17981
10.1016/j.ijimpeng.2021.104091
10.1016/j.msea.2018.09.009
10.1038/ncomms7529
10.1016/S1359-6462(97)00267-4
10.1016/j.msea.2003.10.257
10.1016/S0921-5093(02)00811-0
10.1016/j.msea.2010.02.037
10.1016/j.actamat.2013.06.018
10.1002/adem.202000124
10.1016/j.matchar.2019.110033
10.1016/j.actamat.2011.07.009
10.1016/j.msea.2019.138326
10.1016/j.actamat.2014.12.057
10.1016/j.ijimpeng.2018.09.017
10.1016/j.msea.2018.05.008
10.1016/j.pmatsci.2013.10.001
10.1016/j.actamat.2020.08.047
10.1016/0020-7403(78)90038-3
10.1016/j.matdes.2008.04.010
10.1016/j.jallcom.2015.08.020
10.1063/1.3587228
10.1016/j.actamat.2018.03.040
10.1016/j.actamat.2015.06.025
10.1038/s41598-018-29446-y
10.1023/B:JMSC.0000013870.09241.c0
10.1016/j.msea.2022.142837
10.1016/j.matdes.2015.03.043
10.1016/j.msea.2015.05.108
10.1016/j.scriptamat.2010.05.006
10.1016/0956-7151(93)90251-M
10.1080/21663831.2016.1191554
10.1016/0001-6160(78)90034-2
10.1126/science.1254581
10.1016/j.msea.2018.07.088
10.1063/1.1721868
10.1080/21663831.2016.1257514
10.1016/j.ijimpeng.2005.05.010
10.1016/j.jmbbm.2018.06.016
10.1038/ncomms10602
10.1016/j.msea.2017.08.007
10.1002/adem.200300567
10.1080/02533839.2002.9670684
10.1016/j.msea.2013.11.018
10.1016/j.matdes.2012.02.033
10.1002/adem.202000466
10.1016/j.mattod.2015.11.026
10.1016/j.actamat.2013.09.037
10.1038/s41529-019-0079-0
10.1016/j.ijplas.2022.103296
10.1007/978-3-319-27013-5
10.1179/030716979803276020
10.1016/j.actamat.2014.08.026
ContentType Journal Article
Copyright Author(s)
2022 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2022 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0130634
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 10_1063_5_0130634
jap
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52271110
  funderid: 10.13039/501100001809
– fundername: State Key Lab of Advanced Metals and Materials
  grantid: 2022-Z22
– fundername: Natural Science Foundation of Shanxi Province
  grantid: 20210302124423
  funderid: 10.13039/501100004480
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAEUA
AAIKC
AAMNW
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UCJ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c257t-13fb27d0fdb6276af8c6d0522575f5bf9bb9ae2da7135c7412f7ef4b4e8ce7383
ISSN 0021-8979
IngestDate Mon Jun 30 02:20:23 EDT 2025
Thu Apr 24 23:04:54 EDT 2025
Tue Jul 01 00:38:43 EDT 2025
Fri Jun 21 00:30:00 EDT 2024
Tue Jul 04 19:18:52 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-13fb27d0fdb6276af8c6d0522575f5bf9bb9ae2da7135c7412f7ef4b4e8ce7383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9707-2734
0000-0001-7571-3003
0000-0001-9119-870X
PQID 2738679761
PQPubID 2050677
PageCount 14
ParticipantIDs crossref_citationtrail_10_1063_5_0130634
crossref_primary_10_1063_5_0130634
proquest_journals_2738679761
scitation_primary_10_1063_5_0130634
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221128
2022-11-28
PublicationDateYYYYMMDD 2022-11-28
PublicationDate_xml – month: 11
  year: 2022
  text: 20221128
  day: 28
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Journal of applied physics
PublicationYear 2022
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Taylor (c47) 1948
Muskeri, Choudhuri, Jannotti, Schuster, Lloyd, Mishra, Mukherjee (c45) 2020
Sukumar, Bhav Singh, Bhattacharjee, Siva Kumar, Gogia (c46) 2013
Gangireddy, Gwalani, Mishra (c32) 2018
Sadeghilaridjani, Muskeri, Hasannaeimi, Pole, Mukherjee (c30) 2019
Foley, Huang, Anber, Shanahan, Shen, Lang, Barr, Spearot, Lamberson, Taheri (c62) 2020
Muskeri, Jannotti, Schuster, Lloyd, Mukherjee (c38) 2022
Thomson (c48) 1955
Moon, Qi, Tabachnikova, Estrin, Choi, Joo, Lee, Podolskiy, Tikhonovsky, Kim (c58) 2018
Tsai, Yeh (c15) 2014
Park, Jin, Han, Hwang, Choi, Lee (c59) 2010
Miracle, Senkov (c13) 2017
Anderson (c43) 2017
Senkov, Miller, Miracle, Woodward (c19) 2015
Li, Pradeep, Deng, Raabe, Tasan (c25) 2016
Rankin, Hill, Hackel (c67) 2003
Ren, Wang, Zhang, Yang, Zhang (c55) 2018
Otto, Dlouhý, Somsen, Bei, Eggeler, George (c24) 2013
Gangireddy, Gwalani, Liu, Banerjee, Mishra (c31) 2018
Woodward (c49) 1978
Yang, Song, Li, Sun, Wang (c61) 2015
Murr, Kuhlmann-Wilsdorf (c72) 1978
Nutor, Cao, Wang, Zhang, Fang, Zhang, Jiang (c40) 2020
Gludovatz, Hohenwarter, Thurston, Bei, Wu, George, Ritchie (c26) 2016
Yang, Zhang (c42) 2012
Bouaziz, Estrin, Bréchet, Embury (c70) 2010
Itagaki, Tamura, Watanabe, Taniyama, Takashima (c10) 2019
Qiao, Chen, Cao, Wang, Dai (c34) 2021
Veysset, Kooi, Мaznev, Tang, Mijailovic, Yang, Geiser, Van Vliet, Olsen, Nelson (c44) 2018
He, Liu, Wang, Wu, Liu, Nieh, Lu (c27) 2014
Wu, Wang, Yi, Jia, Hussain, Zhai, Liaw (c29) 2017
Wu, Bei, Pharr, George (c28) 2014
Schneider, Kad, Kalantar, Remington, Kenik, Jarmakani, Meyers (c74) 2005
Zheng, Wang, Cheng, Liu, Fu, Liu, Zhu, Yang, Peng, Jin (c3) 2015
Huang, Wang, Lu, Lu (c56) 2015
Murr, Garcia, Rivas, Huang, Grace, Rupert (c4) 1997
Li, Zhao, Alotaibi, Liu, Wang, Meyers (c33) 2018
Zhao, Qiao, Ma, Gao, Yang, Chen, Zhang (c22) 2016
Muskeri, Gwalani, Jha, Yu, Jannotti, Haridas, Schuster, Lloyd, Mishra, Mukherjee (c39) 2021
Murr, Esquivel (c64) 2004
Gludovatz, Hohenwarter, Catoor, Chang, George, Ritchie (c23) 2014
Huang, Gray (c73) 1989
Tang, Li (c66) 2022
Mishra, Ramakrishna, Jena, Siva Kumar, Madhu, Gupta (c12) 2013
Whittington, Oppedal, Turnage, Hammi, Rhee, Allison, Crane, Horstemeyer (c8) 2014
Tong, Liu, Jiao, Zhou, Yang, Ren (c35) 2020
Woodward (c1) 1979
Hasannaeimi, Ayyagari, Muskeri, Salloom, Mukherjee (c16) 2019
Ye, Wang, Lu, Liu, Yang (c20) 2016
Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (c17) 2004
Jung, Cho, Kim, Lee, Kim, Lim, Park (c51) 2020
Krishna Teja Palleti, Gurusamy, Kumar, Soni, John, Vaidya, Bhoge, Naik (c11) 2012
Zou, Zhen, Zhu, Xu, Shao, Pang (c5) 2010
Hughes (c65) 1993
Cantor, Chang, Knight, Vincent (c18) 2004
Zhang, Song, Zhao, Yang (c60) 2015
Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu (c14) 2014
Guo, Ng, Lu, Liu (c41) 2011
Yang, Cizek, Hodgson, Wen (c57) 2010
Shi, Luo, Sutton, Zeng, Wang, Zeng, Li, Ding (c6) 2015
Ren, Wang, Zhang, Zhang, Zhang (c54) 2017
Demir, Ubeyli, Yildirim (c2) 2008
Tanaka, Nishida, Takada (c9) 2006
Fu, Huang, Sun, Ngan (c36) 2022
Wang, Jiao, Bian, Yang, He, Wang, Liaw, Qiao (c63) 2022
Galindo-Nava, Rivera-Díaz-del-Castillo (c52) 2012
Jiang, He, Wang, Zhang, Lu, Dai (c37) 2016
Hu, Lee, Chen (c7) 2002
Sun, Liu (c50) 2002
Schuh, Mendez-Martin, Völker, George, Clemens, Pippan, Hohenwarter (c69) 2015
(2023081002260430800_c6) 2015; 650
(2023081002260430800_c49) 1978; 20
(2023081002260430800_c70) 2010; 63
(2023081002260430800_c36) 2022; 154
(2023081002260430800_c48) 1955; 26
(2023081002260430800_c59) 2010; 527
(2023081002260430800_c37) 2016; 4
(2023081002260430800_c72) 1978; 26
(2023081002260430800_c60) 2015; 640
(2023081002260430800_c38) 2022; 161
(2023081002260430800_c61) 2015; 76
2023081002260430800_c53
(2023081002260430800_c27) 2014; 62
(2023081002260430800_c31) 2018; 734
(2023081002260430800_c62) 2020; 200
(2023081002260430800_c22) 2016; 96
(2023081002260430800_c24) 2013; 61
(2023081002260430800_c74) 2005; 32
(2023081002260430800_c9) 2006; 33
(2023081002260430800_c3) 2015; 85
(2023081002260430800_c11) 2012; 39
(2023081002260430800_c18) 2004; 375-377
(2023081002260430800_c73) 1989; 37
(2023081002260430800_c43) 2017; 108
(2023081002260430800_c33) 2018; 151
2023081002260430800_c68
(2023081002260430800_c40) 2020; 22
(2023081002260430800_c64) 2004; 39
(2023081002260430800_c15) 2014; 2
(2023081002260430800_c23) 2014; 345
(2023081002260430800_c19) 2015; 6
(2023081002260430800_c44) 2018; 86
(2023081002260430800_c65) 1993; 41
Hirth (2023081002260430800_c71) 2009
(2023081002260430800_c66) 2022; 8
(2023081002260430800_c32) 2018; 736
(2023081002260430800_c41) 2011; 109
(2023081002260430800_c45) 2020; 22
(2023081002260430800_c58) 2018; 8
(2023081002260430800_c47) 1948; 1
(2023081002260430800_c42) 2012; 132
(2023081002260430800_c52) 2012; 60
(2023081002260430800_c8) 2014; 594
(2023081002260430800_c50) 2002
(2023081002260430800_c69) 2015; 96
(2023081002260430800_c14) 2014; 61
(2023081002260430800_c51) 2020; 159
(2023081002260430800_c67) 2003; 349
(2023081002260430800_c54) 2017; 704
(2023081002260430800_c29) 2017; 5
(2023081002260430800_c34) 2021; 158
(2023081002260430800_c2) 2008; 29
(2023081002260430800_c20) 2016; 19
(2023081002260430800_c35) 2020; 285
(2023081002260430800_c7) 2002; 25
(2023081002260430800_c46) 2013; 54
(2023081002260430800_c4) 1997; 37
(2023081002260430800_c13) 2017; 122
(2023081002260430800_c55) 2018; 727
(2023081002260430800_c10) 2019; 123
(2023081002260430800_c25) 2016; 534
(2023081002260430800_c56) 2015; 87
(2023081002260430800_c26) 2016; 7
Gao (2023081002260430800_c21) 2016
(2023081002260430800_c57) 2010; 58
(2023081002260430800_c28) 2014; 81
(2023081002260430800_c30) 2019; 766
(2023081002260430800_c1) 1979; 6
(2023081002260430800_c5) 2010; 527
(2023081002260430800_c16) 2019; 3
(2023081002260430800_c39) 2021; 11
(2023081002260430800_c12) 2013; 43
(2023081002260430800_c63) 2022; 839
(2023081002260430800_c17) 2004; 6
References_xml – start-page: 344
  year: 2018
  ident: c32
  publication-title: Mater. Sci. Eng., A
– start-page: 477
  year: 2010
  ident: c70
  publication-title: Scr. Mater.
– start-page: 279
  year: 2003
  ident: c67
  publication-title: Mater. Sci. Eng., A
– start-page: 38
  year: 2019
  ident: c10
  publication-title: Int. J. Impact Eng.
– start-page: 11074
  year: 2018
  ident: c58
  publication-title: Sci. Rep.
– start-page: 10
  year: 2016
  ident: c22
  publication-title: Mater. Des.
– start-page: 213
  year: 2004
  ident: c18
  publication-title: Mater. Sci. Eng., A
– start-page: 103
  year: 1948
  ident: c47
  publication-title: Q. J. Mech. Appl. Math.
– start-page: 3
  year: 2017
  ident: c43
  publication-title: Int. J. Impact Eng.
– start-page: 105
  year: 2014
  ident: c27
  publication-title: Acta Mater.
– start-page: 3323
  year: 2010
  ident: c5
  publication-title: Mater. Sci. Eng., A
– start-page: 99
  year: 2002
  ident: c7
  publication-title: J. Chin. Inst. Eng.
– start-page: 2000124
  year: 2020
  ident: c45
  publication-title: Adv. Eng. Mater.
– start-page: 1153
  year: 2004
  ident: c64
  publication-title: J. Mater. Sci.
– start-page: 103296
  year: 2022
  ident: c36
  publication-title: Int. J. Plast.
– start-page: 138326
  year: 2019
  ident: c30
  publication-title: Mater. Sci. Eng., A
– start-page: 42
  year: 2018
  ident: c31
  publication-title: Mater. Sci. Eng., A
– start-page: 1
  year: 2014
  ident: c14
  publication-title: Prog. Mater. Sci.
– start-page: 110033
  year: 2020
  ident: c51
  publication-title: Mater. Charact.
– start-page: 6529
  year: 2015
  ident: c19
  publication-title: Nat. Commun.
– start-page: 622
  year: 2015
  ident: c6
  publication-title: J. Alloys Compd.
– start-page: 4370
  year: 2012
  ident: c52
  publication-title: Acta Mater.
– start-page: 106
  year: 1979
  ident: c1
  publication-title: Metals Technol.
– start-page: 103505
  year: 2011
  ident: c41
  publication-title: J. Appl. Phys.
– start-page: 5743
  year: 2013
  ident: c24
  publication-title: Acta Mater.
– start-page: 161
  year: 2015
  ident: c3
  publication-title: Int. J. Impact Eng.
– start-page: 253
  year: 2012
  ident: c11
  publication-title: Mater. Des.
– start-page: 149
  year: 2013
  ident: c46
  publication-title: Int. J. Impact Eng.
– start-page: 142837
  year: 2022
  ident: c63
  publication-title: Mater. Sci. Eng., A
– start-page: 788
  year: 2006
  ident: c9
  publication-title: Int. J. Impact Eng.
– start-page: 1421
  year: 1993
  ident: c65
  publication-title: Acta Metall. Mater.
– start-page: 473
  year: 2005
  ident: c74
  publication-title: Int. J. Impact Eng.
– start-page: 32
  year: 2015
  ident: c61
  publication-title: Mater. Des.
– start-page: 1153
  year: 2014
  ident: c23
  publication-title: Science
– start-page: 17
  year: 2013
  ident: c12
  publication-title: Mater. Des.
– start-page: 349
  year: 1978
  ident: c49
  publication-title: Int. J. Mech. Sci.
– start-page: 80
  year: 1955
  ident: c48
  publication-title: J. Appl. Phys.
– start-page: 2009
  year: 2008
  ident: c2
  publication-title: Mater. Des.
– start-page: 107
  year: 2014
  ident: c15
  publication-title: Mater. Res. Lett.
– start-page: 428
  year: 2014
  ident: c28
  publication-title: Acta Mater.
– start-page: 258
  year: 2015
  ident: c69
  publication-title: Acta Mater.
– start-page: 1329
  year: 1997
  ident: c4
  publication-title: Scr. Mater.
– year: 2002
  ident: c50
  publication-title: Technology, Applied Science and Technology
– start-page: 16
  year: 2019
  ident: c16
  publication-title: npj Mater. Degrad.
– start-page: 22715
  year: 2021
  ident: c39
  publication-title: Sci. Rep.
– start-page: 262
  year: 2017
  ident: c54
  publication-title: Mater. Sci. Eng., A
– start-page: 448
  year: 2017
  ident: c13
  publication-title: Acta Mater.
– start-page: 227
  year: 2016
  ident: c25
  publication-title: Nature
– start-page: 226
  year: 2016
  ident: c37
  publication-title: Mater. Res. Lett.
– start-page: 299
  year: 2004
  ident: c17
  publication-title: Adv. Eng. Mater.
– start-page: 2000466
  year: 2020
  ident: c40
  publication-title: Adv. Eng. Mater.
– start-page: 104091
  year: 2022
  ident: c38
  publication-title: Int. J. Impact Eng.
– start-page: 1
  year: 2020
  ident: c62
  publication-title: Acta Mater.
– start-page: 82
  year: 2014
  ident: c8
  publication-title: Mater. Sci. Eng., A
– start-page: 116806
  year: 2020
  ident: c35
  publication-title: J. Mater. Process. Technol.
– start-page: 225
  year: 2015
  ident: c60
  publication-title: Mater. Sci. Eng., A
– start-page: 71
  year: 2018
  ident: c44
  publication-title: J. Mech. Behav. Biomed. Mater.
– start-page: 847
  year: 1978
  ident: c72
  publication-title: Acta Metall.
– start-page: 349
  year: 2016
  ident: c20
  publication-title: Mater. Today
– start-page: eabp9096
  year: 2022
  ident: c66
  publication-title: Sci. Adv.
– start-page: 276
  year: 2017
  ident: c29
  publication-title: Mater. Res. Lett.
– start-page: 233
  year: 2012
  ident: c42
  publication-title: Mater. Chem. Phys.
– start-page: 10602
  year: 2016
  ident: c26
  publication-title: Nat. Commun.
– start-page: 3335
  year: 1989
  ident: c73
  publication-title: Acta Metall.
– start-page: 424
  year: 2018
  ident: c33
  publication-title: Acta Mater.
– start-page: 4536
  year: 2010
  ident: c57
  publication-title: Acta Mater.
– start-page: 192
  year: 2018
  ident: c55
  publication-title: Mater. Sci. Eng., A
– start-page: 104008
  year: 2021
  ident: c34
  publication-title: Int. J. Impact Eng.
– start-page: 150
  year: 2015
  ident: c56
  publication-title: Acta Mater.
– start-page: 3651
  year: 2010
  ident: c59
  publication-title: Mater. Sci. Eng., A
– year: 2002
  ident: 2023081002260430800_c50
  publication-title: Technology, Applied Science and Technology
– volume: 96
  start-page: 10
  year: 2016
  ident: 2023081002260430800_c22
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.01.149
– volume: 43
  start-page: 17
  year: 2013
  ident: 2023081002260430800_c12
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2012.06.037
– volume: 54
  start-page: 149
  year: 2013
  ident: 2023081002260430800_c46
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2012.11.002
– volume: 158
  start-page: 104008
  year: 2021
  ident: 2023081002260430800_c34
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2021.104008
– volume: 122
  start-page: 448
  year: 2017
  ident: 2023081002260430800_c13
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.08.081
– volume: 2
  start-page: 107
  year: 2014
  ident: 2023081002260430800_c15
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2014.912690
– volume: 11
  start-page: 22715
  year: 2021
  ident: 2023081002260430800_c39
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-02209-y
– volume: 37
  start-page: 3335
  year: 1989
  ident: 2023081002260430800_c73
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(89)90206-X
– volume: 33
  start-page: 788
  year: 2006
  ident: 2023081002260430800_c9
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2006.09.089
– volume: 285
  start-page: 116806
  year: 2020
  ident: 2023081002260430800_c35
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2020.116806
– volume: 58
  start-page: 4536
  year: 2010
  ident: 2023081002260430800_c57
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.05.007
– volume: 1
  start-page: 103
  year: 1948
  ident: 2023081002260430800_c47
  publication-title: Q. J. Mech. Appl. Math.
  doi: 10.1093/qjmam/1.1.103
– volume: 8
  start-page: eabp9096
  year: 2022
  ident: 2023081002260430800_c66
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abp9096
– volume: 132
  start-page: 233
  year: 2012
  ident: 2023081002260430800_c42
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2011.11.021
– volume: 527
  start-page: 3651
  year: 2010
  ident: 2023081002260430800_c59
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2010.02.058
– volume: 108
  start-page: 3
  year: 2017
  ident: 2023081002260430800_c43
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2017.03.018
– volume: 60
  start-page: 4370
  year: 2012
  ident: 2023081002260430800_c52
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.05.003
– volume: 85
  start-page: 161
  year: 2015
  ident: 2023081002260430800_c3
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2015.06.017
– volume: 534
  start-page: 227
  year: 2016
  ident: 2023081002260430800_c25
  publication-title: Nature
  doi: 10.1038/nature17981
– volume: 161
  start-page: 104091
  year: 2022
  ident: 2023081002260430800_c38
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2021.104091
– volume: 736
  start-page: 344
  year: 2018
  ident: 2023081002260430800_c32
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2018.09.009
– volume: 6
  start-page: 6529
  year: 2015
  ident: 2023081002260430800_c19
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7529
– volume: 37
  start-page: 1329
  year: 1997
  ident: 2023081002260430800_c4
  publication-title: Scr. Mater.
  doi: 10.1016/S1359-6462(97)00267-4
– volume: 375-377
  start-page: 213
  year: 2004
  ident: 2023081002260430800_c18
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2003.10.257
– volume: 349
  start-page: 279
  year: 2003
  ident: 2023081002260430800_c67
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/S0921-5093(02)00811-0
– volume: 527
  start-page: 3323
  year: 2010
  ident: 2023081002260430800_c5
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2010.02.037
– volume: 61
  start-page: 5743
  year: 2013
  ident: 2023081002260430800_c24
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.06.018
– volume: 22
  start-page: 2000124
  year: 2020
  ident: 2023081002260430800_c45
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.202000124
– volume: 159
  start-page: 110033
  year: 2020
  ident: 2023081002260430800_c51
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2019.110033
– volume-title: Acta Mater.
  ident: 2023081002260430800_c68
  doi: 10.1016/j.actamat.2011.07.009
– volume: 766
  start-page: 138326
  year: 2019
  ident: 2023081002260430800_c30
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2019.138326
– volume: 87
  start-page: 150
  year: 2015
  ident: 2023081002260430800_c56
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.12.057
– volume: 123
  start-page: 38
  year: 2019
  ident: 2023081002260430800_c10
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2018.09.017
– ident: 2023081002260430800_c53
– volume: 727
  start-page: 192
  year: 2018
  ident: 2023081002260430800_c55
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2018.05.008
– volume: 61
  start-page: 1
  year: 2014
  ident: 2023081002260430800_c14
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2013.10.001
– volume: 200
  start-page: 1
  year: 2020
  ident: 2023081002260430800_c62
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.08.047
– volume: 20
  start-page: 349
  year: 1978
  ident: 2023081002260430800_c49
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/0020-7403(78)90038-3
– volume: 29
  start-page: 2009
  year: 2008
  ident: 2023081002260430800_c2
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2008.04.010
– volume: 650
  start-page: 622
  year: 2015
  ident: 2023081002260430800_c6
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.08.020
– volume: 109
  start-page: 103505
  year: 2011
  ident: 2023081002260430800_c41
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3587228
– volume: 151
  start-page: 424
  year: 2018
  ident: 2023081002260430800_c33
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.03.040
– volume: 96
  start-page: 258
  year: 2015
  ident: 2023081002260430800_c69
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.06.025
– volume: 8
  start-page: 11074
  year: 2018
  ident: 2023081002260430800_c58
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-29446-y
– volume: 39
  start-page: 1153
  year: 2004
  ident: 2023081002260430800_c64
  publication-title: J. Mater. Sci.
  doi: 10.1023/B:JMSC.0000013870.09241.c0
– volume: 839
  start-page: 142837
  year: 2022
  ident: 2023081002260430800_c63
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2022.142837
– volume: 76
  start-page: 32
  year: 2015
  ident: 2023081002260430800_c61
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.03.043
– volume: 640
  start-page: 225
  year: 2015
  ident: 2023081002260430800_c60
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2015.05.108
– start-page: 91
  volume-title: Dislocations in Solids
  year: 2009
  ident: 2023081002260430800_c71
– volume: 63
  start-page: 477
  year: 2010
  ident: 2023081002260430800_c70
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2010.05.006
– volume: 41
  start-page: 1421
  year: 1993
  ident: 2023081002260430800_c65
  publication-title: Acta Metall. Mater.
  doi: 10.1016/0956-7151(93)90251-M
– volume: 4
  start-page: 226
  year: 2016
  ident: 2023081002260430800_c37
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2016.1191554
– volume: 26
  start-page: 847
  year: 1978
  ident: 2023081002260430800_c72
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(78)90034-2
– volume: 345
  start-page: 1153
  year: 2014
  ident: 2023081002260430800_c23
  publication-title: Science
  doi: 10.1126/science.1254581
– volume: 734
  start-page: 42
  year: 2018
  ident: 2023081002260430800_c31
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2018.07.088
– volume: 26
  start-page: 80
  year: 1955
  ident: 2023081002260430800_c48
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1721868
– volume: 5
  start-page: 276
  year: 2017
  ident: 2023081002260430800_c29
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2016.1257514
– volume: 32
  start-page: 473
  year: 2005
  ident: 2023081002260430800_c74
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2005.05.010
– volume: 86
  start-page: 71
  year: 2018
  ident: 2023081002260430800_c44
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2018.06.016
– volume: 7
  start-page: 10602
  year: 2016
  ident: 2023081002260430800_c26
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10602
– volume: 704
  start-page: 262
  year: 2017
  ident: 2023081002260430800_c54
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2017.08.007
– volume: 6
  start-page: 299
  year: 2004
  ident: 2023081002260430800_c17
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200300567
– volume: 25
  start-page: 99
  year: 2002
  ident: 2023081002260430800_c7
  publication-title: J. Chin. Inst. Eng.
  doi: 10.1080/02533839.2002.9670684
– volume: 594
  start-page: 82
  year: 2014
  ident: 2023081002260430800_c8
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2013.11.018
– volume: 39
  start-page: 253
  year: 2012
  ident: 2023081002260430800_c11
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2012.02.033
– volume: 22
  start-page: 2000466
  year: 2020
  ident: 2023081002260430800_c40
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.202000466
– volume: 19
  start-page: 349
  year: 2016
  ident: 2023081002260430800_c20
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.11.026
– volume: 62
  start-page: 105
  year: 2014
  ident: 2023081002260430800_c27
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.09.037
– volume: 3
  start-page: 16
  year: 2019
  ident: 2023081002260430800_c16
  publication-title: npj Mater. Degrad.
  doi: 10.1038/s41529-019-0079-0
– volume: 154
  start-page: 103296
  year: 2022
  ident: 2023081002260430800_c36
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2022.103296
– start-page: 299
  volume-title: High-Entropy Alloys Fundamentals and Applications
  year: 2016
  ident: 2023081002260430800_c21
  doi: 10.1007/978-3-319-27013-5
– volume: 6
  start-page: 106
  year: 1979
  ident: 2023081002260430800_c1
  publication-title: Metals Technol.
  doi: 10.1179/030716979803276020
– volume: 81
  start-page: 428
  year: 2014
  ident: 2023081002260430800_c28
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.08.026
SSID ssj0011839
Score 2.5001218
Snippet High-entropy alloys (HEAs), recently emerging alloys with numerous excellent mechanical performances, may have a wide application prospect in impact...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Austenitic stainless steels
Ballistic impact tests
Dislocation density
High entropy alloys
Impact response
Impact velocity
Manganese
Mechanical twinning
Projectiles
Stacking faults
Strain hardening
Strain rate
Work hardening
Title Ballistic impact response of Fe40Mn20Cr20Ni20 high-entropy alloys
URI http://dx.doi.org/10.1063/5.0130634
https://www.proquest.com/docview/2738679761
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxtBEF-qoagPxaYtjV8ctQ8FWd3b-35MYyWIkUIUfDt273YxEHIhRkX_emezH5doLNaX41jm9o6dudnfzM4HQj8FaEMpfIF9mkgcgp7EGQ8YZpIzqrb8aBby3zuPu5fh6VV0ZVvcm-ySKT8sHpfmlbyHqzAGfFVZsv_BWTcpDMA98BeuwGG4vonHv9lwOCu0bJMdJzrideYHOBEh6Y0o6UwoOR9QcqAqE2PlzK3GDwfqvP3h5hVoygw01W4Ph7r71_ronw3uxaCOCxAmqBd2yGtWufFbk3dttkblXB2wylDaCYy_AUxV37f52zb-38dpplvAHAqtNkma4STSJWSdXq0dl8q-JUsVNiAkWGVVOhVsF-PWXCiK_WyzciGEs8PzOMij3Dy6ghoUTAVQzo32ce-s786SFAbUgT76u219qTg4cu9dRCW1qbEGOESHRMyhjotN9MnwxGtr3n9GH8SoiTbmikg20ce_mktfUNvJg6flwbPy4FXSey4P3rw8eFoevqLLkz8XnS42LTJwAbp2iv1AcpqURJY8pknMZFrEJQFMDShcRlxmnGdM0JKpTowFoEcqEyFDHoq0EEmQBt_Q6qgaie_IY6CMS5ampZ-SMFbHqxE8LmFEhgmnUQv9skuU20VRbUyG-QtWtNAPRzrWRVOWEe3Ydc7NP3WTq0SxOAGI7LfQvlv7f02yhOqumtQU-biUW2_5nm20Xov7DlqdTm7FLgDOKd8zEvUEKad6QQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ballistic+impact+response+of+Fe40Mn20Cr20Ni20+high-entropy+alloys&rft.jtitle=Journal+of+applied+physics&rft.au=Shi%2C+Kaiwei&rft.au=Cheng%2C+Junchao&rft.au=Cui%2C+Lang&rft.au=Qiao%2C+Junwei&rft.date=2022-11-28&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=132&rft.issue=20&rft_id=info:doi/10.1063%2F5.0130634&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0130634
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon