A new graph parameter to measure linearity

Consider a sequence of Lexicographic Breadth‐First‐Search vertex orderings σ1,σ2,… ${\sigma }_{1},{\sigma }_{2},\ldots $ where each ordering σi ${\sigma }_{i}$ is used to break ties for σi+1 ${\sigma }_{i+1}$. Since the total number of vertex orderings of a finite graph is finite, this sequence must...

Full description

Saved in:
Bibliographic Details
Published inJournal of graph theory Vol. 103; no. 3; pp. 462 - 485
Main Authors Charbit, Pierre, Habib, Michel, Mouatadid, Lalla, Naserasr, Reza
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Consider a sequence of Lexicographic Breadth‐First‐Search vertex orderings σ1,σ2,… ${\sigma }_{1},{\sigma }_{2},\ldots $ where each ordering σi ${\sigma }_{i}$ is used to break ties for σi+1 ${\sigma }_{i+1}$. Since the total number of vertex orderings of a finite graph is finite, this sequence must end in a cycle of vertex orderings. The possible length of this cycle is the main subject of this work. Intuitively, we prove for graphs with a known notion of linearity (e.g., interval graphs with their interval representation on the real line), this cycle cannot be too big, no matter which vertex ordering we start with. More precisely, it was conjectured by Dusart and Habib that for cocomparability graphs, the size of this cycle is always 2, independent of the starting order. Furthermore Stacho asked whether for arbitrary graphs, the size of such a cycle is always bounded by the asteroidal number of the graph. In this work, while we answer this latter question negatively, we provide support for the conjecture on cocomparability graphs by proving it for the subclass of domino‐free cocomparability graphs. This subclass contains cographs, proper interval, interval and cobipartite graphs. We also provide simpler independent proofs for each of these cases which lead to stronger results on this subclasses.
AbstractList Consider a sequence of Lexicographic Breadth‐First‐Search vertex orderings σ1,σ2,… ${\sigma }_{1},{\sigma }_{2},\ldots $ where each ordering σi ${\sigma }_{i}$ is used to break ties for σi+1 ${\sigma }_{i+1}$. Since the total number of vertex orderings of a finite graph is finite, this sequence must end in a cycle of vertex orderings. The possible length of this cycle is the main subject of this work. Intuitively, we prove for graphs with a known notion of linearity (e.g., interval graphs with their interval representation on the real line), this cycle cannot be too big, no matter which vertex ordering we start with. More precisely, it was conjectured by Dusart and Habib that for cocomparability graphs, the size of this cycle is always 2, independent of the starting order. Furthermore Stacho asked whether for arbitrary graphs, the size of such a cycle is always bounded by the asteroidal number of the graph. In this work, while we answer this latter question negatively, we provide support for the conjecture on cocomparability graphs by proving it for the subclass of domino‐free cocomparability graphs. This subclass contains cographs, proper interval, interval and cobipartite graphs. We also provide simpler independent proofs for each of these cases which lead to stronger results on this subclasses.
Consider a sequence of Lexicographic Breadth‐First‐Search vertex orderings σ1,σ2,… ${\sigma }_{1},{\sigma }_{2},\ldots $ where each ordering σi ${\sigma }_{i}$ is used to break ties for σi+1 ${\sigma }_{i+1}$. Since the total number of vertex orderings of a finite graph is finite, this sequence must end in a cycle of vertex orderings. The possible length of this cycle is the main subject of this work. Intuitively, we prove for graphs with a known notion of linearity (e.g., interval graphs with their interval representation on the real line), this cycle cannot be too big, no matter which vertex ordering we start with. More precisely, it was conjectured by Dusart and Habib that for cocomparability graphs, the size of this cycle is always 2, independent of the starting order. Furthermore Stacho asked whether for arbitrary graphs, the size of such a cycle is always bounded by the asteroidal number of the graph. In this work, while we answer this latter question negatively, we provide support for the conjecture on cocomparability graphs by proving it for the subclass of domino‐free cocomparability graphs. This subclass contains cographs, proper interval, interval and cobipartite graphs. We also provide simpler independent proofs for each of these cases which lead to stronger results on this subclasses.
Consider a sequence of Lexicographic Breadth‐First‐Search vertex orderings where each ordering is used to break ties for . Since the total number of vertex orderings of a finite graph is finite, this sequence must end in a cycle of vertex orderings. The possible length of this cycle is the main subject of this work. Intuitively, we prove for graphs with a known notion of linearity (e.g., interval graphs with their interval representation on the real line), this cycle cannot be too big, no matter which vertex ordering we start with. More precisely, it was conjectured by Dusart and Habib that for cocomparability graphs, the size of this cycle is always 2, independent of the starting order. Furthermore Stacho asked whether for arbitrary graphs, the size of such a cycle is always bounded by the asteroidal number of the graph. In this work, while we answer this latter question negatively, we provide support for the conjecture on cocomparability graphs by proving it for the subclass of domino‐free cocomparability graphs. This subclass contains cographs, proper interval, interval and cobipartite graphs. We also provide simpler independent proofs for each of these cases which lead to stronger results on this subclasses.
Author Habib, Michel
Charbit, Pierre
Mouatadid, Lalla
Naserasr, Reza
Author_xml – sequence: 1
  givenname: Pierre
  surname: Charbit
  fullname: Charbit, Pierre
  organization: IRIF CNRS, Université Paris Cité
– sequence: 2
  givenname: Michel
  surname: Habib
  fullname: Habib, Michel
  organization: IRIF CNRS, Université Paris Cité
– sequence: 3
  givenname: Lalla
  orcidid: 0000-0002-2274-6773
  surname: Mouatadid
  fullname: Mouatadid, Lalla
  email: Lalla@cs.toronto.edu
  organization: University of Toronto
– sequence: 4
  givenname: Reza
  orcidid: 0000-0001-6882-6034
  surname: Naserasr
  fullname: Naserasr, Reza
  organization: IRIF CNRS, Université Paris Cité
BookMark eNp1kEFLw0AQhRepYFs9-A8CnhTSzk42m-yxFFuVgpd6XibppKa0SdxNKP33RuPV08Dje2_gm4hRVVcsxL2EmQTA-WHfzhANmisxlmCSEKRMR2IMkVahAVQ3YuL9Afo4hnQsnhZBxedg76j5DBpydOKWXdDWwYnJd46DY1kxubK93Irrgo6e7_7uVHysnrfLl3Dzvn5dLjZhjnFiwkzpHDNMU2MIKMs1yAx2Ees4YyLCnTQqK3RkcqMBE42FoZ2JVMqJjIsEo6l4GHYbV3917Ft7qDtX9S8tpjJSWsVa9dTjQOWu9t5xYRtXnshdrAT7o8L2Kuyvip6dD-y5PPLlf9C-rbdD4xtOhV_W
Cites_doi 10.1137/15M1012396
10.1016/j.dam.2003.07.001
10.1016/0020-0190(93)90209-R
10.1016/j.ipl.2015.12.001
10.1137/S0097539795282377
10.1137/0216057
10.1137/050623498
10.1137/0205021
10.1007/978-3-319-08404-6_28
10.1016/0166-218X(84)90016-7
10.1137/S0097539703437855
10.1137/11083856X
10.1007/3-540-54891-2_22
10.1016/j.dam.2015.07.016
10.1137/S0895480100373455
10.1137/0406032
ContentType Journal Article
Copyright 2023 Wiley Periodicals LLC.
Copyright_xml – notice: 2023 Wiley Periodicals LLC.
DBID AAYXX
CITATION
DOI 10.1002/jgt.22929
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0118
EndPage 485
ExternalDocumentID 10_1002_jgt_22929
JGT22929
Genre article
GrantInformation_xml – fundername: Agence Nationale de la Recherche
– fundername: Natural Sciences and Engineering Research Council of Canada
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
3-9
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
V8K
VH1
VJK
VQA
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XJT
XPP
XV2
XXG
YQT
ZZTAW
~IA
~WT
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c2579-b46c2b28899a0abc601b0d3e65beaaa2d194bf639c9602762f9ad9348e715f723
IEDL.DBID DR2
ISSN 0364-9024
IngestDate Fri Jul 25 12:16:21 EDT 2025
Tue Jul 01 01:47:45 EDT 2025
Wed Jan 22 16:23:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2579-b46c2b28899a0abc601b0d3e65beaaa2d194bf639c9602762f9ad9348e715f723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6882-6034
0000-0002-2274-6773
PQID 2813464564
PQPubID 1006407
PageCount 24
ParticipantIDs proquest_journals_2813464564
crossref_primary_10_1002_jgt_22929
wiley_primary_10_1002_jgt_22929_JGT22929
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of graph theory
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 23
2019; 1432‐0541
1993; 45
2004; 138
1964; 16
1999; 28
2013; 42
2006; 36
2019
2016; 30
1996
1984; 9
2008; 22
2016; 116
2014
1969
2017; 216
1993; 6
1987; 16
1976; 5
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
Habib M. (e_1_2_7_13_1) 2019; 1432
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
Dragan F. F. (e_1_2_7_8_1) 1996
e_1_2_7_14_1
e_1_2_7_12_1
Roberts F. S. (e_1_2_7_19_1) 1969
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_10_1
e_1_2_7_21_1
Gilmore P. C. (e_1_2_7_11_1) 1964; 16
e_1_2_7_20_1
References_xml – volume: 16
  start-page: 539
  year: 1964
  end-page: 548
  article-title: A characterization of comparability graphs and of interval graphs Canadian
  publication-title: J. Math.
– volume: 28
  start-page: 1284
  year: 1999
  end-page: 1297
  article-title: Linear time algorithms for dominating pairs in asteroidal triple‐free graphs
  publication-title: SIAM J. Comput.
– volume: 16
  start-page: 854
  year: 1987
  end-page: 879
  article-title: Doubly lexical orderings of matrices
  publication-title: SIAM J. Comput
– start-page: 166
  year: 1996
  end-page: 180
– start-page: 139
  year: 1969
  end-page: 146
– volume: 216
  start-page: 149
  year: 2017
  end-page: 161
  article-title: A new LBFS‐based algorithm for cocomparability graph recognition
  publication-title: Discrete Appl. Math
– volume: 116
  start-page: 391
  year: 2016
  end-page: 395
  article-title: A linear time algorithm to compute a maximum weighted independent set on cocomparability graphs
  publication-title: Inform. Process. Lett
– volume: 22
  start-page: 1259
  year: 2008
  end-page: 1276
  article-title: A unified view of graph searching
  publication-title: SIAM J. Disc. Math
– volume: 42
  start-page: 792
  year: 2013
  end-page: 807
  article-title: LDFS‐based certifying algorithm for the minimum path cover problem on cocomparability graphs
  publication-title: SIAM J. Comput
– volume: 45
  start-page: 229
  year: 1993
  end-page: 235
  article-title: Doubly lexical ordering of dense 0–1 matrices
  publication-title: Inform. Process. Lett
– volume: 9
  start-page: 157
  year: 1984
  end-page: 170
  article-title: Tolerance graphs
  publication-title: Discrete Appl. Math.
– volume: 23
  start-page: 1905
  year: 2009
  end-page: 1953
  article-title: The LBFS structure and recognition of interval graphs
  publication-title: SIAM J. Discrete Math.
– volume: 1432‐0541
  start-page: 1
  year: 2019
  end-page: 19
  article-title: Maximum induced matching algorithms via vertex ordering characterizations
  publication-title: Algorithmica
– volume: 6
  start-page: 400
  year: 1993
  end-page: 417
  article-title: Domination on cocomparability graphs
  publication-title: SIAM J. Discrete Math.
– volume: 138
  start-page: 371
  year: 2004
  end-page: 379
  article-title: A simple 3‐sweep LBFS algorithm for the recognition of unit interval graphs
  publication-title: Discrete Appl. Math
– start-page: 319
  year: 2014
  end-page: 330
– volume: 30
  start-page: 569
  year: 2016
  end-page: 591
  article-title: On the power of graph searching for cocomparability graphs
  publication-title: SIAM J. Discrete Math.
– year: 2019
– volume: 5
  start-page: 266
  year: 1976
  end-page: 283
  article-title: Algorithmic aspects of vertex elimination on graphs
  publication-title: SIAM J. Comput.
– year: 2014
– volume: 36
  start-page: 326
  year: 2006
  end-page: 353
  article-title: Certifying algorithms for recognizing interval graphs and permutation graphs
  publication-title: SIAM J. Comput.
– ident: e_1_2_7_7_1
  doi: 10.1137/15M1012396
– ident: e_1_2_7_10_1
– ident: e_1_2_7_2_1
  doi: 10.1016/j.dam.2003.07.001
– volume: 16
  start-page: 539
  year: 1964
  ident: e_1_2_7_11_1
  article-title: A characterization of comparability graphs and of interval graphs Canadian
  publication-title: J. Math.
– ident: e_1_2_7_22_1
  doi: 10.1016/0020-0190(93)90209-R
– ident: e_1_2_7_15_1
  doi: 10.1016/j.ipl.2015.12.001
– ident: e_1_2_7_4_1
  doi: 10.1137/S0097539795282377
– ident: e_1_2_7_18_1
  doi: 10.1137/0216057
– ident: e_1_2_7_3_1
  doi: 10.1137/050623498
– start-page: 139
  volume-title: Proof Techniques in Graph Theory
  year: 1969
  ident: e_1_2_7_19_1
– ident: e_1_2_7_20_1
  doi: 10.1137/0205021
– ident: e_1_2_7_14_1
  doi: 10.1007/978-3-319-08404-6_28
– ident: e_1_2_7_12_1
  doi: 10.1016/0166-218X(84)90016-7
– ident: e_1_2_7_17_1
  doi: 10.1137/S0097539703437855
– ident: e_1_2_7_6_1
  doi: 10.1137/11083856X
– ident: e_1_2_7_21_1
  doi: 10.1007/3-540-54891-2_22
– ident: e_1_2_7_9_1
  doi: 10.1016/j.dam.2015.07.016
– ident: e_1_2_7_23_1
– start-page: 166
  volume-title: Proceedings of the International Workshop on Graph‐Theoretic Concepts in Computer Science
  year: 1996
  ident: e_1_2_7_8_1
– ident: e_1_2_7_5_1
  doi: 10.1137/S0895480100373455
– volume: 1432
  start-page: 1
  year: 2019
  ident: e_1_2_7_13_1
  article-title: Maximum induced matching algorithms via vertex ordering characterizations
  publication-title: Algorithmica
– ident: e_1_2_7_16_1
  doi: 10.1137/0406032
SSID ssj0011508
Score 2.3191297
Snippet Consider a sequence of Lexicographic Breadth‐First‐Search vertex orderings σ1,σ2,… ${\sigma }_{1},{\sigma }_{2},\ldots $ where each ordering σi ${\sigma }_{i}$...
Consider a sequence of Lexicographic Breadth‐First‐Search vertex orderings where each ordering is used to break ties for . Since the total number of vertex...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 462
SubjectTerms asteroidal number
cocomparability graphs
graph search
Graphs
interval graphs
LexBFS
Linearity
multisweep algorithms
Title A new graph parameter to measure linearity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.22929
https://www.proquest.com/docview/2813464564
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH6MnfTgb3E6JYgHEbq1Sdo0eBqijsE8yAY7CCVpU0HZJq67-Nf70qydCoJ466Fpm0fee99Lvn4P4CIwJhcZE14uZORxYdClOPO9WGuZGivIVbIqhw9Rf8wHk3DSgOvqXxinD1FvuFnPKOO1dXClF921aOjLc9GhFLM7xl_L1bKA6LGWjrJAJ3bnlNyTmIgqVSGfduuR33PRGmB-hallnrnbhqfqCx295LWzLHQn_fgh3vjPKezA1gp_kp5bMLvQMLM92BzW4q2LfbjqEcTapJSyJlYafGopM6SYk6nbUCT2zcp2vTuA8d3t6KbvrVoqeCn6pvQ0j1KqaYxVlvKVTrEc037GTBRqo5SiWSC5zhG1pFjZUAyUuVSZZDw2IghzQdkhNGfzmTkCImWI4xGcK2G5NSpmAcukFBg9EXNK1oLzyrjJm1POSJxGMk1w4kk58Ra0K7MnK-dZJDQOmD1wjXgLLkv7_f6AZHA_Ki-O_37rCWzYpvGOdNuGZvG-NKcILQp9Vq6hT5_yxs8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSDb7FaNYgHEdImu0k2C16KWmtte5AWepFlN9kISlux6cVf7z6aVgVBvOWQTTLDzsw3s5NvAM59KTOSYuJmhEZuQKQyqQB7biwETaQm5DJdlZ1u1OwHrUE4WIKr4l8Yyw8xL7hpyzD-Whu4LkjXFqyhL895FSEV3pdhRU_01sz5N49z8igNdWJ7Uhm4VIWiglfIQ7X50u_RaAExvwJVE2kam_BUfKNtMHmtTnNRTT5-0Df-V4gt2JhBUKdu98w2LMnRDqx35vytk124rDsKbjuGzdrR7OBD3TXj5GNnaGuKjn4114Pv9qDfuO1dN93ZVAU3UeZJXRFECRIoVokW97hIVEYmvBTLKBSSc45SnwYiU8AlUckNUr4yozylOIgl8cOMILwPpdF4JA_AoTRU6xU-50S31_AY-zillCgHqmAnxWU4K7TL3ix5BrM0yYgpwZkRvAyVQu9sZj8ThmIf6zPXKCjDhVHg7w9grbueuTj8-62nsNrsddqsfd99OII1PUPe9uBWoJS_T-WxQhq5ODEb6hMowsrr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_mBNEHv8Xp1CI-iNCtTdKP4NNwzjndENnAByEkbSoo-8B1L_71JunaqSCIb31Imt6Ru_tdcv0dwJkrZRLEOLCTgPo2CaQyKYIdOxSCRlITcpmqym7Pbw9I58l7KsFl_i9Mxg9RHLhpyzD-Whv4JE7qC9LQ15e0hpCK7kuwTHyH6r4NzceCO0ojnTC7qCQ2VZEopxVyUL2Y-j0YLRDmV5xqAk1rA57zT8zqS95qs1TUoo8f7I3_lGET1ucA1GpkO2YLSnK0DWvdgr11ugMXDUuBbctwWVuaG3yoa2asdGwNsxNFS6_Mddu7XRi0rvtXbXveU8GOlHFSWxA_QgKFKs3iDheRyseEE2Ppe0JyzlHsUiISBVsildog5SkTymOKSSgD10sChPegPBqP5D5YlHpqvkLnPNDFNTzELo4pDZT7VKCT4gqc5splk4w6g2UkyYgpwZkRvALVXO1sbj1ThkIX6xtXn1Tg3Ojv9xewzk3fPBz8fegJrDw0W-z-tnd3CKu6gXxWgFuFcvo-k0cKZqTi2GynT_INyZo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+graph+parameter+to+measure+linearity&rft.jtitle=Journal+of+graph+theory&rft.au=Charbit%2C+Pierre&rft.au=Habib%2C+Michel&rft.au=Mouatadid%2C+Lalla&rft.au=Naserasr%2C+Reza&rft.date=2023-07-01&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=103&rft.issue=3&rft.spage=462&rft.epage=485&rft_id=info:doi/10.1002%2Fjgt.22929&rft.externalDBID=10.1002%252Fjgt.22929&rft.externalDocID=JGT22929
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon