A new graph parameter to measure linearity
Consider a sequence of Lexicographic Breadth‐First‐Search vertex orderings σ1,σ2,… ${\sigma }_{1},{\sigma }_{2},\ldots $ where each ordering σi ${\sigma }_{i}$ is used to break ties for σi+1 ${\sigma }_{i+1}$. Since the total number of vertex orderings of a finite graph is finite, this sequence must...
Saved in:
Published in | Journal of graph theory Vol. 103; no. 3; pp. 462 - 485 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Consider a sequence of Lexicographic Breadth‐First‐Search vertex orderings σ1,σ2,… ${\sigma }_{1},{\sigma }_{2},\ldots $ where each ordering σi ${\sigma }_{i}$ is used to break ties for σi+1 ${\sigma }_{i+1}$. Since the total number of vertex orderings of a finite graph is finite, this sequence must end in a cycle of vertex orderings. The possible length of this cycle is the main subject of this work. Intuitively, we prove for graphs with a known notion of linearity (e.g., interval graphs with their interval representation on the real line), this cycle cannot be too big, no matter which vertex ordering we start with. More precisely, it was conjectured by Dusart and Habib that for cocomparability graphs, the size of this cycle is always 2, independent of the starting order. Furthermore Stacho asked whether for arbitrary graphs, the size of such a cycle is always bounded by the asteroidal number of the graph. In this work, while we answer this latter question negatively, we provide support for the conjecture on cocomparability graphs by proving it for the subclass of domino‐free cocomparability graphs. This subclass contains cographs, proper interval, interval and cobipartite graphs. We also provide simpler independent proofs for each of these cases which lead to stronger results on this subclasses. |
---|---|
AbstractList | Consider a sequence of Lexicographic Breadth‐First‐Search vertex orderings σ1,σ2,… ${\sigma }_{1},{\sigma }_{2},\ldots $ where each ordering σi ${\sigma }_{i}$ is used to break ties for σi+1 ${\sigma }_{i+1}$. Since the total number of vertex orderings of a finite graph is finite, this sequence must end in a cycle of vertex orderings. The possible length of this cycle is the main subject of this work. Intuitively, we prove for graphs with a known notion of linearity (e.g., interval graphs with their interval representation on the real line), this cycle cannot be too big, no matter which vertex ordering we start with. More precisely, it was conjectured by Dusart and Habib that for cocomparability graphs, the size of this cycle is always 2, independent of the starting order. Furthermore Stacho asked whether for arbitrary graphs, the size of such a cycle is always bounded by the asteroidal number of the graph. In this work, while we answer this latter question negatively, we provide support for the conjecture on cocomparability graphs by proving it for the subclass of domino‐free cocomparability graphs. This subclass contains cographs, proper interval, interval and cobipartite graphs. We also provide simpler independent proofs for each of these cases which lead to stronger results on this subclasses. Consider a sequence of Lexicographic Breadth‐First‐Search vertex orderings σ1,σ2,… ${\sigma }_{1},{\sigma }_{2},\ldots $ where each ordering σi ${\sigma }_{i}$ is used to break ties for σi+1 ${\sigma }_{i+1}$. Since the total number of vertex orderings of a finite graph is finite, this sequence must end in a cycle of vertex orderings. The possible length of this cycle is the main subject of this work. Intuitively, we prove for graphs with a known notion of linearity (e.g., interval graphs with their interval representation on the real line), this cycle cannot be too big, no matter which vertex ordering we start with. More precisely, it was conjectured by Dusart and Habib that for cocomparability graphs, the size of this cycle is always 2, independent of the starting order. Furthermore Stacho asked whether for arbitrary graphs, the size of such a cycle is always bounded by the asteroidal number of the graph. In this work, while we answer this latter question negatively, we provide support for the conjecture on cocomparability graphs by proving it for the subclass of domino‐free cocomparability graphs. This subclass contains cographs, proper interval, interval and cobipartite graphs. We also provide simpler independent proofs for each of these cases which lead to stronger results on this subclasses. Consider a sequence of Lexicographic Breadth‐First‐Search vertex orderings where each ordering is used to break ties for . Since the total number of vertex orderings of a finite graph is finite, this sequence must end in a cycle of vertex orderings. The possible length of this cycle is the main subject of this work. Intuitively, we prove for graphs with a known notion of linearity (e.g., interval graphs with their interval representation on the real line), this cycle cannot be too big, no matter which vertex ordering we start with. More precisely, it was conjectured by Dusart and Habib that for cocomparability graphs, the size of this cycle is always 2, independent of the starting order. Furthermore Stacho asked whether for arbitrary graphs, the size of such a cycle is always bounded by the asteroidal number of the graph. In this work, while we answer this latter question negatively, we provide support for the conjecture on cocomparability graphs by proving it for the subclass of domino‐free cocomparability graphs. This subclass contains cographs, proper interval, interval and cobipartite graphs. We also provide simpler independent proofs for each of these cases which lead to stronger results on this subclasses. |
Author | Habib, Michel Charbit, Pierre Mouatadid, Lalla Naserasr, Reza |
Author_xml | – sequence: 1 givenname: Pierre surname: Charbit fullname: Charbit, Pierre organization: IRIF CNRS, Université Paris Cité – sequence: 2 givenname: Michel surname: Habib fullname: Habib, Michel organization: IRIF CNRS, Université Paris Cité – sequence: 3 givenname: Lalla orcidid: 0000-0002-2274-6773 surname: Mouatadid fullname: Mouatadid, Lalla email: Lalla@cs.toronto.edu organization: University of Toronto – sequence: 4 givenname: Reza orcidid: 0000-0001-6882-6034 surname: Naserasr fullname: Naserasr, Reza organization: IRIF CNRS, Université Paris Cité |
BookMark | eNp1kEFLw0AQhRepYFs9-A8CnhTSzk42m-yxFFuVgpd6XibppKa0SdxNKP33RuPV08Dje2_gm4hRVVcsxL2EmQTA-WHfzhANmisxlmCSEKRMR2IMkVahAVQ3YuL9Afo4hnQsnhZBxedg76j5DBpydOKWXdDWwYnJd46DY1kxubK93Irrgo6e7_7uVHysnrfLl3Dzvn5dLjZhjnFiwkzpHDNMU2MIKMs1yAx2Ees4YyLCnTQqK3RkcqMBE42FoZ2JVMqJjIsEo6l4GHYbV3917Ft7qDtX9S8tpjJSWsVa9dTjQOWu9t5xYRtXnshdrAT7o8L2Kuyvip6dD-y5PPLlf9C-rbdD4xtOhV_W |
Cites_doi | 10.1137/15M1012396 10.1016/j.dam.2003.07.001 10.1016/0020-0190(93)90209-R 10.1016/j.ipl.2015.12.001 10.1137/S0097539795282377 10.1137/0216057 10.1137/050623498 10.1137/0205021 10.1007/978-3-319-08404-6_28 10.1016/0166-218X(84)90016-7 10.1137/S0097539703437855 10.1137/11083856X 10.1007/3-540-54891-2_22 10.1016/j.dam.2015.07.016 10.1137/S0895480100373455 10.1137/0406032 |
ContentType | Journal Article |
Copyright | 2023 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2023 Wiley Periodicals LLC. |
DBID | AAYXX CITATION |
DOI | 10.1002/jgt.22929 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1097-0118 |
EndPage | 485 |
ExternalDocumentID | 10_1002_jgt_22929 JGT22929 |
Genre | article |
GrantInformation_xml | – fundername: Agence Nationale de la Recherche – fundername: Natural Sciences and Engineering Research Council of Canada |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 186 1L6 1OB 1OC 1ZS 3-9 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TN5 UB1 UPT V2E V8K VH1 VJK VQA W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XJT XPP XV2 XXG YQT ZZTAW ~IA ~WT AAYXX ADXHL AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c2579-b46c2b28899a0abc601b0d3e65beaaa2d194bf639c9602762f9ad9348e715f723 |
IEDL.DBID | DR2 |
ISSN | 0364-9024 |
IngestDate | Fri Jul 25 12:16:21 EDT 2025 Tue Jul 01 01:47:45 EDT 2025 Wed Jan 22 16:23:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2579-b46c2b28899a0abc601b0d3e65beaaa2d194bf639c9602762f9ad9348e715f723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6882-6034 0000-0002-2274-6773 |
PQID | 2813464564 |
PQPubID | 1006407 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2813464564 crossref_primary_10_1002_jgt_22929 wiley_primary_10_1002_jgt_22929_JGT22929 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 20230701 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Journal of graph theory |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2009; 23 2019; 1432‐0541 1993; 45 2004; 138 1964; 16 1999; 28 2013; 42 2006; 36 2019 2016; 30 1996 1984; 9 2008; 22 2016; 116 2014 1969 2017; 216 1993; 6 1987; 16 1976; 5 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 Habib M. (e_1_2_7_13_1) 2019; 1432 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 Dragan F. F. (e_1_2_7_8_1) 1996 e_1_2_7_14_1 e_1_2_7_12_1 Roberts F. S. (e_1_2_7_19_1) 1969 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_10_1 e_1_2_7_21_1 Gilmore P. C. (e_1_2_7_11_1) 1964; 16 e_1_2_7_20_1 |
References_xml | – volume: 16 start-page: 539 year: 1964 end-page: 548 article-title: A characterization of comparability graphs and of interval graphs Canadian publication-title: J. Math. – volume: 28 start-page: 1284 year: 1999 end-page: 1297 article-title: Linear time algorithms for dominating pairs in asteroidal triple‐free graphs publication-title: SIAM J. Comput. – volume: 16 start-page: 854 year: 1987 end-page: 879 article-title: Doubly lexical orderings of matrices publication-title: SIAM J. Comput – start-page: 166 year: 1996 end-page: 180 – start-page: 139 year: 1969 end-page: 146 – volume: 216 start-page: 149 year: 2017 end-page: 161 article-title: A new LBFS‐based algorithm for cocomparability graph recognition publication-title: Discrete Appl. Math – volume: 116 start-page: 391 year: 2016 end-page: 395 article-title: A linear time algorithm to compute a maximum weighted independent set on cocomparability graphs publication-title: Inform. Process. Lett – volume: 22 start-page: 1259 year: 2008 end-page: 1276 article-title: A unified view of graph searching publication-title: SIAM J. Disc. Math – volume: 42 start-page: 792 year: 2013 end-page: 807 article-title: LDFS‐based certifying algorithm for the minimum path cover problem on cocomparability graphs publication-title: SIAM J. Comput – volume: 45 start-page: 229 year: 1993 end-page: 235 article-title: Doubly lexical ordering of dense 0–1 matrices publication-title: Inform. Process. Lett – volume: 9 start-page: 157 year: 1984 end-page: 170 article-title: Tolerance graphs publication-title: Discrete Appl. Math. – volume: 23 start-page: 1905 year: 2009 end-page: 1953 article-title: The LBFS structure and recognition of interval graphs publication-title: SIAM J. Discrete Math. – volume: 1432‐0541 start-page: 1 year: 2019 end-page: 19 article-title: Maximum induced matching algorithms via vertex ordering characterizations publication-title: Algorithmica – volume: 6 start-page: 400 year: 1993 end-page: 417 article-title: Domination on cocomparability graphs publication-title: SIAM J. Discrete Math. – volume: 138 start-page: 371 year: 2004 end-page: 379 article-title: A simple 3‐sweep LBFS algorithm for the recognition of unit interval graphs publication-title: Discrete Appl. Math – start-page: 319 year: 2014 end-page: 330 – volume: 30 start-page: 569 year: 2016 end-page: 591 article-title: On the power of graph searching for cocomparability graphs publication-title: SIAM J. Discrete Math. – year: 2019 – volume: 5 start-page: 266 year: 1976 end-page: 283 article-title: Algorithmic aspects of vertex elimination on graphs publication-title: SIAM J. Comput. – year: 2014 – volume: 36 start-page: 326 year: 2006 end-page: 353 article-title: Certifying algorithms for recognizing interval graphs and permutation graphs publication-title: SIAM J. Comput. – ident: e_1_2_7_7_1 doi: 10.1137/15M1012396 – ident: e_1_2_7_10_1 – ident: e_1_2_7_2_1 doi: 10.1016/j.dam.2003.07.001 – volume: 16 start-page: 539 year: 1964 ident: e_1_2_7_11_1 article-title: A characterization of comparability graphs and of interval graphs Canadian publication-title: J. Math. – ident: e_1_2_7_22_1 doi: 10.1016/0020-0190(93)90209-R – ident: e_1_2_7_15_1 doi: 10.1016/j.ipl.2015.12.001 – ident: e_1_2_7_4_1 doi: 10.1137/S0097539795282377 – ident: e_1_2_7_18_1 doi: 10.1137/0216057 – ident: e_1_2_7_3_1 doi: 10.1137/050623498 – start-page: 139 volume-title: Proof Techniques in Graph Theory year: 1969 ident: e_1_2_7_19_1 – ident: e_1_2_7_20_1 doi: 10.1137/0205021 – ident: e_1_2_7_14_1 doi: 10.1007/978-3-319-08404-6_28 – ident: e_1_2_7_12_1 doi: 10.1016/0166-218X(84)90016-7 – ident: e_1_2_7_17_1 doi: 10.1137/S0097539703437855 – ident: e_1_2_7_6_1 doi: 10.1137/11083856X – ident: e_1_2_7_21_1 doi: 10.1007/3-540-54891-2_22 – ident: e_1_2_7_9_1 doi: 10.1016/j.dam.2015.07.016 – ident: e_1_2_7_23_1 – start-page: 166 volume-title: Proceedings of the International Workshop on Graph‐Theoretic Concepts in Computer Science year: 1996 ident: e_1_2_7_8_1 – ident: e_1_2_7_5_1 doi: 10.1137/S0895480100373455 – volume: 1432 start-page: 1 year: 2019 ident: e_1_2_7_13_1 article-title: Maximum induced matching algorithms via vertex ordering characterizations publication-title: Algorithmica – ident: e_1_2_7_16_1 doi: 10.1137/0406032 |
SSID | ssj0011508 |
Score | 2.3191297 |
Snippet | Consider a sequence of Lexicographic Breadth‐First‐Search vertex orderings σ1,σ2,… ${\sigma }_{1},{\sigma }_{2},\ldots $ where each ordering σi ${\sigma }_{i}$... Consider a sequence of Lexicographic Breadth‐First‐Search vertex orderings where each ordering is used to break ties for . Since the total number of vertex... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 462 |
SubjectTerms | asteroidal number cocomparability graphs graph search Graphs interval graphs LexBFS Linearity multisweep algorithms |
Title | A new graph parameter to measure linearity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.22929 https://www.proquest.com/docview/2813464564 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH6MnfTgb3E6JYgHEbq1Sdo0eBqijsE8yAY7CCVpU0HZJq67-Nf70qydCoJ466Fpm0fee99Lvn4P4CIwJhcZE14uZORxYdClOPO9WGuZGivIVbIqhw9Rf8wHk3DSgOvqXxinD1FvuFnPKOO1dXClF921aOjLc9GhFLM7xl_L1bKA6LGWjrJAJ3bnlNyTmIgqVSGfduuR33PRGmB-hallnrnbhqfqCx295LWzLHQn_fgh3vjPKezA1gp_kp5bMLvQMLM92BzW4q2LfbjqEcTapJSyJlYafGopM6SYk6nbUCT2zcp2vTuA8d3t6KbvrVoqeCn6pvQ0j1KqaYxVlvKVTrEc037GTBRqo5SiWSC5zhG1pFjZUAyUuVSZZDw2IghzQdkhNGfzmTkCImWI4xGcK2G5NSpmAcukFBg9EXNK1oLzyrjJm1POSJxGMk1w4kk58Ra0K7MnK-dZJDQOmD1wjXgLLkv7_f6AZHA_Ki-O_37rCWzYpvGOdNuGZvG-NKcILQp9Vq6hT5_yxs8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSDb7FaNYgHEdImu0k2C16KWmtte5AWepFlN9kISlux6cVf7z6aVgVBvOWQTTLDzsw3s5NvAM59KTOSYuJmhEZuQKQyqQB7biwETaQm5DJdlZ1u1OwHrUE4WIKr4l8Yyw8xL7hpyzD-Whu4LkjXFqyhL895FSEV3pdhRU_01sz5N49z8igNdWJ7Uhm4VIWiglfIQ7X50u_RaAExvwJVE2kam_BUfKNtMHmtTnNRTT5-0Df-V4gt2JhBUKdu98w2LMnRDqx35vytk124rDsKbjuGzdrR7OBD3TXj5GNnaGuKjn4114Pv9qDfuO1dN93ZVAU3UeZJXRFECRIoVokW97hIVEYmvBTLKBSSc45SnwYiU8AlUckNUr4yozylOIgl8cOMILwPpdF4JA_AoTRU6xU-50S31_AY-zillCgHqmAnxWU4K7TL3ix5BrM0yYgpwZkRvAyVQu9sZj8ThmIf6zPXKCjDhVHg7w9grbueuTj8-62nsNrsddqsfd99OII1PUPe9uBWoJS_T-WxQhq5ODEb6hMowsrr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_mBNEHv8Xp1CI-iNCtTdKP4NNwzjndENnAByEkbSoo-8B1L_71JunaqSCIb31Imt6Ru_tdcv0dwJkrZRLEOLCTgPo2CaQyKYIdOxSCRlITcpmqym7Pbw9I58l7KsFl_i9Mxg9RHLhpyzD-Whv4JE7qC9LQ15e0hpCK7kuwTHyH6r4NzceCO0ojnTC7qCQ2VZEopxVyUL2Y-j0YLRDmV5xqAk1rA57zT8zqS95qs1TUoo8f7I3_lGET1ucA1GpkO2YLSnK0DWvdgr11ugMXDUuBbctwWVuaG3yoa2asdGwNsxNFS6_Mddu7XRi0rvtXbXveU8GOlHFSWxA_QgKFKs3iDheRyseEE2Ppe0JyzlHsUiISBVsildog5SkTymOKSSgD10sChPegPBqP5D5YlHpqvkLnPNDFNTzELo4pDZT7VKCT4gqc5splk4w6g2UkyYgpwZkRvALVXO1sbj1ThkIX6xtXn1Tg3Ojv9xewzk3fPBz8fegJrDw0W-z-tnd3CKu6gXxWgFuFcvo-k0cKZqTi2GynT_INyZo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+graph+parameter+to+measure+linearity&rft.jtitle=Journal+of+graph+theory&rft.au=Charbit%2C+Pierre&rft.au=Habib%2C+Michel&rft.au=Mouatadid%2C+Lalla&rft.au=Naserasr%2C+Reza&rft.date=2023-07-01&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=103&rft.issue=3&rft.spage=462&rft.epage=485&rft_id=info:doi/10.1002%2Fjgt.22929&rft.externalDBID=10.1002%252Fjgt.22929&rft.externalDocID=JGT22929 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon |