Finding dense minors using average degree

Motivated by Hadwiger's conjecture, we study the problem of finding the densest possible t‐vertex minor in graphs of average degree at least t − 1. We show that if G has average degree at least t − 1, it contains a minor on t vertices with at least ( 2 − 1 − o ( 1 ) ) t 2 edges. We show that th...

Full description

Saved in:
Bibliographic Details
Published inJournal of graph theory Vol. 108; no. 1; pp. 205 - 223
Main Authors Hendrey, Kevin, Norin, Sergey, Steiner, Raphael, Turcotte, Jérémie
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2025
Subjects
Online AccessGet full text
ISSN0364-9024
1097-0118
DOI10.1002/jgt.23169

Cover

Abstract Motivated by Hadwiger's conjecture, we study the problem of finding the densest possible t‐vertex minor in graphs of average degree at least t − 1. We show that if G has average degree at least t − 1, it contains a minor on t vertices with at least ( 2 − 1 − o ( 1 ) ) t 2 edges. We show that this cannot be improved beyond 3 4 + o ( 1 ) t 2. Finally, for t ≤ 6 we exactly determine the number of edges we are guaranteed to find in the densest t‐vertex minor in graphs of average degree at least t − 1.
AbstractList Motivated by Hadwiger's conjecture, we study the problem of finding the densest possible t‐vertex minor in graphs of average degree at least t − 1. We show that if G has average degree at least t − 1, it contains a minor on t vertices with at least ( 2 − 1 − o ( 1 ) ) t 2 edges. We show that this cannot be improved beyond 3 4 + o ( 1 ) t 2. Finally, for t ≤ 6 we exactly determine the number of edges we are guaranteed to find in the densest t‐vertex minor in graphs of average degree at least t − 1.
Motivated by Hadwiger's conjecture, we study the problem of finding the densest possible ‐vertex minor in graphs of average degree at least . We show that if has average degree at least , it contains a minor on vertices with at least edges. We show that this cannot be improved beyond . Finally, for we exactly determine the number of edges we are guaranteed to find in the densest ‐vertex minor in graphs of average degree at least .
Motivated by Hadwiger's conjecture, we study the problem of finding the densest possible t‐vertex minor in graphs of average degree at least t−1. We show that if G has average degree at least t−1, it contains a minor on t vertices with at least (2−1−o(1))t2 edges. We show that this cannot be improved beyond 34+o(1)t2. Finally, for t≤6 we exactly determine the number of edges we are guaranteed to find in the densest t‐vertex minor in graphs of average degree at least t−1.
Author Turcotte, Jérémie
Steiner, Raphael
Norin, Sergey
Hendrey, Kevin
Author_xml – sequence: 1
  givenname: Kevin
  surname: Hendrey
  fullname: Hendrey, Kevin
  organization: Institute for Basic Science (IBS)
– sequence: 2
  givenname: Sergey
  surname: Norin
  fullname: Norin, Sergey
  organization: McGill University
– sequence: 3
  givenname: Raphael
  orcidid: 0000-0002-4234-6136
  surname: Steiner
  fullname: Steiner, Raphael
  organization: ETH Zürich
– sequence: 4
  givenname: Jérémie
  orcidid: 0000-0002-4555-8425
  surname: Turcotte
  fullname: Turcotte, Jérémie
  email: mail@jeremieturcotte.com
  organization: McGill University
BookMark eNp1kLFOwzAQhi1UJNLCwBtEYuqQ1mfHiTOiihZQJZbslhNfokStU-wG1LfHJaxMJ_33_XfSNyczO1gk5BHoCihl6749rxiHrLghEdAiTyiAnJGI8ixNCsrSOzL3vqchFlRGZLntrOlsGxu0HuNjZwfn49FfI_2FTrcYVq1DvCe3jT54fPibC1JuX8rNa7L_2L1tnvdJzUReJEwgSxuNKLICTCMqNFKyIqUUhQGjM96gAC5SphkA4yxvEENaVbXJs4ovyNN09uSGzxH9WfXD6Gz4qDgwKQXkaRao5UTVbvDeYaNOrjtqd1FA1VWECiLUr4jArif2uzvg5X9Qve_KqfEDxRFflw
Cites_doi 10.1002/jgt.20485
10.1002/jgt.21744
10.4064/fm-10-1-96-115
10.1002/jgt.22515
10.1007/BF01361708
10.1007/BF01364272
10.1007/BF01350657
10.1007/978-3-319-32162-2_13
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
DOI 10.1002/jgt.23169
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0118
EndPage 223
ExternalDocumentID 10_1002_jgt_23169
JGT23169
Genre article
GrantInformation_xml – fundername: Eidgenössische Technische Hochschule Zürich
– fundername: Natural Sciences and Engineering Research Council of Canada
– fundername: Institute for Basic Science
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
3-9
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
V8K
VH1
VJK
VQA
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XJT
XPP
XV2
XXG
YQT
ZZTAW
~IA
~WT
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c2579-25e24faee5691df5bed8829400e5d1da63fe513542a2112327feea63bbcd76b3
IEDL.DBID DR2
ISSN 0364-9024
IngestDate Fri Jul 25 12:10:07 EDT 2025
Tue Jul 01 03:54:27 EDT 2025
Wed Jan 22 17:12:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2579-25e24faee5691df5bed8829400e5d1da63fe513542a2112327feea63bbcd76b3
Notes Sergey Norin
Kevin Hendrey
www.math.mcgill.ca/snorin/
Jérémie Turcotte
Raphael Steiner
www.jeremieturcotte.com
sites.google.com/view/raphael-mario-steiner/
sites.google.com/view/kevinhendrey/
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4555-8425
0000-0002-4234-6136
PQID 3128851746
PQPubID 1006407
PageCount 19
ParticipantIDs proquest_journals_3128851746
crossref_primary_10_1002_jgt_23169
wiley_primary_10_1002_jgt_23169_JGT23169
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of graph theory
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1927; 10
2010; 65
2023
1968; 178
2022
2020; 94
1943; 88
1986
2022; 37
1964; 153
2017
2016
1967; 174
2014; 75
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Hadwiger H. (e_1_2_7_4_1) 1943; 88
References_xml – year: 1986
– volume: 10
  start-page: 96
  year: 1927
  end-page: 115
  article-title: Zur allgemeinen Kurventheorie
  publication-title: Fund. Math
– volume: 37
  year: 2022
– volume: 153
  start-page: 69
  year: 1964
  end-page: 80
  article-title: Homomorphism theorems for graphs
  publication-title: Math. Ann
– volume: 94
  start-page: 206
  issue: 2
  year: 2020
  end-page: 223
  article-title: The extremal function for minors
  publication-title: J. Graph Theory
– volume: 88
  start-page: 133
  year: 1943
  end-page: 143
  article-title: Über eine Klassifikation der Streckenkomplexe
  publication-title: Vierteljschr. Naturforsch. Ges. Zärich
– year: 2022
– year: 2023
– volume: 174
  start-page: 265
  year: 1967
  end-page: 268
  article-title: Homomorphieeigenschaften und mittlere Kantendichte von Graphen
  publication-title: Math. Ann
– start-page: 417
  year: 2016
  end-page: 437
– volume: 75
  start-page: 377
  issue: 4
  year: 2014
  end-page: 386
  article-title: Minors in ‐chromatic graphs, II
  publication-title: J. Graph Theory
– year: 2017
– volume: 178
  start-page: 154
  year: 1968
  end-page: 168
  article-title: Homomorphiesätze für Graphen
  publication-title: Math. Ann.
– volume: 65
  start-page: 343
  issue: 4
  year: 2010
  end-page: 350
  article-title: On minors in ‐chromatic graphs
  publication-title: J. Graph Theory
– ident: e_1_2_7_5_1
  doi: 10.1002/jgt.20485
– ident: e_1_2_7_6_1
  doi: 10.1002/jgt.21744
– volume: 88
  start-page: 133
  year: 1943
  ident: e_1_2_7_4_1
  article-title: Über eine Klassifikation der Streckenkomplexe
  publication-title: Vierteljschr. Naturforsch. Ges. Zärich
– ident: e_1_2_7_9_1
  doi: 10.4064/fm-10-1-96-115
– ident: e_1_2_7_10_1
– ident: e_1_2_7_16_1
– ident: e_1_2_7_13_1
  doi: 10.1002/jgt.22515
– ident: e_1_2_7_2_1
– ident: e_1_2_7_3_1
  doi: 10.1007/BF01361708
– ident: e_1_2_7_14_1
– ident: e_1_2_7_7_1
  doi: 10.1007/BF01364272
– ident: e_1_2_7_11_1
– ident: e_1_2_7_8_1
  doi: 10.1007/BF01350657
– ident: e_1_2_7_18_1
– ident: e_1_2_7_17_1
– ident: e_1_2_7_15_1
  doi: 10.1007/978-3-319-32162-2_13
– ident: e_1_2_7_12_1
SSID ssj0011508
Score 2.362215
Snippet Motivated by Hadwiger's conjecture, we study the problem of finding the densest possible t‐vertex minor in graphs of average degree at least t − 1. We show...
Motivated by Hadwiger's conjecture, we study the problem of finding the densest possible ‐vertex minor in graphs of average degree at least . We show that if...
Motivated by Hadwiger's conjecture, we study the problem of finding the densest possible t‐vertex minor in graphs of average degree at least t−1. We show that...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 205
SubjectTerms Apexes
average degree
graph minors
Graph theory
Graphs
Hadwiger's conjecture
Title Finding dense minors using average degree
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.23169
https://www.proquest.com/docview/3128851746
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KT3rwLVarBPGgh7RN9pFdPIlaS6EepEIPQshmd4uKqTTpxV_v7KZJVRDEW8iLzDCz37ebnW8QOusJJbRS3FcAZj5RPe7LgBuI5TQwODBJz1Wlje7Z4JEMJ3TSQJdVLUypD1EvuNnMcOO1TfBE5t2VaOjLtOgAOWG2eC_AzOrm3zzU0lGW6PDyPyXxBQBRpSrUC7v1k9-xaEUwv9JUhzP9TfRUfWG5veS1syhkJ_34Id74TxO20MaSf3pXZcBso4bOdtD6qBZvzXfRRf_Zlbp4MCTl2nt7zmbz3LMb5KdeApEPIxBcgnm63kPj_u34euAvOyr4KaSm8EOqQ2ISrSkTgTJUagUM2_ZG11QFKmHYaBpgSsIEJoZAtiKjNZyVMlURk3gfNbNZpg-QR5WOjAL8owkmjAtOsOKSCqEIcIIIt9Bp5dr4vdTNiEuF5DAGs2Nndgu1K6fHy9TJYwyIya1-Nmuhc-e9318QD-_G7uDw77ceobXQ9vB1yyht1CzmC30MxKKQJy6CPgGF_sdW
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH32K1ahAPekibx26SBS-i1lrbHqRCLxKS7KZUMZUmvfjrnd00qQqCeAt5kR3m8c1k5xuAM4NxJjj3dI7BTCfc8PTQ9GLU5ciMbTMODNWV1us77SfSGdJhBS6LXpicH6IsuEnLUP5aGrgsSDcXrKEvo6yB6MRhS7BMEGjI1OvmsSSPklDHy_9UEp1hKCp4hQyrWT76PRotIOZXoKoiTWsDnotvzDeYvDZmWdiIPn7QN_53EZuwPoeg2lWuM1tQEck2rPVK_tZ0By5aY9XtoqFXSoX2Nk4m01STe-RHWoDKj04IL2GqLnZh0LodXLf1-VAFPULrZLpFhUXiQAjqMJPHNBQcQbYcjy4oN3ng2LGgpk2JFWBuiHjLjYXAs2EYcdcJ7T2oJpNE7INGuXBjjiGQBjZxPOYRm3shZYwThAWuXYPTQrb-e06d4eckyZaPy_bVsmtQL6Tuz60n9W0Mmp6k0HZqcK7E9_sL_M7dQB0c_P3WE1hpD3pdv3vffziEVUuO9FVVlTpUs-lMHCHOyMJjpU6fGsbLdQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qBdGDb7FaNYgHPaTNYzfJ4knUWqstIhU8CCHJ7pYqpqVJL_56J5smVUEQbyEvMsPMfN9udr8BODEYZ4JzT-cIZjrhhqeHpicxliNT2qYMDLUrrdtz2k-k80yfK3Be7IXJ9SHKCbcsM1S9zhJ8zGVzLhr6OkgbSE4ctgCLxEEmkTGix1I7KmM6Xv6jkugMkaiQFTKsZvnodzCaM8yvPFUBTWsNXopPzNeXvDWmadiIPn6oN_7ThnVYnRFQ7SKPmA2oiHgTVrqlemuyBWetodrromFNSoT2PoxHk0TLVsgPtABDH0sQXsKButiGfuu6f9nWZy0V9Ahzk-kWFRaRgRDUYSaXNBQcKXbWHF1QbvLAsaWgpk2JFeDIENmWK4XAs2EYcdcJ7R2oxqNY7IJGuXAlRwCkgU0cj3nE5l5IGeMESYFr1-C4cK0_zoUz_Fwi2fLRbF-ZXYN64XR_ljuJbyNkepmAtlODU-W931_gd2766mDv77cewdLDVcu_v-3d7cOylfXzVVMqdaimk6k4QJKRhocqmD4B5NvKJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finding+dense+minors+using+average+degree&rft.jtitle=Journal+of+graph+theory&rft.au=Hendrey%2C+Kevin&rft.au=Norin%2C+Sergey&rft.au=Steiner%2C+Raphael&rft.au=Turcotte%2C+J%C3%A9r%C3%A9mie&rft.date=2025-01-01&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=108&rft.issue=1&rft.spage=205&rft.epage=223&rft_id=info:doi/10.1002%2Fjgt.23169&rft.externalDBID=10.1002%252Fjgt.23169&rft.externalDocID=JGT23169
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon