Finding dense minors using average degree
Motivated by Hadwiger's conjecture, we study the problem of finding the densest possible t‐vertex minor in graphs of average degree at least t − 1. We show that if G has average degree at least t − 1, it contains a minor on t vertices with at least ( 2 − 1 − o ( 1 ) ) t 2 edges. We show that th...
Saved in:
Published in | Journal of graph theory Vol. 108; no. 1; pp. 205 - 223 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0364-9024 1097-0118 |
DOI | 10.1002/jgt.23169 |
Cover
Abstract | Motivated by Hadwiger's conjecture, we study the problem of finding the densest possible
t‐vertex minor in graphs of average degree at least
t
−
1. We show that if
G has average degree at least
t
−
1, it contains a minor on
t vertices with at least
(
2
−
1
−
o
(
1
)
)
t
2 edges. We show that this cannot be improved beyond
3
4
+
o
(
1
)
t
2. Finally, for
t
≤
6 we exactly determine the number of edges we are guaranteed to find in the densest
t‐vertex minor in graphs of average degree at least
t
−
1. |
---|---|
AbstractList | Motivated by Hadwiger's conjecture, we study the problem of finding the densest possible
t‐vertex minor in graphs of average degree at least
t
−
1. We show that if
G has average degree at least
t
−
1, it contains a minor on
t vertices with at least
(
2
−
1
−
o
(
1
)
)
t
2 edges. We show that this cannot be improved beyond
3
4
+
o
(
1
)
t
2. Finally, for
t
≤
6 we exactly determine the number of edges we are guaranteed to find in the densest
t‐vertex minor in graphs of average degree at least
t
−
1. Motivated by Hadwiger's conjecture, we study the problem of finding the densest possible ‐vertex minor in graphs of average degree at least . We show that if has average degree at least , it contains a minor on vertices with at least edges. We show that this cannot be improved beyond . Finally, for we exactly determine the number of edges we are guaranteed to find in the densest ‐vertex minor in graphs of average degree at least . Motivated by Hadwiger's conjecture, we study the problem of finding the densest possible t‐vertex minor in graphs of average degree at least t−1. We show that if G has average degree at least t−1, it contains a minor on t vertices with at least (2−1−o(1))t2 edges. We show that this cannot be improved beyond 34+o(1)t2. Finally, for t≤6 we exactly determine the number of edges we are guaranteed to find in the densest t‐vertex minor in graphs of average degree at least t−1. |
Author | Turcotte, Jérémie Steiner, Raphael Norin, Sergey Hendrey, Kevin |
Author_xml | – sequence: 1 givenname: Kevin surname: Hendrey fullname: Hendrey, Kevin organization: Institute for Basic Science (IBS) – sequence: 2 givenname: Sergey surname: Norin fullname: Norin, Sergey organization: McGill University – sequence: 3 givenname: Raphael orcidid: 0000-0002-4234-6136 surname: Steiner fullname: Steiner, Raphael organization: ETH Zürich – sequence: 4 givenname: Jérémie orcidid: 0000-0002-4555-8425 surname: Turcotte fullname: Turcotte, Jérémie email: mail@jeremieturcotte.com organization: McGill University |
BookMark | eNp1kLFOwzAQhi1UJNLCwBtEYuqQ1mfHiTOiihZQJZbslhNfokStU-wG1LfHJaxMJ_33_XfSNyczO1gk5BHoCihl6749rxiHrLghEdAiTyiAnJGI8ixNCsrSOzL3vqchFlRGZLntrOlsGxu0HuNjZwfn49FfI_2FTrcYVq1DvCe3jT54fPibC1JuX8rNa7L_2L1tnvdJzUReJEwgSxuNKLICTCMqNFKyIqUUhQGjM96gAC5SphkA4yxvEENaVbXJs4ovyNN09uSGzxH9WfXD6Gz4qDgwKQXkaRao5UTVbvDeYaNOrjtqd1FA1VWECiLUr4jArif2uzvg5X9Qve_KqfEDxRFflw |
Cites_doi | 10.1002/jgt.20485 10.1002/jgt.21744 10.4064/fm-10-1-96-115 10.1002/jgt.22515 10.1007/BF01361708 10.1007/BF01364272 10.1007/BF01350657 10.1007/978-3-319-32162-2_13 |
ContentType | Journal Article |
Copyright | 2024 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2024 Wiley Periodicals LLC. |
DBID | AAYXX CITATION |
DOI | 10.1002/jgt.23169 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1097-0118 |
EndPage | 223 |
ExternalDocumentID | 10_1002_jgt_23169 JGT23169 |
Genre | article |
GrantInformation_xml | – fundername: Eidgenössische Technische Hochschule Zürich – fundername: Natural Sciences and Engineering Research Council of Canada – fundername: Institute for Basic Science |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 186 1L6 1OB 1OC 1ZS 3-9 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TN5 UB1 UPT V2E V8K VH1 VJK VQA W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XJT XPP XV2 XXG YQT ZZTAW ~IA ~WT AAYXX ADXHL AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c2579-25e24faee5691df5bed8829400e5d1da63fe513542a2112327feea63bbcd76b3 |
IEDL.DBID | DR2 |
ISSN | 0364-9024 |
IngestDate | Fri Jul 25 12:10:07 EDT 2025 Tue Jul 01 03:54:27 EDT 2025 Wed Jan 22 17:12:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2579-25e24faee5691df5bed8829400e5d1da63fe513542a2112327feea63bbcd76b3 |
Notes | Sergey Norin Kevin Hendrey www.math.mcgill.ca/snorin/ Jérémie Turcotte Raphael Steiner www.jeremieturcotte.com sites.google.com/view/raphael-mario-steiner/ sites.google.com/view/kevinhendrey/ ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4555-8425 0000-0002-4234-6136 |
PQID | 3128851746 |
PQPubID | 1006407 |
PageCount | 19 |
ParticipantIDs | proquest_journals_3128851746 crossref_primary_10_1002_jgt_23169 wiley_primary_10_1002_jgt_23169_JGT23169 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2025 2025-01-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Journal of graph theory |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1927; 10 2010; 65 2023 1968; 178 2022 2020; 94 1943; 88 1986 2022; 37 1964; 153 2017 2016 1967; 174 2014; 75 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 Hadwiger H. (e_1_2_7_4_1) 1943; 88 |
References_xml | – year: 1986 – volume: 10 start-page: 96 year: 1927 end-page: 115 article-title: Zur allgemeinen Kurventheorie publication-title: Fund. Math – volume: 37 year: 2022 – volume: 153 start-page: 69 year: 1964 end-page: 80 article-title: Homomorphism theorems for graphs publication-title: Math. Ann – volume: 94 start-page: 206 issue: 2 year: 2020 end-page: 223 article-title: The extremal function for minors publication-title: J. Graph Theory – volume: 88 start-page: 133 year: 1943 end-page: 143 article-title: Über eine Klassifikation der Streckenkomplexe publication-title: Vierteljschr. Naturforsch. Ges. Zärich – year: 2022 – year: 2023 – volume: 174 start-page: 265 year: 1967 end-page: 268 article-title: Homomorphieeigenschaften und mittlere Kantendichte von Graphen publication-title: Math. Ann – start-page: 417 year: 2016 end-page: 437 – volume: 75 start-page: 377 issue: 4 year: 2014 end-page: 386 article-title: Minors in ‐chromatic graphs, II publication-title: J. Graph Theory – year: 2017 – volume: 178 start-page: 154 year: 1968 end-page: 168 article-title: Homomorphiesätze für Graphen publication-title: Math. Ann. – volume: 65 start-page: 343 issue: 4 year: 2010 end-page: 350 article-title: On minors in ‐chromatic graphs publication-title: J. Graph Theory – ident: e_1_2_7_5_1 doi: 10.1002/jgt.20485 – ident: e_1_2_7_6_1 doi: 10.1002/jgt.21744 – volume: 88 start-page: 133 year: 1943 ident: e_1_2_7_4_1 article-title: Über eine Klassifikation der Streckenkomplexe publication-title: Vierteljschr. Naturforsch. Ges. Zärich – ident: e_1_2_7_9_1 doi: 10.4064/fm-10-1-96-115 – ident: e_1_2_7_10_1 – ident: e_1_2_7_16_1 – ident: e_1_2_7_13_1 doi: 10.1002/jgt.22515 – ident: e_1_2_7_2_1 – ident: e_1_2_7_3_1 doi: 10.1007/BF01361708 – ident: e_1_2_7_14_1 – ident: e_1_2_7_7_1 doi: 10.1007/BF01364272 – ident: e_1_2_7_11_1 – ident: e_1_2_7_8_1 doi: 10.1007/BF01350657 – ident: e_1_2_7_18_1 – ident: e_1_2_7_17_1 – ident: e_1_2_7_15_1 doi: 10.1007/978-3-319-32162-2_13 – ident: e_1_2_7_12_1 |
SSID | ssj0011508 |
Score | 2.362215 |
Snippet | Motivated by Hadwiger's conjecture, we study the problem of finding the densest possible
t‐vertex minor in graphs of average degree at least
t
−
1. We show... Motivated by Hadwiger's conjecture, we study the problem of finding the densest possible ‐vertex minor in graphs of average degree at least . We show that if... Motivated by Hadwiger's conjecture, we study the problem of finding the densest possible t‐vertex minor in graphs of average degree at least t−1. We show that... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 205 |
SubjectTerms | Apexes average degree graph minors Graph theory Graphs Hadwiger's conjecture |
Title | Finding dense minors using average degree |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.23169 https://www.proquest.com/docview/3128851746 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KT3rwLVarBPGgh7RN9pFdPIlaS6EepEIPQshmd4uKqTTpxV_v7KZJVRDEW8iLzDCz37ebnW8QOusJJbRS3FcAZj5RPe7LgBuI5TQwODBJz1Wlje7Z4JEMJ3TSQJdVLUypD1EvuNnMcOO1TfBE5t2VaOjLtOgAOWG2eC_AzOrm3zzU0lGW6PDyPyXxBQBRpSrUC7v1k9-xaEUwv9JUhzP9TfRUfWG5veS1syhkJ_34Id74TxO20MaSf3pXZcBso4bOdtD6qBZvzXfRRf_Zlbp4MCTl2nt7zmbz3LMb5KdeApEPIxBcgnm63kPj_u34euAvOyr4KaSm8EOqQ2ISrSkTgTJUagUM2_ZG11QFKmHYaBpgSsIEJoZAtiKjNZyVMlURk3gfNbNZpg-QR5WOjAL8owkmjAtOsOKSCqEIcIIIt9Bp5dr4vdTNiEuF5DAGs2Nndgu1K6fHy9TJYwyIya1-Nmuhc-e9318QD-_G7uDw77ceobXQ9vB1yyht1CzmC30MxKKQJy6CPgGF_sdW |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH32K1ahAPekibx26SBS-i1lrbHqRCLxKS7KZUMZUmvfjrnd00qQqCeAt5kR3m8c1k5xuAM4NxJjj3dI7BTCfc8PTQ9GLU5ciMbTMODNWV1us77SfSGdJhBS6LXpicH6IsuEnLUP5aGrgsSDcXrKEvo6yB6MRhS7BMEGjI1OvmsSSPklDHy_9UEp1hKCp4hQyrWT76PRotIOZXoKoiTWsDnotvzDeYvDZmWdiIPn7QN_53EZuwPoeg2lWuM1tQEck2rPVK_tZ0By5aY9XtoqFXSoX2Nk4m01STe-RHWoDKj04IL2GqLnZh0LodXLf1-VAFPULrZLpFhUXiQAjqMJPHNBQcQbYcjy4oN3ng2LGgpk2JFWBuiHjLjYXAs2EYcdcJ7T2oJpNE7INGuXBjjiGQBjZxPOYRm3shZYwThAWuXYPTQrb-e06d4eckyZaPy_bVsmtQL6Tuz60n9W0Mmp6k0HZqcK7E9_sL_M7dQB0c_P3WE1hpD3pdv3vffziEVUuO9FVVlTpUs-lMHCHOyMJjpU6fGsbLdQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qBdGDb7FaNYgHPaTNYzfJ4knUWqstIhU8CCHJ7pYqpqVJL_56J5smVUEQbyEvMsPMfN9udr8BODEYZ4JzT-cIZjrhhqeHpicxliNT2qYMDLUrrdtz2k-k80yfK3Be7IXJ9SHKCbcsM1S9zhJ8zGVzLhr6OkgbSE4ctgCLxEEmkTGix1I7KmM6Xv6jkugMkaiQFTKsZvnodzCaM8yvPFUBTWsNXopPzNeXvDWmadiIPn6oN_7ThnVYnRFQ7SKPmA2oiHgTVrqlemuyBWetodrromFNSoT2PoxHk0TLVsgPtABDH0sQXsKButiGfuu6f9nWZy0V9Ahzk-kWFRaRgRDUYSaXNBQcKXbWHF1QbvLAsaWgpk2JFeDIENmWK4XAs2EYcdcJ7R2oxqNY7IJGuXAlRwCkgU0cj3nE5l5IGeMESYFr1-C4cK0_zoUz_Fwi2fLRbF-ZXYN64XR_ljuJbyNkepmAtlODU-W931_gd2766mDv77cewdLDVcu_v-3d7cOylfXzVVMqdaimk6k4QJKRhocqmD4B5NvKJA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finding+dense+minors+using+average+degree&rft.jtitle=Journal+of+graph+theory&rft.au=Hendrey%2C+Kevin&rft.au=Norin%2C+Sergey&rft.au=Steiner%2C+Raphael&rft.au=Turcotte%2C+J%C3%A9r%C3%A9mie&rft.date=2025-01-01&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=108&rft.issue=1&rft.spage=205&rft.epage=223&rft_id=info:doi/10.1002%2Fjgt.23169&rft.externalDBID=10.1002%252Fjgt.23169&rft.externalDocID=JGT23169 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon |