FTR‐Bench: Benchmarking Deep Reinforcement Learning for Flipper‐Track Robot Control

ABSTRACT Tracked robots equipped with flippers and sensors are extensively employed in outdoor search and rescue scenarios. However, achieving precise motion control on complex terrains remains a significant challenge, often necessitating expert teleoperation. This stems from the high degree of robo...

Full description

Saved in:
Bibliographic Details
Published inJournal of field robotics Vol. 42; no. 5; pp. 2375 - 2389
Main Authors Zhang, Hongchuan, Ren, Junkai, Xiao, Junhao, Pan, Hainan, Lu, Huimin, Xu, Xin
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.08.2025
Subjects
Online AccessGet full text
ISSN1556-4959
1556-4967
DOI10.1002/rob.22528

Cover

Loading…
Abstract ABSTRACT Tracked robots equipped with flippers and sensors are extensively employed in outdoor search and rescue scenarios. However, achieving precise motion control on complex terrains remains a significant challenge, often necessitating expert teleoperation. This stems from the high degree of robot joint freedom and the need for precise flipper coordination based on terrain roughness. To address this problem, we propose Flipper‐ Track Robot Bench mark (FTR‐Bench), a simulator featuring flipper‐track robots tasked with crossing various obstacles using reinforcement learning (RL) algorithms. The primary objective is to enable autonomous locomotion in environments that are too remote or hazardous for humans, such as disaster zones or planetary surfaces. Built on Isaac Lab, FTR‐Bench achieves efficient RL training at over 4000 FPS on an RTX 3070 GPU. Additionally, it integrates RL algorithms with OpenAI Gym interface specifications, enabling fast secondary development and verification. On this basis, FTR‐Bench provides a series of standardized RL‐based benchmarking experiments baselines for obstacle‐crossing tasks, providing a solid foundation for subsequent algorithm design and performance comparison. Experimental results empirically indicate that SAC algorithms performs relatively well in single and mixed terrain traversal, but most algorithms struggle with multi‐terrain traversal skills, which calls the RL community for more substantial development. Our project is open‐source at https://github.com/nubot-nudt/FTR-Benchmark.
AbstractList ABSTRACT Tracked robots equipped with flippers and sensors are extensively employed in outdoor search and rescue scenarios. However, achieving precise motion control on complex terrains remains a significant challenge, often necessitating expert teleoperation. This stems from the high degree of robot joint freedom and the need for precise flipper coordination based on terrain roughness. To address this problem, we propose Flipper‐ Track Robot Bench mark (FTR‐Bench), a simulator featuring flipper‐track robots tasked with crossing various obstacles using reinforcement learning (RL) algorithms. The primary objective is to enable autonomous locomotion in environments that are too remote or hazardous for humans, such as disaster zones or planetary surfaces. Built on Isaac Lab, FTR‐Bench achieves efficient RL training at over 4000 FPS on an RTX 3070 GPU. Additionally, it integrates RL algorithms with OpenAI Gym interface specifications, enabling fast secondary development and verification. On this basis, FTR‐Bench provides a series of standardized RL‐based benchmarking experiments baselines for obstacle‐crossing tasks, providing a solid foundation for subsequent algorithm design and performance comparison. Experimental results empirically indicate that SAC algorithms performs relatively well in single and mixed terrain traversal, but most algorithms struggle with multi‐terrain traversal skills, which calls the RL community for more substantial development. Our project is open‐source at https://github.com/nubot-nudt/FTR-Benchmark.
Tracked robots equipped with flippers and sensors are extensively employed in outdoor search and rescue scenarios. However, achieving precise motion control on complex terrains remains a significant challenge, often necessitating expert teleoperation. This stems from the high degree of robot joint freedom and the need for precise flipper coordination based on terrain roughness. To address this problem, we propose F lipper‐ T rack R obot Bench mark ( FTR‐Bench ), a simulator featuring flipper‐track robots tasked with crossing various obstacles using reinforcement learning (RL) algorithms. The primary objective is to enable autonomous locomotion in environments that are too remote or hazardous for humans, such as disaster zones or planetary surfaces. Built on Isaac Lab, FTR‐Bench achieves efficient RL training at over 4000 FPS on an RTX 3070 GPU. Additionally, it integrates RL algorithms with OpenAI Gym interface specifications, enabling fast secondary development and verification. On this basis, FTR‐Bench provides a series of standardized RL‐based benchmarking experiments baselines for obstacle‐crossing tasks, providing a solid foundation for subsequent algorithm design and performance comparison. Experimental results empirically indicate that SAC algorithms performs relatively well in single and mixed terrain traversal, but most algorithms struggle with multi‐terrain traversal skills, which calls the RL community for more substantial development. Our project is open‐source at https://github.com/nubot-nudt/FTR-Benchmark .
Tracked robots equipped with flippers and sensors are extensively employed in outdoor search and rescue scenarios. However, achieving precise motion control on complex terrains remains a significant challenge, often necessitating expert teleoperation. This stems from the high degree of robot joint freedom and the need for precise flipper coordination based on terrain roughness. To address this problem, we propose Flipper‐ Track Robot Bench mark (FTR‐Bench), a simulator featuring flipper‐track robots tasked with crossing various obstacles using reinforcement learning (RL) algorithms. The primary objective is to enable autonomous locomotion in environments that are too remote or hazardous for humans, such as disaster zones or planetary surfaces. Built on Isaac Lab, FTR‐Bench achieves efficient RL training at over 4000 FPS on an RTX 3070 GPU. Additionally, it integrates RL algorithms with OpenAI Gym interface specifications, enabling fast secondary development and verification. On this basis, FTR‐Bench provides a series of standardized RL‐based benchmarking experiments baselines for obstacle‐crossing tasks, providing a solid foundation for subsequent algorithm design and performance comparison. Experimental results empirically indicate that SAC algorithms performs relatively well in single and mixed terrain traversal, but most algorithms struggle with multi‐terrain traversal skills, which calls the RL community for more substantial development. Our project is open‐source at https://github.com/nubot-nudt/FTR-Benchmark.
Author Xiao, Junhao
Zhang, Hongchuan
Xu, Xin
Lu, Huimin
Ren, Junkai
Pan, Hainan
Author_xml – sequence: 1
  givenname: Hongchuan
  surname: Zhang
  fullname: Zhang, Hongchuan
  organization: National University of Defense Technology
– sequence: 2
  givenname: Junkai
  orcidid: 0009-0008-9011-7267
  surname: Ren
  fullname: Ren, Junkai
  organization: National University of Defense Technology
– sequence: 3
  givenname: Junhao
  surname: Xiao
  fullname: Xiao, Junhao
  organization: National University of Defense Technology
– sequence: 4
  givenname: Hainan
  surname: Pan
  fullname: Pan, Hainan
  organization: National University of Defense Technology
– sequence: 5
  givenname: Huimin
  orcidid: 0000-0002-6375-581X
  surname: Lu
  fullname: Lu, Huimin
  email: lhmnew@nudt.edu.cn
  organization: National University of Defense Technology
– sequence: 6
  givenname: Xin
  surname: Xu
  fullname: Xu, Xin
  organization: National University of Defense Technology
BookMark eNp1kE1OwzAQhS1UJNrCghtEYsUirX_iJmZHCwGkSpWiIpaW64whbWoHJxXqjiNwRk5C2iB2rN5o5nszmjdAPessIHRJ8IhgTMferUaUcpqcoD7hfBJGYhL3_mouztCgrtcYRywRvI9e0mX2_fk1BavfboKjbJXfFPY1uAOoggwKa5zXsAXbBHNQ3h5mbStIy6KqwLfupVd6E2Ru5Zpg5mzjXXmOTo0qa7j41SF6Tu-Xs8dwvnh4mt3OQ015nIQ5i80kF3GkqaEmzw0zkWIaJ2JlFGYkwZQrpijn2kTAuIoFTkzCCdNccBBsiK66vZV37zuoG7l2O2_bk5JRRmlMSMxb6rqjtHd17cHIyhftn3tJsDzkJtvc5DG3lh137EdRwv5_UGaLaef4Ael5cfo
Cites_doi 10.1126/science.aat8414
10.1109/LRA.2021.3064227
10.1111/1467-8624.00127
10.1007/s10462-021-09997-9
10.1080/01691864.2022.2076570
10.1109/SSRR50563.2020.9292594
10.1007/s10994-021-05961-4
10.1002/rob.21887
10.1109/IROS.2017.8206546
10.1109/LRA.2018.2857927
10.1109/IROS.2016.7759447
10.1109/MRA.2013.2294914
10.1109/ROBIO.2007.4522406
10.1109/ICRA.2015.7139752
10.3390/rs15184616
10.1080/01691864.2019.1668848
10.1109/ICRA.2014.6907619
10.1007/s10339-011-0404-1
10.1109/LRA.2023.3270034
10.1109/TIV.2022.3223131
10.1109/CVPRW.2017.70
10.1109/LRA.2022.3185762
10.1126/scirobotics.abc5986
10.1016/j.birob.2021.100029
10.1109/LRA.2023.3337593
10.1109/LRA.2019.2931284
10.1109/MRA.2021.3114105
10.1002/rob.21584
10.1002/rob.20416
10.1109/SSRR.2016.7784284
10.1016/j.mechmachtheory.2023.105237
10.1002/rob.22236
10.1109/FUZZ48607.2020.9177581
ContentType Journal Article
Copyright 2025 Wiley Periodicals LLC.
Copyright_xml – notice: 2025 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rob.22528
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1556-4967
EndPage 2389
ExternalDocumentID 10_1002_rob_22528
ROB22528
Genre researchArticle
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
I-F
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
~02
~IA
~WT
AAYXX
CITATION
1OB
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2578-d37f6d974c2f2fddf3f4a3c089bfa0318025a3a255cf4e35a7908f8513c595e93
IEDL.DBID DR2
ISSN 1556-4959
IngestDate Sat Aug 23 13:17:18 EDT 2025
Wed Jul 30 23:55:35 EDT 2025
Wed Jul 23 09:40:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2578-d37f6d974c2f2fddf3f4a3c089bfa0318025a3a255cf4e35a7908f8513c595e93
Notes Hongchuan Zhang and Junkai Ren contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-9011-7267
0000-0002-6375-581X
PQID 3232271175
PQPubID 1006410
PageCount 15
ParticipantIDs proquest_journals_3232271175
crossref_primary_10_1002_rob_22528
wiley_primary_10_1002_rob_22528_ROB22528
PublicationCentury 2000
PublicationDate August 2025
2025-08-00
20250801
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of field robotics
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 6
2019; 4
2023; 182
2023; 15
2019; 33
2023; 8
2021; 28
2019; 36
2009
2007
2000; 71
2011; 12
2019; 364
2014; 21
2016; 33
2023; 40
2020; 5
2018; 3
2021; 34
2017; 70
2023
2022
2021
2020
2022; 7
2022; 35
2020b
2018
2022; 36
2020a
2017
2016
2015
2014
2022; 2
2021; 110
2022; 55
2011; 28
2024; 25
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
Schulman J. (e_1_2_10_38_1) 2015
e_1_2_10_2_1
Kuba J. G. (e_1_2_10_17_1) 2021; 34
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
Okada Y. (e_1_2_10_30_1) 2009
e_1_2_10_39_1
e_1_2_10_5_1
Chen Y. (e_1_2_10_8_1) 2022; 35
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_35_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
Zhong Y. (e_1_2_10_47_1) 2024; 25
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
Fujimoto S. (e_1_2_10_12_1) 2018
Witt C. S. (e_1_2_10_9_1) 2020
Ohno K. (e_1_2_10_29_1) 2007
Bledt G. (e_1_2_10_4_1) 2018
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_26_1
References_xml – volume: 8
  start-page: 1046
  issue: 2
  year: 2023
  end-page: 1056
  article-title: Milestones in Autonomous Driving and Intelligent Vehicles: Survey of Surveys
  publication-title: EEE Transactions on Intelligent Vehicles
– volume: 40
  start-page: 2010
  issue: 8
  year: 2023
  end-page: 2029
  article-title: Geometry‐Based Flipper Motion Planning for Articulated Tracked Robots Traversing Rough Terrain in Real‐Time
  publication-title: Journal of Field Robotics
– start-page: 3959
  year: 2015
  end-page: 3964
– start-page: 394
  year: 2020a
  end-page: 400
– volume: 55
  start-page: 945
  issue: 2
  year: 2022
  end-page: 990
  article-title: Reinforcement Learning in Robotic Applications: A Comprehensive Survey
  publication-title: Artificial Intelligence Review
– volume: 364
  issue: 6446
  year: 2019
  article-title: Trends and Challenges in Robot Manipulation
  publication-title: Science
– start-page: 1
  year: 2020b
  end-page: 8
– start-page: 6414
  year: 2017
  end-page: 6419
– volume: 182
  year: 2023
  article-title: Analysis of an All‐Terrain Tracked Robot With Innovative Suspension System
  publication-title: Mechanism and Machine Theory
– volume: 36
  start-page: 519
  issue: 11
  year: 2022
  end-page: 532
  article-title: An Open‐Source Software Framework for Reinforcement Learning‐Based Control of Tracked Robots in Simulated Indoor Environments
  publication-title: Advanced Robotics
– start-page: 2815
  year: 2009
  end-page: 2820
– volume: 4
  start-page: 4170
  issue: 4
  year: 2019
  end-page: 4176
  article-title: Dynamic Locomotion on Slippery Ground
  publication-title: EEE Robotics and Automation Letters
– volume: 70
  start-page: 2778
  year: 2017
  end-page: 2787
  article-title: Curiosity‐Driven Exploration by Self‐Supervised Prediction
– year: 2020
  article-title: Is Independent Learning All You Need in the Starcraft Multi‐Agent Challenge?
  publication-title: CoRR
– start-page: 5177
  year: 2014
  end-page: 5182
– year: 2018
– volume: 5
  issue: 47
  year: 2020
  article-title: Learning Quadrupedal Locomotion Over Challenging Terrain
  publication-title: Science Robotics
– volume: 25
  start-page: 32:1
  year: 2024
  end-page: 32:67
  article-title: Heterogeneous‐Agent Reinforcement Learning
  publication-title: Journal of Machine Learning Research
– volume: 71
  start-page: 137
  issue: 1
  year: 2000
  end-page: 144
  article-title: A Perception‐Action Perspective on Tool Use Development
  publication-title: Child Development
– start-page: 1
  year: 2018
  end-page: 8
– volume: 8
  start-page: 3740
  issue: 6
  year: 2023
  end-page: 3747
  article-title: Orbit: A Unified Simulation Framework for Interactive Robot Learning Environments
  publication-title: IEEE Robotics and Automation Letters
– volume: 35
  start-page: 5150
  year: 2022
  end-page: 5163
  article-title: Towards Human‐Level Bimanual Dexterous Manipulation With Reinforcement Learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 2
  issue: 1
  year: 2022
  article-title: A Survey of the Development of Quadruped Robots: Joint Configuration, Dynamic Locomotion Control Method and Mobile Manipulation Approach
  publication-title: Biomimetic Intelligence and Robotics
– volume: 3
  start-page: 3916
  issue: 4
  year: 2018
  end-page: 3921
  article-title: Data‐Driven Policy Transfer With Imprecise Perception Simulation
  publication-title: IEEE Robotics and Automation Letters
– volume: 33
  start-page: 1060
  issue: 20
  year: 2019
  end-page: 1071
  article-title: Research on Traversability of Tracked Vehicle on Slope With Unfixed Obstacles: Derivation of Climbing‐Over, Tipping‐Over, and Sliding‐Down Conditions
  publication-title: Advanced Robotics
– volume: 34
  start-page: 13458
  year: 2021
  end-page: 13470
  article-title: Settling the Variance of Multi‐Agent Policy Gradients
  publication-title: Advances in Neural Information Processing Systems
– volume: 21
  start-page: 64
  issue: 1
  year: 2014
  end-page: 73
  article-title: Model‐Predictive Motion Planning: Several Key Developments for Autonomous Mobile Robots
  publication-title: IEEE Robotics & Automation Magazine
– volume: 6
  start-page: 3317
  issue: 2
  year: 2021
  end-page: 3324
  article-title: Fast‐Lio: A Fast, Robust Lidar‐Inertial Odometry Package by Tightly‐Coupled Iterated Kalman Filter
  publication-title: IEEE Robotics and Automation Letters
– start-page: 1587
  year: 2018
  end-page: 1596
– start-page: 100
  year: 2016
  end-page: 105
– volume: 28
  start-page: 10
  issue: 4
  year: 2021
  end-page: 20
  article-title: Reinforcement Learning Based, Staircase Negotiation Learning: Simulation and Transfer to Reality for Articulated Tracked Robots
  publication-title: IEEE Robotics & Automation Magazine
– year: 2023
– start-page: 2889
  year: 2016
  end-page: 2894
– volume: 12
  start-page: 319
  issue: 4
  year: 2011
  end-page: 340
  article-title: Model Learning for Robot Control: A Survey
  publication-title: Cognitive Processing
– volume: 15
  start-page: 4616
  issue: 18
  year: 2023
  article-title: Deep Reinforcement Learning for Flipper Control of Tracked Robots in Urban Rescuing Environments
  publication-title: Remote Sensing
– volume: 36
  start-page: 1171
  issue: 7
  year: 2019
  end-page: 1191
  article-title: The Current State and Future Outlook of Rescue Robotics
  publication-title: Journal Field Robotics
– volume: 110
  start-page: 2419
  issue: 9
  year: 2021
  end-page: 2468
  article-title: Challenges of Real‐World Reinforcement Learning: Definitions, Benchmarks and Analysis
  publication-title: Machine Learning
– year: 2021
  article-title: Isaac Gym: High Performance GPU Based Physics Simulation for Robot Learning
– volume: 7
  start-page: 7794
  issue: 3
  year: 2022
  end-page: 7801
  article-title: Autonomous State‐Based Flipper Control for Articulated Tracked Robots in Urban Environments
  publication-title: IEEE Robotics and Automation Letters
– year: 2017
– start-page: 1889
  year: 2015
  end-page: 1897
– year: 2022
  article-title: The Surprising Effectiveness of PPO in Cooperative Multi‐Agent Games
– start-page: 3012
  year: 2007
  end-page: 3018
– year: 2015
– volume: 28
  start-page: 875
  issue: 6
  year: 2011
  end-page: 893
  article-title: Shared Autonomy System for Tracked Vehicles on Rough Terrain Based on Continuous Three‐Dimensional Terrain Scanning
  publication-title: Journal Field Robotics
– start-page: 1612
  year: 2007
  end-page: 1617
– volume: 33
  start-page: 901
  issue: 7
  year: 2016
  end-page: 930
  article-title: Adaptive Robust Three‐Dimensional Trajectory Tracking for Actively Articulated Tracked Vehicles
  publication-title: Journal Field Robotics
– ident: e_1_2_10_3_1
  doi: 10.1126/science.aat8414
– volume: 35
  start-page: 5150
  year: 2022
  ident: e_1_2_10_8_1
  article-title: Towards Human‐Level Bimanual Dexterous Manipulation With Reinforcement Learning
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_10_33_1
– start-page: 1587
  volume-title: International Conference on Machine Learning
  year: 2018
  ident: e_1_2_10_12_1
– ident: e_1_2_10_43_1
  doi: 10.1109/LRA.2021.3064227
– start-page: 2815
  volume-title: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 11‐15, 2009, St. Louis, MO, USA
  year: 2009
  ident: e_1_2_10_30_1
– ident: e_1_2_10_39_1
– ident: e_1_2_10_20_1
  doi: 10.1111/1467-8624.00127
– ident: e_1_2_10_40_1
  doi: 10.1007/s10462-021-09997-9
– ident: e_1_2_10_22_1
  doi: 10.1080/01691864.2022.2076570
– ident: e_1_2_10_23_1
  doi: 10.1109/SSRR50563.2020.9292594
– year: 2020
  ident: e_1_2_10_9_1
  article-title: Is Independent Learning All You Need in the Starcraft Multi‐Agent Challenge?
  publication-title: CoRR
– ident: e_1_2_10_11_1
  doi: 10.1007/s10994-021-05961-4
– ident: e_1_2_10_10_1
  doi: 10.1002/rob.21887
– ident: e_1_2_10_21_1
– ident: e_1_2_10_37_1
  doi: 10.1109/IROS.2017.8206546
– ident: e_1_2_10_36_1
  doi: 10.1109/LRA.2018.2857927
– ident: e_1_2_10_46_1
– ident: e_1_2_10_35_1
  doi: 10.1109/IROS.2016.7759447
– ident: e_1_2_10_15_1
  doi: 10.1109/MRA.2013.2294914
– ident: e_1_2_10_19_1
– ident: e_1_2_10_42_1
  doi: 10.1109/ROBIO.2007.4522406
– ident: e_1_2_10_49_1
  doi: 10.1109/ICRA.2015.7139752
– ident: e_1_2_10_32_1
  doi: 10.3390/rs15184616
– ident: e_1_2_10_45_1
  doi: 10.1080/01691864.2019.1668848
– ident: e_1_2_10_48_1
  doi: 10.1109/ICRA.2014.6907619
– start-page: 3012
  volume-title: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 29 ‐ November 2, 2007, Sheraton Hotel and Marina, San Diego, California, USA
  year: 2007
  ident: e_1_2_10_29_1
– ident: e_1_2_10_28_1
  doi: 10.1007/s10339-011-0404-1
– volume: 34
  start-page: 13458
  year: 2021
  ident: e_1_2_10_17_1
  article-title: Settling the Variance of Multi‐Agent Policy Gradients
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_10_26_1
  doi: 10.1109/LRA.2023.3270034
– ident: e_1_2_10_7_1
  doi: 10.1109/TIV.2022.3223131
– ident: e_1_2_10_34_1
  doi: 10.1109/CVPRW.2017.70
– ident: e_1_2_10_2_1
  doi: 10.1109/LRA.2022.3185762
– ident: e_1_2_10_18_1
  doi: 10.1126/scirobotics.abc5986
– ident: e_1_2_10_5_1
  doi: 10.1016/j.birob.2021.100029
– ident: e_1_2_10_44_1
  doi: 10.1109/LRA.2023.3337593
– volume: 25
  start-page: 32:1
  year: 2024
  ident: e_1_2_10_47_1
  article-title: Heterogeneous‐Agent Reinforcement Learning
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_10_14_1
– ident: e_1_2_10_16_1
  doi: 10.1109/LRA.2019.2931284
– ident: e_1_2_10_25_1
  doi: 10.1109/MRA.2021.3114105
– ident: e_1_2_10_13_1
  doi: 10.1002/rob.21584
– ident: e_1_2_10_31_1
  doi: 10.1002/rob.20416
– ident: e_1_2_10_27_1
  doi: 10.1109/SSRR.2016.7784284
– start-page: 1
  volume-title: 2018 IEEE International Conference on Robotics and Automation, ICRA 2018, Brisbane, Australia, May 21‐25, 2018
  year: 2018
  ident: e_1_2_10_4_1
– start-page: 1889
  volume-title: International Conference on Machine Learning
  year: 2015
  ident: e_1_2_10_38_1
– ident: e_1_2_10_41_1
  doi: 10.1016/j.mechmachtheory.2023.105237
– ident: e_1_2_10_6_1
  doi: 10.1002/rob.22236
– ident: e_1_2_10_24_1
  doi: 10.1109/FUZZ48607.2020.9177581
SSID ssj0043895
Score 2.4325686
Snippet ABSTRACT Tracked robots equipped with flippers and sensors are extensively employed in outdoor search and rescue scenarios. However, achieving precise motion...
Tracked robots equipped with flippers and sensors are extensively employed in outdoor search and rescue scenarios. However, achieving precise motion control on...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 2375
SubjectTerms Algorithms
artificial intelligence
Barriers
Benchmarks
Deep learning
Locomotion
Machine learning
Motion control
Planetary surfaces
Robot control
Robots
Terrain
tracked robot
Title FTR‐Bench: Benchmarking Deep Reinforcement Learning for Flipper‐Track Robot Control
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.22528
https://www.proquest.com/docview/3232271175
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELaqTjDwjygUZCEGlrTBjvMDEy1EFQNIUSs6IEW2YwMqNFGbLkw8As_Ik2A7SVuQkBBToigXJec7-7vL-TsAThI38CQXjiWlZ1sOd5AVcMQtQvRPJymYy02V763bGzg3QzKsgYtqL0zBDzFPuGnPMPO1dnDKpu0FaegkZS1ljEhv9NW1WhoQRXPqKN3UmxiuVOJaKggIKlYhG7Xnkt_XogXAXIapZp0J18FD9YZFecmoNctZi7_9IG_85ydsgLUSf8LLwmA2QU2Mt8DqEivhNrgP-9Hn-0dH2e_TOTSHV2pS6vBKiAxGwrCtcpNYhCVB6yNUl2D48pxlYqKk1RrIRzBKWZrDblEOvwMG4XW_27PK_gsW145sJdiTbqICDo4kkkkisXQo5rYfMEn1ZKDwEsVUBSVcOgIT6gW2LxWEw5wERAR4F9TH6VjsAajEGRY2E4ydOQlPGMOIS-Tbkin85dMGOK5GIs4Kmo24IFRGsdJSbLTUAM1qjOLS06YxVpAQeZpwtAFOjbJ_f0Ac3XXMyf7fbz0AK0i3_DU1f01QzyczcahwSM6OjMF9AaUI24Y
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTsJAEJ4gHtSD_0YUdWM8eCnU3f4aLwISVMSkgcjFNN3trhoUCMLFk4_gM_ok7m4poImJ8dSm6TTd2Zndb6bTbwCOYsd3BeOWIYRrGhazsOEzzAzbVh-dBKcO01W-DafWsq7adjsDZ-m_MAk_xCThpjxDr9fKwVVCujhlDR30aEFaI_bmYF519FZuWQkm5FGqrbet2VJtx5BhgJ_yCpm4OBH9vhtNIeYsUNU7TXUF7tN3TApMOoXRkBbY2w_6xv8OYhWWxxAUnSc2swYZ3l2HpRliwg24qzaDz_ePkjThx1OkDy-RzqqjCud9FHBNuMp0bhGNOVofkLyEqs9P_T4fSGm5DbIOCnq0N0TlpCJ-E1rVi2a5ZoxbMBhM-bIRE1c4sYw5GBZYxLEgwooIMz2fikitBxIyRSSScQkTFid25PqmJySKI8z2be6TLch2e12-DUiKU8JNyik9sWIWU0owE9gzBZUQzItycJhORdhPmDbChFMZh1JLodZSDvLpJIVjZ3sNiUSF2FWcozk41tr-_QFhcFvSJzt_v_UAFmrNm3pYv2xc78IiVh2AdQlgHrLDwYjvSVgypPva-r4AViHfnw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6qgujBt1ituogHL6lxN0892dbgiypB0YMQsptdFbUNNb148if4G_0l7m6StgqCeEoImZCdndn9ZjL5BmA7cXxXMG4ZQrimYTELGz7DzLBt9dFJcOowXeXbdo6vrdNb-7YCB-W_MDk_xCDhpjxDr9fKwdNE7A5JQ3tdWpfGiL0xmLAc01ORVysccEeprt62Jku1HUNGAX5JK2Ti3YHo981oiDBHcareaIJZuCtfMa8vear3M1pnbz_YG_85hjmYKQAoOswtZh4qvLMA0yO0hItwE1yFn-8fDWnAD_tIH15inVNHLc5TFHJNt8p0ZhEVDK33SF5CwfNjmvKelJabIHtCYZd2M9TM6-GX4Do4umoeG0UDBoMpTzYS4gonkREHwwKLJBFEWDFhpudTEavVQAKmmMQyKmHC4sSOXd_0hMRwhNm-zX2yDOOdboevAJLilHCTckr3rIQllBLMBPZMQSUA8-IqbJUzEaU5z0aUMyrjSGop0lqqQq2co6hwtdeISEyIXcU4WoUdrezfHxCFFw19svr3Wzdh8rIVROcn7bM1mMKq_a-u_6vBeNbr83WJSTK6oW3vC_Uz3lc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FTR%E2%80%90Bench%3A+Benchmarking+Deep+Reinforcement+Learning+for+Flipper%E2%80%90Track+Robot+Control&rft.jtitle=Journal+of+field+robotics&rft.au=Zhang%2C+Hongchuan&rft.au=Ren%2C+Junkai&rft.au=Xiao%2C+Junhao&rft.au=Pan%2C+Hainan&rft.date=2025-08-01&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=42&rft.issue=5&rft.spage=2375&rft.epage=2389&rft_id=info:doi/10.1002%2Frob.22528&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rob_22528
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon