FTR‐Bench: Benchmarking Deep Reinforcement Learning for Flipper‐Track Robot Control
ABSTRACT Tracked robots equipped with flippers and sensors are extensively employed in outdoor search and rescue scenarios. However, achieving precise motion control on complex terrains remains a significant challenge, often necessitating expert teleoperation. This stems from the high degree of robo...
Saved in:
Published in | Journal of field robotics Vol. 42; no. 5; pp. 2375 - 2389 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1556-4959 1556-4967 |
DOI | 10.1002/rob.22528 |
Cover
Loading…
Abstract | ABSTRACT
Tracked robots equipped with flippers and sensors are extensively employed in outdoor search and rescue scenarios. However, achieving precise motion control on complex terrains remains a significant challenge, often necessitating expert teleoperation. This stems from the high degree of robot joint freedom and the need for precise flipper coordination based on terrain roughness. To address this problem, we propose Flipper‐
Track
Robot
Bench mark (FTR‐Bench), a simulator featuring flipper‐track robots tasked with crossing various obstacles using reinforcement learning (RL) algorithms. The primary objective is to enable autonomous locomotion in environments that are too remote or hazardous for humans, such as disaster zones or planetary surfaces. Built on Isaac Lab, FTR‐Bench achieves efficient RL training at over 4000 FPS on an RTX 3070 GPU. Additionally, it integrates RL algorithms with OpenAI Gym interface specifications, enabling fast secondary development and verification. On this basis, FTR‐Bench provides a series of standardized RL‐based benchmarking experiments baselines for obstacle‐crossing tasks, providing a solid foundation for subsequent algorithm design and performance comparison. Experimental results empirically indicate that SAC algorithms performs relatively well in single and mixed terrain traversal, but most algorithms struggle with multi‐terrain traversal skills, which calls the RL community for more substantial development. Our project is open‐source at https://github.com/nubot-nudt/FTR-Benchmark. |
---|---|
AbstractList | ABSTRACT
Tracked robots equipped with flippers and sensors are extensively employed in outdoor search and rescue scenarios. However, achieving precise motion control on complex terrains remains a significant challenge, often necessitating expert teleoperation. This stems from the high degree of robot joint freedom and the need for precise flipper coordination based on terrain roughness. To address this problem, we propose Flipper‐
Track
Robot
Bench mark (FTR‐Bench), a simulator featuring flipper‐track robots tasked with crossing various obstacles using reinforcement learning (RL) algorithms. The primary objective is to enable autonomous locomotion in environments that are too remote or hazardous for humans, such as disaster zones or planetary surfaces. Built on Isaac Lab, FTR‐Bench achieves efficient RL training at over 4000 FPS on an RTX 3070 GPU. Additionally, it integrates RL algorithms with OpenAI Gym interface specifications, enabling fast secondary development and verification. On this basis, FTR‐Bench provides a series of standardized RL‐based benchmarking experiments baselines for obstacle‐crossing tasks, providing a solid foundation for subsequent algorithm design and performance comparison. Experimental results empirically indicate that SAC algorithms performs relatively well in single and mixed terrain traversal, but most algorithms struggle with multi‐terrain traversal skills, which calls the RL community for more substantial development. Our project is open‐source at https://github.com/nubot-nudt/FTR-Benchmark. Tracked robots equipped with flippers and sensors are extensively employed in outdoor search and rescue scenarios. However, achieving precise motion control on complex terrains remains a significant challenge, often necessitating expert teleoperation. This stems from the high degree of robot joint freedom and the need for precise flipper coordination based on terrain roughness. To address this problem, we propose F lipper‐ T rack R obot Bench mark ( FTR‐Bench ), a simulator featuring flipper‐track robots tasked with crossing various obstacles using reinforcement learning (RL) algorithms. The primary objective is to enable autonomous locomotion in environments that are too remote or hazardous for humans, such as disaster zones or planetary surfaces. Built on Isaac Lab, FTR‐Bench achieves efficient RL training at over 4000 FPS on an RTX 3070 GPU. Additionally, it integrates RL algorithms with OpenAI Gym interface specifications, enabling fast secondary development and verification. On this basis, FTR‐Bench provides a series of standardized RL‐based benchmarking experiments baselines for obstacle‐crossing tasks, providing a solid foundation for subsequent algorithm design and performance comparison. Experimental results empirically indicate that SAC algorithms performs relatively well in single and mixed terrain traversal, but most algorithms struggle with multi‐terrain traversal skills, which calls the RL community for more substantial development. Our project is open‐source at https://github.com/nubot-nudt/FTR-Benchmark . Tracked robots equipped with flippers and sensors are extensively employed in outdoor search and rescue scenarios. However, achieving precise motion control on complex terrains remains a significant challenge, often necessitating expert teleoperation. This stems from the high degree of robot joint freedom and the need for precise flipper coordination based on terrain roughness. To address this problem, we propose Flipper‐ Track Robot Bench mark (FTR‐Bench), a simulator featuring flipper‐track robots tasked with crossing various obstacles using reinforcement learning (RL) algorithms. The primary objective is to enable autonomous locomotion in environments that are too remote or hazardous for humans, such as disaster zones or planetary surfaces. Built on Isaac Lab, FTR‐Bench achieves efficient RL training at over 4000 FPS on an RTX 3070 GPU. Additionally, it integrates RL algorithms with OpenAI Gym interface specifications, enabling fast secondary development and verification. On this basis, FTR‐Bench provides a series of standardized RL‐based benchmarking experiments baselines for obstacle‐crossing tasks, providing a solid foundation for subsequent algorithm design and performance comparison. Experimental results empirically indicate that SAC algorithms performs relatively well in single and mixed terrain traversal, but most algorithms struggle with multi‐terrain traversal skills, which calls the RL community for more substantial development. Our project is open‐source at https://github.com/nubot-nudt/FTR-Benchmark. |
Author | Xiao, Junhao Zhang, Hongchuan Xu, Xin Lu, Huimin Ren, Junkai Pan, Hainan |
Author_xml | – sequence: 1 givenname: Hongchuan surname: Zhang fullname: Zhang, Hongchuan organization: National University of Defense Technology – sequence: 2 givenname: Junkai orcidid: 0009-0008-9011-7267 surname: Ren fullname: Ren, Junkai organization: National University of Defense Technology – sequence: 3 givenname: Junhao surname: Xiao fullname: Xiao, Junhao organization: National University of Defense Technology – sequence: 4 givenname: Hainan surname: Pan fullname: Pan, Hainan organization: National University of Defense Technology – sequence: 5 givenname: Huimin orcidid: 0000-0002-6375-581X surname: Lu fullname: Lu, Huimin email: lhmnew@nudt.edu.cn organization: National University of Defense Technology – sequence: 6 givenname: Xin surname: Xu fullname: Xu, Xin organization: National University of Defense Technology |
BookMark | eNp1kE1OwzAQhS1UJNrCghtEYsUirX_iJmZHCwGkSpWiIpaW64whbWoHJxXqjiNwRk5C2iB2rN5o5nszmjdAPessIHRJ8IhgTMferUaUcpqcoD7hfBJGYhL3_mouztCgrtcYRywRvI9e0mX2_fk1BavfboKjbJXfFPY1uAOoggwKa5zXsAXbBHNQ3h5mbStIy6KqwLfupVd6E2Ru5Zpg5mzjXXmOTo0qa7j41SF6Tu-Xs8dwvnh4mt3OQ015nIQ5i80kF3GkqaEmzw0zkWIaJ2JlFGYkwZQrpijn2kTAuIoFTkzCCdNccBBsiK66vZV37zuoG7l2O2_bk5JRRmlMSMxb6rqjtHd17cHIyhftn3tJsDzkJtvc5DG3lh137EdRwv5_UGaLaef4Ael5cfo |
Cites_doi | 10.1126/science.aat8414 10.1109/LRA.2021.3064227 10.1111/1467-8624.00127 10.1007/s10462-021-09997-9 10.1080/01691864.2022.2076570 10.1109/SSRR50563.2020.9292594 10.1007/s10994-021-05961-4 10.1002/rob.21887 10.1109/IROS.2017.8206546 10.1109/LRA.2018.2857927 10.1109/IROS.2016.7759447 10.1109/MRA.2013.2294914 10.1109/ROBIO.2007.4522406 10.1109/ICRA.2015.7139752 10.3390/rs15184616 10.1080/01691864.2019.1668848 10.1109/ICRA.2014.6907619 10.1007/s10339-011-0404-1 10.1109/LRA.2023.3270034 10.1109/TIV.2022.3223131 10.1109/CVPRW.2017.70 10.1109/LRA.2022.3185762 10.1126/scirobotics.abc5986 10.1016/j.birob.2021.100029 10.1109/LRA.2023.3337593 10.1109/LRA.2019.2931284 10.1109/MRA.2021.3114105 10.1002/rob.21584 10.1002/rob.20416 10.1109/SSRR.2016.7784284 10.1016/j.mechmachtheory.2023.105237 10.1002/rob.22236 10.1109/FUZZ48607.2020.9177581 |
ContentType | Journal Article |
Copyright | 2025 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2025 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1002/rob.22528 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1556-4967 |
EndPage | 2389 |
ExternalDocumentID | 10_1002_rob_22528 ROB22528 |
Genre | researchArticle |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 FEDTE G-S GNP GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ I-F IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XV2 ~02 ~IA ~WT AAYXX CITATION 1OB 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2578-d37f6d974c2f2fddf3f4a3c089bfa0318025a3a255cf4e35a7908f8513c595e93 |
IEDL.DBID | DR2 |
ISSN | 1556-4959 |
IngestDate | Sat Aug 23 13:17:18 EDT 2025 Wed Jul 30 23:55:35 EDT 2025 Wed Jul 23 09:40:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2578-d37f6d974c2f2fddf3f4a3c089bfa0318025a3a255cf4e35a7908f8513c595e93 |
Notes | Hongchuan Zhang and Junkai Ren contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0008-9011-7267 0000-0002-6375-581X |
PQID | 3232271175 |
PQPubID | 1006410 |
PageCount | 15 |
ParticipantIDs | proquest_journals_3232271175 crossref_primary_10_1002_rob_22528 wiley_primary_10_1002_rob_22528_ROB22528 |
PublicationCentury | 2000 |
PublicationDate | August 2025 2025-08-00 20250801 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: August 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Journal of field robotics |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 6 2019; 4 2023; 182 2023; 15 2019; 33 2023; 8 2021; 28 2019; 36 2009 2007 2000; 71 2011; 12 2019; 364 2014; 21 2016; 33 2023; 40 2020; 5 2018; 3 2021; 34 2017; 70 2023 2022 2021 2020 2022; 7 2022; 35 2020b 2018 2022; 36 2020a 2017 2016 2015 2014 2022; 2 2021; 110 2022; 55 2011; 28 2024; 25 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_42_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_40_1 Schulman J. (e_1_2_10_38_1) 2015 e_1_2_10_2_1 Kuba J. G. (e_1_2_10_17_1) 2021; 34 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 Okada Y. (e_1_2_10_30_1) 2009 e_1_2_10_39_1 e_1_2_10_5_1 Chen Y. (e_1_2_10_8_1) 2022; 35 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_35_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 Zhong Y. (e_1_2_10_47_1) 2024; 25 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 Fujimoto S. (e_1_2_10_12_1) 2018 Witt C. S. (e_1_2_10_9_1) 2020 Ohno K. (e_1_2_10_29_1) 2007 Bledt G. (e_1_2_10_4_1) 2018 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_26_1 |
References_xml | – volume: 8 start-page: 1046 issue: 2 year: 2023 end-page: 1056 article-title: Milestones in Autonomous Driving and Intelligent Vehicles: Survey of Surveys publication-title: EEE Transactions on Intelligent Vehicles – volume: 40 start-page: 2010 issue: 8 year: 2023 end-page: 2029 article-title: Geometry‐Based Flipper Motion Planning for Articulated Tracked Robots Traversing Rough Terrain in Real‐Time publication-title: Journal of Field Robotics – start-page: 3959 year: 2015 end-page: 3964 – start-page: 394 year: 2020a end-page: 400 – volume: 55 start-page: 945 issue: 2 year: 2022 end-page: 990 article-title: Reinforcement Learning in Robotic Applications: A Comprehensive Survey publication-title: Artificial Intelligence Review – volume: 364 issue: 6446 year: 2019 article-title: Trends and Challenges in Robot Manipulation publication-title: Science – start-page: 1 year: 2020b end-page: 8 – start-page: 6414 year: 2017 end-page: 6419 – volume: 182 year: 2023 article-title: Analysis of an All‐Terrain Tracked Robot With Innovative Suspension System publication-title: Mechanism and Machine Theory – volume: 36 start-page: 519 issue: 11 year: 2022 end-page: 532 article-title: An Open‐Source Software Framework for Reinforcement Learning‐Based Control of Tracked Robots in Simulated Indoor Environments publication-title: Advanced Robotics – start-page: 2815 year: 2009 end-page: 2820 – volume: 4 start-page: 4170 issue: 4 year: 2019 end-page: 4176 article-title: Dynamic Locomotion on Slippery Ground publication-title: EEE Robotics and Automation Letters – volume: 70 start-page: 2778 year: 2017 end-page: 2787 article-title: Curiosity‐Driven Exploration by Self‐Supervised Prediction – year: 2020 article-title: Is Independent Learning All You Need in the Starcraft Multi‐Agent Challenge? publication-title: CoRR – start-page: 5177 year: 2014 end-page: 5182 – year: 2018 – volume: 5 issue: 47 year: 2020 article-title: Learning Quadrupedal Locomotion Over Challenging Terrain publication-title: Science Robotics – volume: 25 start-page: 32:1 year: 2024 end-page: 32:67 article-title: Heterogeneous‐Agent Reinforcement Learning publication-title: Journal of Machine Learning Research – volume: 71 start-page: 137 issue: 1 year: 2000 end-page: 144 article-title: A Perception‐Action Perspective on Tool Use Development publication-title: Child Development – start-page: 1 year: 2018 end-page: 8 – volume: 8 start-page: 3740 issue: 6 year: 2023 end-page: 3747 article-title: Orbit: A Unified Simulation Framework for Interactive Robot Learning Environments publication-title: IEEE Robotics and Automation Letters – volume: 35 start-page: 5150 year: 2022 end-page: 5163 article-title: Towards Human‐Level Bimanual Dexterous Manipulation With Reinforcement Learning publication-title: Advances in Neural Information Processing Systems – volume: 2 issue: 1 year: 2022 article-title: A Survey of the Development of Quadruped Robots: Joint Configuration, Dynamic Locomotion Control Method and Mobile Manipulation Approach publication-title: Biomimetic Intelligence and Robotics – volume: 3 start-page: 3916 issue: 4 year: 2018 end-page: 3921 article-title: Data‐Driven Policy Transfer With Imprecise Perception Simulation publication-title: IEEE Robotics and Automation Letters – volume: 33 start-page: 1060 issue: 20 year: 2019 end-page: 1071 article-title: Research on Traversability of Tracked Vehicle on Slope With Unfixed Obstacles: Derivation of Climbing‐Over, Tipping‐Over, and Sliding‐Down Conditions publication-title: Advanced Robotics – volume: 34 start-page: 13458 year: 2021 end-page: 13470 article-title: Settling the Variance of Multi‐Agent Policy Gradients publication-title: Advances in Neural Information Processing Systems – volume: 21 start-page: 64 issue: 1 year: 2014 end-page: 73 article-title: Model‐Predictive Motion Planning: Several Key Developments for Autonomous Mobile Robots publication-title: IEEE Robotics & Automation Magazine – volume: 6 start-page: 3317 issue: 2 year: 2021 end-page: 3324 article-title: Fast‐Lio: A Fast, Robust Lidar‐Inertial Odometry Package by Tightly‐Coupled Iterated Kalman Filter publication-title: IEEE Robotics and Automation Letters – start-page: 1587 year: 2018 end-page: 1596 – start-page: 100 year: 2016 end-page: 105 – volume: 28 start-page: 10 issue: 4 year: 2021 end-page: 20 article-title: Reinforcement Learning Based, Staircase Negotiation Learning: Simulation and Transfer to Reality for Articulated Tracked Robots publication-title: IEEE Robotics & Automation Magazine – year: 2023 – start-page: 2889 year: 2016 end-page: 2894 – volume: 12 start-page: 319 issue: 4 year: 2011 end-page: 340 article-title: Model Learning for Robot Control: A Survey publication-title: Cognitive Processing – volume: 15 start-page: 4616 issue: 18 year: 2023 article-title: Deep Reinforcement Learning for Flipper Control of Tracked Robots in Urban Rescuing Environments publication-title: Remote Sensing – volume: 36 start-page: 1171 issue: 7 year: 2019 end-page: 1191 article-title: The Current State and Future Outlook of Rescue Robotics publication-title: Journal Field Robotics – volume: 110 start-page: 2419 issue: 9 year: 2021 end-page: 2468 article-title: Challenges of Real‐World Reinforcement Learning: Definitions, Benchmarks and Analysis publication-title: Machine Learning – year: 2021 article-title: Isaac Gym: High Performance GPU Based Physics Simulation for Robot Learning – volume: 7 start-page: 7794 issue: 3 year: 2022 end-page: 7801 article-title: Autonomous State‐Based Flipper Control for Articulated Tracked Robots in Urban Environments publication-title: IEEE Robotics and Automation Letters – year: 2017 – start-page: 1889 year: 2015 end-page: 1897 – year: 2022 article-title: The Surprising Effectiveness of PPO in Cooperative Multi‐Agent Games – start-page: 3012 year: 2007 end-page: 3018 – year: 2015 – volume: 28 start-page: 875 issue: 6 year: 2011 end-page: 893 article-title: Shared Autonomy System for Tracked Vehicles on Rough Terrain Based on Continuous Three‐Dimensional Terrain Scanning publication-title: Journal Field Robotics – start-page: 1612 year: 2007 end-page: 1617 – volume: 33 start-page: 901 issue: 7 year: 2016 end-page: 930 article-title: Adaptive Robust Three‐Dimensional Trajectory Tracking for Actively Articulated Tracked Vehicles publication-title: Journal Field Robotics – ident: e_1_2_10_3_1 doi: 10.1126/science.aat8414 – volume: 35 start-page: 5150 year: 2022 ident: e_1_2_10_8_1 article-title: Towards Human‐Level Bimanual Dexterous Manipulation With Reinforcement Learning publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_10_33_1 – start-page: 1587 volume-title: International Conference on Machine Learning year: 2018 ident: e_1_2_10_12_1 – ident: e_1_2_10_43_1 doi: 10.1109/LRA.2021.3064227 – start-page: 2815 volume-title: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 11‐15, 2009, St. Louis, MO, USA year: 2009 ident: e_1_2_10_30_1 – ident: e_1_2_10_39_1 – ident: e_1_2_10_20_1 doi: 10.1111/1467-8624.00127 – ident: e_1_2_10_40_1 doi: 10.1007/s10462-021-09997-9 – ident: e_1_2_10_22_1 doi: 10.1080/01691864.2022.2076570 – ident: e_1_2_10_23_1 doi: 10.1109/SSRR50563.2020.9292594 – year: 2020 ident: e_1_2_10_9_1 article-title: Is Independent Learning All You Need in the Starcraft Multi‐Agent Challenge? publication-title: CoRR – ident: e_1_2_10_11_1 doi: 10.1007/s10994-021-05961-4 – ident: e_1_2_10_10_1 doi: 10.1002/rob.21887 – ident: e_1_2_10_21_1 – ident: e_1_2_10_37_1 doi: 10.1109/IROS.2017.8206546 – ident: e_1_2_10_36_1 doi: 10.1109/LRA.2018.2857927 – ident: e_1_2_10_46_1 – ident: e_1_2_10_35_1 doi: 10.1109/IROS.2016.7759447 – ident: e_1_2_10_15_1 doi: 10.1109/MRA.2013.2294914 – ident: e_1_2_10_19_1 – ident: e_1_2_10_42_1 doi: 10.1109/ROBIO.2007.4522406 – ident: e_1_2_10_49_1 doi: 10.1109/ICRA.2015.7139752 – ident: e_1_2_10_32_1 doi: 10.3390/rs15184616 – ident: e_1_2_10_45_1 doi: 10.1080/01691864.2019.1668848 – ident: e_1_2_10_48_1 doi: 10.1109/ICRA.2014.6907619 – start-page: 3012 volume-title: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 29 ‐ November 2, 2007, Sheraton Hotel and Marina, San Diego, California, USA year: 2007 ident: e_1_2_10_29_1 – ident: e_1_2_10_28_1 doi: 10.1007/s10339-011-0404-1 – volume: 34 start-page: 13458 year: 2021 ident: e_1_2_10_17_1 article-title: Settling the Variance of Multi‐Agent Policy Gradients publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_10_26_1 doi: 10.1109/LRA.2023.3270034 – ident: e_1_2_10_7_1 doi: 10.1109/TIV.2022.3223131 – ident: e_1_2_10_34_1 doi: 10.1109/CVPRW.2017.70 – ident: e_1_2_10_2_1 doi: 10.1109/LRA.2022.3185762 – ident: e_1_2_10_18_1 doi: 10.1126/scirobotics.abc5986 – ident: e_1_2_10_5_1 doi: 10.1016/j.birob.2021.100029 – ident: e_1_2_10_44_1 doi: 10.1109/LRA.2023.3337593 – volume: 25 start-page: 32:1 year: 2024 ident: e_1_2_10_47_1 article-title: Heterogeneous‐Agent Reinforcement Learning publication-title: Journal of Machine Learning Research – ident: e_1_2_10_14_1 – ident: e_1_2_10_16_1 doi: 10.1109/LRA.2019.2931284 – ident: e_1_2_10_25_1 doi: 10.1109/MRA.2021.3114105 – ident: e_1_2_10_13_1 doi: 10.1002/rob.21584 – ident: e_1_2_10_31_1 doi: 10.1002/rob.20416 – ident: e_1_2_10_27_1 doi: 10.1109/SSRR.2016.7784284 – start-page: 1 volume-title: 2018 IEEE International Conference on Robotics and Automation, ICRA 2018, Brisbane, Australia, May 21‐25, 2018 year: 2018 ident: e_1_2_10_4_1 – start-page: 1889 volume-title: International Conference on Machine Learning year: 2015 ident: e_1_2_10_38_1 – ident: e_1_2_10_41_1 doi: 10.1016/j.mechmachtheory.2023.105237 – ident: e_1_2_10_6_1 doi: 10.1002/rob.22236 – ident: e_1_2_10_24_1 doi: 10.1109/FUZZ48607.2020.9177581 |
SSID | ssj0043895 |
Score | 2.4325686 |
Snippet | ABSTRACT
Tracked robots equipped with flippers and sensors are extensively employed in outdoor search and rescue scenarios. However, achieving precise motion... Tracked robots equipped with flippers and sensors are extensively employed in outdoor search and rescue scenarios. However, achieving precise motion control on... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2375 |
SubjectTerms | Algorithms artificial intelligence Barriers Benchmarks Deep learning Locomotion Machine learning Motion control Planetary surfaces Robot control Robots Terrain tracked robot |
Title | FTR‐Bench: Benchmarking Deep Reinforcement Learning for Flipper‐Track Robot Control |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.22528 https://www.proquest.com/docview/3232271175 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELaqTjDwjygUZCEGlrTBjvMDEy1EFQNIUSs6IEW2YwMqNFGbLkw8As_Ik2A7SVuQkBBToigXJec7-7vL-TsAThI38CQXjiWlZ1sOd5AVcMQtQvRPJymYy02V763bGzg3QzKsgYtqL0zBDzFPuGnPMPO1dnDKpu0FaegkZS1ljEhv9NW1WhoQRXPqKN3UmxiuVOJaKggIKlYhG7Xnkt_XogXAXIapZp0J18FD9YZFecmoNctZi7_9IG_85ydsgLUSf8LLwmA2QU2Mt8DqEivhNrgP-9Hn-0dH2e_TOTSHV2pS6vBKiAxGwrCtcpNYhCVB6yNUl2D48pxlYqKk1RrIRzBKWZrDblEOvwMG4XW_27PK_gsW145sJdiTbqICDo4kkkkisXQo5rYfMEn1ZKDwEsVUBSVcOgIT6gW2LxWEw5wERAR4F9TH6VjsAajEGRY2E4ydOQlPGMOIS-Tbkin85dMGOK5GIs4Kmo24IFRGsdJSbLTUAM1qjOLS06YxVpAQeZpwtAFOjbJ_f0Ac3XXMyf7fbz0AK0i3_DU1f01QzyczcahwSM6OjMF9AaUI24Y |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTsJAEJ4gHtSD_0YUdWM8eCnU3f4aLwISVMSkgcjFNN3trhoUCMLFk4_gM_ok7m4poImJ8dSm6TTd2Zndb6bTbwCOYsd3BeOWIYRrGhazsOEzzAzbVh-dBKcO01W-DafWsq7adjsDZ-m_MAk_xCThpjxDr9fKwVVCujhlDR30aEFaI_bmYF519FZuWQkm5FGqrbet2VJtx5BhgJ_yCpm4OBH9vhtNIeYsUNU7TXUF7tN3TApMOoXRkBbY2w_6xv8OYhWWxxAUnSc2swYZ3l2HpRliwg24qzaDz_ePkjThx1OkDy-RzqqjCud9FHBNuMp0bhGNOVofkLyEqs9P_T4fSGm5DbIOCnq0N0TlpCJ-E1rVi2a5ZoxbMBhM-bIRE1c4sYw5GBZYxLEgwooIMz2fikitBxIyRSSScQkTFid25PqmJySKI8z2be6TLch2e12-DUiKU8JNyik9sWIWU0owE9gzBZUQzItycJhORdhPmDbChFMZh1JLodZSDvLpJIVjZ3sNiUSF2FWcozk41tr-_QFhcFvSJzt_v_UAFmrNm3pYv2xc78IiVh2AdQlgHrLDwYjvSVgypPva-r4AViHfnw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6qgujBt1ituogHL6lxN0892dbgiypB0YMQsptdFbUNNb148if4G_0l7m6StgqCeEoImZCdndn9ZjL5BmA7cXxXMG4ZQrimYTELGz7DzLBt9dFJcOowXeXbdo6vrdNb-7YCB-W_MDk_xCDhpjxDr9fKwdNE7A5JQ3tdWpfGiL0xmLAc01ORVysccEeprt62Jku1HUNGAX5JK2Ti3YHo981oiDBHcareaIJZuCtfMa8vear3M1pnbz_YG_85hjmYKQAoOswtZh4qvLMA0yO0hItwE1yFn-8fDWnAD_tIH15inVNHLc5TFHJNt8p0ZhEVDK33SF5CwfNjmvKelJabIHtCYZd2M9TM6-GX4Do4umoeG0UDBoMpTzYS4gonkREHwwKLJBFEWDFhpudTEavVQAKmmMQyKmHC4sSOXd_0hMRwhNm-zX2yDOOdboevAJLilHCTckr3rIQllBLMBPZMQSUA8-IqbJUzEaU5z0aUMyrjSGop0lqqQq2co6hwtdeISEyIXcU4WoUdrezfHxCFFw19svr3Wzdh8rIVROcn7bM1mMKq_a-u_6vBeNbr83WJSTK6oW3vC_Uz3lc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FTR%E2%80%90Bench%3A+Benchmarking+Deep+Reinforcement+Learning+for+Flipper%E2%80%90Track+Robot+Control&rft.jtitle=Journal+of+field+robotics&rft.au=Zhang%2C+Hongchuan&rft.au=Ren%2C+Junkai&rft.au=Xiao%2C+Junhao&rft.au=Pan%2C+Hainan&rft.date=2025-08-01&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=42&rft.issue=5&rft.spage=2375&rft.epage=2389&rft_id=info:doi/10.1002%2Frob.22528&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rob_22528 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon |