Phase Change Materials—Applications and Systems Designs: A Literature Review
The development of Phase Change Materials (PCMs) applications and products is closely related to the market penetration of the renewable energy technologies. With the initial aim of matching the phase shift between resource availability and demand in solar energy systems, the range of PCM applicatio...
Saved in:
Published in | Designs Vol. 6; no. 6; p. 117 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of Phase Change Materials (PCMs) applications and products is closely related to the market penetration of the renewable energy technologies. With the initial aim of matching the phase shift between resource availability and demand in solar energy systems, the range of PCM applications expanded rapidly during the last decades, entering economic sectors where some form of passive thermal regulation was required. This review focuses on examining both conventional applications and recent advances and niche areas—such as space applications—where PCM-based systems demonstrated a potential to improve the operation at process level. The literature survey conducted here gave special attention to recent application of PCM-based systems such as data centres cooling and electric vehicles battery thermal management. Recent advances in PCM-based systems designs were surveyed in the second part of the article. The main PCM containment and system integration directions were discussed and recent representative studies were discussed. Some topics considered marginal but nevertheless essential to large scale implementation of PCM-based systems were mentioned and their coverage in the literature was assessed: health risks, environmental and lifecycle issues. |
---|---|
AbstractList | The development of Phase Change Materials (PCMs) applications and products is closely related to the market penetration of the renewable energy technologies. With the initial aim of matching the phase shift between resource availability and demand in solar energy systems, the range of PCM applications expanded rapidly during the last decades, entering economic sectors where some form of passive thermal regulation was required. This review focuses on examining both conventional applications and recent advances and niche areas—such as space applications—where PCM-based systems demonstrated a potential to improve the operation at process level. The literature survey conducted here gave special attention to recent application of PCM-based systems such as data centres cooling and electric vehicles battery thermal management. Recent advances in PCM-based systems designs were surveyed in the second part of the article. The main PCM containment and system integration directions were discussed and recent representative studies were discussed. Some topics considered marginal but nevertheless essential to large scale implementation of PCM-based systems were mentioned and their coverage in the literature was assessed: health risks, environmental and lifecycle issues. |
Audience | Academic |
Author | Diaconu, Bogdan Marian Cruceru, Mihai Anghelescu, Lucica |
Author_xml | – sequence: 1 givenname: Bogdan orcidid: 0000-0002-3000-1077 surname: Diaconu fullname: Diaconu, Bogdan – sequence: 2 givenname: Mihai orcidid: 0000-0002-9006-052X surname: Cruceru fullname: Cruceru, Mihai – sequence: 3 givenname: Lucica surname: Anghelescu fullname: Anghelescu, Lucica |
BookMark | eNpVUctuFDEQtFCQSEKunEfivEl7_BpzWy2BRNoA4nG2euyejVe748WeBeWWj-AL-RIMiyBRH7pVqqouqU7Y0ZhGYuwFh3MhLFwEKnE1Fg0aODdP2HErOZ9ZreHowf2MnZWyBoBWcNkpcczefbjFQs3iFscVNTc4UY64KT_vf8x3u030OMU0lgbH0Hy6KxNtS_P68OpVM2-WsfJx2mdqPtK3SN-fs6dDldPZ333Kvry5_Ly4mi3fv71ezJcz3ypjZmrokXoRLLY99h3US0uynaEO0SgLZghgueYIaDWGTmn0gXsfeiWEkeKUXR98Q8K12-W4xXznEkb3B0h55TBP0W_IGeV7iWA1dVK2XvScKx-CsBwkCK2q18uD1y6nr3sqk1unfR5rfNcapbXpDJjKOj-wVlhN4zikKaOvE2gbfS1jiBWfGyllV4OL_wKfUymZhn8xObjfnbnHnYlfG9WMJA |
CitedBy_id | crossref_primary_10_3390_s23020753 crossref_primary_10_3390_thermo3040034 crossref_primary_10_1016_j_xcrp_2024_101905 crossref_primary_10_1016_j_matpr_2023_08_171 crossref_primary_10_3390_polym15143022 crossref_primary_10_1016_j_rechem_2024_101552 crossref_primary_10_3390_fire6050175 |
Cites_doi | 10.1016/j.carbon.2007.11.003 10.1016/j.ijheatmasstransfer.2005.01.032 10.1038/s41560-020-0598-5 10.1016/j.envres.2019.01.058 10.1016/j.cej.2021.132741 10.1016/j.energy.2014.03.067 10.1016/j.compositesa.2022.107047 10.1016/j.solener.2019.11.102 10.1016/j.applthermaleng.2018.10.037 10.1016/j.applthermaleng.2014.02.069 10.1016/j.jobe.2020.101727 10.3390/foods10102326 10.1016/j.est.2020.101341 10.1016/j.rser.2013.12.033 10.1016/j.apenergy.2015.04.086 10.1016/j.jobe.2018.11.016 10.1016/j.egypro.2019.01.875 10.1016/j.enbuild.2009.10.022 10.1016/j.enconman.2011.04.004 10.1016/j.energy.2018.12.116 10.3390/en15155354 10.1016/j.applthermaleng.2016.06.171 10.1016/j.ijheatmasstransfer.2018.09.126 10.1016/j.matt.2020.05.016 10.1016/j.conbuildmat.2021.125062 10.3390/agriengineering4010018 10.1016/j.solmat.2016.12.001 10.1016/j.ensm.2021.05.023 10.1016/j.carbpol.2020.116132 10.1016/j.apsusc.2020.147612 10.1016/j.ijheatmasstransfer.2021.121389 10.1016/j.est.2022.105176 10.1016/j.applthermaleng.2008.03.044 10.1016/j.solener.2011.02.017 10.1016/j.est.2021.103722 10.1016/j.apenergy.2009.05.002 10.3390/micro2030028 10.1016/j.renene.2021.07.125 10.1016/j.applthermaleng.2022.118543 10.1016/j.tca.2011.01.014 10.1016/j.energy.2009.10.015 10.1007/s10694-017-0675-x 10.1016/j.cej.2010.10.055 10.1243/0954407991527116 10.1016/j.matchemphys.2020.123521 10.1016/j.molliq.2021.118372 10.1016/0040-6031(95)02456-5 10.1016/S1473-0502(03)00016-8 10.1016/j.apenergy.2022.120064 10.1016/j.csite.2022.101807 10.1016/j.solener.2004.04.013 10.1016/j.matpr.2020.09.412 10.1016/j.est.2022.105602 10.1016/j.jmst.2021.06.006 10.1016/j.jhazmat.2021.126771 10.1016/j.est.2022.105710 10.1016/j.est.2022.104354 10.1016/j.enbuild.2017.10.078 10.1016/j.energy.2013.11.088 10.3390/en13184872 10.1007/s10973-018-7937-9 10.1016/j.renene.2022.09.129 10.1007/s10856-006-0595-7 10.1016/j.energy.2016.11.063 10.1016/j.apenergy.2022.119832 10.1016/j.seta.2022.102084 10.1016/j.ecmx.2022.100237 10.1016/j.seta.2022.102241 10.1016/j.conbuildmat.2019.07.221 10.1016/j.segan.2020.100401 10.1016/j.clay.2019.105367 10.1016/j.solmat.2016.01.001 10.1016/j.egyr.2022.09.149 10.1016/j.applthermaleng.2022.118868 10.1016/j.csite.2022.102497 10.1016/j.solmat.2021.111047 10.1016/j.solener.2008.06.009 10.1109/TCAPT.2005.848534 10.1016/j.enbuild.2010.05.012 10.1016/j.applthermaleng.2005.11.007 10.1016/j.rser.2016.11.272 10.1016/j.solener.2020.09.027 10.1016/j.polymertesting.2022.107807 10.1016/j.solener.2012.10.003 10.3390/ma10111285 10.1016/j.cej.2009.03.007 10.1016/j.enbuild.2012.02.010 10.1016/j.apenergy.2019.01.116 10.1016/j.solmat.2022.111718 10.1016/j.solener.2020.11.039 10.1016/j.est.2022.105785 10.1016/j.energy.2022.125916 10.1016/j.applthermaleng.2020.115707 10.1016/j.cemconres.2003.10.022 10.1016/j.ensm.2022.01.003 10.1080/15567030701436362 10.1016/j.solener.2021.09.014 10.1016/j.enbuild.2004.06.017 10.1016/j.solener.2014.05.019 10.1016/j.jclepro.2019.119470 10.1016/j.est.2021.103921 10.1016/j.ijheatmasstransfer.2020.119526 10.1007/978-3-642-48685-2 10.1016/j.cej.2018.08.189 10.1016/j.mtadv.2022.100227 10.1016/j.enbuild.2017.03.063 10.1016/j.est.2022.105982 10.1016/j.solmat.2022.111831 10.1016/j.pmatsci.2014.03.005 10.1016/j.est.2022.104436 10.1016/j.csite.2022.101896 10.1016/j.est.2020.101445 10.1016/j.tca.2013.04.025 10.1016/j.buildenv.2020.107012 10.1016/j.est.2022.105373 10.1016/j.enconman.2017.07.043 10.1016/j.enbuild.2010.08.019 10.1016/j.applthermaleng.2021.117671 10.1016/j.jobe.2022.104747 10.1016/j.apenergy.2022.118526 10.1016/j.solmat.2014.05.012 10.1016/j.solener.2020.07.083 10.1016/j.est.2022.104100 10.1016/j.solener.2021.11.057 10.1016/j.energy.2021.122823 10.1016/j.rser.2016.09.070 10.1016/j.est.2022.104127 10.1016/j.clay.2020.105930 10.1016/j.apenergy.2022.119347 10.1016/j.memsci.2010.11.033 10.1016/j.enconman.2021.114379 10.1016/j.rser.2009.08.015 10.1016/j.rser.2011.04.018 10.1016/j.matlet.2018.01.025 10.1016/j.energy.2009.06.028 10.1016/S0196-8904(96)00045-3 10.1016/j.enbuild.2005.10.006 10.2139/ssrn.4186483 10.1016/j.enbuild.2020.110345 10.1016/j.applthermaleng.2007.08.009 10.1016/j.enconman.2007.06.006 10.1016/j.enbuild.2021.111127 10.1016/j.ijrefrig.2019.10.008 10.1016/j.solmat.2018.12.015 10.1016/j.energy.2018.08.068 10.1016/j.rser.2010.04.014 10.1016/j.nocx.2022.100108 10.1016/j.rser.2012.01.015 10.3390/en14248233 10.1016/j.est.2020.102155 10.1016/j.apenergy.2020.114501 10.1016/j.est.2022.105549 10.1007/s00231-003-0419-y 10.1016/j.ces.2011.05.031 10.1016/j.applthermaleng.2005.10.007 10.1016/j.icheatmasstransfer.2022.106421 10.1016/j.energy.2020.117610 10.1016/j.colsurfa.2008.09.013 10.1016/j.solener.2006.09.008 10.1016/j.enbuild.2021.110981 10.1016/j.csite.2021.101390 10.1016/j.solmat.2014.07.013 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/designs6060117 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Database (Proquest) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2411-9660 |
ExternalDocumentID | oai_doaj_org_article_75cb4a096e8442c3b115cdd391040365 A744481613 10_3390_designs6060117 |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC L6V M7S MODMG M~E OK1 PIMPY PROAC PTHSS ABUWG AZQEC COVID DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c2577-5fbaeb3d9a2bab803d964e987e8aa75907fd09161a0a96ad856acd1ccdb533743 |
IEDL.DBID | DOA |
ISSN | 2411-9660 |
IngestDate | Tue Oct 22 15:15:23 EDT 2024 Thu Oct 10 19:20:32 EDT 2024 Fri Feb 02 04:39:56 EST 2024 Thu Sep 26 17:19:51 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2577-5fbaeb3d9a2bab803d964e987e8aa75907fd09161a0a96ad856acd1ccdb533743 |
ORCID | 0000-0002-9006-052X 0000-0002-3000-1077 |
OpenAccessLink | https://doaj.org/article/75cb4a096e8442c3b115cdd391040365 |
PQID | 2756678707 |
PQPubID | 2055418 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_75cb4a096e8442c3b115cdd391040365 proquest_journals_2756678707 gale_infotracacademiconefile_A744481613 crossref_primary_10_3390_designs6060117 |
PublicationCentury | 2000 |
PublicationDate | 20221101 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 20221101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Designs |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Shilei (ref_28) 2006; 38 Mu (ref_75) 2022; 49 Bian (ref_93) 2021; 179 Zhang (ref_120) 2009; 332 Zhang (ref_115) 2010; 14 ref_98 Nishad (ref_81) 2022; 52 Borreguero (ref_113) 2011; 166 ref_132 Diaconu (ref_30) 2010; 42 Ambrogi (ref_21) 2006; 17 Gumus (ref_60) 2009; 29 Yang (ref_150) 2018; 216 Jahangir (ref_164) 2022; 54 ref_19 Liang (ref_45) 2022; 310 Zhong (ref_162) 2014; 107 Matuszeka (ref_6) 2022; 15 Jeon (ref_35) 2019; 172 Lv (ref_23) 2011; 66 Gao (ref_85) 2022; 244 Zayed (ref_136) 2020; 30 Abdeali (ref_122) 2022; 55 Ushak (ref_146) 2016; 107 Yan (ref_80) 2020; 30 Bicer (ref_110) 2017; 161 Iranmanesh (ref_143) 2022; 56 Wang (ref_100) 2022; 325 ref_22 Rathore (ref_137) 2019; 225 ref_123 Darkwa (ref_27) 2006; 26 Sari (ref_107) 2008; 49 Yang (ref_142) 2020; 152 Diaconu (ref_47) 2010; 87 Xie (ref_84) 2022; 56 Maleki (ref_155) 2020; 32 Feldman (ref_24) 1996; 272 Geisz (ref_1) 2020; 5 Weinlader (ref_26) 2005; 78 Kumar (ref_95) 2019; 136 Png (ref_169) 2022; 231 Alam (ref_130) 2015; 154 Ouhsaine (ref_39) 2020; 24 ref_71 Youssef (ref_65) 2022; 32 Nazir (ref_125) 2019; 129 Kim (ref_58) 2010; 35 Mondal (ref_53) 2008; 28 Luo (ref_76) 2019; 158 Farid (ref_52) 2022; 2 Ugurlu (ref_56) 2012; 2 Liu (ref_108) 2016; 149 Kenisarin (ref_103) 2012; 16 ref_73 Meng (ref_72) 2022; 55 Mehling (ref_148) 2022; 51 Diaconu (ref_31) 2011; 43 Alam (ref_40) 2019; 238 Lin (ref_42) 2005; 37 Shi (ref_87) 2020; 254 Alawadhi (ref_134) 2011; 52 Jahangir (ref_44) 2022; 51 Zhang (ref_153) 2022; 160 Yin (ref_154) 2021; 40 Qiao (ref_41) 2020; 250 Devahastin (ref_67) 2006; 26 Sari (ref_29) 2008; 30 Ran (ref_159) 2021; 225 Inaba (ref_124) 2003; 40 Chandel (ref_167) 2017; 67 Kahwaji (ref_145) 2018; 162 He (ref_11) 2022; 263 Wu (ref_46) 2022; 46 Ding (ref_96) 2020; 534 Fan (ref_92) 2022; 55 McLaggan (ref_168) 2018; 54 Krishnan (ref_16) 2005; 28 Gencel (ref_89) 2021; 308 Wijesena (ref_33) 2020; 237 He (ref_117) 2014; 67 Abbas (ref_131) 2021; 246 Lu (ref_161) 2020; 195 Pielichowska (ref_9) 2014; 65 Jafaripour (ref_83) 2021; 33 Zheng (ref_127) 2012; 87 Zhou (ref_105) 2021; 213 Michels (ref_8) 2007; 81 Lawag (ref_4) 2022; 55 Dobri (ref_157) 2021; 175 Xie (ref_160) 2020; 110 Akhilesh (ref_17) 2005; 48 ref_51 Entrop (ref_32) 2011; 85 Younis (ref_144) 2022; 55 Diaconu (ref_48) 2010; 35 Li (ref_88) 2021; 227 Soliman (ref_62) 2021; 28 Wen (ref_86) 2022; 46 Zhao (ref_158) 2018; 158 Jamekhorshid (ref_112) 2014; 31 Liu (ref_77) 2020; 226 Zhao (ref_97) 2022; 40 Korin (ref_57) 1999; 213 Kumirai (ref_141) 2019; 22 Gao (ref_55) 2019; 147 Castell (ref_135) 2010; 42 ref_69 Yan (ref_140) 2022; 327 Lafdi (ref_13) 2008; 46 Bedek (ref_119) 2011; 370 Afzal (ref_64) 2020; 180 Alay (ref_118) 2011; 518 Xu (ref_90) 2022; 348 Mousavi (ref_79) 2021; 243 Ghasemi (ref_121) 2022; 52 Amaral (ref_101) 2020; 179 Laza (ref_104) 2022; 116 Zhang (ref_25) 2004; 34 Jin (ref_102) 2014; 130 ref_114 Zhang (ref_128) 2014; 76 Du (ref_34) 2020; 208 Chidambaram (ref_10) 2011; 15 Wang (ref_109) 2013; 564 Yi (ref_151) 2019; 192 ref_36 Ren (ref_91) 2022; 241 Zhang (ref_126) 2014; 128 Park (ref_59) 2017; 119 Chen (ref_94) 2020; 3 Silva (ref_133) 2012; 49 Bogatu (ref_37) 2021; 243 Luo (ref_66) 2021; 430 Wang (ref_152) 2020; 184 Soo (ref_156) 2022; 14 Oliveira (ref_70) 2022; 4 Wan (ref_43) 2022; 214 Ikutegbe (ref_49) 2022; 321 Souayfane (ref_165) 2019; 169 Soliman (ref_61) 2022; 31 Safari (ref_5) 2017; 70 Zhang (ref_82) 2021; 201 Aridi (ref_163) 2022; 15 Krishnamoorthi (ref_63) 2020; 45 Mondieig (ref_20) 2003; 28 Vicente (ref_129) 2014; 67 Chen (ref_147) 2022; 100 Akeiber (ref_138) 2017; 150 Qasim (ref_18) 2020; 209 Marske (ref_106) 2022; 49 Li (ref_99) 2022; 8 Chen (ref_111) 2009; 150 Izadi (ref_139) 2022; 139 Singh (ref_166) 2022; 422 Alva (ref_116) 2017; 144 Selvens (ref_74) 2022; 212 ref_3 Li (ref_38) 2020; 201 ref_2 Lu (ref_54) 2019; 355 He (ref_15) 2022; 200 Cui (ref_14) 2008; 82 Gao (ref_149) 2022; 46 Yimer (ref_12) 1997; 38 ref_7 Guo (ref_50) 2022; 240 Bal (ref_68) 2010; 14 Ljungdahl (ref_78) 2022; 201 |
References_xml | – volume: 46 start-page: 159 year: 2008 ident: ref_13 article-title: Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications publication-title: Carbon doi: 10.1016/j.carbon.2007.11.003 contributor: fullname: Lafdi – volume: 48 start-page: 2759 year: 2005 ident: ref_17 article-title: Method to improve geometry for heat transfer enhancement in PCM composite heat sinks publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2005.01.032 contributor: fullname: Akhilesh – volume: 5 start-page: 326 year: 2020 ident: ref_1 article-title: Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration publication-title: Nat. Energy doi: 10.1038/s41560-020-0598-5 contributor: fullname: Geisz – volume: 172 start-page: 637 year: 2019 ident: ref_35 article-title: Latent heat storage biocomposites of phase change material-biochar as feasible eco-friendly building materials publication-title: Environ. Res. doi: 10.1016/j.envres.2019.01.058 contributor: fullname: Jeon – volume: 430 start-page: 132741 year: 2021 ident: ref_66 article-title: Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132741 contributor: fullname: Luo – volume: 76 start-page: 66 year: 2014 ident: ref_128 article-title: Latent heat storage with tubular-encapsulated phase change materials (PCMs) publication-title: Energy doi: 10.1016/j.energy.2014.03.067 contributor: fullname: Zhang – volume: 160 start-page: 107047 year: 2022 ident: ref_153 article-title: Shape-stabilization micromechanisms of form-stable phase change materials-A review publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2022.107047 contributor: fullname: Zhang – volume: 195 start-page: 573 year: 2020 ident: ref_161 article-title: An experimental investigation of composite phase change materials of ternary nitrate and expanded graphite for medium-temperature thermal energy storage publication-title: Sol. Energy doi: 10.1016/j.solener.2019.11.102 contributor: fullname: Lu – volume: 147 start-page: 177 year: 2019 ident: ref_55 article-title: Review of thermal management of catalytic converters to decrease engine emissions during cold start and warm up publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.10.037 contributor: fullname: Gao – volume: 67 start-page: 24 year: 2014 ident: ref_129 article-title: Brick masonry walls with PCM macrocapsules: An experimental approach publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.02.069 contributor: fullname: Vicente – volume: 32 start-page: 101727 year: 2020 ident: ref_155 article-title: Development and thermal performance of nano-encapsulated PCM/ plaster wallboard for thermal energy storage in buildings publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.101727 contributor: fullname: Maleki – ident: ref_69 doi: 10.3390/foods10102326 – volume: 30 start-page: 101341 year: 2020 ident: ref_136 article-title: Recent progress in phase change materials storage containers: Geometries, design considerations and heat transfer improvement methods publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101341 contributor: fullname: Zayed – ident: ref_132 – volume: 31 start-page: 531 year: 2014 ident: ref_112 article-title: A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.12.033 contributor: fullname: Jamekhorshid – ident: ref_123 – volume: 154 start-page: 92 year: 2015 ident: ref_130 article-title: Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.04.086 contributor: fullname: Alam – volume: 22 start-page: 75 year: 2019 ident: ref_141 article-title: Experimental analysis for thermal storage performance of three types of plate encapsulated phase change materials in air heat exchangers for ventilation applications publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2018.11.016 contributor: fullname: Kumirai – volume: 158 start-page: 3788 year: 2019 ident: ref_76 article-title: A framework for waste heat energy recovery within data centre publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.01.875 contributor: fullname: Luo – volume: 42 start-page: 534 year: 2010 ident: ref_135 article-title: Experimental study of using PCM in brick constructive solutions for passive cooling publication-title: Energy Build. doi: 10.1016/j.enbuild.2009.10.022 contributor: fullname: Castell – volume: 52 start-page: 2958 year: 2011 ident: ref_134 article-title: Building roof with conical holes containing PCM to reduce the cooling load: Numerical study publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2011.04.004 contributor: fullname: Alawadhi – volume: 169 start-page: 1274 year: 2019 ident: ref_165 article-title: Energy performance and economic analysis of a TIM-PCM wall under different climates publication-title: Energy doi: 10.1016/j.energy.2018.12.116 contributor: fullname: Souayfane – ident: ref_51 doi: 10.3390/en15155354 – volume: 107 start-page: 410 year: 2016 ident: ref_146 article-title: Compatibility of materials for macroencapsulation of inorganic phase change materials: Experimental corrosion study publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.06.171 contributor: fullname: Ushak – volume: 129 start-page: 491 year: 2019 ident: ref_125 article-title: Recent developments in phase change materials for energy storage applications: A review publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.09.126 contributor: fullname: Nazir – ident: ref_114 – volume: 3 start-page: 708 year: 2020 ident: ref_94 article-title: Smart Utilization of Multifunctional Metal Oxides in Phase Change Materials publication-title: Matter doi: 10.1016/j.matt.2020.05.016 contributor: fullname: Chen – volume: 308 start-page: 125062 year: 2021 ident: ref_89 article-title: Eco-friendly building materials containing micronized expanded vermiculite and phase change material for solar based thermo-regulation applications publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.125062 contributor: fullname: Gencel – volume: 4 start-page: 255 year: 2022 ident: ref_70 article-title: A Case Study for Decentralized Heat Storage Solutions in the Agroindustry Sector Using Phase Change Materials publication-title: AgriEngineering doi: 10.3390/agriengineering4010018 contributor: fullname: Oliveira – volume: 2 start-page: 1 year: 2012 ident: ref_56 article-title: A review on thermal energy storage systems with phase change materials in vehicles publication-title: Electron. J. Vocat. Coll. contributor: fullname: Ugurlu – volume: 161 start-page: 219 year: 2017 ident: ref_110 article-title: Thermal energy storage characteristics of poly(styrene-co-maleic anhydride)-graft-PEG as polymeric solid–solid phase change materials publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.12.001 contributor: fullname: Bicer – volume: 40 start-page: 347 year: 2021 ident: ref_154 article-title: Polyrotaxane: New generation of sustainable, ultra-flexible, form-stable and smart phase change materials publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.05.023 contributor: fullname: Yin – volume: 237 start-page: 116132 year: 2020 ident: ref_33 article-title: Shape-stabilization of polyethylene glycol phase change materials with chitin nanofibers for applications in “smart” windows publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116132 contributor: fullname: Wijesena – volume: 534 start-page: 147612 year: 2020 ident: ref_96 article-title: Form-stable phase change material embedded in three-dimensional reduced graphene aerogel with large latent heat for thermal energy management publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147612 contributor: fullname: Ding – volume: 175 start-page: 121389 year: 2021 ident: ref_157 article-title: Investigation of transient heat transfer in multi-scale PCM composites using a semi-analytical model publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2021.121389 contributor: fullname: Dobri – volume: 54 start-page: 105176 year: 2022 ident: ref_164 article-title: Evaluation of thermal behavior and life cycle cost analysis of greenhouses with bio-phase change materials in multiple locations publication-title: J. Energy Storage doi: 10.1016/j.est.2022.105176 contributor: fullname: Jahangir – volume: 29 start-page: 652 year: 2009 ident: ref_60 article-title: Reducing cold-start emission from internal combustion engines by means of thermal energy storage system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2008.03.044 contributor: fullname: Gumus – volume: 85 start-page: 1007 year: 2011 ident: ref_32 article-title: Experimental research on the use of micro-encapsulated Phase Change Materials to store solar energy in concrete floors and to save energy in Dutch houses publication-title: Sol. Energy doi: 10.1016/j.solener.2011.02.017 contributor: fullname: Entrop – volume: 46 start-page: 103722 year: 2022 ident: ref_46 article-title: Experimental and simulation analysis on thermal stratification characteristics in solar storage tanks with phase change materials publication-title: J. Energy Storage doi: 10.1016/j.est.2021.103722 contributor: fullname: Wu – volume: 87 start-page: 620 year: 2010 ident: ref_47 article-title: Experimental assessment of heat storage properties and heat transfer characteristics of a phase change material slurry for air conditioning applications publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.05.002 contributor: fullname: Diaconu – volume: 2 start-page: 426 year: 2022 ident: ref_52 article-title: Methods for the Synthesis of Phase Change Material Microcapsules with Enhanced Thermophysical Properties—A State-of-the-Art Review publication-title: Micro doi: 10.3390/micro2030028 contributor: fullname: Farid – volume: 179 start-page: 1027 year: 2021 ident: ref_93 article-title: Preparation and properties of capric acid: Stearic acid/hydrophobic expanded perlite-aerogel composite phase change materials publication-title: Renew. Energy doi: 10.1016/j.renene.2021.07.125 contributor: fullname: Bian – volume: 212 start-page: 118543 year: 2022 ident: ref_74 article-title: Cold thermal energy storage for industrial CO2 refrigeration systems using phase change material: An experimental study publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.118543 contributor: fullname: Selvens – volume: 518 start-page: 1 year: 2011 ident: ref_118 article-title: Synthesis and characterization of poly(methyl methacrylate)/n-hexadecane microcapsules using different cross-linkers and their application to some fabrics publication-title: Thermochim. Acta doi: 10.1016/j.tca.2011.01.014 contributor: fullname: Alay – volume: 35 start-page: 478 year: 2010 ident: ref_58 article-title: Feasibility study on a novel cooling technique using a phase change material in an automotive engine publication-title: Energy doi: 10.1016/j.energy.2009.10.015 contributor: fullname: Kim – volume: 54 start-page: 117 year: 2018 ident: ref_168 article-title: Fire Performance of Phase Change Material Enhanced Plasterboard publication-title: Fire Technol. doi: 10.1007/s10694-017-0675-x contributor: fullname: McLaggan – ident: ref_3 – volume: 166 start-page: 384 year: 2011 ident: ref_113 article-title: Synthesis and characterization of microcapsules containing Rubitherm® RT27 obtained by spray drying publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.10.055 contributor: fullname: Borreguero – volume: 213 start-page: 575 year: 1999 ident: ref_57 article-title: Reducing cold-start emission from internal combustion engines by means of a catalytic converter embedded in a phase-change material publication-title: Proc. Inst. Mech. Eng. doi: 10.1243/0954407991527116 contributor: fullname: Korin – volume: 254 start-page: 123521 year: 2020 ident: ref_87 article-title: Surface modification effects in phase change material-infiltrated attapulgite publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2020.123521 contributor: fullname: Shi – volume: 348 start-page: 118372 year: 2022 ident: ref_90 article-title: Development of diatomite-based shape-stabilized composite phase change material for use in floor radiant heating publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2021.118372 contributor: fullname: Xu – volume: 272 start-page: 243 year: 1996 ident: ref_24 article-title: DSC analysis for the evaluation of an energy storing wallboard publication-title: Thermochim. Acta doi: 10.1016/0040-6031(95)02456-5 contributor: fullname: Feldman – volume: 28 start-page: 143 year: 2003 ident: ref_20 article-title: Protection of temperature sensitive biomedical products using molecular alloys as phase change material publication-title: Transfus. Apher. Sci. doi: 10.1016/S1473-0502(03)00016-8 contributor: fullname: Mondieig – volume: 327 start-page: 120064 year: 2022 ident: ref_140 article-title: Performance enhancement of phase change materials in triplex-tube latent heat energy storage system using novel fin configurations publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.120064 contributor: fullname: Yan – volume: 31 start-page: 101807 year: 2022 ident: ref_61 article-title: Energy harvesting in diesel engines to avoid cold start-up using phase change materials publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2022.101807 contributor: fullname: Soliman – volume: 78 start-page: 177 year: 2005 ident: ref_26 article-title: PCM-facade-panel for daylighting and room heating publication-title: Sol. Energy doi: 10.1016/j.solener.2004.04.013 contributor: fullname: Weinlader – volume: 45 start-page: 5991 year: 2020 ident: ref_63 article-title: Air-cooling system based on phase change materials for a vehicle cabin publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.09.412 contributor: fullname: Krishnamoorthi – volume: 55 start-page: 105602 year: 2022 ident: ref_4 article-title: Phase change materials for thermal management and energy storage: A review publication-title: J. Energy Storage doi: 10.1016/j.est.2022.105602 contributor: fullname: Lawag – volume: 100 start-page: 27 year: 2022 ident: ref_147 article-title: 3D shape-stable temperature-regulated macro-encapsulated phase change material: KAl(SO4)2·12H2O-C2H2O4·2H2O-CO(NH2)2 eutectic/polyurethane foam as core and carbon modified silicone resin as shell publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.06.006 contributor: fullname: Chen – volume: 422 start-page: 126771 year: 2022 ident: ref_166 article-title: Release of particulate matter from nano-enabled building materials (NEBMs) across their lifecycle: Potential occupational health and safety implications publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126771 contributor: fullname: Singh – volume: 55 start-page: 105710 year: 2022 ident: ref_92 article-title: Fabrication and comprehensive analysis of expanded perlite impregnated with myristic acid-based phase change materials as composite materials for building thermal management publication-title: J. Energy Storage doi: 10.1016/j.est.2022.105710 contributor: fullname: Fan – volume: 51 start-page: 104354 year: 2022 ident: ref_148 article-title: PCM products and their fields of application—An overview of the state in 2020/2021 publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104354 contributor: fullname: Mehling – volume: 158 start-page: 1049 year: 2018 ident: ref_158 article-title: Honeycomb-like structured biological porous carbon encapsulating PEG: A shape-stable phase change material with enhanced thermal conductivity for thermal energy storage publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.10.078 contributor: fullname: Zhao – volume: 67 start-page: 223 year: 2014 ident: ref_117 article-title: New approach for sol–gel synthesis of microencapsulated n-octadecane phase change material with silica wall using sodium silicate precursor publication-title: Energy doi: 10.1016/j.energy.2013.11.088 contributor: fullname: He – ident: ref_36 doi: 10.3390/en13184872 – volume: 136 start-page: 121 year: 2019 ident: ref_95 article-title: Experimental investigation of solar water heater integrated with a nanocomposite phase change material publication-title: J. Therm. Anal. doi: 10.1007/s10973-018-7937-9 contributor: fullname: Kumar – volume: 200 start-page: 320 year: 2022 ident: ref_15 article-title: Structure parameter analysis and optimization of photovoltaic-phase change material-thermoelectric coupling system under space conditions publication-title: Renew. Energy doi: 10.1016/j.renene.2022.09.129 contributor: fullname: He – volume: 17 start-page: 1219 year: 2006 ident: ref_21 article-title: Effect of microencapsulated phase change materials on the thermo-mechanical properties of poly(methyl-methacrylate) based biomaterials publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-006-0595-7 contributor: fullname: Ambrogi – volume: 119 start-page: 1108 year: 2017 ident: ref_59 article-title: Experimental study on heat storage system using phase-change material in a diesel engine publication-title: Energy doi: 10.1016/j.energy.2016.11.063 contributor: fullname: Park – volume: 325 start-page: 119832 year: 2022 ident: ref_100 article-title: Sponge-like form-stable phase change materials with embedded graphene oxide for enhancing the thermal storage efficiency and the temperature response in transport packaging applications publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119832 contributor: fullname: Wang – volume: 52 start-page: 102084 year: 2022 ident: ref_121 article-title: PCM, nano/microencapsulation and slurries: A review of fundamentals, categories, fabrication, numerical models and applications publication-title: Sustain. Energy Technol. Assess. doi: 10.1016/j.seta.2022.102084 contributor: fullname: Ghasemi – volume: 15 start-page: 100237 year: 2022 ident: ref_163 article-title: Review on the sustainability of phase-change materials used in buildings publication-title: Energy Convers. Manag. X doi: 10.1016/j.ecmx.2022.100237 contributor: fullname: Aridi – volume: 52 start-page: 102241 year: 2022 ident: ref_81 article-title: Phase change materials for thermal energy storage applications in greenhouses: A review publication-title: Sustain. Energy Technol. Assessments doi: 10.1016/j.seta.2022.102241 contributor: fullname: Nishad – volume: 225 start-page: 723 year: 2019 ident: ref_137 article-title: Potential of macroencapsulated PCM for thermal energy storage in buildings: A comprehensive review publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.07.221 contributor: fullname: Rathore – volume: 24 start-page: 100401 year: 2020 ident: ref_39 article-title: Dynamic state-space model and performance analysis for solar active walls embedded phase change material publication-title: Sustain. Energy Grids Netw. doi: 10.1016/j.segan.2020.100401 contributor: fullname: Ouhsaine – volume: 184 start-page: 105367 year: 2020 ident: ref_152 article-title: Thermophysical properties of three-dimensional palygorskite based composite phase change materials publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2019.105367 contributor: fullname: Wang – ident: ref_19 – ident: ref_22 – volume: 149 start-page: 40 year: 2016 ident: ref_108 article-title: Effect of graphene oxide nanoplatelets on the thermal characteristics and shape-stabilized performance of poly(styrene-co-maleic anhydride)-g-octadecanol comb-like polymeric phase change materials publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.01.001 contributor: fullname: Liu – volume: 8 start-page: 324 year: 2022 ident: ref_99 article-title: Experimental study on preparation and thermal storage properties of expanded graphite/paraffin wax as a shape-stabilized phase change material publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.09.149 contributor: fullname: Li – volume: 214 start-page: 118868 year: 2022 ident: ref_43 article-title: Development of a quasi-2D variable resistance–capacitance model for tube-encapsulated phase change material storage tanks publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.118868 contributor: fullname: Wan – volume: 40 start-page: 102497 year: 2022 ident: ref_97 article-title: Graphene aerogel stabilized phase change material for thermal energy storage publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2022.102497 contributor: fullname: Zhao – volume: 225 start-page: 111047 year: 2021 ident: ref_159 article-title: Thermal properties of eutectic salts/ceramics/expanded graphite composite phase change materials for high-temperature thermal energy storage publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2021.111047 contributor: fullname: Ran – volume: 82 start-page: 1229 year: 2008 ident: ref_14 article-title: Numerical simulation and experiment investigation on unit heat exchange tube for solar heat receiver publication-title: Sol. Energy doi: 10.1016/j.solener.2008.06.009 contributor: fullname: Cui – volume: 28 start-page: 281 year: 2005 ident: ref_16 article-title: A novel hybrid heat sink using phase change materials for transient thermal management of electronics publication-title: IEEE Trans. Compon. Packag. Technol. doi: 10.1109/TCAPT.2005.848534 contributor: fullname: Krishnan – volume: 42 start-page: 1759 year: 2010 ident: ref_30 article-title: Novel concept of composite phase change material wall system for year-round thermal energy savings publication-title: Energy Build. doi: 10.1016/j.enbuild.2010.05.012 contributor: fullname: Diaconu – volume: 26 start-page: 1705 year: 2006 ident: ref_67 article-title: Use of latent heat storage to conserve energy during drying and its effect on drying kinetics of a food product publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2005.11.007 contributor: fullname: Devahastin – volume: 70 start-page: 905 year: 2017 ident: ref_5 article-title: A review on supercooling of Phase Change Materials in thermal energy storage systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.11.272 contributor: fullname: Safari – volume: 209 start-page: 415 year: 2020 ident: ref_18 article-title: The effect of using hybrid phase change materials on thermal management of photovoltaic panels—An experimental study publication-title: Sol. Energy doi: 10.1016/j.solener.2020.09.027 contributor: fullname: Qasim – volume: 116 start-page: 107807 year: 2022 ident: ref_104 article-title: Analysis of the influence of microencapsulated phase change materials on the behavior of a new generation of thermo-regulating shape memory polyurethane fibers publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2022.107807 contributor: fullname: Laza – volume: 87 start-page: 117 year: 2012 ident: ref_127 article-title: Encapsulated phase change materials for energy storage—Characterization by calorimetry publication-title: Sol. Energy doi: 10.1016/j.solener.2012.10.003 contributor: fullname: Zheng – ident: ref_2 doi: 10.3390/ma10111285 – volume: 150 start-page: 269 year: 2009 ident: ref_111 article-title: Ultrafine electrospun fibers based on stearyl stearate/polyethylene terephthalate composite as form stable phase change materials publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.03.007 contributor: fullname: Chen – volume: 49 start-page: 235 year: 2012 ident: ref_133 article-title: Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: A passive construction solution publication-title: Energy Build. doi: 10.1016/j.enbuild.2012.02.010 contributor: fullname: Silva – volume: 238 start-page: 1582 year: 2019 ident: ref_40 article-title: Energy saving performance assessment and lessons learned from the operation of an active phase change materials system in a multi-storey building in Melbourne publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.116 contributor: fullname: Alam – volume: 240 start-page: 111718 year: 2022 ident: ref_50 article-title: Facile microencapsulation of phase change material with organic silicon shell used for energy storage publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2022.111718 contributor: fullname: Guo – volume: 213 start-page: 339 year: 2021 ident: ref_105 article-title: Fabrication and characterization of in situ cross-linked electrospun Poly(vinyl alcohol)/phase change material nanofibers publication-title: Sol. Energy doi: 10.1016/j.solener.2020.11.039 contributor: fullname: Zhou – volume: 55 start-page: 105785 year: 2022 ident: ref_144 article-title: Thermal energy storage using nano phase change materials in corrugated plates heat exchangers with different geometries publication-title: J. Energy Storage doi: 10.1016/j.est.2022.105785 contributor: fullname: Younis – volume: 263 start-page: 125916 year: 2022 ident: ref_11 article-title: Periodic energy transmission and regulation of photovoltaic-phase change material-thermoelectric coupled system under space conditions publication-title: Energy doi: 10.1016/j.energy.2022.125916 contributor: fullname: He – volume: 179 start-page: 115707 year: 2020 ident: ref_101 article-title: Development of structural layers PVC incorporating phase change materials for thermal energy storage publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115707 contributor: fullname: Amaral – volume: 34 start-page: 927 year: 2004 ident: ref_25 article-title: Development of thermal energy storage concrete publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2003.10.022 contributor: fullname: Zhang – volume: 46 start-page: 100 year: 2022 ident: ref_149 article-title: Mineral-based form-stable phase change materials for thermal energy storage: A state-of-the art review publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.01.003 contributor: fullname: Gao – volume: 30 start-page: 1498 year: 2008 ident: ref_29 article-title: Capric Acid and Myristic Acid for Latent Heat Thermal Energy Storage publication-title: Energy Sources Part A doi: 10.1080/15567030701436362 contributor: fullname: Sari – volume: 227 start-page: 343 year: 2021 ident: ref_88 article-title: Mechanical and thermal performance assessment of paraffin/expanded vermiculite-diatomite composite phase change materials integrated mortar: Experimental and numerical approach publication-title: Sol. Energy doi: 10.1016/j.solener.2021.09.014 contributor: fullname: Li – volume: 37 start-page: 215 year: 2005 ident: ref_42 article-title: Experimental study of under-floor electric heating system with shape-stabilized PCM plates publication-title: Energy Build. doi: 10.1016/j.enbuild.2004.06.017 contributor: fullname: Lin – volume: 107 start-page: 63 year: 2014 ident: ref_162 article-title: Preparation and thermal properties of porous heterogeneous composite phase change materials based on molten salts/expanded graphite publication-title: Sol. Energy doi: 10.1016/j.solener.2014.05.019 contributor: fullname: Zhong – volume: 250 start-page: 119470 year: 2020 ident: ref_41 article-title: Performance and optimization of a novel active solar heating wall coupled with phase change material publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119470 contributor: fullname: Qiao – volume: 46 start-page: 103921 year: 2022 ident: ref_86 article-title: A novel composite phase change material from lauric acid, nano-Cu and attapulgite: Preparation, characterization and thermal conductivity enhancement publication-title: J. Energy Storage doi: 10.1016/j.est.2021.103921 contributor: fullname: Wen – volume: 152 start-page: 119526 year: 2020 ident: ref_142 article-title: Effects of morphology and internal voids of copper ribs on heat transfer performance in copper foam/paraffin composite phase change materials publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2020.119526 contributor: fullname: Yang – ident: ref_7 doi: 10.1007/978-3-642-48685-2 – volume: 355 start-page: 532 year: 2019 ident: ref_54 article-title: Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.189 contributor: fullname: Lu – volume: 14 start-page: 100227 year: 2022 ident: ref_156 article-title: A highly flexible form-stable silicone-octadecane PCM composite for heat harvesting publication-title: Mater. Today Adv. doi: 10.1016/j.mtadv.2022.100227 contributor: fullname: Soo – volume: 144 start-page: 276 year: 2017 ident: ref_116 article-title: Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.03.063 contributor: fullname: Alva – volume: 56 start-page: 105982 year: 2022 ident: ref_143 article-title: Intensifying the melting process of a triple-tube latent heat energy storage unit via inserting a middle plate into the phase change material container publication-title: J. Energy Storage doi: 10.1016/j.est.2022.105982 contributor: fullname: Iranmanesh – volume: 244 start-page: 111831 year: 2022 ident: ref_85 article-title: Preparation and structure-properties of crosslinking organic montmorillonite/polyurethane as solid-solid phase change materials for thermal energy storage publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2022.111831 contributor: fullname: Gao – volume: 65 start-page: 67 year: 2014 ident: ref_9 article-title: Phase change materials for thermal energy storage publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2014.03.005 contributor: fullname: Pielichowska – volume: 51 start-page: 104436 year: 2022 ident: ref_44 article-title: Optimization of ground source heat pump system along with energy storage tank armed with phase change materials to improve the microalgae open culture system performance publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104436 contributor: fullname: Jahangir – volume: 32 start-page: 101896 year: 2022 ident: ref_65 article-title: Novel design optimization for passive cooling PCM assisted battery thermal management system in electric vehicles publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2022.101896 contributor: fullname: Youssef – volume: 30 start-page: 101445 year: 2020 ident: ref_80 article-title: Energy efficiency optimization of the waste heat recovery system with embedded phase change materials in greenhouses: A thermo-economic-environmental study publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101445 contributor: fullname: Yan – volume: 564 start-page: 34 year: 2013 ident: ref_109 article-title: Structure and thermal performance of poly(styrene-co-maleic anhydride)-g-alkyl alcohol comb-like copolymeric phase change materials publication-title: Thermochim. Acta doi: 10.1016/j.tca.2013.04.025 contributor: fullname: Wang – volume: 180 start-page: 107012 year: 2020 ident: ref_64 article-title: Human thermal comfort in passenger vehicles using an organic phase change material—An experimental investigation, neural network modelling, and optimization publication-title: Build. Environ. doi: 10.1016/j.buildenv.2020.107012 contributor: fullname: Afzal – volume: 55 start-page: 105373 year: 2022 ident: ref_72 article-title: Development and application of phase change material in fresh e-commerce cold chain logistics: A review publication-title: J. Energy Storage doi: 10.1016/j.est.2022.105373 contributor: fullname: Meng – volume: 150 start-page: 48 year: 2017 ident: ref_138 article-title: Thermal performance and economic evaluation of a newly developed phase change material for effective building encapsulation publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.07.043 contributor: fullname: Akeiber – volume: 43 start-page: 101 year: 2011 ident: ref_31 article-title: Thermal energy savings in buildings with PCM-enhanced envelope: Influence of occupancy pattern and ventilation publication-title: Energy Build. doi: 10.1016/j.enbuild.2010.08.019 contributor: fullname: Diaconu – volume: 201 start-page: 117671 year: 2022 ident: ref_78 article-title: A decision support model for waste heat recovery systems design in Data Center and High-Performance Computing clusters utilizing liquid cooling and Phase Change Materials publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117671 contributor: fullname: Ljungdahl – volume: 56 start-page: 104747 year: 2022 ident: ref_84 article-title: Enhanced thermal performance of Na2HPO4·12H2O composite phase change material supported by sepiolite fiber for floor radiant heating system publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2022.104747 contributor: fullname: Xie – volume: 310 start-page: 118526 year: 2022 ident: ref_45 article-title: Towards idealized thermal stratification in a novel phase change emulsion storage tank publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118526 contributor: fullname: Liang – volume: 128 start-page: 131 year: 2014 ident: ref_126 article-title: Encapsulation of copper-based phase change materials for high temperature thermal energy storage publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2014.05.012 contributor: fullname: Zhang – volume: 208 start-page: 573 year: 2020 ident: ref_34 article-title: Characterization and cooling effect of a novel cement-based composite phase change material publication-title: Sol. Energy doi: 10.1016/j.solener.2020.07.083 contributor: fullname: Du – volume: 49 start-page: 104100 year: 2022 ident: ref_75 article-title: Phase change materials applied in agricultural greenhouses publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104100 contributor: fullname: Mu – volume: 231 start-page: 115 year: 2022 ident: ref_169 article-title: Strategies to reduce the flammability of organic phase change Materials: A review publication-title: Sol. Energy doi: 10.1016/j.solener.2021.11.057 contributor: fullname: Png – volume: 241 start-page: 122823 year: 2022 ident: ref_91 article-title: Effect of modified diatomite based shape-stabilized phase change materials on multiphysics characteristics of thermal storage mortar publication-title: Energy doi: 10.1016/j.energy.2021.122823 contributor: fullname: Ren – volume: 67 start-page: 581 year: 2017 ident: ref_167 article-title: Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.09.070 contributor: fullname: Chandel – volume: 49 start-page: 104127 year: 2022 ident: ref_106 article-title: Influence of surfactants and organic polymers on monolithic shape-stabilized phase change materials synthesized via sol-gel route publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104127 contributor: fullname: Marske – volume: 201 start-page: 105930 year: 2021 ident: ref_82 article-title: Kaolinite nanotube-stearic acid composite as a form-stable phase change material for thermal energy storage publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2020.105930 contributor: fullname: Zhang – volume: 321 start-page: 119347 year: 2022 ident: ref_49 article-title: Microencapsulation of low melting phase change materials for cold storage applications publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119347 contributor: fullname: Ikutegbe – volume: 370 start-page: 23 year: 2011 ident: ref_119 article-title: Microencapsulation of a cooling agent by interfacial polymerization: Influence of the parameters of encapsulation on poly(urethane–urea) microparticles characteristics publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.11.033 contributor: fullname: Bedek – volume: 243 start-page: 114379 year: 2021 ident: ref_79 article-title: Transient thermodynamic modeling and economic analysis of an adiabatic compressed air energy storage (A-CAES) based on cascade packed bed thermal energy storage with encapsulated phase change materials publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.114379 contributor: fullname: Mousavi – volume: 14 start-page: 598 year: 2010 ident: ref_115 article-title: An overview of phase change material slurries: MPCS and CHS publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2009.08.015 contributor: fullname: Zhang – volume: 15 start-page: 3220 year: 2011 ident: ref_10 article-title: Review of solar cooling methods and thermal storage options publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2011.04.018 contributor: fullname: Chidambaram – volume: 216 start-page: 220 year: 2018 ident: ref_150 article-title: Preparation and thermal properties of polyethylene glycol/expanded graphite as novel form-stable phase change material for indoor energy saving publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.01.025 contributor: fullname: Yang – volume: 35 start-page: 2688 year: 2010 ident: ref_48 article-title: Experimental study of natural convection heat transfer in a microencapsulated phase change material slurry publication-title: Energy doi: 10.1016/j.energy.2009.06.028 contributor: fullname: Diaconu – volume: 38 start-page: 253 year: 1997 ident: ref_12 article-title: Parametric study of phase change thermal energy storage systems for space application publication-title: Energy Convers. Manag. doi: 10.1016/S0196-8904(96)00045-3 contributor: fullname: Yimer – volume: 38 start-page: 708 year: 2006 ident: ref_28 article-title: Eutectic mixtures of capric acid and lauric acid applied in building wallboards for heat energy storage publication-title: Energy Build. doi: 10.1016/j.enbuild.2005.10.006 contributor: fullname: Shilei – ident: ref_73 doi: 10.2139/ssrn.4186483 – volume: 226 start-page: 110345 year: 2020 ident: ref_77 article-title: State-of-the-art on thermal energy storage technologies in data center publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.110345 contributor: fullname: Liu – volume: 28 start-page: 1536 year: 2008 ident: ref_53 article-title: Phase change materials for smart textiles—An overview publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2007.08.009 contributor: fullname: Mondal – volume: 49 start-page: 373 year: 2008 ident: ref_107 article-title: Preparation, characterization and thermal properties of styrene maleic anhydride copolymer (SMA)/fatty acid composites as form stable phase change materials publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2007.06.006 contributor: fullname: Sari – volume: 246 start-page: 111127 year: 2021 ident: ref_131 article-title: Experimental and numerical investigation of PCM capsules as insulation materials inserted into a hollow brick wall publication-title: Energy Build. doi: 10.1016/j.enbuild.2021.111127 contributor: fullname: Abbas – volume: 110 start-page: 178 year: 2020 ident: ref_160 article-title: Preparation and performance of modified expanded graphite/eutectic salt composite phase change cold storage material publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2019.10.008 contributor: fullname: Xie – volume: 192 start-page: 57 year: 2019 ident: ref_151 article-title: A novel core-shell structural montmorillonite nanosheets/stearic acid composite PCM for great promotion of thermal energy storage properties publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.12.015 contributor: fullname: Yi – volume: 162 start-page: 1169 year: 2018 ident: ref_145 article-title: A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications publication-title: Energy doi: 10.1016/j.energy.2018.08.068 contributor: fullname: Kahwaji – volume: 14 start-page: 2298 year: 2010 ident: ref_68 article-title: Solar dryer with thermal energy storage systems for drying agricultural food products: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.04.014 contributor: fullname: Bal – volume: 15 start-page: 100108 year: 2022 ident: ref_6 article-title: Molecular patterns in the thermophysical properties of pyridinium ionic liquids as phase change materials for energy storage in the intermediate temperature range publication-title: J. Non-Crystalline Solids X doi: 10.1016/j.nocx.2022.100108 contributor: fullname: Matuszeka – volume: 16 start-page: 1999 year: 2012 ident: ref_103 article-title: Form-stable phase change materials for thermal energy storage publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.01.015 contributor: fullname: Kenisarin – ident: ref_71 doi: 10.3390/en14248233 – volume: 33 start-page: 102155 year: 2021 ident: ref_83 article-title: Fabrication and optimization of kaolin/stearic acid composite as a form-stable phase change material for application in the thermal energy storage systems publication-title: J. Energy Storage doi: 10.1016/j.est.2020.102155 contributor: fullname: Jafaripour – ident: ref_98 doi: 10.1016/j.apenergy.2020.114501 – volume: 55 start-page: 105549 year: 2022 ident: ref_122 article-title: A comprehensive review on rheological behavior of phase change materials fluids (slurry and emulsion): The way toward energy efficiency publication-title: J. Energy Storage doi: 10.1016/j.est.2022.105549 contributor: fullname: Abdeali – volume: 40 start-page: 179 year: 2003 ident: ref_124 article-title: Natural convection heat transfer in enclosures with microemulsion phase change material slurry publication-title: Heat Mass Transf. doi: 10.1007/s00231-003-0419-y contributor: fullname: Inaba – volume: 66 start-page: 3941 year: 2011 ident: ref_23 article-title: Feasibility study for thermal protection by microencapsulated phase change micro/nanoparticles during cryosurgery publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.05.031 contributor: fullname: Lv – volume: 26 start-page: 853 year: 2006 ident: ref_27 article-title: Simulation of phase change drywalls in a passive solar building publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2005.10.007 contributor: fullname: Darkwa – volume: 139 start-page: 106421 year: 2022 ident: ref_139 article-title: Analysis of applying fin for charging process of phase change material inside H-shaped thermal storage publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2022.106421 contributor: fullname: Izadi – volume: 201 start-page: 117610 year: 2020 ident: ref_38 article-title: A novel solar thermal system combining with active phase-change material heat storage wall (STS-APHSW): Dynamic model, validation and thermal performance publication-title: Energy doi: 10.1016/j.energy.2020.117610 contributor: fullname: Li – volume: 332 start-page: 129 year: 2009 ident: ref_120 article-title: Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine–formaldehyde shell publication-title: Colloids Surfaces A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2008.09.013 contributor: fullname: Zhang – volume: 81 start-page: 829 year: 2007 ident: ref_8 article-title: Cascaded latent heat storage for parabolic trough solar power plants publication-title: Sol. Energy doi: 10.1016/j.solener.2006.09.008 contributor: fullname: Michels – volume: 243 start-page: 110981 year: 2021 ident: ref_37 article-title: An experimental study of the active cooling performance of a novel radiant ceiling panel containing phase change material (PCM) publication-title: Energy Build. doi: 10.1016/j.enbuild.2021.110981 contributor: fullname: Bogatu – volume: 28 start-page: 101390 year: 2021 ident: ref_62 article-title: Efficient waste heat recovery system for diesel engines using nano-enhanced phase change materials publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101390 contributor: fullname: Soliman – volume: 130 start-page: 435 year: 2014 ident: ref_102 article-title: Preparation and characterization of PVC-based form-stable phase change materials publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2014.07.013 contributor: fullname: Jin |
SSID | ssj0002314853 |
Score | 2.2542002 |
Snippet | The development of Phase Change Materials (PCMs) applications and products is closely related to the market penetration of the renewable energy technologies.... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 117 |
SubjectTerms | Alternative energy sources Data centers Electric vehicles encapsulation Energy storage Energy technology form-stable Phase Change Materials Heat Literature reviews Phase Change Material Phase change materials Phase Change Slurry Phase matching Radiation Renewable resources Solar energy Space applications Temperature Thermal energy thermal energy storage Thermal management thermal regulation |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgLCwIBIhCQR6QmCLa-DMsqAUqhKBCCCQ26_wRmNrSlp0fwS_kl3BO3BYG2KIkkpPz2fee7XtHyHEU_QrAdaZsKDKuRZ4BMJkVXLACMP62dcx3vhvI6yd-8yye04LbNB2rnM-J1UTtRy6ukZ9GmXIZvUudj9-yWDUq7q6mEhqrZC1HppA3yFrvanD_sFhlQfSC7bNarZEhvz_11cGIqYw6JFWVsmU0qkT7_5qaq3jT3yQbCSjSbt2zW2QlDLfJ4P4Vow6tUwLoHcxq__n6-Oz-2IimMPQ0SZHTy_pLzmiX3i4klGm9JbBDnvpXjxfXWaqIkDkcWioTpQVkv76A3ILVbbySPBRaBQ2gBBLd0iMAkB1oQyHBayHB-Y5z3iKsQ7CwSxrD0TDsESpUKX1eFsxhgLa6LERgnMmOC22FKKvTJCdzy5hxLXxhkDBEG5rfNmySXjTc4q0oWF3dGE1eTPJ_o4SzHJAvBc157phFJOq8Z4hWOAZRgc1Fs5s4rGYTcJCyA_Bjo0CV6SqORBL_jDVJa94zJo23qVl6x_7_jw_Ieh4TGKpswhZpzCbv4RBhxcweJd_5BqFXzXg priority: 102 providerName: ProQuest |
Title | Phase Change Materials—Applications and Systems Designs: A Literature Review |
URI | https://www.proquest.com/docview/2756678707 https://doaj.org/article/75cb4a096e8442c3b115cdd391040365 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEF216aWXqggqUiDaA1JPVhzvd28JJEBFQoQK4raa_bAqDgFBuPdH9BfyS5j1OiE9VFx6smVZ8nhmZ98b7c5bQg6T6FcErgvloim4FlUBwGRhuGAGEH9LnfqdpzN5esV_3IibjaO-0p6wLA-cHddXwjsOSLSj5rzyzCGF8SEwhDmOs29WLy3NRjF124i4IM0XLKs0Mqzr-6HZEPEok_5IczrZKwo1Yv3_mpIbnJl8Jp9agkiH2bAt8i4utsls_gvRhuZWADqFZR43z7__DDcWoCksAm0lyOlxtuQ7HdLztXQyzUsBO-RqMv55dFq0JyEUHlNKFaJ2gFVvMFA5cLrEO8mj0SpqACWwwK0DAr8cQAlGQtBCgg8D74NDOock4QvpLO4WcZdQoWoZqtowj8DsdG1EZJzJgY-lQnY16JJvK8_Y-yx4YbFQSD60f_uwS0bJceu3klB18wDDZ9vw2bfCh59LbrcpnZYP4KHtCkBjkzCVHSqOBST-GeuS_VVkbJtnjzaJ18s056iv_8OaPfKxSu0NTa_hPuksH57iAZKOpeuR93py0iMfRuPZ_BKvRxfXZ8e9ZtS9ADRS13o |
link.rule.ids | 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,38530,43614,43819,43909,74371,74638,74748 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELYKPZRLBWorQnn4UInTimT93F5QoE3TkkQ9gMTNGj8WTgkk4c6P6C_klzCz64T2QG-r3ZW8Ox77-8b2fMPYFxL9SiBtYXyqCmlVWQAIXVRSiQoQf7uW8p3HEz28kr-u1XVecFvkY5WrObGZqOMs0Br5CcmUa_Iuc3p3X1DVKNpdzSU0NthbKRBoKFN88GO9xoLcBVsXrVajwOj-JDbHIhaaVEiaGmUvWNRI9r82MTdoM9hm7zNN5P22X3fYmzT9wCa_bxFzeJsQwMewbL3n6fFP_69taA7TyLMQOf_WfslX3uejtYAybzcEPrKrwffL82GR6yEUAQeWKVTtAWPfWEHpwdsuXmmZKmuSBTAKw9w6IvzrHnSh0hCt0hBiL4TokdQhVfjENqezadplXJlax7KuRECreVtXKgmyYEhdgxyr12HHK8u4u1b2wmG4QDZ0_9qww87IcOu3SK66uTGb37js_c6o4CVgtJSslGUQHnloiFEgV5EIoQqbI7M7GlTLOQTIuQH4sSRP5fpGYhiJfyY6bH_VMy6PtoV78Y29_z8-Yu-Gl-ORG_2cXHxmWyWlMjR5hftsczl_SAdIMJb-sPGiZ_R5zwM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEB1BKiEupQgQKaXsAYmTm8T7aS4oNEQttKEHinpbzX4YpEpJSdwLJ34Ev5Bfwqy9SQEJTtws25J39WZ23nhn3gI8T6JfEYUptItVIYwsC0SuikpIXiHF36FJ_c6nM3V0Lt5eyItc_7TKZZXrNbFdqMPCp3_kgyRTrpJ16UGdyyLOJtNXV1-KdIJU2mnNx2nchi2iyML0YOvw_cfjyeaPCzEZGgvvlBs55fqD0BZJrFTSJGlPLLuJTK2A_9-W6Tb2TO_B5XrUXcnJ5cF14w781z8EHf_PtHZgO1NUNu5s6j7civMHMDv7TPGOdc0I7BSbznJ_fPs-_mULnOE8sCyCzibdvF-yMTvZiDezbjPiIZxP33w4PCryWQyFJ6fWhawdUt4dKiwdOjOkKyViZXQ0iFpSil0Hoh5qhEOsFAYjFfow8j44IpREUx5Bb76Yx8fApK5VKOuKe6IGztSVjFxwNfJxqInfjfrwYo2DveokNyylKgkx-ztifXidYNq8laSy2xuL5SebPc9q6Z1AytSiEaL03BEH9iFw4kmCwrekzyWQbXLoZokec18CDTZJY9mxFpTC0sx4H_bWGNrs6St7A-Duvx8_gzuErD05nr17AnfL1EXRtjTuQa9ZXsenxG0at5-N9idtR_wk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+Change+Materials%E2%80%94Applications+and+Systems+Designs%3A+A+Literature+Review&rft.jtitle=Designs&rft.au=Bogdan+Marian+Diaconu&rft.au=Mihai+Cruceru&rft.au=Lucica+Anghelescu&rft.date=2022-11-01&rft.pub=MDPI+AG&rft.eissn=2411-9660&rft.volume=6&rft.issue=6&rft.spage=117&rft_id=info:doi/10.3390%2Fdesigns6060117&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_75cb4a096e8442c3b115cdd391040365 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2411-9660&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2411-9660&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2411-9660&client=summon |