Multicolor Turán numbers II: A generalization of the Ruzsa–Szemerédi theorem and new results on cliques and odd cycles
In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let ex F ( n , G ) ${\text{ex}}_{F}(n,G)$ denote the maximum number of edge‐disjoint copies of a fixed simple graph F $F$ that can be placed on an n $n$‐vertex...
Saved in:
Published in | Journal of graph theory Vol. 107; no. 3; pp. 629 - 641 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0364-9024 1097-0118 |
DOI | 10.1002/jgt.23147 |
Cover
Abstract | In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let
ex
F
(
n
,
G
) ${\text{ex}}_{F}(n,G)$ denote the maximum number of edge‐disjoint copies of a fixed simple graph
F $F$ that can be placed on an
n $n$‐vertex ground set without forming a subgraph
G $G$ whose edges are from different
F $F$‐copies. The case when both
F $F$ and
G $G$ are triangles essentially gives back the theorem of Ruzsa and Szemerédi. We extend their results to the case when
F $F$ and
G $G$ are arbitrary cliques by applying a number theoretic result due to Erdős, Frankl, and Rödl. This extension in turn decides the order of magnitude for a large family of graph pairs, which will be subquadratic, but almost quadratic. Since the linear
r $r$‐uniform hypergraph Turán problems to determine
ex
r
l
i
n
(
n
,
G
) ${\text{ex}}_{r}^{lin}(n,G)$ form a class of the multicolor Turán problem, following the identity
ex
r
l
i
n
(
n
,
G
)
=
ex
K
r
(
n
,
G
) ${\text{ex}}_{r}^{lin}(n,G)={\text{ex}}_{{K}_{r}}(n,G)$, our results determine the linear hypergraph Turán numbers of every graph of girth 3 and for every
r $r$ up to a subpolynomial factor. Furthermore, when
G $G$ is a triangle, we settle the case
F
=
C
5 $F={C}_{5}$ and give bounds for the cases
F
=
C
2
k
+
1 $F={C}_{2k+1}$,
k
≥
3 $k\ge 3$ as well. |
---|---|
AbstractList | In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let exF(n,G) ${\text{ex}}_{F}(n,G)$ denote the maximum number of edge‐disjoint copies of a fixed simple graph F $F$ that can be placed on an n $n$‐vertex ground set without forming a subgraph G $G$ whose edges are from different F $F$‐copies. The case when both F $F$ and G $G$ are triangles essentially gives back the theorem of Ruzsa and Szemerédi. We extend their results to the case when F $F$ and G $G$ are arbitrary cliques by applying a number theoretic result due to Erdős, Frankl, and Rödl. This extension in turn decides the order of magnitude for a large family of graph pairs, which will be subquadratic, but almost quadratic. Since the linear r $r$‐uniform hypergraph Turán problems to determine exrlin(n,G) ${\text{ex}}_{r}^{lin}(n,G)$ form a class of the multicolor Turán problem, following the identity exrlin(n,G)=exKr(n,G) ${\text{ex}}_{r}^{lin}(n,G)={\text{ex}}_{{K}_{r}}(n,G)$, our results determine the linear hypergraph Turán numbers of every graph of girth 3 and for every r $r$ up to a subpolynomial factor. Furthermore, when G $G$ is a triangle, we settle the case F=C5 $F={C}_{5}$ and give bounds for the cases F=C2k+1 $F={C}_{2k+1}$, k≥3 $k\ge 3$ as well. In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let ex F ( n , G ) ${\text{ex}}_{F}(n,G)$ denote the maximum number of edge‐disjoint copies of a fixed simple graph F $F$ that can be placed on an n $n$‐vertex ground set without forming a subgraph G $G$ whose edges are from different F $F$‐copies. The case when both F $F$ and G $G$ are triangles essentially gives back the theorem of Ruzsa and Szemerédi. We extend their results to the case when F $F$ and G $G$ are arbitrary cliques by applying a number theoretic result due to Erdős, Frankl, and Rödl. This extension in turn decides the order of magnitude for a large family of graph pairs, which will be subquadratic, but almost quadratic. Since the linear r $r$‐uniform hypergraph Turán problems to determine ex r l i n ( n , G ) ${\text{ex}}_{r}^{lin}(n,G)$ form a class of the multicolor Turán problem, following the identity ex r l i n ( n , G ) = ex K r ( n , G ) ${\text{ex}}_{r}^{lin}(n,G)={\text{ex}}_{{K}_{r}}(n,G)$, our results determine the linear hypergraph Turán numbers of every graph of girth 3 and for every r $r$ up to a subpolynomial factor. Furthermore, when G $G$ is a triangle, we settle the case F = C 5 $F={C}_{5}$ and give bounds for the cases F = C 2 k + 1 $F={C}_{2k+1}$, k ≥ 3 $k\ge 3$ as well. In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let denote the maximum number of edge‐disjoint copies of a fixed simple graph that can be placed on an ‐vertex ground set without forming a subgraph whose edges are from different ‐copies. The case when both and are triangles essentially gives back the theorem of Ruzsa and Szemerédi. We extend their results to the case when and are arbitrary cliques by applying a number theoretic result due to Erdős, Frankl, and Rödl. This extension in turn decides the order of magnitude for a large family of graph pairs, which will be subquadratic, but almost quadratic. Since the linear ‐uniform hypergraph Turán problems to determine form a class of the multicolor Turán problem, following the identity , our results determine the linear hypergraph Turán numbers of every graph of girth 3 and for every up to a subpolynomial factor. Furthermore, when is a triangle, we settle the case and give bounds for the cases , as well. |
Author | Nagy, Zoltán Lóránt Kovács, Benedek |
Author_xml | – sequence: 1 givenname: Benedek orcidid: 0000-0003-3112-5538 surname: Kovács fullname: Kovács, Benedek organization: Eötvös Loránd University – sequence: 2 givenname: Zoltán Lóránt orcidid: 0000-0003-2062-5668 surname: Nagy fullname: Nagy, Zoltán Lóránt email: nagyzoli@cs.elte.hu organization: Eötvös Loránd University |
BookMark | eNp1kE1OwzAQhS1UJNrCghtYYsUircdp_thVFZSiIiQo6yhxJiVVYhc7UdWuuAMnYMk5ehNOgtuwZTXSm--9Gb0e6UglkZBLYANgjA9Xy3rAXRgFJ6QLLAocBhB2SJe5_siJGB-dkZ4xK2Zlj4VdsntsyroQqlSaLhq9_5JUNlWK2tDZ7IaO6RIl6qQsdkldKElVTus3pM_NziQ_H58vO6xQ77-z4iArjRVNZEYlbqhGY6MNtSZRFu8NmuNKZRkVW1GiOSeneVIavPibffJ6d7uY3Dvzp-lsMp47gntB4Hg5pByEjyIIIAUuuB9kCK7LR77HmUUykYaRFyUBpgLzhPlumkIWIoLgIbp9ctXmrrU6vFHHK9VoaU_GLvAImE0BS123lNDKGI15vNZFlehtDCw-VBvbauNjtZYdtuymKHH7Pxg_TBet4xfmZH_U |
Cites_doi | 10.1016/j.jcta.2012.12.008 10.1016/j.jcta.2018.12.004 10.4086/toc.2005.v001a009 10.1016/j.ejc.2020.103269 10.1016/j.disc.2019.02.003 10.1016/j.disc.2022.112976 10.1016/j.jctb.2016.03.004 10.1007/BF01788085 10.1016/j.dam.2016.10.013 10.1016/j.jctb.2012.04.001 10.1017/S0963548320000589 10.1073/pnas.32.12.331 10.1002/jgt.22738 10.1137/24M1639488 10.1007/s004930170003 10.1016/j.disc.2022.113128 |
ContentType | Journal Article |
Copyright | 2024 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2024 Wiley Periodicals LLC. |
DBID | AAYXX CITATION |
DOI | 10.1002/jgt.23147 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1097-0118 |
EndPage | 641 |
ExternalDocumentID | 10_1002_jgt_23147 JGT23147 |
Genre | article |
GrantInformation_xml | – fundername: Innovációs és Technológiai Minisztérium – fundername: Hungarian Research Grant (NKFI) funderid: PD 134953 – fundername: Nemzeti Kutatási Fejlesztési és Innovációs Hivatal |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 186 1L6 1OB 1OC 1ZS 3-9 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TN5 UB1 UPT V2E V8K VH1 VJK VQA W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XJT XPP XV2 XXG YQT ZZTAW ~IA ~WT AAYXX ADXHL AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c2577-5f1b21c6ec771b12c267de133246520577dcb8959a7ebcefa063bb1d8ee1c28e3 |
IEDL.DBID | DR2 |
ISSN | 0364-9024 |
IngestDate | Fri Jul 25 12:14:26 EDT 2025 Tue Jul 01 01:47:46 EDT 2025 Wed Jan 22 17:14:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2577-5f1b21c6ec771b12c267de133246520577dcb8959a7ebcefa063bb1d8ee1c28e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3112-5538 0000-0003-2062-5668 |
PQID | 3129105201 |
PQPubID | 1006407 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3129105201 crossref_primary_10_1002_jgt_23147 wiley_primary_10_1002_jgt_23147_JGT23147 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 20241101 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Journal of graph theory |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1946; 32 1986; 2 2012; 102 1941; 48 2021; 346 2021; 345 1978; 18 2016; 121 1984 2005; 1 2024 2022; 99 2013; 120 2019; 163 2021; 93 2021; 30 2019; 342 2017; 216 2001; 21 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_20_1 Turán P. (e_1_2_5_21_1) 1941; 48 |
References_xml | – volume: 32 start-page: 331 issue: no. 12 year: 1946 end-page: 332 article-title: On sets of integers which contain no three terms in arithmetical progression publication-title: Proc. Natl. Acad. Sci. USA – volume: 121 start-page: 146 year: 2016 end-page: 172 article-title: Many T copies in H‐free graphs publication-title: J. Combin. Theory Ser. B – volume: 346 issue: no. 1 year: 2021 article-title: Asymptotic Turán number for linear 5‐cycle in 3‐uniform linear hypergraphs publication-title: Discrete Math – volume: 1 start-page: 177 year: 2005 end-page: 216 article-title: Linear equations, arithmetic progressions and hypergraph property testing publication-title: Theory Comput – volume: 48 start-page: 436 year: 1941 end-page: 452 article-title: On an extremal problem in graph theory publication-title: Mat. Fiz. Lapok. – volume: 99 start-page: 240 issue: no. 2 year: 2022 end-page: 246 article-title: On the maximum number of odd cycles in graphs without smaller odd cycles publication-title: J. Graph Theory – volume: 120 start-page: 722 issue: no. 3 year: 2013 end-page: 732 article-title: On the number of pentagons in triangle‐free graphs publication-title: J. Combin. Theory Ser. A – volume: 102 start-page: 1061 issue: no. 5 year: 2012 end-page: 1066 article-title: On the maximum number of five‐cycles in a triangle‐free graph publication-title: J. Combin. Theory Ser. B – volume: 30 start-page: 591 issue: no. 4 year: 2021 end-page: 608 article-title: Generalizations of the Ruzsa–Szemerédi and rainbow Turán problems for cliques publication-title: Combin. Probab. Comput – volume: 18 start-page: 939 year: 1978 end-page: 945 article-title: Triple systems with no six points carrying three triangles – year: 2024 – volume: 2 start-page: 113 issue: no. 1 year: 1986 end-page: 121 article-title: The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent publication-title: Graphs Combin – start-page: 1 year: 1984 end-page: 17 article-title: On some problems in graph theory, combinatorial analysis and combinatorial number theory – volume: 163 start-page: 163 year: 2019 end-page: 181 article-title: A symptotics for Turán numbers of cycles in 3‐uniform linear hypergraphs publication-title: J. Combin. Theory Ser. A – volume: 21 start-page: 13 issue: no. 1 year: 2001 end-page: 38 article-title: Integer and fractional packings in dense graphs publication-title: Combinatorica – volume: 93 year: 2021 article-title: A linear hypergraph extension of the bipartite Turán problem publication-title: European J. Combin – volume: 216 start-page: 582 year: 2017 end-page: 588 article-title: On 3‐uniform hypergraphs without a cycle of a given length publication-title: Discrete Appl. Math – volume: 345 issue: no. 9 year: 2021 article-title: Multicolor Turán numbers publication-title: Discrete Math – volume: 342 start-page: 1553 issue: no. 6 year: 2019 end-page: 1563 article-title: Turán numbers for Berge‐hypergraphs and related extremal problems publication-title: Discrete Math – ident: e_1_2_5_16_1 doi: 10.1016/j.jcta.2012.12.008 – ident: e_1_2_5_8_1 doi: 10.1016/j.jcta.2018.12.004 – ident: e_1_2_5_20_1 – ident: e_1_2_5_2_1 doi: 10.4086/toc.2005.v001a009 – ident: e_1_2_5_12_1 – ident: e_1_2_5_10_1 doi: 10.1016/j.ejc.2020.103269 – ident: e_1_2_5_19_1 doi: 10.1016/j.disc.2019.02.003 – volume: 48 start-page: 436 year: 1941 ident: e_1_2_5_21_1 article-title: On an extremal problem in graph theory publication-title: Mat. Fiz. Lapok. – ident: e_1_2_5_18_1 doi: 10.1016/j.disc.2022.112976 – ident: e_1_2_5_3_1 doi: 10.1016/j.jctb.2016.03.004 – ident: e_1_2_5_6_1 doi: 10.1007/BF01788085 – ident: e_1_2_5_9_1 doi: 10.1016/j.dam.2016.10.013 – ident: e_1_2_5_14_1 doi: 10.1016/j.jctb.2012.04.001 – ident: e_1_2_5_13_1 doi: 10.1017/S0963548320000589 – ident: e_1_2_5_5_1 doi: 10.1073/pnas.32.12.331 – ident: e_1_2_5_7_1 – ident: e_1_2_5_15_1 doi: 10.1002/jgt.22738 – ident: e_1_2_5_4_1 doi: 10.1137/24M1639488 – ident: e_1_2_5_17_1 doi: 10.1007/s004930170003 – ident: e_1_2_5_11_1 doi: 10.1016/j.disc.2022.113128 |
SSID | ssj0011508 |
Score | 2.3627865 |
Snippet | In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let
ex
F
(
n
,
G
)... In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let denote the maximum... In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let exF(n,G)... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 629 |
SubjectTerms | extremal graphs graph packings Graph theory Graphs hypergraph Turán problems multicolor Theorems |
Title | Multicolor Turán numbers II: A generalization of the Ruzsa–Szemerédi theorem and new results on cliques and odd cycles |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.23147 https://www.proquest.com/docview/3129105201 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQJziwI8omC3HgklK7ju3CCbEjwQGKxAEpipcgthQ17YGe-Ae-gCPfwZ_wJYztpiwSEuIWKbGV2DOeZ2feG4RW61yJWqZ4pARjEZOKRSmYRsRiayAaZLzmy7cdn_CDc3Z0EV8Moc2SCxP0IQYHbs4z_HrtHDxVxfqnaOjNVacK4IQ5Jjmpc6ebv3M6kI5yQEeG_5QsakAgKlWFanR90PJ7LPoEmF9hqo8ze-PosnzDkF5yW-12VFX3fog3_vMTJtBYH3_irWAwk2jI5lNo9Hgg3lpMo54n5To16zZudttvLzkOdUMKfHi4gbfwVZCq7jM4cSvD0BqfdntF-v70fNZznOO3V3ONA0vyHqe5wQDfMWztoesCQyN954RjC3-rZQzWjy49bwad7-02tw-ifomGSIOviyjOiKJEc6uFIIpQTbkwFva9lPGYAhYURivZiBupsErbLAVEpBQx0lqiqbT1WTSct3I7h7CQtQzAngOZsHqnRBotSEpNLLkRVOoKWiknK3kIShxJ0FymCQxk4geyghbLaUz6zlgkdcA0xOX7kApa8_PxewfJ0X7TX8z__dEFNELBwgJDcRENd9pduwRQpaOWvU1-AJ0l5ss |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NThsxEB4BPZQeKC2ghlKwqh562RA73rVT9YLa0oQSDjRIXNBq_bMRfxuUTQ7k1HfoE_TY5-BNeBLGdjaUSpVQbyvtjrXrmfF89s58A_CumSjRyFUSKcF5xKXiUYamEfHYGowGedLw7du6B0n7iO8dx8dz8LGqhQn8ELMDN-cZfr12Du4OpLfvWUPP-qM6ohMu5uEJR6Dhtl6fD2fkUQ7qyPCnkkctDEUVr1CDbc9EH0aje4j5J1D1kWb3OZxU7xgSTM7r45Gq68lf9I3_-xHLsDSFoGQn2MwLmLPFS3jWnfG3lisw8XW5jtB6SHrj4c2vgoTWISXpdD6QHdIPbNXTIk4yyAlKk8PxpMxuf_z8PnFlxze_zSkJhZKXJCsMQQRPcHePQ5cEhfSF444t_a2BMURfuwy9VTja_dL71I6mXRoije4uojinilGdWC0EVZRplghjcevLUCkM4aAwWslW3MqEVdrmGYIipaiR1lLNpG2uwUIxKOwrIEI2csR7DmfiAp5RabSgGTOxTIxgUtfgbaWt9CqQcaSBdpmlOJGpn8gabFR6TKf-WKZNhDXUpfzQGrz3Cvn3AOne156_WH_8o1vwtN3r7qf7nYNvr2GRobmFgsUNWBgNx_YNIpeR2vQGegcMsOrq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NbhMxEMdHpZUQHGihVARKsRAHLpvGjtd26KkC0qbQCrWp1APSav2xUT_YVNnkQE59hz4BR56jb8KTMLazKSAhIW4r7dratWc8P3s9fwO8agstW4UWiZacJ1xpnuRoGglPncVoUIhWOL5t_0DsHvO9k_RkAbbqXJioDzFfcPOeEcZr7-CXtti8FQ09G4ybCCdc3oElLpAkPBEdzrWjPOmo-KOSJx2MRLWsUIttzov-HoxuCfNXTg2BprsMn-tXjPtLzpuTsW6a6R_qjf_5DSvwYAagZDtazENYcOUjuL8_V2-tVmEasnK9nPWI9Cejm28liQeHVKTXe0O2ySBqVc9SOMmwIFiaHE6mVf7j6vpo6pOOb77bUxLTJL-QvLQE-Z3g3B6rrggWMhdeObYKt4bWEvPV7897DMfd9_23u8nsjIbEoLPLJC2oZtQIZ6SkmjLDhLQOJ76Mi5QhDEprtOqknVw6bVyRIxJpTa1yjhqmXHsNFsth6Z4AkapVIO15ysThO6fKGklzZlMlrGTKNOBl3VnZZZTiyKLoMsuwIbPQkA1Yr7sxm3ljlbURaqjf8EMb8Dr0x98ryPZ2-uHi6b8_-gLufnrXzT72Dj48g3sMjS1mK67D4ng0cc8RW8Z6I5jnT2oM6Zk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multicolor+Tur%C3%A1n+numbers+II%3A+A+generalization+of+the+Ruzsa%E2%80%93Szemer%C3%A9di+theorem+and+new+results+on+cliques+and+odd+cycles&rft.jtitle=Journal+of+graph+theory&rft.au=Kov%C3%A1cs%2C+Benedek&rft.au=Nagy%2C+Zolt%C3%A1n+L%C3%B3r%C3%A1nt&rft.date=2024-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=107&rft.issue=3&rft.spage=629&rft.epage=641&rft_id=info:doi/10.1002%2Fjgt.23147&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon |