Multicolor Turán numbers II: A generalization of the Ruzsa–Szemerédi theorem and new results on cliques and odd cycles

In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let ex F ( n , G ) ${\text{ex}}_{F}(n,G)$ denote the maximum number of edge‐disjoint copies of a fixed simple graph F $F$ that can be placed on an n $n$‐vertex...

Full description

Saved in:
Bibliographic Details
Published inJournal of graph theory Vol. 107; no. 3; pp. 629 - 641
Main Authors Kovács, Benedek, Nagy, Zoltán Lóránt
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.11.2024
Subjects
Online AccessGet full text
ISSN0364-9024
1097-0118
DOI10.1002/jgt.23147

Cover

Abstract In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let ex F ( n , G ) ${\text{ex}}_{F}(n,G)$ denote the maximum number of edge‐disjoint copies of a fixed simple graph F $F$ that can be placed on an n $n$‐vertex ground set without forming a subgraph G $G$ whose edges are from different F $F$‐copies. The case when both F $F$ and G $G$ are triangles essentially gives back the theorem of Ruzsa and Szemerédi. We extend their results to the case when F $F$ and G $G$ are arbitrary cliques by applying a number theoretic result due to Erdős, Frankl, and Rödl. This extension in turn decides the order of magnitude for a large family of graph pairs, which will be subquadratic, but almost quadratic. Since the linear r $r$‐uniform hypergraph Turán problems to determine ex r l i n ( n , G ) ${\text{ex}}_{r}^{lin}(n,G)$ form a class of the multicolor Turán problem, following the identity ex r l i n ( n , G ) = ex K r ( n , G ) ${\text{ex}}_{r}^{lin}(n,G)={\text{ex}}_{{K}_{r}}(n,G)$, our results determine the linear hypergraph Turán numbers of every graph of girth 3 and for every r $r$ up to a subpolynomial factor. Furthermore, when G $G$ is a triangle, we settle the case F = C 5 $F={C}_{5}$ and give bounds for the cases F = C 2 k + 1 $F={C}_{2k+1}$, k ≥ 3 $k\ge 3$ as well.
AbstractList In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let exF(n,G) ${\text{ex}}_{F}(n,G)$ denote the maximum number of edge‐disjoint copies of a fixed simple graph F $F$ that can be placed on an n $n$‐vertex ground set without forming a subgraph G $G$ whose edges are from different F $F$‐copies. The case when both F $F$ and G $G$ are triangles essentially gives back the theorem of Ruzsa and Szemerédi. We extend their results to the case when F $F$ and G $G$ are arbitrary cliques by applying a number theoretic result due to Erdős, Frankl, and Rödl. This extension in turn decides the order of magnitude for a large family of graph pairs, which will be subquadratic, but almost quadratic. Since the linear r $r$‐uniform hypergraph Turán problems to determine exrlin(n,G) ${\text{ex}}_{r}^{lin}(n,G)$ form a class of the multicolor Turán problem, following the identity exrlin(n,G)=exKr(n,G) ${\text{ex}}_{r}^{lin}(n,G)={\text{ex}}_{{K}_{r}}(n,G)$, our results determine the linear hypergraph Turán numbers of every graph of girth 3 and for every r $r$ up to a subpolynomial factor. Furthermore, when G $G$ is a triangle, we settle the case F=C5 $F={C}_{5}$ and give bounds for the cases F=C2k+1 $F={C}_{2k+1}$, k≥3 $k\ge 3$ as well.
In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let ex F ( n , G ) ${\text{ex}}_{F}(n,G)$ denote the maximum number of edge‐disjoint copies of a fixed simple graph F $F$ that can be placed on an n $n$‐vertex ground set without forming a subgraph G $G$ whose edges are from different F $F$‐copies. The case when both F $F$ and G $G$ are triangles essentially gives back the theorem of Ruzsa and Szemerédi. We extend their results to the case when F $F$ and G $G$ are arbitrary cliques by applying a number theoretic result due to Erdős, Frankl, and Rödl. This extension in turn decides the order of magnitude for a large family of graph pairs, which will be subquadratic, but almost quadratic. Since the linear r $r$‐uniform hypergraph Turán problems to determine ex r l i n ( n , G ) ${\text{ex}}_{r}^{lin}(n,G)$ form a class of the multicolor Turán problem, following the identity ex r l i n ( n , G ) = ex K r ( n , G ) ${\text{ex}}_{r}^{lin}(n,G)={\text{ex}}_{{K}_{r}}(n,G)$, our results determine the linear hypergraph Turán numbers of every graph of girth 3 and for every r $r$ up to a subpolynomial factor. Furthermore, when G $G$ is a triangle, we settle the case F = C 5 $F={C}_{5}$ and give bounds for the cases F = C 2 k + 1 $F={C}_{2k+1}$, k ≥ 3 $k\ge 3$ as well.
In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let denote the maximum number of edge‐disjoint copies of a fixed simple graph that can be placed on an ‐vertex ground set without forming a subgraph whose edges are from different ‐copies. The case when both and are triangles essentially gives back the theorem of Ruzsa and Szemerédi. We extend their results to the case when and are arbitrary cliques by applying a number theoretic result due to Erdős, Frankl, and Rödl. This extension in turn decides the order of magnitude for a large family of graph pairs, which will be subquadratic, but almost quadratic. Since the linear ‐uniform hypergraph Turán problems to determine form a class of the multicolor Turán problem, following the identity , our results determine the linear hypergraph Turán numbers of every graph of girth 3 and for every up to a subpolynomial factor. Furthermore, when is a triangle, we settle the case and give bounds for the cases , as well.
Author Nagy, Zoltán Lóránt
Kovács, Benedek
Author_xml – sequence: 1
  givenname: Benedek
  orcidid: 0000-0003-3112-5538
  surname: Kovács
  fullname: Kovács, Benedek
  organization: Eötvös Loránd University
– sequence: 2
  givenname: Zoltán Lóránt
  orcidid: 0000-0003-2062-5668
  surname: Nagy
  fullname: Nagy, Zoltán Lóránt
  email: nagyzoli@cs.elte.hu
  organization: Eötvös Loránd University
BookMark eNp1kE1OwzAQhS1UJNrCghtYYsUircdp_thVFZSiIiQo6yhxJiVVYhc7UdWuuAMnYMk5ehNOgtuwZTXSm--9Gb0e6UglkZBLYANgjA9Xy3rAXRgFJ6QLLAocBhB2SJe5_siJGB-dkZ4xK2Zlj4VdsntsyroQqlSaLhq9_5JUNlWK2tDZ7IaO6RIl6qQsdkldKElVTus3pM_NziQ_H58vO6xQ77-z4iArjRVNZEYlbqhGY6MNtSZRFu8NmuNKZRkVW1GiOSeneVIavPibffJ6d7uY3Dvzp-lsMp47gntB4Hg5pByEjyIIIAUuuB9kCK7LR77HmUUykYaRFyUBpgLzhPlumkIWIoLgIbp9ctXmrrU6vFHHK9VoaU_GLvAImE0BS123lNDKGI15vNZFlehtDCw-VBvbauNjtZYdtuymKHH7Pxg_TBet4xfmZH_U
Cites_doi 10.1016/j.jcta.2012.12.008
10.1016/j.jcta.2018.12.004
10.4086/toc.2005.v001a009
10.1016/j.ejc.2020.103269
10.1016/j.disc.2019.02.003
10.1016/j.disc.2022.112976
10.1016/j.jctb.2016.03.004
10.1007/BF01788085
10.1016/j.dam.2016.10.013
10.1016/j.jctb.2012.04.001
10.1017/S0963548320000589
10.1073/pnas.32.12.331
10.1002/jgt.22738
10.1137/24M1639488
10.1007/s004930170003
10.1016/j.disc.2022.113128
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
DOI 10.1002/jgt.23147
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0118
EndPage 641
ExternalDocumentID 10_1002_jgt_23147
JGT23147
Genre article
GrantInformation_xml – fundername: Innovációs és Technológiai Minisztérium
– fundername: Hungarian Research Grant (NKFI)
  funderid: PD 134953
– fundername: Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
3-9
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
V8K
VH1
VJK
VQA
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XJT
XPP
XV2
XXG
YQT
ZZTAW
~IA
~WT
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c2577-5f1b21c6ec771b12c267de133246520577dcb8959a7ebcefa063bb1d8ee1c28e3
IEDL.DBID DR2
ISSN 0364-9024
IngestDate Fri Jul 25 12:14:26 EDT 2025
Tue Jul 01 01:47:46 EDT 2025
Wed Jan 22 17:14:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2577-5f1b21c6ec771b12c267de133246520577dcb8959a7ebcefa063bb1d8ee1c28e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3112-5538
0000-0003-2062-5668
PQID 3129105201
PQPubID 1006407
PageCount 13
ParticipantIDs proquest_journals_3129105201
crossref_primary_10_1002_jgt_23147
wiley_primary_10_1002_jgt_23147_JGT23147
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of graph theory
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1946; 32
1986; 2
2012; 102
1941; 48
2021; 346
2021; 345
1978; 18
2016; 121
1984
2005; 1
2024
2022; 99
2013; 120
2019; 163
2021; 93
2021; 30
2019; 342
2017; 216
2001; 21
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_20_1
Turán P. (e_1_2_5_21_1) 1941; 48
References_xml – volume: 32
  start-page: 331
  issue: no. 12
  year: 1946
  end-page: 332
  article-title: On sets of integers which contain no three terms in arithmetical progression
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 121
  start-page: 146
  year: 2016
  end-page: 172
  article-title: Many T copies in H‐free graphs
  publication-title: J. Combin. Theory Ser. B
– volume: 346
  issue: no. 1
  year: 2021
  article-title: Asymptotic Turán number for linear 5‐cycle in 3‐uniform linear hypergraphs
  publication-title: Discrete Math
– volume: 1
  start-page: 177
  year: 2005
  end-page: 216
  article-title: Linear equations, arithmetic progressions and hypergraph property testing
  publication-title: Theory Comput
– volume: 48
  start-page: 436
  year: 1941
  end-page: 452
  article-title: On an extremal problem in graph theory
  publication-title: Mat. Fiz. Lapok.
– volume: 99
  start-page: 240
  issue: no. 2
  year: 2022
  end-page: 246
  article-title: On the maximum number of odd cycles in graphs without smaller odd cycles
  publication-title: J. Graph Theory
– volume: 120
  start-page: 722
  issue: no. 3
  year: 2013
  end-page: 732
  article-title: On the number of pentagons in triangle‐free graphs
  publication-title: J. Combin. Theory Ser. A
– volume: 102
  start-page: 1061
  issue: no. 5
  year: 2012
  end-page: 1066
  article-title: On the maximum number of five‐cycles in a triangle‐free graph
  publication-title: J. Combin. Theory Ser. B
– volume: 30
  start-page: 591
  issue: no. 4
  year: 2021
  end-page: 608
  article-title: Generalizations of the Ruzsa–Szemerédi and rainbow Turán problems for cliques
  publication-title: Combin. Probab. Comput
– volume: 18
  start-page: 939
  year: 1978
  end-page: 945
  article-title: Triple systems with no six points carrying three triangles
– year: 2024
– volume: 2
  start-page: 113
  issue: no. 1
  year: 1986
  end-page: 121
  article-title: The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent
  publication-title: Graphs Combin
– start-page: 1
  year: 1984
  end-page: 17
  article-title: On some problems in graph theory, combinatorial analysis and combinatorial number theory
– volume: 163
  start-page: 163
  year: 2019
  end-page: 181
  article-title: A symptotics for Turán numbers of cycles in 3‐uniform linear hypergraphs
  publication-title: J. Combin. Theory Ser. A
– volume: 21
  start-page: 13
  issue: no. 1
  year: 2001
  end-page: 38
  article-title: Integer and fractional packings in dense graphs
  publication-title: Combinatorica
– volume: 93
  year: 2021
  article-title: A linear hypergraph extension of the bipartite Turán problem
  publication-title: European J. Combin
– volume: 216
  start-page: 582
  year: 2017
  end-page: 588
  article-title: On 3‐uniform hypergraphs without a cycle of a given length
  publication-title: Discrete Appl. Math
– volume: 345
  issue: no. 9
  year: 2021
  article-title: Multicolor Turán numbers
  publication-title: Discrete Math
– volume: 342
  start-page: 1553
  issue: no. 6
  year: 2019
  end-page: 1563
  article-title: Turán numbers for Berge‐hypergraphs and related extremal problems
  publication-title: Discrete Math
– ident: e_1_2_5_16_1
  doi: 10.1016/j.jcta.2012.12.008
– ident: e_1_2_5_8_1
  doi: 10.1016/j.jcta.2018.12.004
– ident: e_1_2_5_20_1
– ident: e_1_2_5_2_1
  doi: 10.4086/toc.2005.v001a009
– ident: e_1_2_5_12_1
– ident: e_1_2_5_10_1
  doi: 10.1016/j.ejc.2020.103269
– ident: e_1_2_5_19_1
  doi: 10.1016/j.disc.2019.02.003
– volume: 48
  start-page: 436
  year: 1941
  ident: e_1_2_5_21_1
  article-title: On an extremal problem in graph theory
  publication-title: Mat. Fiz. Lapok.
– ident: e_1_2_5_18_1
  doi: 10.1016/j.disc.2022.112976
– ident: e_1_2_5_3_1
  doi: 10.1016/j.jctb.2016.03.004
– ident: e_1_2_5_6_1
  doi: 10.1007/BF01788085
– ident: e_1_2_5_9_1
  doi: 10.1016/j.dam.2016.10.013
– ident: e_1_2_5_14_1
  doi: 10.1016/j.jctb.2012.04.001
– ident: e_1_2_5_13_1
  doi: 10.1017/S0963548320000589
– ident: e_1_2_5_5_1
  doi: 10.1073/pnas.32.12.331
– ident: e_1_2_5_7_1
– ident: e_1_2_5_15_1
  doi: 10.1002/jgt.22738
– ident: e_1_2_5_4_1
  doi: 10.1137/24M1639488
– ident: e_1_2_5_17_1
  doi: 10.1007/s004930170003
– ident: e_1_2_5_11_1
  doi: 10.1016/j.disc.2022.113128
SSID ssj0011508
Score 2.3627865
Snippet In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let ex F ( n , G )...
In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let denote the maximum...
In this paper we continue the study of a natural generalization of Turán's forbidden subgraph problem and the Ruzsa–Szemerédi problem. Let exF(n,G)...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 629
SubjectTerms extremal graphs
graph packings
Graph theory
Graphs
hypergraph Turán problems
multicolor
Theorems
Title Multicolor Turán numbers II: A generalization of the Ruzsa–Szemerédi theorem and new results on cliques and odd cycles
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.23147
https://www.proquest.com/docview/3129105201
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQJziwI8omC3HgklK7ju3CCbEjwQGKxAEpipcgthQ17YGe-Ae-gCPfwZ_wJYztpiwSEuIWKbGV2DOeZ2feG4RW61yJWqZ4pARjEZOKRSmYRsRiayAaZLzmy7cdn_CDc3Z0EV8Moc2SCxP0IQYHbs4z_HrtHDxVxfqnaOjNVacK4IQ5Jjmpc6ebv3M6kI5yQEeG_5QsakAgKlWFanR90PJ7LPoEmF9hqo8ze-PosnzDkF5yW-12VFX3fog3_vMTJtBYH3_irWAwk2jI5lNo9Hgg3lpMo54n5To16zZudttvLzkOdUMKfHi4gbfwVZCq7jM4cSvD0BqfdntF-v70fNZznOO3V3ONA0vyHqe5wQDfMWztoesCQyN954RjC3-rZQzWjy49bwad7-02tw-ifomGSIOviyjOiKJEc6uFIIpQTbkwFva9lPGYAhYURivZiBupsErbLAVEpBQx0lqiqbT1WTSct3I7h7CQtQzAngOZsHqnRBotSEpNLLkRVOoKWiknK3kIShxJ0FymCQxk4geyghbLaUz6zlgkdcA0xOX7kApa8_PxewfJ0X7TX8z__dEFNELBwgJDcRENd9pduwRQpaOWvU1-AJ0l5ss
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NThsxEB4BPZQeKC2ghlKwqh562RA73rVT9YLa0oQSDjRIXNBq_bMRfxuUTQ7k1HfoE_TY5-BNeBLGdjaUSpVQbyvtjrXrmfF89s58A_CumSjRyFUSKcF5xKXiUYamEfHYGowGedLw7du6B0n7iO8dx8dz8LGqhQn8ELMDN-cZfr12Du4OpLfvWUPP-qM6ohMu5uEJR6Dhtl6fD2fkUQ7qyPCnkkctDEUVr1CDbc9EH0aje4j5J1D1kWb3OZxU7xgSTM7r45Gq68lf9I3_-xHLsDSFoGQn2MwLmLPFS3jWnfG3lisw8XW5jtB6SHrj4c2vgoTWISXpdD6QHdIPbNXTIk4yyAlKk8PxpMxuf_z8PnFlxze_zSkJhZKXJCsMQQRPcHePQ5cEhfSF444t_a2BMURfuwy9VTja_dL71I6mXRoije4uojinilGdWC0EVZRplghjcevLUCkM4aAwWslW3MqEVdrmGYIipaiR1lLNpG2uwUIxKOwrIEI2csR7DmfiAp5RabSgGTOxTIxgUtfgbaWt9CqQcaSBdpmlOJGpn8gabFR6TKf-WKZNhDXUpfzQGrz3Cvn3AOne156_WH_8o1vwtN3r7qf7nYNvr2GRobmFgsUNWBgNx_YNIpeR2vQGegcMsOrq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NbhMxEMdHpZUQHGihVARKsRAHLpvGjtd26KkC0qbQCrWp1APSav2xUT_YVNnkQE59hz4BR56jb8KTMLazKSAhIW4r7dratWc8P3s9fwO8agstW4UWiZacJ1xpnuRoGglPncVoUIhWOL5t_0DsHvO9k_RkAbbqXJioDzFfcPOeEcZr7-CXtti8FQ09G4ybCCdc3oElLpAkPBEdzrWjPOmo-KOSJx2MRLWsUIttzov-HoxuCfNXTg2BprsMn-tXjPtLzpuTsW6a6R_qjf_5DSvwYAagZDtazENYcOUjuL8_V2-tVmEasnK9nPWI9Cejm28liQeHVKTXe0O2ySBqVc9SOMmwIFiaHE6mVf7j6vpo6pOOb77bUxLTJL-QvLQE-Z3g3B6rrggWMhdeObYKt4bWEvPV7897DMfd9_23u8nsjIbEoLPLJC2oZtQIZ6SkmjLDhLQOJ76Mi5QhDEprtOqknVw6bVyRIxJpTa1yjhqmXHsNFsth6Z4AkapVIO15ysThO6fKGklzZlMlrGTKNOBl3VnZZZTiyKLoMsuwIbPQkA1Yr7sxm3ljlbURaqjf8EMb8Dr0x98ryPZ2-uHi6b8_-gLufnrXzT72Dj48g3sMjS1mK67D4ng0cc8RW8Z6I5jnT2oM6Zk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multicolor+Tur%C3%A1n+numbers+II%3A+A+generalization+of+the+Ruzsa%E2%80%93Szemer%C3%A9di+theorem+and+new+results+on+cliques+and+odd+cycles&rft.jtitle=Journal+of+graph+theory&rft.au=Kov%C3%A1cs%2C+Benedek&rft.au=Nagy%2C+Zolt%C3%A1n+L%C3%B3r%C3%A1nt&rft.date=2024-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=107&rft.issue=3&rft.spage=629&rft.epage=641&rft_id=info:doi/10.1002%2Fjgt.23147&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon