A characterization of regular partial cubes whose all convex cycles have the same lengths

Partial cubes are graphs that can be isometrically embedded into hypercubes. Convex cycles play an important role in the study of partial cubes. In this paper, we prove that a regular partial cube is a hypercube (resp., a Doubled Odd graph, an even cycle of length 2 n $2n$ where n ⩾ 4 $n\geqslant 4$...

Full description

Saved in:
Bibliographic Details
Published inJournal of graph theory Vol. 107; no. 3; pp. 550 - 558
Main Authors Xie, Yan‐Ting, Feng, Yong‐De, Xu, Shou‐Jun
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.11.2024
Subjects
Online AccessGet full text
ISSN0364-9024
1097-0118
DOI10.1002/jgt.23126

Cover

Loading…
Abstract Partial cubes are graphs that can be isometrically embedded into hypercubes. Convex cycles play an important role in the study of partial cubes. In this paper, we prove that a regular partial cube is a hypercube (resp., a Doubled Odd graph, an even cycle of length 2 n $2n$ where n ⩾ 4 $n\geqslant 4$) if and only if all its convex cycles are 4‐cycles (resp., 6‐cycles, 2 n $2n$‐cycles). In particular, the partial cubes whose all convex cycles are 4‐cycles are equivalent to almost‐median graphs. Therefore, we conclude that regular almost‐median graphs are exactly hypercubes, which generalizes the result by Mulder—regular median graphs are hypercubes.
AbstractList Partial cubes are graphs that can be isometrically embedded into hypercubes. Convex cycles play an important role in the study of partial cubes. In this paper, we prove that a regular partial cube is a hypercube (resp., a Doubled Odd graph, an even cycle of length where ) if and only if all its convex cycles are 4‐cycles (resp., 6‐cycles, ‐cycles). In particular, the partial cubes whose all convex cycles are 4‐cycles are equivalent to almost‐median graphs. Therefore, we conclude that regular almost‐median graphs are exactly hypercubes, which generalizes the result by Mulder—regular median graphs are hypercubes.
Partial cubes are graphs that can be isometrically embedded into hypercubes. Convex cycles play an important role in the study of partial cubes. In this paper, we prove that a regular partial cube is a hypercube (resp., a Doubled Odd graph, an even cycle of length 2 n $2n$ where n ⩾ 4 $n\geqslant 4$) if and only if all its convex cycles are 4‐cycles (resp., 6‐cycles, 2 n $2n$‐cycles). In particular, the partial cubes whose all convex cycles are 4‐cycles are equivalent to almost‐median graphs. Therefore, we conclude that regular almost‐median graphs are exactly hypercubes, which generalizes the result by Mulder—regular median graphs are hypercubes.
Partial cubes are graphs that can be isometrically embedded into hypercubes. Convex cycles play an important role in the study of partial cubes. In this paper, we prove that a regular partial cube is a hypercube (resp., a Doubled Odd graph, an even cycle of length 2n $2n$ where n⩾4 $n\geqslant 4$) if and only if all its convex cycles are 4‐cycles (resp., 6‐cycles, 2n $2n$‐cycles). In particular, the partial cubes whose all convex cycles are 4‐cycles are equivalent to almost‐median graphs. Therefore, we conclude that regular almost‐median graphs are exactly hypercubes, which generalizes the result by Mulder—regular median graphs are hypercubes.
Author Xie, Yan‐Ting
Xu, Shou‐Jun
Feng, Yong‐De
Author_xml – sequence: 1
  givenname: Yan‐Ting
  surname: Xie
  fullname: Xie, Yan‐Ting
  organization: Lanzhou University
– sequence: 2
  givenname: Yong‐De
  surname: Feng
  fullname: Feng, Yong‐De
  organization: Xinjiang University
– sequence: 3
  givenname: Shou‐Jun
  orcidid: 0000-0002-2046-3040
  surname: Xu
  fullname: Xu, Shou‐Jun
  email: shjxu@lzu.edu.cn
  organization: Lanzhou University
BookMark eNp1kD1PwzAQQC1UJNrCwD-wxMSQ1nZixxmrCgqoEksXJuvqXppUaVzshFJ-PYaystzpTu8-9EZk0LoWCbnlbMIZE9PdtpuIlAt1QYacFXnCONcDMmSpypKCieyKjELYsdiWTA_J24zaCjzYDn39BV3tWupK6nHbN-DpAXxXQ0Ntv8ZAj5ULSKGJtWs_8JPak21iv4IPpF2FNMAeaYPttqvCNbksoQl485fHZPX4sJo_JcvXxfN8tkyskLlKcpkpgRbWEiDVBZNZjHKdFVyqHLTkuS3it0pbJQub46YU1nLF9UbwjYB0TO7Oaw_evfcYOrNzvW_jRRM1FJxJoXWk7s-U9S4Ej6U5-HoP_mQ4Mz_iTBRnfsVFdnpmj3WDp_9B87JYnSe-AWm9cDs
Cites_doi 10.1007/978-3-642-74341-2
10.1016/0012-365X(92)90300-5
10.1002/jgt.20589
10.1002/jgt.22134
10.1016/j.disc.2011.09.008
10.1016/j.disc.2022.113190
10.26493/1855-3974.226.0a2
10.1016/j.ejc.2017.03.001
10.1016/j.disc.2007.10.025
10.1016/j.ejc.2005.10.009
10.1002/j.1538-7305.1971.tb02618.x
10.1016/j.ejc.2016.01.005
10.1016/0095-8956(73)90010-5
10.1002/jgt.10031
10.1201/b10959
10.1006/eujc.1998.0229
10.1002/mma.8233
10.1016/0166-218X(84)90069-6
10.1002/jgt.3190040112
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
DOI 10.1002/jgt.23126
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0118
EndPage 558
ExternalDocumentID 10_1002_jgt_23126
JGT23126
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 12071194; 11571155; 11961067
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
3-9
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
V8K
VH1
VJK
VQA
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XJT
XPP
XV2
XXG
YQT
ZZTAW
~IA
~WT
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c2576-75462ecab5aa3890543895b491567a8517c900168c659c7edf2cc1618d21d2a3
IEDL.DBID DR2
ISSN 0364-9024
IngestDate Fri Jul 25 12:09:08 EDT 2025
Tue Jul 01 01:47:46 EDT 2025
Wed Jan 22 17:14:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2576-75462ecab5aa3890543895b491567a8517c900168c659c7edf2cc1618d21d2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2046-3040
PQID 3129105288
PQPubID 1006407
PageCount 9
ParticipantIDs proquest_journals_3129105288
crossref_primary_10_1002_jgt_23126
wiley_primary_10_1002_jgt_23126_JGT23126
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of graph theory
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 28
2017; 86
2017; 63
1998; 19
1971; 50
2011
2002; 40
1973; 14
1984; 7
1980; 4
2008; 308
2009
2022; 45
2007; 9
2018
2023; 346
1992; 109
2013; 7
2012; 312
2012; 69
2016; 55
e_1_2_6_21_1
e_1_2_6_10_1
e_1_2_6_20_1
Klavžar S. (e_1_2_6_11_1) 2007; 9
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_22_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – year: 2011
– volume: 69
  start-page: 356
  year: 2012
  end-page: 369
  article-title: Convex excess in partial cubes
  publication-title: J. Graph Theory
– year: 2009
– volume: 308
  start-page: 5597
  year: 2008
  end-page: 5621
  article-title: Partial cubes: Structures, characterizations, and constructions
  publication-title: Discrete Math
– volume: 109
  start-page: 297
  year: 1992
  end-page: 306
  article-title: Distance regular subgraphs of a cube
  publication-title: Discrete Math
– volume: 50
  start-page: 2495
  year: 1971
  end-page: 2519
  article-title: On the addressing problem for loop switching
  publication-title: Bell Syst. Tech. J
– volume: 7
  start-page: 221
  year: 1984
  end-page: 225
  article-title: Isometric embedding in products of complete graphs
  publication-title: Discrete Appl. Math
– volume: 86
  start-page: 406
  year: 2017
  end-page: 421
  article-title: Classification of vertex‐transitive cubic partial cubes
  publication-title: J. Graph Theory
– volume: 40
  start-page: 91
  year: 2002
  end-page: 103
  article-title: Tiled partial cubes
  publication-title: J. Graph Theory
– volume: 14
  start-page: 263
  year: 1973
  end-page: 267
  article-title: Distance preserving subgraphs of hypercubes
  publication-title: J. Combin. Theory Ser. B
– volume: 55
  start-page: 62
  year: 2016
  end-page: 72
  article-title: There are no finite partial cubes of girth more than 6 and minimum degree at least 3
  publication-title: Eur. J. Combin
– volume: 63
  start-page: 115
  year: 2017
  end-page: 123
  article-title: Mirror graphs: Graph theoretical characterization of reflection arrangements and finite coxeter groups
  publication-title: Eur. J. Combin
– volume: 7
  start-page: 123
  year: 2013
  end-page: 140
  article-title: Convex cycle bases
  publication-title: Ars Math. Contemp
– volume: 19
  start-page: 677
  year: 1998
  end-page: 685
  article-title: A convexity lemma and expansion procedures for bipartite graphs
  publication-title: Eur. J. Combin
– volume: 312
  start-page: 462
  year: 2012
  end-page: 464
  article-title: Characterizing almost‐median graphs II
  publication-title: Discrete Math
– volume: 28
  start-page: 916
  year: 2007
  end-page: 920
  article-title: Characterizing almost‐median graphs
  publication-title: Eur. J. Combin
– volume: 4
  start-page: 107
  year: 1980
  end-page: 110
  article-title: ‐Cubes and median graphs
  publication-title: J. Graph Theory
– year: 2018
– volume: 9
  start-page: 273
  year: 2007
  end-page: 292
  article-title: Tribes of cubic partial cubes
  publication-title: Discrete Math. Theor. Comput. Sci
– volume: 346
  year: 2023
  article-title: Characterization of 2‐arc‐transitive partial cubes
  publication-title: Discrete Math
– volume: 45
  start-page: 7227
  year: 2022
  end-page: 7237
  article-title: Hypercube embeddings and Cayley graphs generated by transpositions
  publication-title: Math. Meth. Appl. Sci
– ident: e_1_2_6_4_1
  doi: 10.1007/978-3-642-74341-2
– ident: e_1_2_6_22_1
  doi: 10.1016/0012-365X(92)90300-5
– ident: e_1_2_6_13_1
  doi: 10.1002/jgt.20589
– ident: e_1_2_6_10_1
– ident: e_1_2_6_15_1
  doi: 10.1002/jgt.22134
– volume: 9
  start-page: 273
  year: 2007
  ident: e_1_2_6_11_1
  article-title: Tribes of cubic partial cubes
  publication-title: Discrete Math. Theor. Comput. Sci
– ident: e_1_2_6_18_1
– ident: e_1_2_6_12_1
  doi: 10.1016/j.disc.2011.09.008
– ident: e_1_2_6_24_1
  doi: 10.1016/j.disc.2022.113190
– ident: e_1_2_6_8_1
  doi: 10.26493/1855-3974.226.0a2
– ident: e_1_2_6_16_1
  doi: 10.1016/j.ejc.2017.03.001
– ident: e_1_2_6_20_1
  doi: 10.1016/j.disc.2007.10.025
– ident: e_1_2_6_2_1
  doi: 10.1016/j.ejc.2005.10.009
– ident: e_1_2_6_6_1
  doi: 10.1002/j.1538-7305.1971.tb02618.x
– ident: e_1_2_6_14_1
  doi: 10.1016/j.ejc.2016.01.005
– ident: e_1_2_6_5_1
  doi: 10.1016/0095-8956(73)90010-5
– ident: e_1_2_6_3_1
  doi: 10.1002/jgt.10031
– ident: e_1_2_6_7_1
  doi: 10.1201/b10959
– ident: e_1_2_6_9_1
  doi: 10.1006/eujc.1998.0229
– ident: e_1_2_6_23_1
  doi: 10.1002/mma.8233
– ident: e_1_2_6_17_1
– ident: e_1_2_6_21_1
  doi: 10.1016/0166-218X(84)90069-6
– ident: e_1_2_6_19_1
  doi: 10.1002/jgt.3190040112
SSID ssj0011508
Score 2.363674
Snippet Partial cubes are graphs that can be isometrically embedded into hypercubes. Convex cycles play an important role in the study of partial cubes. In this paper,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 550
SubjectTerms almost‐median graphs
convex cycles
Cubes
Graphs
Hypercubes
partial cubes
regularity
Title A characterization of regular partial cubes whose all convex cycles have the same lengths
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.23126
https://www.proquest.com/docview/3129105288
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jT_rgtzidEsQHX7J1adOk-DTUOQb6IBMmCCVJU4cf21g7v_5687F2KgjiS2lpe6SXu94v7d3vADjysEqDkAtERStEgUwlYtxPEKaRIp7gPLTZ7pdXYfcm6A3IoAJOiloYxw9RfnAznmHf18bBuciaC9LQh_u8ocEJNnTbLT80vPln1yV1lAE6zP2nDFCkA1HBKuThZnnn91i0AJhfYaqNM51VcFeM0KWXPDZmuWjIjx_kjf98hDWwMsefsO0MZh1U1GgDLF-W5K3ZJrhtQ1nSOLsqTThO4dR2rZ_CiTE2LULOhMrg63CcKcif9LHJX3-D8t3k2cEhf1FQC4UZf1bQtGvJh9kW6HfO-6ddNO_AgKRZiCBKghAryQXhXCMbDe_0logg0qs-yjVYozIyoJHJkESSqiTFUhoK_gS3Esz9bVAdjUdqB8AoZYSlvkhoxAOmYSlLPElSkVLmMcFwDRwWUxFPHM9G7BiVcazVFFs11UC9mKR47mpZrE9oyEMwYzVwbLX9u4C4d9G3O7t_v3QPLGFtP67-sA6q-XSm9jUQycWBtbhPRUvY0Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bT4MwFMdPdD6oD96N89oYH3xhso5CSXwx3qZuezAz0QdD2lJcvGzLYN4-vacw8JKYGF8IBGigPYf-Ws75F2DHpjpyXCEtT1Zdy1GRsriohRb1fM1sKYSbRrs3W279yjm_ZtdjsJ_nwmT6EMWEm_GM9HttHNxMSO99qobe3yUVpBPqjsOEg6Bhhl5Hl4V4lEEdnv2pdCwfu6JcV8ime8Wt33ujT8T8CqppT3MyC7f5M2YBJg-VYSIr6v2HfON_X2IOZkYISg4ym5mHMd1dgOlmod8aL8LNAVGFknOWqEl6ERmkC9cPSN_YGxahhlLH5KXTizURj3hsQthfiXozoXakI541wUJJLJ40MSu2JJ14Cdonx-3DujVahMFSZixiecxxqVZCMiEQbpDwcMuk4-PAzxPIa57yDTdy5TJfeTqMqFJGhT-k1ZCK2jKUur2uXgHiR5zxqCZDzxcORzLloa1YJCOP21xyWobtvC2Cfia1EWSiyjTAagrSairDet5Kwcjb4gBPIPUwynkZdtPq_r2A4Py0ne6s_v3SLZist5uNoHHWuliDKYrGlKUjrkMpGQz1BnJJIjdT8_sA5qjc8A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1ZS8QwEMcHDxB98BbXM4gPvnSt2aZN8UnU9RaRFRSEkqSJi8fusu16fXon7bYeIIgvpaVtSCeTzi_t5B-AdZdq4_lCOoHc8h1PGeVwUYsdGoSauVIIP8t2Pzv3D6-842t2PQDbxVyYXB-i_OBme0b2vrYdvBObzU_R0Pu7tIpwQv1BGPZ8JAlLRJeldpQlHZ7_qPScECNRISvk0s3y1u_B6JMwv3JqFmjqE3BbVDHPL3mo9lJZVe8_1Bv_-QyTMN4HULKTe8wUDOjWNIydleqtyQzc7BBV6jjn0zRJ25Butmx9l3Sst2ERqid1Ql6a7UQT8YjHNoH9lag3m2hHmuJZEyyUJOJJE7teS9pMZqFR32_sHjr9JRgcZUciTsA8n2olJBMC0Qb5DrdMeiEO-wKBtBao0FIjVz4LVaBjQ5WyGvwx3YqpqM3BUKvd0vNAQsMZNzUZB6HwOHIpj13FjDQBd7nktAJrRVNEnVxoI8ollWmEZooyM1VgqWikqN_XkghPIPMwynkFNjJr_15AdHzQyHYW_n7pKoxc7NWj06Pzk0UYpehK-VzEJRhKuz29jFCSypXM-T4AcMvbnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+characterization+of+regular+partial+cubes+whose+all+convex+cycles+have+the+same+lengths&rft.jtitle=Journal+of+graph+theory&rft.au=Xie%2C+Yan%E2%80%90Ting&rft.au=Feng%2C+Yong%E2%80%90De&rft.au=Xu%2C+Shou%E2%80%90Jun&rft.date=2024-11-01&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=107&rft.issue=3&rft.spage=550&rft.epage=558&rft_id=info:doi/10.1002%2Fjgt.23126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jgt_23126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon