A characterization of regular partial cubes whose all convex cycles have the same lengths
Partial cubes are graphs that can be isometrically embedded into hypercubes. Convex cycles play an important role in the study of partial cubes. In this paper, we prove that a regular partial cube is a hypercube (resp., a Doubled Odd graph, an even cycle of length 2 n $2n$ where n ⩾ 4 $n\geqslant 4$...
Saved in:
Published in | Journal of graph theory Vol. 107; no. 3; pp. 550 - 558 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0364-9024 1097-0118 |
DOI | 10.1002/jgt.23126 |
Cover
Loading…
Abstract | Partial cubes are graphs that can be isometrically embedded into hypercubes. Convex cycles play an important role in the study of partial cubes. In this paper, we prove that a regular partial cube is a hypercube (resp., a Doubled Odd graph, an even cycle of length
2
n $2n$ where
n
⩾
4 $n\geqslant 4$) if and only if all its convex cycles are 4‐cycles (resp., 6‐cycles,
2
n $2n$‐cycles). In particular, the partial cubes whose all convex cycles are 4‐cycles are equivalent to almost‐median graphs. Therefore, we conclude that regular almost‐median graphs are exactly hypercubes, which generalizes the result by Mulder—regular median graphs are hypercubes. |
---|---|
AbstractList | Partial cubes are graphs that can be isometrically embedded into hypercubes. Convex cycles play an important role in the study of partial cubes. In this paper, we prove that a regular partial cube is a hypercube (resp., a Doubled Odd graph, an even cycle of length where ) if and only if all its convex cycles are 4‐cycles (resp., 6‐cycles, ‐cycles). In particular, the partial cubes whose all convex cycles are 4‐cycles are equivalent to almost‐median graphs. Therefore, we conclude that regular almost‐median graphs are exactly hypercubes, which generalizes the result by Mulder—regular median graphs are hypercubes. Partial cubes are graphs that can be isometrically embedded into hypercubes. Convex cycles play an important role in the study of partial cubes. In this paper, we prove that a regular partial cube is a hypercube (resp., a Doubled Odd graph, an even cycle of length 2 n $2n$ where n ⩾ 4 $n\geqslant 4$) if and only if all its convex cycles are 4‐cycles (resp., 6‐cycles, 2 n $2n$‐cycles). In particular, the partial cubes whose all convex cycles are 4‐cycles are equivalent to almost‐median graphs. Therefore, we conclude that regular almost‐median graphs are exactly hypercubes, which generalizes the result by Mulder—regular median graphs are hypercubes. Partial cubes are graphs that can be isometrically embedded into hypercubes. Convex cycles play an important role in the study of partial cubes. In this paper, we prove that a regular partial cube is a hypercube (resp., a Doubled Odd graph, an even cycle of length 2n $2n$ where n⩾4 $n\geqslant 4$) if and only if all its convex cycles are 4‐cycles (resp., 6‐cycles, 2n $2n$‐cycles). In particular, the partial cubes whose all convex cycles are 4‐cycles are equivalent to almost‐median graphs. Therefore, we conclude that regular almost‐median graphs are exactly hypercubes, which generalizes the result by Mulder—regular median graphs are hypercubes. |
Author | Xie, Yan‐Ting Xu, Shou‐Jun Feng, Yong‐De |
Author_xml | – sequence: 1 givenname: Yan‐Ting surname: Xie fullname: Xie, Yan‐Ting organization: Lanzhou University – sequence: 2 givenname: Yong‐De surname: Feng fullname: Feng, Yong‐De organization: Xinjiang University – sequence: 3 givenname: Shou‐Jun orcidid: 0000-0002-2046-3040 surname: Xu fullname: Xu, Shou‐Jun email: shjxu@lzu.edu.cn organization: Lanzhou University |
BookMark | eNp1kD1PwzAQQC1UJNrCwD-wxMSQ1nZixxmrCgqoEksXJuvqXppUaVzshFJ-PYaystzpTu8-9EZk0LoWCbnlbMIZE9PdtpuIlAt1QYacFXnCONcDMmSpypKCieyKjELYsdiWTA_J24zaCjzYDn39BV3tWupK6nHbN-DpAXxXQ0Ntv8ZAj5ULSKGJtWs_8JPak21iv4IPpF2FNMAeaYPttqvCNbksoQl485fHZPX4sJo_JcvXxfN8tkyskLlKcpkpgRbWEiDVBZNZjHKdFVyqHLTkuS3it0pbJQub46YU1nLF9UbwjYB0TO7Oaw_evfcYOrNzvW_jRRM1FJxJoXWk7s-U9S4Ej6U5-HoP_mQ4Mz_iTBRnfsVFdnpmj3WDp_9B87JYnSe-AWm9cDs |
Cites_doi | 10.1007/978-3-642-74341-2 10.1016/0012-365X(92)90300-5 10.1002/jgt.20589 10.1002/jgt.22134 10.1016/j.disc.2011.09.008 10.1016/j.disc.2022.113190 10.26493/1855-3974.226.0a2 10.1016/j.ejc.2017.03.001 10.1016/j.disc.2007.10.025 10.1016/j.ejc.2005.10.009 10.1002/j.1538-7305.1971.tb02618.x 10.1016/j.ejc.2016.01.005 10.1016/0095-8956(73)90010-5 10.1002/jgt.10031 10.1201/b10959 10.1006/eujc.1998.0229 10.1002/mma.8233 10.1016/0166-218X(84)90069-6 10.1002/jgt.3190040112 |
ContentType | Journal Article |
Copyright | 2024 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2024 Wiley Periodicals LLC. |
DBID | AAYXX CITATION |
DOI | 10.1002/jgt.23126 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1097-0118 |
EndPage | 558 |
ExternalDocumentID | 10_1002_jgt_23126 JGT23126 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 12071194; 11571155; 11961067 |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 186 1L6 1OB 1OC 1ZS 3-9 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TN5 UB1 UPT V2E V8K VH1 VJK VQA W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XJT XPP XV2 XXG YQT ZZTAW ~IA ~WT AAYXX ADXHL AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c2576-75462ecab5aa3890543895b491567a8517c900168c659c7edf2cc1618d21d2a3 |
IEDL.DBID | DR2 |
ISSN | 0364-9024 |
IngestDate | Fri Jul 25 12:09:08 EDT 2025 Tue Jul 01 01:47:46 EDT 2025 Wed Jan 22 17:14:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2576-75462ecab5aa3890543895b491567a8517c900168c659c7edf2cc1618d21d2a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2046-3040 |
PQID | 3129105288 |
PQPubID | 1006407 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3129105288 crossref_primary_10_1002_jgt_23126 wiley_primary_10_1002_jgt_23126_JGT23126 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 20241101 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Journal of graph theory |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 28 2017; 86 2017; 63 1998; 19 1971; 50 2011 2002; 40 1973; 14 1984; 7 1980; 4 2008; 308 2009 2022; 45 2007; 9 2018 2023; 346 1992; 109 2013; 7 2012; 312 2012; 69 2016; 55 e_1_2_6_21_1 e_1_2_6_10_1 e_1_2_6_20_1 Klavžar S. (e_1_2_6_11_1) 2007; 9 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_19_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_12_1 e_1_2_6_22_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 |
References_xml | – year: 2011 – volume: 69 start-page: 356 year: 2012 end-page: 369 article-title: Convex excess in partial cubes publication-title: J. Graph Theory – year: 2009 – volume: 308 start-page: 5597 year: 2008 end-page: 5621 article-title: Partial cubes: Structures, characterizations, and constructions publication-title: Discrete Math – volume: 109 start-page: 297 year: 1992 end-page: 306 article-title: Distance regular subgraphs of a cube publication-title: Discrete Math – volume: 50 start-page: 2495 year: 1971 end-page: 2519 article-title: On the addressing problem for loop switching publication-title: Bell Syst. Tech. J – volume: 7 start-page: 221 year: 1984 end-page: 225 article-title: Isometric embedding in products of complete graphs publication-title: Discrete Appl. Math – volume: 86 start-page: 406 year: 2017 end-page: 421 article-title: Classification of vertex‐transitive cubic partial cubes publication-title: J. Graph Theory – volume: 40 start-page: 91 year: 2002 end-page: 103 article-title: Tiled partial cubes publication-title: J. Graph Theory – volume: 14 start-page: 263 year: 1973 end-page: 267 article-title: Distance preserving subgraphs of hypercubes publication-title: J. Combin. Theory Ser. B – volume: 55 start-page: 62 year: 2016 end-page: 72 article-title: There are no finite partial cubes of girth more than 6 and minimum degree at least 3 publication-title: Eur. J. Combin – volume: 63 start-page: 115 year: 2017 end-page: 123 article-title: Mirror graphs: Graph theoretical characterization of reflection arrangements and finite coxeter groups publication-title: Eur. J. Combin – volume: 7 start-page: 123 year: 2013 end-page: 140 article-title: Convex cycle bases publication-title: Ars Math. Contemp – volume: 19 start-page: 677 year: 1998 end-page: 685 article-title: A convexity lemma and expansion procedures for bipartite graphs publication-title: Eur. J. Combin – volume: 312 start-page: 462 year: 2012 end-page: 464 article-title: Characterizing almost‐median graphs II publication-title: Discrete Math – volume: 28 start-page: 916 year: 2007 end-page: 920 article-title: Characterizing almost‐median graphs publication-title: Eur. J. Combin – volume: 4 start-page: 107 year: 1980 end-page: 110 article-title: ‐Cubes and median graphs publication-title: J. Graph Theory – year: 2018 – volume: 9 start-page: 273 year: 2007 end-page: 292 article-title: Tribes of cubic partial cubes publication-title: Discrete Math. Theor. Comput. Sci – volume: 346 year: 2023 article-title: Characterization of 2‐arc‐transitive partial cubes publication-title: Discrete Math – volume: 45 start-page: 7227 year: 2022 end-page: 7237 article-title: Hypercube embeddings and Cayley graphs generated by transpositions publication-title: Math. Meth. Appl. Sci – ident: e_1_2_6_4_1 doi: 10.1007/978-3-642-74341-2 – ident: e_1_2_6_22_1 doi: 10.1016/0012-365X(92)90300-5 – ident: e_1_2_6_13_1 doi: 10.1002/jgt.20589 – ident: e_1_2_6_10_1 – ident: e_1_2_6_15_1 doi: 10.1002/jgt.22134 – volume: 9 start-page: 273 year: 2007 ident: e_1_2_6_11_1 article-title: Tribes of cubic partial cubes publication-title: Discrete Math. Theor. Comput. Sci – ident: e_1_2_6_18_1 – ident: e_1_2_6_12_1 doi: 10.1016/j.disc.2011.09.008 – ident: e_1_2_6_24_1 doi: 10.1016/j.disc.2022.113190 – ident: e_1_2_6_8_1 doi: 10.26493/1855-3974.226.0a2 – ident: e_1_2_6_16_1 doi: 10.1016/j.ejc.2017.03.001 – ident: e_1_2_6_20_1 doi: 10.1016/j.disc.2007.10.025 – ident: e_1_2_6_2_1 doi: 10.1016/j.ejc.2005.10.009 – ident: e_1_2_6_6_1 doi: 10.1002/j.1538-7305.1971.tb02618.x – ident: e_1_2_6_14_1 doi: 10.1016/j.ejc.2016.01.005 – ident: e_1_2_6_5_1 doi: 10.1016/0095-8956(73)90010-5 – ident: e_1_2_6_3_1 doi: 10.1002/jgt.10031 – ident: e_1_2_6_7_1 doi: 10.1201/b10959 – ident: e_1_2_6_9_1 doi: 10.1006/eujc.1998.0229 – ident: e_1_2_6_23_1 doi: 10.1002/mma.8233 – ident: e_1_2_6_17_1 – ident: e_1_2_6_21_1 doi: 10.1016/0166-218X(84)90069-6 – ident: e_1_2_6_19_1 doi: 10.1002/jgt.3190040112 |
SSID | ssj0011508 |
Score | 2.363674 |
Snippet | Partial cubes are graphs that can be isometrically embedded into hypercubes. Convex cycles play an important role in the study of partial cubes. In this paper,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 550 |
SubjectTerms | almost‐median graphs convex cycles Cubes Graphs Hypercubes partial cubes regularity |
Title | A characterization of regular partial cubes whose all convex cycles have the same lengths |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.23126 https://www.proquest.com/docview/3129105288 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jT_rgtzidEsQHX7J1adOk-DTUOQb6IBMmCCVJU4cf21g7v_5687F2KgjiS2lpe6SXu94v7d3vADjysEqDkAtERStEgUwlYtxPEKaRIp7gPLTZ7pdXYfcm6A3IoAJOiloYxw9RfnAznmHf18bBuciaC9LQh_u8ocEJNnTbLT80vPln1yV1lAE6zP2nDFCkA1HBKuThZnnn91i0AJhfYaqNM51VcFeM0KWXPDZmuWjIjx_kjf98hDWwMsefsO0MZh1U1GgDLF-W5K3ZJrhtQ1nSOLsqTThO4dR2rZ_CiTE2LULOhMrg63CcKcif9LHJX3-D8t3k2cEhf1FQC4UZf1bQtGvJh9kW6HfO-6ddNO_AgKRZiCBKghAryQXhXCMbDe_0logg0qs-yjVYozIyoJHJkESSqiTFUhoK_gS3Esz9bVAdjUdqB8AoZYSlvkhoxAOmYSlLPElSkVLmMcFwDRwWUxFPHM9G7BiVcazVFFs11UC9mKR47mpZrE9oyEMwYzVwbLX9u4C4d9G3O7t_v3QPLGFtP67-sA6q-XSm9jUQycWBtbhPRUvY0Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bT4MwFMdPdD6oD96N89oYH3xhso5CSXwx3qZuezAz0QdD2lJcvGzLYN4-vacw8JKYGF8IBGigPYf-Ws75F2DHpjpyXCEtT1Zdy1GRsriohRb1fM1sKYSbRrs3W279yjm_ZtdjsJ_nwmT6EMWEm_GM9HttHNxMSO99qobe3yUVpBPqjsOEg6Bhhl5Hl4V4lEEdnv2pdCwfu6JcV8ime8Wt33ujT8T8CqppT3MyC7f5M2YBJg-VYSIr6v2HfON_X2IOZkYISg4ym5mHMd1dgOlmod8aL8LNAVGFknOWqEl6ERmkC9cPSN_YGxahhlLH5KXTizURj3hsQthfiXozoXakI541wUJJLJ40MSu2JJ14Cdonx-3DujVahMFSZixiecxxqVZCMiEQbpDwcMuk4-PAzxPIa57yDTdy5TJfeTqMqFJGhT-k1ZCK2jKUur2uXgHiR5zxqCZDzxcORzLloa1YJCOP21xyWobtvC2Cfia1EWSiyjTAagrSairDet5Kwcjb4gBPIPUwynkZdtPq_r2A4Py0ne6s_v3SLZist5uNoHHWuliDKYrGlKUjrkMpGQz1BnJJIjdT8_sA5qjc8A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1ZS8QwEMcHDxB98BbXM4gPvnSt2aZN8UnU9RaRFRSEkqSJi8fusu16fXon7bYeIIgvpaVtSCeTzi_t5B-AdZdq4_lCOoHc8h1PGeVwUYsdGoSauVIIP8t2Pzv3D6-842t2PQDbxVyYXB-i_OBme0b2vrYdvBObzU_R0Pu7tIpwQv1BGPZ8JAlLRJeldpQlHZ7_qPScECNRISvk0s3y1u_B6JMwv3JqFmjqE3BbVDHPL3mo9lJZVe8_1Bv_-QyTMN4HULKTe8wUDOjWNIydleqtyQzc7BBV6jjn0zRJ25Butmx9l3Sst2ERqid1Ql6a7UQT8YjHNoH9lag3m2hHmuJZEyyUJOJJE7teS9pMZqFR32_sHjr9JRgcZUciTsA8n2olJBMC0Qb5DrdMeiEO-wKBtBao0FIjVz4LVaBjQ5WyGvwx3YqpqM3BUKvd0vNAQsMZNzUZB6HwOHIpj13FjDQBd7nktAJrRVNEnVxoI8ollWmEZooyM1VgqWikqN_XkghPIPMwynkFNjJr_15AdHzQyHYW_n7pKoxc7NWj06Pzk0UYpehK-VzEJRhKuz29jFCSypXM-T4AcMvbnw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+characterization+of+regular+partial+cubes+whose+all+convex+cycles+have+the+same+lengths&rft.jtitle=Journal+of+graph+theory&rft.au=Xie%2C+Yan%E2%80%90Ting&rft.au=Feng%2C+Yong%E2%80%90De&rft.au=Xu%2C+Shou%E2%80%90Jun&rft.date=2024-11-01&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=107&rft.issue=3&rft.spage=550&rft.epage=558&rft_id=info:doi/10.1002%2Fjgt.23126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jgt_23126 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon |