Temperature dependence of polymer melt viscosity obtained based on DSC data and the consistency between thermodynamic and kinetic fragility
The viscosity of the polymer melt has an impact on both the processing and properties of the product. However, conventional viscosity measurement methods have limitations such as strict testing conditions, large sample sizes, and long response times. This paper proposes a simplified method that util...
Saved in:
Published in | Journal of applied polymer science Vol. 141; no. 23 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
15.06.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The viscosity of the polymer melt has an impact on both the processing and properties of the product. However, conventional viscosity measurement methods have limitations such as strict testing conditions, large sample sizes, and long response times. This paper proposes a simplified method that utilizes differential scanning calorimetry to determine the viscosity–temperature relationship of the polymer melt. The research subjects consist of four noncrystalline polymers and five crystalline polymers. A new thermodynamic fragility formula of crystalline polymer is obtained. Additionally, high‐temperature limiting viscosity shows a good linear relationship with fragility. Compared with the traditional viscosity measurement, this method is a simpler and more effective way to model the viscosity of polymer melt and has broad prospects in application.
Temperature dependence of polymer melt viscosity obtained by DSC. |
---|---|
AbstractList | The viscosity of the polymer melt has an impact on both the processing and properties of the product. However, conventional viscosity measurement methods have limitations such as strict testing conditions, large sample sizes, and long response times. This paper proposes a simplified method that utilizes differential scanning calorimetry to determine the viscosity–temperature relationship of the polymer melt. The research subjects consist of four noncrystalline polymers and five crystalline polymers. A new thermodynamic fragility formula of crystalline polymer is obtained. Additionally, high‐temperature limiting viscosity shows a good linear relationship with fragility. Compared with the traditional viscosity measurement, this method is a simpler and more effective way to model the viscosity of polymer melt and has broad prospects in application. The viscosity of the polymer melt has an impact on both the processing and properties of the product. However, conventional viscosity measurement methods have limitations such as strict testing conditions, large sample sizes, and long response times. This paper proposes a simplified method that utilizes differential scanning calorimetry to determine the viscosity–temperature relationship of the polymer melt. The research subjects consist of four noncrystalline polymers and five crystalline polymers. A new thermodynamic fragility formula of crystalline polymer is obtained. Additionally, high‐temperature limiting viscosity shows a good linear relationship with fragility. Compared with the traditional viscosity measurement, this method is a simpler and more effective way to model the viscosity of polymer melt and has broad prospects in application. Temperature dependence of polymer melt viscosity obtained by DSC. |
Author | Guo, Zichao Fang, Chenghui Zhou, Juan Chen, Wanghua Chen, Liping Chen, Huanhuan |
Author_xml | – sequence: 1 givenname: Chenghui surname: Fang fullname: Fang, Chenghui organization: Nanjing University of Science and Technology – sequence: 2 givenname: Huanhuan surname: Chen fullname: Chen, Huanhuan organization: Nanjing University of Science and Technology – sequence: 3 givenname: Juan surname: Zhou fullname: Zhou, Juan organization: China Safety Technology Research Academy of Ordnance Industry – sequence: 4 givenname: Liping surname: Chen fullname: Chen, Liping organization: Nanjing University of Science and Technology – sequence: 5 givenname: Zichao surname: Guo fullname: Guo, Zichao organization: Nanjing University of Science and Technology – sequence: 6 givenname: Wanghua orcidid: 0009-0009-8273-7973 surname: Chen fullname: Chen, Wanghua email: cwh2023@njust.edu.cn organization: Nanjing University of Science and Technology |
BookMark | eNp1kM9OxCAQh4nRxHX14BuQePJQF0qh5WjWv8kmmqjnhsJUu7ZQgXXTZ_ClRderF4bMfPNN8jtC-9ZZQOiUkgtKSL5Q43jBeVGKPTSjRJZZIfJqH83SjGaVlPwQHYWwJoRSTsQMfT3DMIJXceMBGxjBGrAasGvx6PppAI8H6CP-7IJ2oYsTdk1UnQWDGxXS6yy-elpio6LCyhoc3wBrZ0MXYhJNuIG4BbA_fT84M1k1dPqXfE-WmP6tV69dn9TH6KBVfYCTvzpHLzfXz8u7bPVwe7-8XGU656XIyoLmZVNpVpRGt7TkhuVStSUDaQQvKsa0FFAJQXROGiNbSatGqZY2moqC5WyOznbe0buPDYRYr93G23SyZoTTpOdMJup8R2nvQvDQ1qPvBuWnmpL6J-s6ZV3_Zp3YxY7ddj1M_4P15ePjbuMbEPeEcQ |
Cites_doi | 10.1021/acsmacrolett.6b00979 10.1016/j.jnoncrysol.2009.01.032 10.5755/j01.u.66.1.262 10.1016/j.jnoncrysol.2011.07.031 10.2138/am-2003-8-924 10.1063/1.1517607 10.1063/1.2244551 10.1016/j.apenergy.2016.07.014 10.1016/B978-0-12-816806-6.00008-X 10.3390/e24081101 10.1002/pen.20128 10.1103/PhysRevLett.118.105701 10.1103/PhysRevB.83.212202 10.1002/pen.25307 10.1063/1.1571815 10.1515/arh-2022-0123 10.1063/1.1286035 10.1021/ma00243a011 10.1021/acs.macromol.1c00670 10.1016/j.polymer.2011.01.007 10.1016/j.petrol.2021.108393 10.1016/j.polymertesting.2012.04.012 10.1016/j.epsl.2008.03.038 10.1016/j.jnoncrysol.2007.04.025 10.1021/ma061969w 10.1016/j.mechatronics.2003.11.001 10.1103/PhysRevE.78.021502 10.1016/j.jnoncrysol.2013.04.034 10.1007/978-94-007-6395-1_8 10.3390/polym14122327 10.1016/j.polymertesting.2020.106910 10.1021/jp052279h |
ContentType | Journal Article |
Copyright | 2024 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2024 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/app.55476 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-4628 |
EndPage | n/a |
ExternalDocumentID | 10_1002_app_55476 APP55476 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Postgraduate Research & Practice Innovation Program funderid: KYCX‐23_0417 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWB RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~KM ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c2576-74127b8c347dcf175d329af73e9d654833c96e8660c20bd9f918baaf1bc164323 |
IEDL.DBID | DR2 |
ISSN | 0021-8995 |
IngestDate | Fri Jul 25 12:06:08 EDT 2025 Tue Jul 01 00:59:36 EDT 2025 Wed Jan 22 17:20:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2576-74127b8c347dcf175d329af73e9d654833c96e8660c20bd9f918baaf1bc164323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0009-8273-7973 |
PQID | 3051412539 |
PQPubID | 1006379 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3051412539 crossref_primary_10_1002_app_55476 wiley_primary_10_1002_app_55476_APP55476 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 June 2024 |
PublicationDateYYYYMMDD | 2024-06-15 |
PublicationDate_xml | – month: 06 year: 2024 text: 15 June 2024 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Journal of applied polymer science |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2004; 44 2017; 6 2011; 357 2003; 118 2021; 200 2020; 60 2000; 88 2006; 39 2011; 83 2002; 117 2011; 52 2022; 24 2008; 78 2009; 355 2021; 93 2016; 180 1983; 16 2012; 31 2017; 118 2021; 54 2020 2004; 14 2007; 353 2022; 14 2011; 66 2005; 109 2017 2013; 371 2022; 32 2013 2001; 2023 2008; 271 2003; 88 2006; 125 e_1_2_10_23_1 e_1_2_10_24_1 Tadmor Z. (e_1_2_10_12_1) 2013 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 Campos M. R. (e_1_2_10_7_1) 2001; 2023 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 88 start-page: 3113 year: 2000 publication-title: J. Appl. Phys. – volume: 60 start-page: 517 year: 2020 publication-title: Polym. Eng. Sci. – volume: 2023 start-page: 81 year: 2001 publication-title: Polym. Bull. – volume: 200 year: 2021 publication-title: J. Pet. Sci. Eng. – volume: 371 start-page: 53 year: 2013 publication-title: J. Non‐Cryst. Solids – volume: 83 year: 2011 publication-title: Phys. Rev. B – volume: 6 start-page: 331 year: 2017 publication-title: ACS Macro Lett. – volume: 24 start-page: 1101 year: 2022 publication-title: Entropy – volume: 180 start-page: 880 year: 2016 publication-title: Appl. Energy – volume: 355 start-page: 737 year: 2009 publication-title: J. Non‐Cryst. Solids – volume: 88 start-page: 1390 year: 2003 publication-title: Am. Mineral. – volume: 16 start-page: 1469 year: 1983 publication-title: Macromolecules – volume: 39 start-page: 8867 year: 2006 publication-title: Macromolecules – volume: 125 year: 2006 publication-title: J. Chem. Phys. – volume: 14 start-page: 2327 year: 2022 publication-title: Polymers (Basel) – volume: 44 start-page: 1328 year: 2004 publication-title: Polym. Eng. Sci. – volume: 78 year: 2008 publication-title: Phys. Rev. E – volume: 353 start-page: 2603 year: 2007 publication-title: J. Non‐Cryst. Solids – volume: 271 start-page: 123 year: 2008 publication-title: Earth Planet. Sci. Lett. – volume: 52 start-page: 1027 year: 2011 publication-title: Polymer – volume: 93 year: 2021 publication-title: Polym. Test. – volume: 31 start-page: 748 year: 2012 publication-title: Polym. Test. – volume: 54 start-page: 5595 year: 2021 publication-title: Macromolecules – year: 2020 – volume: 14 start-page: 789 year: 2004 publication-title: Mechatronics – volume: 109 start-page: 15093 year: 2005 publication-title: J. Phys. Chem. B – year: 2017 – volume: 118 year: 2017 publication-title: Phys. Rev. Lett. – volume: 66 start-page: 20 year: 2011 publication-title: Ultrasound – volume: 118 year: 2003 publication-title: J. Chem. Phys. – volume: 357 start-page: 3841 year: 2011 publication-title: J. Non‐Cryst. Solids – volume: 117 start-page: 10184 year: 2002 publication-title: J. Chem. Phys. – volume: 32 start-page: 69 year: 2022 publication-title: Appl. Rheol. – year: 2013 – ident: e_1_2_10_9_1 doi: 10.1021/acsmacrolett.6b00979 – ident: e_1_2_10_25_1 doi: 10.1016/j.jnoncrysol.2009.01.032 – ident: e_1_2_10_16_1 doi: 10.5755/j01.u.66.1.262 – ident: e_1_2_10_20_1 doi: 10.1016/j.jnoncrysol.2011.07.031 – ident: e_1_2_10_24_1 doi: 10.2138/am-2003-8-924 – ident: e_1_2_10_31_1 doi: 10.1063/1.1517607 – ident: e_1_2_10_33_1 doi: 10.1063/1.2244551 – ident: e_1_2_10_10_1 doi: 10.1016/j.apenergy.2016.07.014 – ident: e_1_2_10_2_1 doi: 10.1016/B978-0-12-816806-6.00008-X – ident: e_1_2_10_35_1 – ident: e_1_2_10_28_1 doi: 10.3390/e24081101 – ident: e_1_2_10_8_1 doi: 10.1002/pen.20128 – ident: e_1_2_10_26_1 doi: 10.1103/PhysRevLett.118.105701 – ident: e_1_2_10_22_1 doi: 10.1103/PhysRevB.83.212202 – ident: e_1_2_10_13_1 doi: 10.1002/pen.25307 – ident: e_1_2_10_29_1 doi: 10.1063/1.1571815 – ident: e_1_2_10_14_1 doi: 10.1515/arh-2022-0123 – ident: e_1_2_10_19_1 doi: 10.1063/1.1286035 – ident: e_1_2_10_36_1 doi: 10.1021/ma00243a011 – ident: e_1_2_10_27_1 doi: 10.1021/acs.macromol.1c00670 – ident: e_1_2_10_11_1 doi: 10.1016/j.polymer.2011.01.007 – ident: e_1_2_10_5_1 doi: 10.1016/j.petrol.2021.108393 – ident: e_1_2_10_17_1 doi: 10.1016/j.polymertesting.2012.04.012 – ident: e_1_2_10_23_1 doi: 10.1016/j.epsl.2008.03.038 – ident: e_1_2_10_32_1 doi: 10.1016/j.jnoncrysol.2007.04.025 – ident: e_1_2_10_34_1 doi: 10.1021/ma061969w – ident: e_1_2_10_15_1 doi: 10.1016/j.mechatronics.2003.11.001 – ident: e_1_2_10_21_1 doi: 10.1103/PhysRevE.78.021502 – ident: e_1_2_10_18_1 doi: 10.1016/j.jnoncrysol.2013.04.034 – ident: e_1_2_10_3_1 doi: 10.1007/978-94-007-6395-1_8 – ident: e_1_2_10_6_1 doi: 10.3390/polym14122327 – ident: e_1_2_10_4_1 doi: 10.1016/j.polymertesting.2020.106910 – ident: e_1_2_10_30_1 doi: 10.1021/jp052279h – volume-title: Principles of Polymer Processing year: 2013 ident: e_1_2_10_12_1 – volume: 2023 start-page: 81 year: 2001 ident: e_1_2_10_7_1 publication-title: Polym. Bull. |
SSID | ssj0011506 |
Score | 2.4362187 |
Snippet | The viscosity of the polymer melt has an impact on both the processing and properties of the product. However, conventional viscosity measurement methods have... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Addition polymerization differential scanning calorimetry Fragility Measurement methods polymer melt Polymers Temperature dependence thermodynamic fragility Thermodynamics viscosity Viscosity measurement |
Title | Temperature dependence of polymer melt viscosity obtained based on DSC data and the consistency between thermodynamic and kinetic fragility |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.55476 https://www.proquest.com/docview/3051412539 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1ZS-wwFMeD6Is-uF3FnYP4cF-qbdMt-DS4IKIiLuDDhZJVBp1WZkahfgW_tOe003GBC-JbKW1Ik5ycX8K__zC242dKyjCKPZtJ34tUHHlSYzzGQaKVMkjgjvY7zi-Sk9vo9C6-m2D77b8wjT_EeMONIqOerynApRrsfZiG0jFYmAtTstsmrRYB0dXYOopAJ2nkHYGHa4q4dRXyw73xm19z0QdgfsbUOs8cz7F_bQ0becnD7vNQ7erXb-aNv_yEeTY74k_oNANmgU3YYpHNfHIl_MPebiyydOO1DO0hudpC6eCpfKx6tg89-ziEl-5Ak-SrglLRBoM1QDnRQFnA4fUBkPgUZGEAGRM0CXEHBOgVjLRhdL_fK01VyF5X108-YClYMXB9eU-i3WqJ3R4f3RyceKMzGzxNSxcPASVMVaZ5lBrtkE0MD4V0KbfC0BH1nGuR2CxJfB36yggnAhotLlAaF2485MtssigLu8JAa5wsHHfaZg6xIxKBMDFPjVA4bfipWGXbbe_lT401R96YMIc5tmxet-wq22j7NR9F5yDnZPqOZMexjL91B_2_gLxzeVlfrP380XU2HSL7kKIsiDfY5LD_bDeRXYZqi011Ds_PrrfqwfoOrSjuQQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTtxAEG0hciA5JGQTJEBKKJFyMdjd3vqQA2JAQ1iEkkHi5ri3CMHYaGZIZH6BX8mv8E9UeRkgUqRcOHCzrFar3V3Lq9bzK8Y--qnKcx5Gnk1z3wtVFHq5Rn-MglgrZRCBO7rv2D-I-0fh1-PoeIb96f6FafQhphdu5Bl1vCYHpwvp9VvVUOqDhckwiVtK5a6tfmPBNv6y08PT_cT59tZgs--1PQU8TdDawwTKE5VqESZGO8ydRnCZu0RYaaiFuhBaxjaNY19zXxnpZEBf4wKlsbAQJHOAAf8JdRAnpf7et6lYFUGruCGUBB5WMVGnY-Tz9elS72e_W0h7FxjXmW37Bbvu9qQhtJyuXUzUmr78Sy7ysWzaPHveQmzYaHziJZuxxSv27I7w4mt2NbBYLjRy0tD1AdYWSgfn5Vk1tCMY2rMJ_DoZa2K1VVAqukOxBijtGygL6H3fBOLXQl4YQBgNmrjGY6pBKmjpb_R-NCxNVeTDE12PPMVZcGHgRvlP4iVXb9jRg-zGWzZblIVdYKA1xkMnnLapQ2QVykCaSCRGKoyMfiIX2WpnLtl5oz6SNTrTPMOTzOqTXGRLnSFlbQAaZ4J07RG8Cpzjc20R_54g2zg8rB_e_f_QD2yuP9jfy_Z2Dnbfs6ccoR4R6IJoic1ORhd2GaHaRK3UHgLsx0Nb1w0PfUkP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LThRBFK0QTIguEFEDCnhjNHHT0F3Vr1q4IAwTECQThYRd2_UiBKZ7MjNo2l_wU_wVPop7-zGAiYkbFu46nUqluuo-zq2cPpexd36q8pyHkWfT3PdCFYVertEfoyDWShlE4I7uOz4fxXsn4afT6HSO_e7-hWn0IWYXbuQZdbwmBx8Zt3UrGkptsDAXJnHLqDyw1Q-s1yYf93t4uO857-8e7-x5bUsBTxOy9jB_8kSlWoSJ0Q5TpxFc5i4RVhrqoC6ElrFN49jX3FdGOhnQx7hAaawrBKkcYLx_FMa-pD4RvS8zrSpCVnHDJwk8LGKiTsbI51uzpd5PfreI9i4urhNb_ym77rak4bNcbF5N1ab--Yda5H-yZ0tssQXYsN14xDM2Z4tl9uSO7OJz9uvYYrHQiElD1wVYWygdjMrLamjHMLSXU_h-PtHEaaugVHSDYg1Q0jdQFtD7ugPEroW8MIAgGjQxjSdUgVTQkt_o_XhYmqrIh-e6HnmBs-DCwI3zM2IlVy_YyYPsxks2X5SFXWGgNUZDJ5y2qUNcFcpAmkgkRiqMi34iV9nbzlqyUaM9kjUq0zzDk8zqk1xla50dZW34mWSCVO0Rugqc40NtEH-fINseDOqHV_8-9A1bGPT62eH-0cFr9pgjziP2XBCtsfnp-MquI06bqo3aP4B9e2jjugHTCEe- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+dependence+of+polymer+melt+viscosity+obtained+based+on+DSC+data+and+the+consistency+between+thermodynamic+and+kinetic+fragility&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Fang%2C+Chenghui&rft.au=Chen%2C+Huanhuan&rft.au=Zhou%2C+Juan&rft.au=Chen%2C+Liping&rft.date=2024-06-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=141&rft.issue=23&rft_id=info:doi/10.1002%2Fapp.55476&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon |