Temperature dependence of polymer melt viscosity obtained based on DSC data and the consistency between thermodynamic and kinetic fragility

The viscosity of the polymer melt has an impact on both the processing and properties of the product. However, conventional viscosity measurement methods have limitations such as strict testing conditions, large sample sizes, and long response times. This paper proposes a simplified method that util...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied polymer science Vol. 141; no. 23
Main Authors Fang, Chenghui, Chen, Huanhuan, Zhou, Juan, Chen, Liping, Guo, Zichao, Chen, Wanghua
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.06.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The viscosity of the polymer melt has an impact on both the processing and properties of the product. However, conventional viscosity measurement methods have limitations such as strict testing conditions, large sample sizes, and long response times. This paper proposes a simplified method that utilizes differential scanning calorimetry to determine the viscosity–temperature relationship of the polymer melt. The research subjects consist of four noncrystalline polymers and five crystalline polymers. A new thermodynamic fragility formula of crystalline polymer is obtained. Additionally, high‐temperature limiting viscosity shows a good linear relationship with fragility. Compared with the traditional viscosity measurement, this method is a simpler and more effective way to model the viscosity of polymer melt and has broad prospects in application. Temperature dependence of polymer melt viscosity obtained by DSC.
AbstractList The viscosity of the polymer melt has an impact on both the processing and properties of the product. However, conventional viscosity measurement methods have limitations such as strict testing conditions, large sample sizes, and long response times. This paper proposes a simplified method that utilizes differential scanning calorimetry to determine the viscosity–temperature relationship of the polymer melt. The research subjects consist of four noncrystalline polymers and five crystalline polymers. A new thermodynamic fragility formula of crystalline polymer is obtained. Additionally, high‐temperature limiting viscosity shows a good linear relationship with fragility. Compared with the traditional viscosity measurement, this method is a simpler and more effective way to model the viscosity of polymer melt and has broad prospects in application.
The viscosity of the polymer melt has an impact on both the processing and properties of the product. However, conventional viscosity measurement methods have limitations such as strict testing conditions, large sample sizes, and long response times. This paper proposes a simplified method that utilizes differential scanning calorimetry to determine the viscosity–temperature relationship of the polymer melt. The research subjects consist of four noncrystalline polymers and five crystalline polymers. A new thermodynamic fragility formula of crystalline polymer is obtained. Additionally, high‐temperature limiting viscosity shows a good linear relationship with fragility. Compared with the traditional viscosity measurement, this method is a simpler and more effective way to model the viscosity of polymer melt and has broad prospects in application. Temperature dependence of polymer melt viscosity obtained by DSC.
Author Guo, Zichao
Fang, Chenghui
Zhou, Juan
Chen, Wanghua
Chen, Liping
Chen, Huanhuan
Author_xml – sequence: 1
  givenname: Chenghui
  surname: Fang
  fullname: Fang, Chenghui
  organization: Nanjing University of Science and Technology
– sequence: 2
  givenname: Huanhuan
  surname: Chen
  fullname: Chen, Huanhuan
  organization: Nanjing University of Science and Technology
– sequence: 3
  givenname: Juan
  surname: Zhou
  fullname: Zhou, Juan
  organization: China Safety Technology Research Academy of Ordnance Industry
– sequence: 4
  givenname: Liping
  surname: Chen
  fullname: Chen, Liping
  organization: Nanjing University of Science and Technology
– sequence: 5
  givenname: Zichao
  surname: Guo
  fullname: Guo, Zichao
  organization: Nanjing University of Science and Technology
– sequence: 6
  givenname: Wanghua
  orcidid: 0009-0009-8273-7973
  surname: Chen
  fullname: Chen, Wanghua
  email: cwh2023@njust.edu.cn
  organization: Nanjing University of Science and Technology
BookMark eNp1kM9OxCAQh4nRxHX14BuQePJQF0qh5WjWv8kmmqjnhsJUu7ZQgXXTZ_ClRderF4bMfPNN8jtC-9ZZQOiUkgtKSL5Q43jBeVGKPTSjRJZZIfJqH83SjGaVlPwQHYWwJoRSTsQMfT3DMIJXceMBGxjBGrAasGvx6PppAI8H6CP-7IJ2oYsTdk1UnQWDGxXS6yy-elpio6LCyhoc3wBrZ0MXYhJNuIG4BbA_fT84M1k1dPqXfE-WmP6tV69dn9TH6KBVfYCTvzpHLzfXz8u7bPVwe7-8XGU656XIyoLmZVNpVpRGt7TkhuVStSUDaQQvKsa0FFAJQXROGiNbSatGqZY2moqC5WyOznbe0buPDYRYr93G23SyZoTTpOdMJup8R2nvQvDQ1qPvBuWnmpL6J-s6ZV3_Zp3YxY7ddj1M_4P15ePjbuMbEPeEcQ
Cites_doi 10.1021/acsmacrolett.6b00979
10.1016/j.jnoncrysol.2009.01.032
10.5755/j01.u.66.1.262
10.1016/j.jnoncrysol.2011.07.031
10.2138/am-2003-8-924
10.1063/1.1517607
10.1063/1.2244551
10.1016/j.apenergy.2016.07.014
10.1016/B978-0-12-816806-6.00008-X
10.3390/e24081101
10.1002/pen.20128
10.1103/PhysRevLett.118.105701
10.1103/PhysRevB.83.212202
10.1002/pen.25307
10.1063/1.1571815
10.1515/arh-2022-0123
10.1063/1.1286035
10.1021/ma00243a011
10.1021/acs.macromol.1c00670
10.1016/j.polymer.2011.01.007
10.1016/j.petrol.2021.108393
10.1016/j.polymertesting.2012.04.012
10.1016/j.epsl.2008.03.038
10.1016/j.jnoncrysol.2007.04.025
10.1021/ma061969w
10.1016/j.mechatronics.2003.11.001
10.1103/PhysRevE.78.021502
10.1016/j.jnoncrysol.2013.04.034
10.1007/978-94-007-6395-1_8
10.3390/polym14122327
10.1016/j.polymertesting.2020.106910
10.1021/jp052279h
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/app.55476
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-4628
EndPage n/a
ExternalDocumentID 10_1002_app_55476
APP55476
Genre researchArticle
GrantInformation_xml – fundername: Postgraduate Research & Practice Innovation Program
  funderid: KYCX‐23_0417
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWB
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c2576-74127b8c347dcf175d329af73e9d654833c96e8660c20bd9f918baaf1bc164323
IEDL.DBID DR2
ISSN 0021-8995
IngestDate Fri Jul 25 12:06:08 EDT 2025
Tue Jul 01 00:59:36 EDT 2025
Wed Jan 22 17:20:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2576-74127b8c347dcf175d329af73e9d654833c96e8660c20bd9f918baaf1bc164323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0009-8273-7973
PQID 3051412539
PQPubID 1006379
PageCount 11
ParticipantIDs proquest_journals_3051412539
crossref_primary_10_1002_app_55476
wiley_primary_10_1002_app_55476_APP55476
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 June 2024
PublicationDateYYYYMMDD 2024-06-15
PublicationDate_xml – month: 06
  year: 2024
  text: 15 June 2024
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Journal of applied polymer science
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2004; 44
2017; 6
2011; 357
2003; 118
2021; 200
2020; 60
2000; 88
2006; 39
2011; 83
2002; 117
2011; 52
2022; 24
2008; 78
2009; 355
2021; 93
2016; 180
1983; 16
2012; 31
2017; 118
2021; 54
2020
2004; 14
2007; 353
2022; 14
2011; 66
2005; 109
2017
2013; 371
2022; 32
2013
2001; 2023
2008; 271
2003; 88
2006; 125
e_1_2_10_23_1
e_1_2_10_24_1
Tadmor Z. (e_1_2_10_12_1) 2013
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
Campos M. R. (e_1_2_10_7_1) 2001; 2023
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 88
  start-page: 3113
  year: 2000
  publication-title: J. Appl. Phys.
– volume: 60
  start-page: 517
  year: 2020
  publication-title: Polym. Eng. Sci.
– volume: 2023
  start-page: 81
  year: 2001
  publication-title: Polym. Bull.
– volume: 200
  year: 2021
  publication-title: J. Pet. Sci. Eng.
– volume: 371
  start-page: 53
  year: 2013
  publication-title: J. Non‐Cryst. Solids
– volume: 83
  year: 2011
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 331
  year: 2017
  publication-title: ACS Macro Lett.
– volume: 24
  start-page: 1101
  year: 2022
  publication-title: Entropy
– volume: 180
  start-page: 880
  year: 2016
  publication-title: Appl. Energy
– volume: 355
  start-page: 737
  year: 2009
  publication-title: J. Non‐Cryst. Solids
– volume: 88
  start-page: 1390
  year: 2003
  publication-title: Am. Mineral.
– volume: 16
  start-page: 1469
  year: 1983
  publication-title: Macromolecules
– volume: 39
  start-page: 8867
  year: 2006
  publication-title: Macromolecules
– volume: 125
  year: 2006
  publication-title: J. Chem. Phys.
– volume: 14
  start-page: 2327
  year: 2022
  publication-title: Polymers (Basel)
– volume: 44
  start-page: 1328
  year: 2004
  publication-title: Polym. Eng. Sci.
– volume: 78
  year: 2008
  publication-title: Phys. Rev. E
– volume: 353
  start-page: 2603
  year: 2007
  publication-title: J. Non‐Cryst. Solids
– volume: 271
  start-page: 123
  year: 2008
  publication-title: Earth Planet. Sci. Lett.
– volume: 52
  start-page: 1027
  year: 2011
  publication-title: Polymer
– volume: 93
  year: 2021
  publication-title: Polym. Test.
– volume: 31
  start-page: 748
  year: 2012
  publication-title: Polym. Test.
– volume: 54
  start-page: 5595
  year: 2021
  publication-title: Macromolecules
– year: 2020
– volume: 14
  start-page: 789
  year: 2004
  publication-title: Mechatronics
– volume: 109
  start-page: 15093
  year: 2005
  publication-title: J. Phys. Chem. B
– year: 2017
– volume: 118
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 66
  start-page: 20
  year: 2011
  publication-title: Ultrasound
– volume: 118
  year: 2003
  publication-title: J. Chem. Phys.
– volume: 357
  start-page: 3841
  year: 2011
  publication-title: J. Non‐Cryst. Solids
– volume: 117
  start-page: 10184
  year: 2002
  publication-title: J. Chem. Phys.
– volume: 32
  start-page: 69
  year: 2022
  publication-title: Appl. Rheol.
– year: 2013
– ident: e_1_2_10_9_1
  doi: 10.1021/acsmacrolett.6b00979
– ident: e_1_2_10_25_1
  doi: 10.1016/j.jnoncrysol.2009.01.032
– ident: e_1_2_10_16_1
  doi: 10.5755/j01.u.66.1.262
– ident: e_1_2_10_20_1
  doi: 10.1016/j.jnoncrysol.2011.07.031
– ident: e_1_2_10_24_1
  doi: 10.2138/am-2003-8-924
– ident: e_1_2_10_31_1
  doi: 10.1063/1.1517607
– ident: e_1_2_10_33_1
  doi: 10.1063/1.2244551
– ident: e_1_2_10_10_1
  doi: 10.1016/j.apenergy.2016.07.014
– ident: e_1_2_10_2_1
  doi: 10.1016/B978-0-12-816806-6.00008-X
– ident: e_1_2_10_35_1
– ident: e_1_2_10_28_1
  doi: 10.3390/e24081101
– ident: e_1_2_10_8_1
  doi: 10.1002/pen.20128
– ident: e_1_2_10_26_1
  doi: 10.1103/PhysRevLett.118.105701
– ident: e_1_2_10_22_1
  doi: 10.1103/PhysRevB.83.212202
– ident: e_1_2_10_13_1
  doi: 10.1002/pen.25307
– ident: e_1_2_10_29_1
  doi: 10.1063/1.1571815
– ident: e_1_2_10_14_1
  doi: 10.1515/arh-2022-0123
– ident: e_1_2_10_19_1
  doi: 10.1063/1.1286035
– ident: e_1_2_10_36_1
  doi: 10.1021/ma00243a011
– ident: e_1_2_10_27_1
  doi: 10.1021/acs.macromol.1c00670
– ident: e_1_2_10_11_1
  doi: 10.1016/j.polymer.2011.01.007
– ident: e_1_2_10_5_1
  doi: 10.1016/j.petrol.2021.108393
– ident: e_1_2_10_17_1
  doi: 10.1016/j.polymertesting.2012.04.012
– ident: e_1_2_10_23_1
  doi: 10.1016/j.epsl.2008.03.038
– ident: e_1_2_10_32_1
  doi: 10.1016/j.jnoncrysol.2007.04.025
– ident: e_1_2_10_34_1
  doi: 10.1021/ma061969w
– ident: e_1_2_10_15_1
  doi: 10.1016/j.mechatronics.2003.11.001
– ident: e_1_2_10_21_1
  doi: 10.1103/PhysRevE.78.021502
– ident: e_1_2_10_18_1
  doi: 10.1016/j.jnoncrysol.2013.04.034
– ident: e_1_2_10_3_1
  doi: 10.1007/978-94-007-6395-1_8
– ident: e_1_2_10_6_1
  doi: 10.3390/polym14122327
– ident: e_1_2_10_4_1
  doi: 10.1016/j.polymertesting.2020.106910
– ident: e_1_2_10_30_1
  doi: 10.1021/jp052279h
– volume-title: Principles of Polymer Processing
  year: 2013
  ident: e_1_2_10_12_1
– volume: 2023
  start-page: 81
  year: 2001
  ident: e_1_2_10_7_1
  publication-title: Polym. Bull.
SSID ssj0011506
Score 2.4362187
Snippet The viscosity of the polymer melt has an impact on both the processing and properties of the product. However, conventional viscosity measurement methods have...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Addition polymerization
differential scanning calorimetry
Fragility
Measurement methods
polymer melt
Polymers
Temperature dependence
thermodynamic fragility
Thermodynamics
viscosity
Viscosity measurement
Title Temperature dependence of polymer melt viscosity obtained based on DSC data and the consistency between thermodynamic and kinetic fragility
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.55476
https://www.proquest.com/docview/3051412539
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1ZS-wwFMeD6Is-uF3FnYP4cF-qbdMt-DS4IKIiLuDDhZJVBp1WZkahfgW_tOe003GBC-JbKW1Ik5ycX8K__zC242dKyjCKPZtJ34tUHHlSYzzGQaKVMkjgjvY7zi-Sk9vo9C6-m2D77b8wjT_EeMONIqOerynApRrsfZiG0jFYmAtTstsmrRYB0dXYOopAJ2nkHYGHa4q4dRXyw73xm19z0QdgfsbUOs8cz7F_bQ0becnD7vNQ7erXb-aNv_yEeTY74k_oNANmgU3YYpHNfHIl_MPebiyydOO1DO0hudpC6eCpfKx6tg89-ziEl-5Ak-SrglLRBoM1QDnRQFnA4fUBkPgUZGEAGRM0CXEHBOgVjLRhdL_fK01VyF5X108-YClYMXB9eU-i3WqJ3R4f3RyceKMzGzxNSxcPASVMVaZ5lBrtkE0MD4V0KbfC0BH1nGuR2CxJfB36yggnAhotLlAaF2485MtssigLu8JAa5wsHHfaZg6xIxKBMDFPjVA4bfipWGXbbe_lT401R96YMIc5tmxet-wq22j7NR9F5yDnZPqOZMexjL91B_2_gLxzeVlfrP380XU2HSL7kKIsiDfY5LD_bDeRXYZqi011Ds_PrrfqwfoOrSjuQQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTtxAEG0hciA5JGQTJEBKKJFyMdjd3vqQA2JAQ1iEkkHi5ri3CMHYaGZIZH6BX8mv8E9UeRkgUqRcOHCzrFar3V3Lq9bzK8Y--qnKcx5Gnk1z3wtVFHq5Rn-MglgrZRCBO7rv2D-I-0fh1-PoeIb96f6FafQhphdu5Bl1vCYHpwvp9VvVUOqDhckwiVtK5a6tfmPBNv6y08PT_cT59tZgs--1PQU8TdDawwTKE5VqESZGO8ydRnCZu0RYaaiFuhBaxjaNY19zXxnpZEBf4wKlsbAQJHOAAf8JdRAnpf7et6lYFUGruCGUBB5WMVGnY-Tz9elS72e_W0h7FxjXmW37Bbvu9qQhtJyuXUzUmr78Sy7ysWzaPHveQmzYaHziJZuxxSv27I7w4mt2NbBYLjRy0tD1AdYWSgfn5Vk1tCMY2rMJ_DoZa2K1VVAqukOxBijtGygL6H3fBOLXQl4YQBgNmrjGY6pBKmjpb_R-NCxNVeTDE12PPMVZcGHgRvlP4iVXb9jRg-zGWzZblIVdYKA1xkMnnLapQ2QVykCaSCRGKoyMfiIX2WpnLtl5oz6SNTrTPMOTzOqTXGRLnSFlbQAaZ4J07RG8Cpzjc20R_54g2zg8rB_e_f_QD2yuP9jfy_Z2Dnbfs6ccoR4R6IJoic1ORhd2GaHaRK3UHgLsx0Nb1w0PfUkP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LThRBFK0QTIguEFEDCnhjNHHT0F3Vr1q4IAwTECQThYRd2_UiBKZ7MjNo2l_wU_wVPop7-zGAiYkbFu46nUqluuo-zq2cPpexd36q8pyHkWfT3PdCFYVertEfoyDWShlE4I7uOz4fxXsn4afT6HSO_e7-hWn0IWYXbuQZdbwmBx8Zt3UrGkptsDAXJnHLqDyw1Q-s1yYf93t4uO857-8e7-x5bUsBTxOy9jB_8kSlWoSJ0Q5TpxFc5i4RVhrqoC6ElrFN49jX3FdGOhnQx7hAaawrBKkcYLx_FMa-pD4RvS8zrSpCVnHDJwk8LGKiTsbI51uzpd5PfreI9i4urhNb_ym77rak4bNcbF5N1ab--Yda5H-yZ0tssQXYsN14xDM2Z4tl9uSO7OJz9uvYYrHQiElD1wVYWygdjMrLamjHMLSXU_h-PtHEaaugVHSDYg1Q0jdQFtD7ugPEroW8MIAgGjQxjSdUgVTQkt_o_XhYmqrIh-e6HnmBs-DCwI3zM2IlVy_YyYPsxks2X5SFXWGgNUZDJ5y2qUNcFcpAmkgkRiqMi34iV9nbzlqyUaM9kjUq0zzDk8zqk1xla50dZW34mWSCVO0Rugqc40NtEH-fINseDOqHV_8-9A1bGPT62eH-0cFr9pgjziP2XBCtsfnp-MquI06bqo3aP4B9e2jjugHTCEe-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+dependence+of+polymer+melt+viscosity+obtained+based+on+DSC+data+and+the+consistency+between+thermodynamic+and+kinetic+fragility&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Fang%2C+Chenghui&rft.au=Chen%2C+Huanhuan&rft.au=Zhou%2C+Juan&rft.au=Chen%2C+Liping&rft.date=2024-06-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=141&rft.issue=23&rft_id=info:doi/10.1002%2Fapp.55476&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon