Preparation of polypropylene nanofibers reinforced multifunctional epoxy composite concrete with ultraviolet‐driven afterglow emission

In order to develop smart concrete with afterglow emission, epoxy resin (EPX) was immobilized with nanoparticles of alkaline earth aluminate (NAEA) as a photoluminescent agent and electrospun polypropylene nanofibers (EPN) as a reinforcement agent. Scanning electron microscope images of EPN displaye...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied polymer science Vol. 141; no. 25
Main Authors Aldalbahi, Ali, Thamer, Badr M., Abdulhameed, Meera Moydeen, El‐Newehy, Mohamed H.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 05.06.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to develop smart concrete with afterglow emission, epoxy resin (EPX) was immobilized with nanoparticles of alkaline earth aluminate (NAEA) as a photoluminescent agent and electrospun polypropylene nanofibers (EPN) as a reinforcement agent. Scanning electron microscope images of EPN displayed diameters of 70–90 nm, whereas transmission electron microscopic images showed that NAEA has diameters of 3–9 nm. To create a transparent sheet that glows in the dark, NAEA were physically immobilized in EPN@EPX composite. CIE Lab and photoluminescence spectrum studies demonstrated that EPN@EPX bars turned greenish upon exposure to ultraviolet (UV) rays and greenish‐yellow in a darkened box. The luminous EPN@EPX morphologies and chemical compositions were analyzed using various analytical methods. The resistance to scratching of EPN@EPX bars was monitored to considerably increase with increasing NAEA concentration. The photoluminescence spectrum demonstrated two emission peaks at 437 and 518 nm. Photoluminescent EPN@EPX hybrids with low NAEA content have shown rapid photochromism reversibility. On the contrary, NAEA‐rich EPN@EPX bars displayed slow reversibility, glowing in the dark. Superhydrophobicity and UV blockage were found to be significantly improved in the luminescent colorless EPN@EPX hybrids. Preparation of photoluminescent transparent electrospun polypropylene nanofiber‐reinforced epoxy concrete toward afterglow emission, hydrophobicity, photostability, and ultraviolet blocking.
AbstractList Abstract In order to develop smart concrete with afterglow emission, epoxy resin (EPX) was immobilized with nanoparticles of alkaline earth aluminate (NAEA) as a photoluminescent agent and electrospun polypropylene nanofibers (EPN) as a reinforcement agent. Scanning electron microscope images of EPN displayed diameters of 70–90 nm, whereas transmission electron microscopic images showed that NAEA has diameters of 3–9 nm. To create a transparent sheet that glows in the dark, NAEA were physically immobilized in EPN@EPX composite. CIE Lab and photoluminescence spectrum studies demonstrated that EPN@EPX bars turned greenish upon exposure to ultraviolet (UV) rays and greenish‐yellow in a darkened box. The luminous EPN@EPX morphologies and chemical compositions were analyzed using various analytical methods. The resistance to scratching of EPN@EPX bars was monitored to considerably increase with increasing NAEA concentration. The photoluminescence spectrum demonstrated two emission peaks at 437 and 518 nm. Photoluminescent EPN@EPX hybrids with low NAEA content have shown rapid photochromism reversibility. On the contrary, NAEA‐rich EPN@EPX bars displayed slow reversibility, glowing in the dark. Superhydrophobicity and UV blockage were found to be significantly improved in the luminescent colorless EPN@EPX hybrids.
In order to develop smart concrete with afterglow emission, epoxy resin (EPX) was immobilized with nanoparticles of alkaline earth aluminate (NAEA) as a photoluminescent agent and electrospun polypropylene nanofibers (EPN) as a reinforcement agent. Scanning electron microscope images of EPN displayed diameters of 70–90 nm, whereas transmission electron microscopic images showed that NAEA has diameters of 3–9 nm. To create a transparent sheet that glows in the dark, NAEA were physically immobilized in EPN@EPX composite. CIE Lab and photoluminescence spectrum studies demonstrated that EPN@EPX bars turned greenish upon exposure to ultraviolet (UV) rays and greenish‐yellow in a darkened box. The luminous EPN@EPX morphologies and chemical compositions were analyzed using various analytical methods. The resistance to scratching of EPN@EPX bars was monitored to considerably increase with increasing NAEA concentration. The photoluminescence spectrum demonstrated two emission peaks at 437 and 518 nm. Photoluminescent EPN@EPX hybrids with low NAEA content have shown rapid photochromism reversibility. On the contrary, NAEA‐rich EPN@EPX bars displayed slow reversibility, glowing in the dark. Superhydrophobicity and UV blockage were found to be significantly improved in the luminescent colorless EPN@EPX hybrids.
In order to develop smart concrete with afterglow emission, epoxy resin (EPX) was immobilized with nanoparticles of alkaline earth aluminate (NAEA) as a photoluminescent agent and electrospun polypropylene nanofibers (EPN) as a reinforcement agent. Scanning electron microscope images of EPN displayed diameters of 70–90 nm, whereas transmission electron microscopic images showed that NAEA has diameters of 3–9 nm. To create a transparent sheet that glows in the dark, NAEA were physically immobilized in EPN@EPX composite. CIE Lab and photoluminescence spectrum studies demonstrated that EPN@EPX bars turned greenish upon exposure to ultraviolet (UV) rays and greenish‐yellow in a darkened box. The luminous EPN@EPX morphologies and chemical compositions were analyzed using various analytical methods. The resistance to scratching of EPN@EPX bars was monitored to considerably increase with increasing NAEA concentration. The photoluminescence spectrum demonstrated two emission peaks at 437 and 518 nm. Photoluminescent EPN@EPX hybrids with low NAEA content have shown rapid photochromism reversibility. On the contrary, NAEA‐rich EPN@EPX bars displayed slow reversibility, glowing in the dark. Superhydrophobicity and UV blockage were found to be significantly improved in the luminescent colorless EPN@EPX hybrids. Preparation of photoluminescent transparent electrospun polypropylene nanofiber‐reinforced epoxy concrete toward afterglow emission, hydrophobicity, photostability, and ultraviolet blocking.
Author Abdulhameed, Meera Moydeen
Thamer, Badr M.
El‐Newehy, Mohamed H.
Aldalbahi, Ali
Author_xml – sequence: 1
  givenname: Ali
  surname: Aldalbahi
  fullname: Aldalbahi, Ali
  organization: King Saud University
– sequence: 2
  givenname: Badr M.
  surname: Thamer
  fullname: Thamer, Badr M.
  organization: King Saud University
– sequence: 3
  givenname: Meera Moydeen
  surname: Abdulhameed
  fullname: Abdulhameed, Meera Moydeen
  organization: King Saud University
– sequence: 4
  givenname: Mohamed H.
  orcidid: 0000-0002-4265-0701
  surname: El‐Newehy
  fullname: El‐Newehy, Mohamed H.
  email: melnewehy@hotmail.com
  organization: King Saud University
BookMark eNp1kL1OwzAUhS1UJNrCwBtYYmJI68Rxfsaq4k-qRAeYIye5BleJbeykJRsjI8_Ik-ASVqZ7pPudI50zQxOlFSB0GZJFSEi05MYsGGMxO0HTkORpECdRNkFT_wuDLM_ZGZo5tyMkDBlJpuhza8FwyzupFdYCG90MxmozNKAAK660kCVYhy1IJbStoMZt33RS9Ko6mniDwej3AVe6NdrJDrxSlQUvDrJ7xR62fC91A933x1dt5R4U5qID-9LoA4ZWOudzztGp4I2Di787R8-3N0_r-2DzePewXm2CKmIpC2papozmok6jisQAEY3quCY8S1Me54KVAiqSUZqkeRZlLBFASlbSnNMyiWJa0zm6GnN9y7ceXFfsdG99DVdQwlISJ4wQT12PVGW1cxZEYaxsuR2KkBTHoQs_dPE7tGeXI3uQDQz_g8Vqux0dP1I4htk
Cites_doi 10.1021/acsami.8b10790
10.1016/j.jlumin.2020.117126
10.1016/j.jphotochem.2023.114541
10.1016/j.arabjc.2021.103604
10.1021/acs.jpcc.8b12568
10.1002/mdp2.24
10.1002/bio.4324
10.1016/j.progpolymsci.2018.10.003
10.1002/bio.4030
10.1002/ange.202107048
10.3390/ma13092153
10.1016/j.ultsonch.2021.105491
10.3390/polym13091373
10.1007/s10853-012-6563-3
10.1021/acs.chemrev.8b00593
10.1002/slct.201903981
10.1016/j.jlumin.2018.11.045
10.1016/j.rser.2023.113530
10.1002/bio.2939
10.1002/adfm.202208809
10.1039/D3RA00069A
10.1016/j.jlumin.2021.118047
10.3390/polym15030761
10.1016/j.optmat.2020.110328
10.1002/pc.25539
10.3390/polym15010119
10.1016/j.inoche.2023.110473
10.1016/j.inoche.2023.110669
10.1016/j.dyepig.2021.109445
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/app.55545
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-4628
EndPage n/a
ExternalDocumentID 10_1002_app_55545
APP55545
Genre researchArticle
GrantInformation_xml – fundername: King Saud University
  funderid: RSP2024R65
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWB
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
7SR
8FD
JG9
ID FETCH-LOGICAL-c2575-d3b7539fd72c04ee232d4d0a877a49f5bfec083367982856fe0b5b39a3b6243d3
IEDL.DBID DR2
ISSN 0021-8995
IngestDate Thu Oct 10 17:24:46 EDT 2024
Fri Aug 23 00:42:51 EDT 2024
Sat Aug 24 00:56:58 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2575-d3b7539fd72c04ee232d4d0a877a49f5bfec083367982856fe0b5b39a3b6243d3
ORCID 0000-0002-4265-0701
PQID 3057046500
PQPubID 1006379
PageCount 10
ParticipantIDs proquest_journals_3057046500
crossref_primary_10_1002_app_55545
wiley_primary_10_1002_app_55545_APP55545
PublicationCentury 2000
PublicationDate 2024-06-05
PublicationDateYYYYMMDD 2024-06-05
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-05
  day: 05
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Journal of applied polymer science
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2023; 13
2020; 41
2023; 184
2023; 15
2019; 1
2016; 31
2019; 18
2019; 207
2020; 13
2020; 223
2021; 73
2020; 109
2019; 123
2021; 36
2021; 13
2020; 5
2023; 152
2021; 235
2023; 150
2019; 89
2021; 192
2022; 37
2022; 15
2019; 119
2021; 133
2023; 438
2022; 32
2012; 47
2018; 10
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
Islam M. S. (e_1_2_9_23_1) 2019; 1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
Laia C. A. T. (e_1_2_9_3_1) 2019
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 89
  start-page: 133
  year: 2019
  publication-title: Prog. Polym. Sci.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 5118
  year: 2023
  publication-title: RSC Adv.
– volume: 1
  year: 2019
  publication-title: Mater. Des. Process. Commun.
– volume: 152
  year: 2023
  publication-title: Inorg. Chem. Commun.
– volume: 133
  start-page: 19555
  year: 2021
  publication-title: Angew. Chem.
– volume: 13
  year: 2020
  publication-title: Materials
– volume: 223
  year: 2020
  publication-title: J. Lumin.
– volume: 13
  year: 2021
  publication-title: Polymers
– volume: 207
  start-page: 378
  year: 2019
  publication-title: J. Lumin.
– volume: 192
  year: 2021
  publication-title: Dyes Pigm.
– volume: 5
  start-page: 1335
  year: 2020
  publication-title: ChemistrySelect
– volume: 109
  year: 2020
  publication-title: Opt. Mater.
– volume: 123
  start-page: 8607
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 235
  year: 2021
  publication-title: J. Lumin.
– volume: 150
  year: 2023
  publication-title: Inorg. Chem. Commun.
– volume: 10
  start-page: 31697
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 37
  start-page: 1504
  year: 2022
  publication-title: Luminescence
– volume: 119
  start-page: 5298
  year: 2019
  publication-title: Chem. Rev.
– volume: 15
  year: 2023
  publication-title: Polymers
– volume: 438
  year: 2023
  publication-title: J. Photochem. Photobiol. A
– volume: 15
  year: 2022
  publication-title: Arab. J. Chem.
– volume: 31
  start-page: 164
  year: 2016
  publication-title: Luminescence
– volume: 41
  start-page: 2288
  year: 2020
  publication-title: Polym. Compos.
– volume: 18
  start-page: 365
  year: 2019
– volume: 1
  start-page: 1
  year: 2019
  publication-title: SN Appl. Sci.
– volume: 47
  start-page: 6387
  year: 2012
  publication-title: J. Mater. Sci.
– volume: 36
  start-page: 1024
  year: 2021
  publication-title: Luminescence
– volume: 184
  year: 2023
  publication-title: Renew. Sustain. Energy Rev.
– volume: 15
  start-page: 761
  year: 2023
  publication-title: Polymers
– volume: 73
  year: 2021
  publication-title: Ultrason. Sonochem.
– ident: e_1_2_9_5_1
  doi: 10.1021/acsami.8b10790
– ident: e_1_2_9_19_1
  doi: 10.1016/j.jlumin.2020.117126
– ident: e_1_2_9_11_1
  doi: 10.1016/j.jphotochem.2023.114541
– ident: e_1_2_9_20_1
  doi: 10.1016/j.arabjc.2021.103604
– ident: e_1_2_9_15_1
  doi: 10.1021/acs.jpcc.8b12568
– ident: e_1_2_9_22_1
  doi: 10.1002/mdp2.24
– start-page: 365
  volume-title: Fluoresc. Ind.
  year: 2019
  ident: e_1_2_9_3_1
  contributor:
    fullname: Laia C. A. T.
– ident: e_1_2_9_6_1
  doi: 10.1002/bio.4324
– ident: e_1_2_9_31_1
  doi: 10.1016/j.progpolymsci.2018.10.003
– ident: e_1_2_9_12_1
  doi: 10.1002/bio.4030
– volume: 1
  start-page: 1
  year: 2019
  ident: e_1_2_9_23_1
  publication-title: SN Appl. Sci.
  contributor:
    fullname: Islam M. S.
– ident: e_1_2_9_7_1
  doi: 10.1002/ange.202107048
– ident: e_1_2_9_24_1
  doi: 10.3390/ma13092153
– ident: e_1_2_9_30_1
  doi: 10.1016/j.ultsonch.2021.105491
– ident: e_1_2_9_18_1
  doi: 10.3390/polym13091373
– ident: e_1_2_9_27_1
  doi: 10.1007/s10853-012-6563-3
– ident: e_1_2_9_26_1
  doi: 10.1021/acs.chemrev.8b00593
– ident: e_1_2_9_25_1
  doi: 10.1002/slct.201903981
– ident: e_1_2_9_8_1
  doi: 10.1016/j.jlumin.2018.11.045
– ident: e_1_2_9_2_1
  doi: 10.1016/j.rser.2023.113530
– ident: e_1_2_9_14_1
  doi: 10.1002/bio.2939
– ident: e_1_2_9_16_1
  doi: 10.1002/adfm.202208809
– ident: e_1_2_9_32_1
  doi: 10.1039/D3RA00069A
– ident: e_1_2_9_13_1
  doi: 10.1016/j.jlumin.2021.118047
– ident: e_1_2_9_17_1
  doi: 10.3390/polym15030761
– ident: e_1_2_9_9_1
  doi: 10.1016/j.optmat.2020.110328
– ident: e_1_2_9_21_1
  doi: 10.1002/pc.25539
– ident: e_1_2_9_4_1
  doi: 10.3390/polym15010119
– ident: e_1_2_9_28_1
  doi: 10.1016/j.inoche.2023.110473
– ident: e_1_2_9_29_1
  doi: 10.1016/j.inoche.2023.110669
– ident: e_1_2_9_10_1
  doi: 10.1016/j.dyepig.2021.109445
SSID ssj0011506
Score 2.4831645
Snippet In order to develop smart concrete with afterglow emission, epoxy resin (EPX) was immobilized with nanoparticles of alkaline earth aluminate (NAEA) as a...
Abstract In order to develop smart concrete with afterglow emission, epoxy resin (EPX) was immobilized with nanoparticles of alkaline earth aluminate (NAEA) as...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Afterglows
Chemical composition
Electron microscopes
electrospinning
Emission
Epoxy resins
Hydrophobicity
Nanofibers
optical properties
Photochromism
Photoluminescence
polyolefins
Polypropylene
Scratch resistance
Scratching
Smart materials
Title Preparation of polypropylene nanofibers reinforced multifunctional epoxy composite concrete with ultraviolet‐driven afterglow emission
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.55545
https://www.proquest.com/docview/3057046500
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KT3rwW6xWWcSDl7Rpdrdp8VTUUgSliIUehLC7mXhQkpKmaD159Ohv9Jc4u2naKgjibQObkOzszLyZzLwl5ISDRqvHtKN9zh0eutrBK8-BCFSkWg0mpEnoX980ewN-NRTDEjkremFyfoh5ws1ohrXXRsGlGtcXpKHmGCyBztA0mDeYb8q5Lm7n1FEG6DTz8o6GgzGFKFiFXK8-v_O7L1oAzGWYav1Md53cF2-Yl5c81iaZqunXH-SN__yEDbI2w5-0k2-YTVKCeIusLrESbpP3fgo5I3gS0ySio-TJ9EWNpuiggMYyxv2oEDXSFCztqoaQ2rpE4yPz1CJFWP8ypaZe3RSFAY5ihKc4MHlfipNTaUsCss-3jzA1Fpfa08ofnpJnao6gM0m8HTLoXt6d95zZgQ2ORs0XTsgURj_tKPQ97XIARGshil-2fF_ydiRUBBohHzN_fryWaEbgKqFYWzLV9DgL2S4px0kMe4RiZGS7fluMa67CSAmpMbLj2vcZSJAVclyILhjlvBxBzsDsBbisgV3WCqkWQg1mqjkO0MD5Lkdg6lbIqZXO7w8IOv2-Hez_feoBWfEQ-NhyMlEl5SydwCECl0wd2R36BQyX74Q
link.rule.ids 315,783,787,1378,27937,27938,46307,46731
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HNSDb3F11SAevFRrk2x3wYv4YH2yiIIXKUk69aC0S13R9eTRo7_RX-Ik3a4PEMRbCmlpk3l8M518A7Am0JDV48YzoRCeiH3j0VXgYYI60fUtLpVN6J-e1ZqX4uhKXg3AdnkWpuCH6CfcrGY4e20V3CakNz9ZQ20fLEneUA7CMKk7t2q5d94nj7JQp1YUeGx5FFXIklfIDzb7t373Rp8Q8ytQdZ7mYAKuy3csCkxuNx46esM8_6Bv_O9HTMJ4D4KynUJmpmAA02kY-0JMOAOvrRwLUvAsZVnC2tmdPRrV7pKPQpaqlERSE3BkOTrmVYMxc6WJ1k0W2UVGyP6py2zJuq0LQxqlhFBpYFO_jCbnylUFdN5f3uLcGl3mGpbf3GWPzHahs3m8Wbg82L_YbXq9ng2eIeWXXsw1BUCNJA4D4wtEAmwxSYCqh6ESjUTqBA2hPm5__gR1WUvQ11LzhuK6Fgge8zkYSrMU54FRcOQO_ta5MELHiZbKUHAnTBhyVKgqsFruXdQuqDmigoQ5iGhZI7esFaiWuxr1tPM-IhsX-oKwqV-Bdbc9vz8g2mm13GDh71NXYKR5cXoSnRyeHS_CaEA4yFWXySoMdfIHXCIc09HLTlw_AOfF850
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT9wwFH5ikapyYClFHVar6oFLIMR2MqOeEDBi1wiBxAEp8vLMoSgZhUFATz1y7G_sL-mzMxkWqVLFzZGcKPHbvvfy_Bngm0BDXo-byGRCRMLGJqKrJEKH2un2FpfKF_RPTtP9C3F4KS_H4HuzF6bmhxgV3LxlBH_tDbxv3eYzaag_BktSMJTjMClSUlWPiM5G3FEe6aR1f8dWREmFbGiF4mRzdOvrYPSMMF_i1BBoujNw1bxi3V_yY-NuoDfMzzfsje_8hlmYHgJQtl1rzByMYfEJpl7QEs7DU6_CmhK8LFjpWL-88Ruj-o8UoZAVqiCF1AQbWYWBd9WgZaEx0QfJurbICNc_PDLfsO67wpBGBeFTGvjCL6PJlQo9AYM_v37byrtcFo4rv74p75k_g85X8T7DRXfvfGc_Gp7YEBkyfRlZrin96TibJSYWiATXLMlftbNMiY6T2qEhzMf9r5-kLVOHsZaadxTXaSK45QswUZQFfgFGqVHY9tvmwghtnZbKUGonTJZxVKha8LURXd6viTnymoI5yWlZ87CsLVhuhJoPbfM2Jw-XxYKQadyC9SCdfz8g3-71wmDx_6euwYfebjc_Pjg9WoKPCYGg0Foml2FiUN3hCoGYgV4NyvoXLUXyTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+polypropylene+nanofibers+reinforced+multifunctional+epoxy+composite+concrete+with+ultraviolet%E2%80%90driven+afterglow+emission&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Aldalbahi%2C+Ali&rft.au=Thamer%2C+Badr+M&rft.au=Abdulhameed%2C+Meera+Moydeen&rft.au=Mohamed+H+El%E2%80%90Newehy&rft.date=2024-06-05&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=141&rft.issue=25&rft_id=info:doi/10.1002%2Fapp.55545&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon