Preparation of polypropylene nanofibers reinforced multifunctional epoxy composite concrete with ultraviolet‐driven afterglow emission
In order to develop smart concrete with afterglow emission, epoxy resin (EPX) was immobilized with nanoparticles of alkaline earth aluminate (NAEA) as a photoluminescent agent and electrospun polypropylene nanofibers (EPN) as a reinforcement agent. Scanning electron microscope images of EPN displaye...
Saved in:
Published in | Journal of applied polymer science Vol. 141; no. 25 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
05.06.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In order to develop smart concrete with afterglow emission, epoxy resin (EPX) was immobilized with nanoparticles of alkaline earth aluminate (NAEA) as a photoluminescent agent and electrospun polypropylene nanofibers (EPN) as a reinforcement agent. Scanning electron microscope images of EPN displayed diameters of 70–90 nm, whereas transmission electron microscopic images showed that NAEA has diameters of 3–9 nm. To create a transparent sheet that glows in the dark, NAEA were physically immobilized in EPN@EPX composite. CIE Lab and photoluminescence spectrum studies demonstrated that EPN@EPX bars turned greenish upon exposure to ultraviolet (UV) rays and greenish‐yellow in a darkened box. The luminous EPN@EPX morphologies and chemical compositions were analyzed using various analytical methods. The resistance to scratching of EPN@EPX bars was monitored to considerably increase with increasing NAEA concentration. The photoluminescence spectrum demonstrated two emission peaks at 437 and 518 nm. Photoluminescent EPN@EPX hybrids with low NAEA content have shown rapid photochromism reversibility. On the contrary, NAEA‐rich EPN@EPX bars displayed slow reversibility, glowing in the dark. Superhydrophobicity and UV blockage were found to be significantly improved in the luminescent colorless EPN@EPX hybrids.
Preparation of photoluminescent transparent electrospun polypropylene nanofiber‐reinforced epoxy concrete toward afterglow emission, hydrophobicity, photostability, and ultraviolet blocking. |
---|---|
AbstractList | Abstract
In order to develop smart concrete with afterglow emission, epoxy resin (EPX) was immobilized with nanoparticles of alkaline earth aluminate (NAEA) as a photoluminescent agent and electrospun polypropylene nanofibers (EPN) as a reinforcement agent. Scanning electron microscope images of EPN displayed diameters of 70–90 nm, whereas transmission electron microscopic images showed that NAEA has diameters of 3–9 nm. To create a transparent sheet that glows in the dark, NAEA were physically immobilized in EPN@EPX composite. CIE Lab and photoluminescence spectrum studies demonstrated that EPN@EPX bars turned greenish upon exposure to ultraviolet (UV) rays and greenish‐yellow in a darkened box. The luminous EPN@EPX morphologies and chemical compositions were analyzed using various analytical methods. The resistance to scratching of EPN@EPX bars was monitored to considerably increase with increasing NAEA concentration. The photoluminescence spectrum demonstrated two emission peaks at 437 and 518 nm. Photoluminescent EPN@EPX hybrids with low NAEA content have shown rapid photochromism reversibility. On the contrary, NAEA‐rich EPN@EPX bars displayed slow reversibility, glowing in the dark. Superhydrophobicity and UV blockage were found to be significantly improved in the luminescent colorless EPN@EPX hybrids. In order to develop smart concrete with afterglow emission, epoxy resin (EPX) was immobilized with nanoparticles of alkaline earth aluminate (NAEA) as a photoluminescent agent and electrospun polypropylene nanofibers (EPN) as a reinforcement agent. Scanning electron microscope images of EPN displayed diameters of 70–90 nm, whereas transmission electron microscopic images showed that NAEA has diameters of 3–9 nm. To create a transparent sheet that glows in the dark, NAEA were physically immobilized in EPN@EPX composite. CIE Lab and photoluminescence spectrum studies demonstrated that EPN@EPX bars turned greenish upon exposure to ultraviolet (UV) rays and greenish‐yellow in a darkened box. The luminous EPN@EPX morphologies and chemical compositions were analyzed using various analytical methods. The resistance to scratching of EPN@EPX bars was monitored to considerably increase with increasing NAEA concentration. The photoluminescence spectrum demonstrated two emission peaks at 437 and 518 nm. Photoluminescent EPN@EPX hybrids with low NAEA content have shown rapid photochromism reversibility. On the contrary, NAEA‐rich EPN@EPX bars displayed slow reversibility, glowing in the dark. Superhydrophobicity and UV blockage were found to be significantly improved in the luminescent colorless EPN@EPX hybrids. In order to develop smart concrete with afterglow emission, epoxy resin (EPX) was immobilized with nanoparticles of alkaline earth aluminate (NAEA) as a photoluminescent agent and electrospun polypropylene nanofibers (EPN) as a reinforcement agent. Scanning electron microscope images of EPN displayed diameters of 70–90 nm, whereas transmission electron microscopic images showed that NAEA has diameters of 3–9 nm. To create a transparent sheet that glows in the dark, NAEA were physically immobilized in EPN@EPX composite. CIE Lab and photoluminescence spectrum studies demonstrated that EPN@EPX bars turned greenish upon exposure to ultraviolet (UV) rays and greenish‐yellow in a darkened box. The luminous EPN@EPX morphologies and chemical compositions were analyzed using various analytical methods. The resistance to scratching of EPN@EPX bars was monitored to considerably increase with increasing NAEA concentration. The photoluminescence spectrum demonstrated two emission peaks at 437 and 518 nm. Photoluminescent EPN@EPX hybrids with low NAEA content have shown rapid photochromism reversibility. On the contrary, NAEA‐rich EPN@EPX bars displayed slow reversibility, glowing in the dark. Superhydrophobicity and UV blockage were found to be significantly improved in the luminescent colorless EPN@EPX hybrids. Preparation of photoluminescent transparent electrospun polypropylene nanofiber‐reinforced epoxy concrete toward afterglow emission, hydrophobicity, photostability, and ultraviolet blocking. |
Author | Abdulhameed, Meera Moydeen Thamer, Badr M. El‐Newehy, Mohamed H. Aldalbahi, Ali |
Author_xml | – sequence: 1 givenname: Ali surname: Aldalbahi fullname: Aldalbahi, Ali organization: King Saud University – sequence: 2 givenname: Badr M. surname: Thamer fullname: Thamer, Badr M. organization: King Saud University – sequence: 3 givenname: Meera Moydeen surname: Abdulhameed fullname: Abdulhameed, Meera Moydeen organization: King Saud University – sequence: 4 givenname: Mohamed H. orcidid: 0000-0002-4265-0701 surname: El‐Newehy fullname: El‐Newehy, Mohamed H. email: melnewehy@hotmail.com organization: King Saud University |
BookMark | eNp1kL1OwzAUhS1UJNrCwBtYYmJI68Rxfsaq4k-qRAeYIye5BleJbeykJRsjI8_Ik-ASVqZ7pPudI50zQxOlFSB0GZJFSEi05MYsGGMxO0HTkORpECdRNkFT_wuDLM_ZGZo5tyMkDBlJpuhza8FwyzupFdYCG90MxmozNKAAK660kCVYhy1IJbStoMZt33RS9Ko6mniDwej3AVe6NdrJDrxSlQUvDrJ7xR62fC91A933x1dt5R4U5qID-9LoA4ZWOudzztGp4I2Di787R8-3N0_r-2DzePewXm2CKmIpC2papozmok6jisQAEY3quCY8S1Me54KVAiqSUZqkeRZlLBFASlbSnNMyiWJa0zm6GnN9y7ceXFfsdG99DVdQwlISJ4wQT12PVGW1cxZEYaxsuR2KkBTHoQs_dPE7tGeXI3uQDQz_g8Vqux0dP1I4htk |
Cites_doi | 10.1021/acsami.8b10790 10.1016/j.jlumin.2020.117126 10.1016/j.jphotochem.2023.114541 10.1016/j.arabjc.2021.103604 10.1021/acs.jpcc.8b12568 10.1002/mdp2.24 10.1002/bio.4324 10.1016/j.progpolymsci.2018.10.003 10.1002/bio.4030 10.1002/ange.202107048 10.3390/ma13092153 10.1016/j.ultsonch.2021.105491 10.3390/polym13091373 10.1007/s10853-012-6563-3 10.1021/acs.chemrev.8b00593 10.1002/slct.201903981 10.1016/j.jlumin.2018.11.045 10.1016/j.rser.2023.113530 10.1002/bio.2939 10.1002/adfm.202208809 10.1039/D3RA00069A 10.1016/j.jlumin.2021.118047 10.3390/polym15030761 10.1016/j.optmat.2020.110328 10.1002/pc.25539 10.3390/polym15010119 10.1016/j.inoche.2023.110473 10.1016/j.inoche.2023.110669 10.1016/j.dyepig.2021.109445 |
ContentType | Journal Article |
Copyright | 2024 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2024 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/app.55545 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-4628 |
EndPage | n/a |
ExternalDocumentID | 10_1002_app_55545 APP55545 |
Genre | researchArticle |
GrantInformation_xml | – fundername: King Saud University funderid: RSP2024R65 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWB RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~KM ~WT AAYXX CITATION 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c2575-d3b7539fd72c04ee232d4d0a877a49f5bfec083367982856fe0b5b39a3b6243d3 |
IEDL.DBID | DR2 |
ISSN | 0021-8995 |
IngestDate | Thu Oct 10 17:24:46 EDT 2024 Fri Aug 23 00:42:51 EDT 2024 Sat Aug 24 00:56:58 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2575-d3b7539fd72c04ee232d4d0a877a49f5bfec083367982856fe0b5b39a3b6243d3 |
ORCID | 0000-0002-4265-0701 |
PQID | 3057046500 |
PQPubID | 1006379 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3057046500 crossref_primary_10_1002_app_55545 wiley_primary_10_1002_app_55545_APP55545 |
PublicationCentury | 2000 |
PublicationDate | 2024-06-05 |
PublicationDateYYYYMMDD | 2024-06-05 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Journal of applied polymer science |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2023; 13 2020; 41 2023; 184 2023; 15 2019; 1 2016; 31 2019; 18 2019; 207 2020; 13 2020; 223 2021; 73 2020; 109 2019; 123 2021; 36 2021; 13 2020; 5 2023; 152 2021; 235 2023; 150 2019; 89 2021; 192 2022; 37 2022; 15 2019; 119 2021; 133 2023; 438 2022; 32 2012; 47 2018; 10 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 Islam M. S. (e_1_2_9_23_1) 2019; 1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 Laia C. A. T. (e_1_2_9_3_1) 2019 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 89 start-page: 133 year: 2019 publication-title: Prog. Polym. Sci. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 5118 year: 2023 publication-title: RSC Adv. – volume: 1 year: 2019 publication-title: Mater. Des. Process. Commun. – volume: 152 year: 2023 publication-title: Inorg. Chem. Commun. – volume: 133 start-page: 19555 year: 2021 publication-title: Angew. Chem. – volume: 13 year: 2020 publication-title: Materials – volume: 223 year: 2020 publication-title: J. Lumin. – volume: 13 year: 2021 publication-title: Polymers – volume: 207 start-page: 378 year: 2019 publication-title: J. Lumin. – volume: 192 year: 2021 publication-title: Dyes Pigm. – volume: 5 start-page: 1335 year: 2020 publication-title: ChemistrySelect – volume: 109 year: 2020 publication-title: Opt. Mater. – volume: 123 start-page: 8607 year: 2019 publication-title: J. Phys. Chem. C – volume: 235 year: 2021 publication-title: J. Lumin. – volume: 150 year: 2023 publication-title: Inorg. Chem. Commun. – volume: 10 start-page: 31697 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 37 start-page: 1504 year: 2022 publication-title: Luminescence – volume: 119 start-page: 5298 year: 2019 publication-title: Chem. Rev. – volume: 15 year: 2023 publication-title: Polymers – volume: 438 year: 2023 publication-title: J. Photochem. Photobiol. A – volume: 15 year: 2022 publication-title: Arab. J. Chem. – volume: 31 start-page: 164 year: 2016 publication-title: Luminescence – volume: 41 start-page: 2288 year: 2020 publication-title: Polym. Compos. – volume: 18 start-page: 365 year: 2019 – volume: 1 start-page: 1 year: 2019 publication-title: SN Appl. Sci. – volume: 47 start-page: 6387 year: 2012 publication-title: J. Mater. Sci. – volume: 36 start-page: 1024 year: 2021 publication-title: Luminescence – volume: 184 year: 2023 publication-title: Renew. Sustain. Energy Rev. – volume: 15 start-page: 761 year: 2023 publication-title: Polymers – volume: 73 year: 2021 publication-title: Ultrason. Sonochem. – ident: e_1_2_9_5_1 doi: 10.1021/acsami.8b10790 – ident: e_1_2_9_19_1 doi: 10.1016/j.jlumin.2020.117126 – ident: e_1_2_9_11_1 doi: 10.1016/j.jphotochem.2023.114541 – ident: e_1_2_9_20_1 doi: 10.1016/j.arabjc.2021.103604 – ident: e_1_2_9_15_1 doi: 10.1021/acs.jpcc.8b12568 – ident: e_1_2_9_22_1 doi: 10.1002/mdp2.24 – start-page: 365 volume-title: Fluoresc. Ind. year: 2019 ident: e_1_2_9_3_1 contributor: fullname: Laia C. A. T. – ident: e_1_2_9_6_1 doi: 10.1002/bio.4324 – ident: e_1_2_9_31_1 doi: 10.1016/j.progpolymsci.2018.10.003 – ident: e_1_2_9_12_1 doi: 10.1002/bio.4030 – volume: 1 start-page: 1 year: 2019 ident: e_1_2_9_23_1 publication-title: SN Appl. Sci. contributor: fullname: Islam M. S. – ident: e_1_2_9_7_1 doi: 10.1002/ange.202107048 – ident: e_1_2_9_24_1 doi: 10.3390/ma13092153 – ident: e_1_2_9_30_1 doi: 10.1016/j.ultsonch.2021.105491 – ident: e_1_2_9_18_1 doi: 10.3390/polym13091373 – ident: e_1_2_9_27_1 doi: 10.1007/s10853-012-6563-3 – ident: e_1_2_9_26_1 doi: 10.1021/acs.chemrev.8b00593 – ident: e_1_2_9_25_1 doi: 10.1002/slct.201903981 – ident: e_1_2_9_8_1 doi: 10.1016/j.jlumin.2018.11.045 – ident: e_1_2_9_2_1 doi: 10.1016/j.rser.2023.113530 – ident: e_1_2_9_14_1 doi: 10.1002/bio.2939 – ident: e_1_2_9_16_1 doi: 10.1002/adfm.202208809 – ident: e_1_2_9_32_1 doi: 10.1039/D3RA00069A – ident: e_1_2_9_13_1 doi: 10.1016/j.jlumin.2021.118047 – ident: e_1_2_9_17_1 doi: 10.3390/polym15030761 – ident: e_1_2_9_9_1 doi: 10.1016/j.optmat.2020.110328 – ident: e_1_2_9_21_1 doi: 10.1002/pc.25539 – ident: e_1_2_9_4_1 doi: 10.3390/polym15010119 – ident: e_1_2_9_28_1 doi: 10.1016/j.inoche.2023.110473 – ident: e_1_2_9_29_1 doi: 10.1016/j.inoche.2023.110669 – ident: e_1_2_9_10_1 doi: 10.1016/j.dyepig.2021.109445 |
SSID | ssj0011506 |
Score | 2.4831645 |
Snippet | In order to develop smart concrete with afterglow emission, epoxy resin (EPX) was immobilized with nanoparticles of alkaline earth aluminate (NAEA) as a... Abstract In order to develop smart concrete with afterglow emission, epoxy resin (EPX) was immobilized with nanoparticles of alkaline earth aluminate (NAEA) as... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Afterglows Chemical composition Electron microscopes electrospinning Emission Epoxy resins Hydrophobicity Nanofibers optical properties Photochromism Photoluminescence polyolefins Polypropylene Scratch resistance Scratching Smart materials |
Title | Preparation of polypropylene nanofibers reinforced multifunctional epoxy composite concrete with ultraviolet‐driven afterglow emission |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.55545 https://www.proquest.com/docview/3057046500 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KT3rwW6xWWcSDl7Rpdrdp8VTUUgSliIUehLC7mXhQkpKmaD159Ohv9Jc4u2naKgjibQObkOzszLyZzLwl5ISDRqvHtKN9zh0eutrBK8-BCFSkWg0mpEnoX980ewN-NRTDEjkremFyfoh5ws1ohrXXRsGlGtcXpKHmGCyBztA0mDeYb8q5Lm7n1FEG6DTz8o6GgzGFKFiFXK8-v_O7L1oAzGWYav1Md53cF2-Yl5c81iaZqunXH-SN__yEDbI2w5-0k2-YTVKCeIusLrESbpP3fgo5I3gS0ySio-TJ9EWNpuiggMYyxv2oEDXSFCztqoaQ2rpE4yPz1CJFWP8ypaZe3RSFAY5ihKc4MHlfipNTaUsCss-3jzA1Fpfa08ofnpJnao6gM0m8HTLoXt6d95zZgQ2ORs0XTsgURj_tKPQ97XIARGshil-2fF_ydiRUBBohHzN_fryWaEbgKqFYWzLV9DgL2S4px0kMe4RiZGS7fluMa67CSAmpMbLj2vcZSJAVclyILhjlvBxBzsDsBbisgV3WCqkWQg1mqjkO0MD5Lkdg6lbIqZXO7w8IOv2-Hez_feoBWfEQ-NhyMlEl5SydwCECl0wd2R36BQyX74Q |
link.rule.ids | 315,783,787,1378,27937,27938,46307,46731 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HNSDb3F11SAevFRrk2x3wYv4YH2yiIIXKUk69aC0S13R9eTRo7_RX-Ik3a4PEMRbCmlpk3l8M518A7Am0JDV48YzoRCeiH3j0VXgYYI60fUtLpVN6J-e1ZqX4uhKXg3AdnkWpuCH6CfcrGY4e20V3CakNz9ZQ20fLEneUA7CMKk7t2q5d94nj7JQp1YUeGx5FFXIklfIDzb7t373Rp8Q8ytQdZ7mYAKuy3csCkxuNx46esM8_6Bv_O9HTMJ4D4KynUJmpmAA02kY-0JMOAOvrRwLUvAsZVnC2tmdPRrV7pKPQpaqlERSE3BkOTrmVYMxc6WJ1k0W2UVGyP6py2zJuq0LQxqlhFBpYFO_jCbnylUFdN5f3uLcGl3mGpbf3GWPzHahs3m8Wbg82L_YbXq9ng2eIeWXXsw1BUCNJA4D4wtEAmwxSYCqh6ESjUTqBA2hPm5__gR1WUvQ11LzhuK6Fgge8zkYSrMU54FRcOQO_ta5MELHiZbKUHAnTBhyVKgqsFruXdQuqDmigoQ5iGhZI7esFaiWuxr1tPM-IhsX-oKwqV-Bdbc9vz8g2mm13GDh71NXYKR5cXoSnRyeHS_CaEA4yFWXySoMdfIHXCIc09HLTlw_AOfF850 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT9wwFH5ikapyYClFHVar6oFLIMR2MqOeEDBi1wiBxAEp8vLMoSgZhUFATz1y7G_sL-mzMxkWqVLFzZGcKPHbvvfy_Bngm0BDXo-byGRCRMLGJqKrJEKH2un2FpfKF_RPTtP9C3F4KS_H4HuzF6bmhxgV3LxlBH_tDbxv3eYzaag_BktSMJTjMClSUlWPiM5G3FEe6aR1f8dWREmFbGiF4mRzdOvrYPSMMF_i1BBoujNw1bxi3V_yY-NuoDfMzzfsje_8hlmYHgJQtl1rzByMYfEJpl7QEs7DU6_CmhK8LFjpWL-88Ruj-o8UoZAVqiCF1AQbWYWBd9WgZaEx0QfJurbICNc_PDLfsO67wpBGBeFTGvjCL6PJlQo9AYM_v37byrtcFo4rv74p75k_g85X8T7DRXfvfGc_Gp7YEBkyfRlZrin96TibJSYWiATXLMlftbNMiY6T2qEhzMf9r5-kLVOHsZaadxTXaSK45QswUZQFfgFGqVHY9tvmwghtnZbKUGonTJZxVKha8LURXd6viTnymoI5yWlZ87CsLVhuhJoPbfM2Jw-XxYKQadyC9SCdfz8g3-71wmDx_6euwYfebjc_Pjg9WoKPCYGg0Foml2FiUN3hCoGYgV4NyvoXLUXyTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+polypropylene+nanofibers+reinforced+multifunctional+epoxy+composite+concrete+with+ultraviolet%E2%80%90driven+afterglow+emission&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Aldalbahi%2C+Ali&rft.au=Thamer%2C+Badr+M&rft.au=Abdulhameed%2C+Meera+Moydeen&rft.au=Mohamed+H+El%E2%80%90Newehy&rft.date=2024-06-05&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=141&rft.issue=25&rft_id=info:doi/10.1002%2Fapp.55545&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon |