Squeeze‐and‐excitation attention residual learning of propulsion fault features for diagnosing autonomous underwater vehicles
Given the demanding and unpredictable operational conditions, autonomous underwater vehicles (AUVs) often encounter different propulsion faults, leading to significant economic losses and mission impairments. To address this challenge, vibratory time‐series features can be extracted for the precise...
Saved in:
Published in | Journal of field robotics Vol. 42; no. 1; pp. 169 - 179 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1556-4959 1556-4967 |
DOI | 10.1002/rob.22405 |
Cover
Abstract | Given the demanding and unpredictable operational conditions, autonomous underwater vehicles (AUVs) often encounter different propulsion faults, leading to significant economic losses and mission impairments. To address this challenge, vibratory time‐series features can be extracted for the precise propulsion fault diagnosis of AUVs. A squeeze‐and‐excitation (SE) attention residual network (SEResNet) is therefore put forward to enhance the feature extraction for AUV propulsion fault diagnosis. By leveraging the vibratory time‐series data obtained from the AUV, an SE attention mechanism is embedded into a residual network. This integration facilitates the extraction of pertinent vibratory fault features, subsequently utilized for accurate diagnosis of any propulsion faults. The effectiveness of the proposed SEResNet was validated through its application to an actual experimental AUV, with comparison against the state‐of‐the‐arts. The results reveal that the present SEResNet outperforms all other comparison methods in terms of diagnosis performance for AUV propulsion faults. |
---|---|
AbstractList | Given the demanding and unpredictable operational conditions, autonomous underwater vehicles (AUVs) often encounter different propulsion faults, leading to significant economic losses and mission impairments. To address this challenge, vibratory time‐series features can be extracted for the precise propulsion fault diagnosis of AUVs. A squeeze‐and‐excitation (SE) attention residual network (SEResNet) is therefore put forward to enhance the feature extraction for AUV propulsion fault diagnosis. By leveraging the vibratory time‐series data obtained from the AUV, an SE attention mechanism is embedded into a residual network. This integration facilitates the extraction of pertinent vibratory fault features, subsequently utilized for accurate diagnosis of any propulsion faults. The effectiveness of the proposed SEResNet was validated through its application to an actual experimental AUV, with comparison against the state‐of‐the‐arts. The results reveal that the present SEResNet outperforms all other comparison methods in terms of diagnosis performance for AUV propulsion faults. |
Author | Wang, Hongchao Pu, Ziqiang Yu, Xinlong Guo, Zhen Li, Chuan Du, Wenliao |
Author_xml | – sequence: 1 givenname: Wenliao surname: Du fullname: Du, Wenliao organization: Zhengzhou University of Light Industry – sequence: 2 givenname: Xinlong surname: Yu fullname: Yu, Xinlong organization: Zhengzhou University of Light Industry – sequence: 3 givenname: Zhen surname: Guo fullname: Guo, Zhen email: 1372191562@qq.com organization: Zhengzhou University of Light Industry – sequence: 4 givenname: Hongchao surname: Wang fullname: Wang, Hongchao organization: Zhengzhou University of Light Industry – sequence: 5 givenname: Ziqiang surname: Pu fullname: Pu, Ziqiang organization: Chongqing Technology and Business University – sequence: 6 givenname: Chuan surname: Li fullname: Li, Chuan email: chuanli@21cn.com organization: Chongqing Technology and Business University |
BookMark | eNp1kMlOwzAQhi1UJNrCgTewxIlDW8eOk_gIFZtUqRLLOTLOuKRK7eKFUk7wBjwjT0JKEDcuM78032z_APWMNYDQcULGCSF04uzjmNKU8D3UTzjPRqnI8t6f5uIADbxfEpKyQvA--rh7jgBv8PX-KU3VRnhVdZChtgbLEMD8KAe-rqJscAPSmdossNV47ew6Nn5X1zI2AWuQIbYo1tbhqpYLY_2OlTFYY1c2ehxNBW4jAzj8Ak-1asAfon0tGw9Hv3mIHi4v7qfXo9n86mZ6NhspynM-YrlQMi8yRgueCy2Y4oRXeVopqVjGFNOcUq7yglItgMuMViTRmlVUgChIxobopJvb3t3-7EO5tNGZdmXJkjRhGWGEt9RpRylnvXegy7WrV9Jty4SUO4fL1uHyx-GWnXTspm5g-z9Y3s7Pu45vl8uD3w |
Cites_doi | 10.1109/LES.2020.2975055 10.1109/TIE.2021.3108719 10.1002/rob.22061 10.23919/OCEANS44145.2021.9705739 10.1016/j.sna.2021.112668 10.1109/TASE.2022.3179896 10.1088/1361-6501/acb000 10.1002/rob.22164 10.1007/s11071-023-08248-6 10.1177/09544062221104598 10.1109/TIM.2021.3118090 10.1109/JSEN.2023.3244929 10.1016/j.oceaneng.2021.108874 10.1109/TIM.2023.3322488 10.1088/1361-6501/acc885 10.3390/s23156730 10.1109/TMI.2021.3110730 10.1109/LGRS.2023.3276326 10.1016/j.renene.2021.12.054 10.1016/j.ymssp.2016.02.007 10.1109/TIM.2023.3293554 10.1007/s12555-022-0104-x 10.1109/TCAD.2020.3042155 10.1109/TII.2019.2955540 10.1109/TIA.2022.3159617 10.23919/ChiCC.2018.8483218 10.1109/TIM.2022.3187737 10.1109/ACCESS.2023.3274569 10.1109/JSEN.2022.3174340 10.1016/j.oceaneng.2022.112595 10.1109/ACCESS.2020.3032719 10.1109/ICECCE52056.2021.9514194 |
ContentType | Journal Article |
Copyright | 2024 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2024 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1002/rob.22405 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1556-4967 |
EndPage | 179 |
ExternalDocumentID | 10_1002_rob_22405 ROB22405 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Key R&D Plan (Industrial) Project in Yancheng City funderid: BE2023024 – fundername: Science and Technology Major Project of Henan Province of China funderid: 221100220200 – fundername: Key R&D Projects in Henan Province funderid: 231111221100; 221111240200 – fundername: National Nature Science Foundation of China funderid: 52275138; 52175112 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 FEDTE G-S GNP GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ I-F IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ~02 ~IA ~WT AAYXX ADMLS AGHNM AGQPQ AGYGG CITATION 1OB 7SC 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2575-379ca786328579f93c505d74dcac363c3f5225c7822f9e5a62d01ff3d29e98063 |
IEDL.DBID | DR2 |
ISSN | 1556-4959 |
IngestDate | Wed Aug 13 05:28:45 EDT 2025 Tue Jul 01 04:33:54 EDT 2025 Wed Jan 22 17:12:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2575-379ca786328579f93c505d74dcac363c3f5225c7822f9e5a62d01ff3d29e98063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3141360305 |
PQPubID | 1006410 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3141360305 crossref_primary_10_1002_rob_22405 wiley_primary_10_1002_rob_22405_ROB22405 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2025 2025-01-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Journal of field robotics |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 35 2021; 43 2023; 11 2023; 34 2016; 76–77 2022; 71 2021; 324 2020; 16 2022; 69 2022; 41 2022; 22 2022; 236 2021; 70 2023; 20 2020; 8 2022; 266 2021; 13 2023; 40 2022; 185 2023; 23 2021 2023; 111 2018 2022; 58 2024; 22 2021; 232 2019; 470 2021; 40 2023; 72 2022; 39 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_2_1 Du W. (e_1_2_8_3_1) 2023; 35 e_1_2_8_5_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_23_1 Yang C. (e_1_2_8_31_1) 2023; 72 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 Sun Y. (e_1_2_8_21_1) 2019; 470 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 Wang Q. (e_1_2_8_25_1) 2021; 43 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 Du W. (e_1_2_8_4_1) 2022; 71 He C. (e_1_2_8_7_1) 2023; 72 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 71 start-page: 1 year: 2022 end-page: 10 article-title: From anomaly detection to novel fault discrimination for wind turbine gearboxes with sparse isolation encoding forest publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 43 start-page: 2582 issue: 8 year: 2021 end-page: 2597 article-title: Deep CNNs meet global covariance pooling: better representation and generalization publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 40 start-page: 2426 issue: 11 year: 2021 end-page: 2430 article-title: On the stability of analog ReLU networks publication-title: IEEE Transactions on Computer‐Aided Design of Integrated Circuits and Systems – volume: 70 start-page: 1 year: 2021 end-page: 11 article-title: Multitask learning based on lightweight 1DCNN for fault diagnosis of wheelset bearings publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 266 year: 2022 article-title: A fault diagnosis method with multi‐source data fusion based on hierarchical attention for AUV publication-title: Ocean Engineering – volume: 111 start-page: 7293 issue: 8 year: 2023 end-page: 7307 article-title: Harmonic‐Gaussian double‐well potential stochastic resonance with its application to enhance weak fault characteristics of machinery publication-title: Nonlinear Dynamics – volume: 185 start-page: 255 year: 2022 end-page: 266 article-title: Improved adversarial learning for fault feature generation of wind turbine gearbox publication-title: Renewable Energy – volume: 69 start-page: 8411 issue: 8 year: 2022 end-page: 8419 article-title: A one‐class generative adversarial detection framework for multifunctional fault diagnoses publication-title: IEEE Transactions on Industrial Electronics – start-page: 1 year: 2021 end-page: 6 – volume: 16 start-page: 5735 issue: 9 year: 2020 end-page: 5745 article-title: Understanding and learning discriminant features based on multiattention 1DCNN for wheelset bearing fault diagnosis publication-title: IEEE Transactions on Industrial Informatics – volume: 72 start-page: 1 year: 2023 end-page: 11 article-title: An intelligent fault diagnosis method enhanced by noise injection for machinery publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 34 issue: 5 year: 2023 article-title: A method for rolling bearing fault diagnosis based on GSC‐MDRNN with multi‐dimensional input publication-title: Measurement Science and Technology – volume: 11 start-page: 46678 year: 2023 end-page: 46690 article-title: Chemical process fault diagnosis based on improved ResNet fusing CBAM and SPP publication-title: IEEE Access – volume: 470 issue: 1 year: 2019 article-title: Fault diagnosis method of autonomous underwater vehicle based on deep learning publication-title: IOP Conference Series: Materials Science and Engineering – volume: 39 start-page: 499 issue: 5 year: 2022 end-page: 527 article-title: Sensor‐driven autonomous underwater inspections: a receding‐horizon RRT‐based view planning solution for AUVs publication-title: Journal of Field Robotics – volume: 35 issue: 1 year: 2023 article-title: Efficient channel attention residual learning for the time‐series fault diagnosis of wind turbine gearboxes publication-title: Measurement Science and Technology – start-page: 6067 year: 2018 end-page: 6072 – volume: 22 start-page: 705 issue: 2 year: 2024 end-page: 721 article-title: RCLSTMNet: a residual–convolutional–LSTM neural network for forecasting cutterhead torque in shield machine publication-title: International Journal of Control, Automation and Systems – volume: 23 start-page: 6730 issue: 15 year: 2023 article-title: A bearing fault diagnosis method based on a residual network and a gated recurrent unit under time‐varying working conditions publication-title: Sensors – volume: 72 start-page: 1 year: 2023 end-page: 11 article-title: Fault diagnosis of rotating machinery based on the improved multidimensional normalization ResNet publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 232 year: 2021 article-title: Model‐free fault diagnosis for autonomous underwater vehicles using sequence convolutional neural network publication-title: Ocean Engineering – volume: 58 start-page: 3353 issue: 3 year: 2022 end-page: 3360 article-title: Few‐shot transfer learning with attention mechanism for high‐voltage circuit breaker fault diagnosis publication-title: in IEEE Transactions on Industry Applications – volume: 22 start-page: 12127 issue: 12 year: 2022 end-page: 12138 article-title: An IMU fault diagnosis and information reconstruction method based on analytical redundancy for autonomous underwater vehicle publication-title: IEEE Sensors Journal – volume: 236 start-page: 10615 issue: 20 year: 2022 end-page: 10629 article-title: Multi‐scale attention mechanism residual neural network for fault diagnosis of rolling bearings publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science – volume: 20 start-page: 1349 issue: 2 year: 2023 end-page: 1363 article-title: High minimum inter‐execution time sigmoid event‐triggered control for spacecraft attitude tracking with actuator saturation publication-title: IEEE Transactions on Automation Science and Engineering – volume: 41 start-page: 266 issue: 2 year: 2022 end-page: 278 article-title: Switchable and tunable deep beamformer using adaptive instance normalization for medical ultrasound publication-title: IEEE Transactions on Medical Imaging – volume: 23 start-page: 7320 issue: 7 year: 2023 end-page: 7333 article-title: Fault diagnosis of wind turbine gearbox based on multiscale residual features and ECA‐stacked ResNet publication-title: IEEE Sensors Journal – start-page: 1 year: 2021 end-page: 5 – volume: 40 start-page: 983 issue: 5 year: 2023 end-page: 1002 article-title: A prototype autonomous robot for underwater crime scene investigation and emergency response publication-title: Journal of Field Robotics – volume: 34 issue: 7 year: 2023 article-title: Bearing fault diagnosis method using the joint feature extraction of transformer and ResNet publication-title: Measurement Science and Technology – volume: 20 start-page: 1 year: 2023 end-page: 5 article-title: Lightweight infrared small target detection network using full‐scale skip connection U‐Net publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 76–77 start-page: 283 year: 2016 end-page: 293 article-title: Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals publication-title: Mechanical Systems and Signal Processing – volume: 8 start-page: 192248 year: 2020 end-page: 192258 article-title: Research on bearing fault diagnosis of wind turbine gearbox based on 1DCNN‐PSO‐SVM publication-title: IEEE Access – volume: 324 year: 2021 article-title: Actuator fault diagnosis in autonomous underwater vehicle based on neural network publication-title: Sensors and Actuators, A: Physical – volume: 13 start-page: 29 issue: 1 year: 2021 end-page: 32 article-title: Bactran: a hardware batch normalization implementation for CNN training engine publication-title: IEEE Embedded Systems Letters – ident: e_1_2_8_35_1 doi: 10.1109/LES.2020.2975055 – ident: e_1_2_8_16_1 doi: 10.1109/TIE.2021.3108719 – volume: 43 start-page: 2582 issue: 8 year: 2021 ident: e_1_2_8_25_1 article-title: Deep CNNs meet global covariance pooling: better representation and generalization publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – ident: e_1_2_8_33_1 doi: 10.1002/rob.22061 – ident: e_1_2_8_8_1 doi: 10.23919/OCEANS44145.2021.9705739 – ident: e_1_2_8_11_1 doi: 10.1016/j.sna.2021.112668 – ident: e_1_2_8_29_1 doi: 10.1109/TASE.2022.3179896 – ident: e_1_2_8_24_1 doi: 10.1088/1361-6501/acb000 – ident: e_1_2_8_20_1 doi: 10.1002/rob.22164 – ident: e_1_2_8_17_1 doi: 10.1007/s11071-023-08248-6 – ident: e_1_2_8_22_1 doi: 10.1177/09544062221104598 – ident: e_1_2_8_15_1 doi: 10.1109/TIM.2021.3118090 – ident: e_1_2_8_32_1 doi: 10.1109/JSEN.2023.3244929 – ident: e_1_2_8_10_1 doi: 10.1016/j.oceaneng.2021.108874 – volume: 72 start-page: 1 year: 2023 ident: e_1_2_8_31_1 article-title: An intelligent fault diagnosis method enhanced by noise injection for machinery publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2023.3322488 – ident: e_1_2_8_9_1 doi: 10.1088/1361-6501/acc885 – ident: e_1_2_8_26_1 doi: 10.3390/s23156730 – ident: e_1_2_8_12_1 doi: 10.1109/TMI.2021.3110730 – ident: e_1_2_8_2_1 doi: 10.1109/LGRS.2023.3276326 – ident: e_1_2_8_6_1 doi: 10.1016/j.renene.2021.12.054 – ident: e_1_2_8_13_1 doi: 10.1016/j.ymssp.2016.02.007 – volume: 72 start-page: 1 year: 2023 ident: e_1_2_8_7_1 article-title: Fault diagnosis of rotating machinery based on the improved multidimensional normalization ResNet publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2023.3293554 – ident: e_1_2_8_18_1 doi: 10.1007/s12555-022-0104-x – ident: e_1_2_8_5_1 doi: 10.1109/TCAD.2020.3042155 – ident: e_1_2_8_23_1 doi: 10.1109/TII.2019.2955540 – ident: e_1_2_8_27_1 doi: 10.1109/TIA.2022.3159617 – ident: e_1_2_8_19_1 doi: 10.23919/ChiCC.2018.8483218 – volume: 71 start-page: 1 year: 2022 ident: e_1_2_8_4_1 article-title: From anomaly detection to novel fault discrimination for wind turbine gearboxes with sparse isolation encoding forest publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2022.3187737 – volume: 35 issue: 1 year: 2023 ident: e_1_2_8_3_1 article-title: Efficient channel attention residual learning for the time‐series fault diagnosis of wind turbine gearboxes publication-title: Measurement Science and Technology – volume: 470 issue: 1 year: 2019 ident: e_1_2_8_21_1 article-title: Fault diagnosis method of autonomous underwater vehicle based on deep learning publication-title: IOP Conference Series: Materials Science and Engineering – ident: e_1_2_8_30_1 doi: 10.1109/ACCESS.2023.3274569 – ident: e_1_2_8_14_1 doi: 10.1109/JSEN.2022.3174340 – ident: e_1_2_8_28_1 doi: 10.1016/j.oceaneng.2022.112595 – ident: e_1_2_8_34_1 doi: 10.1109/ACCESS.2020.3032719 – ident: e_1_2_8_36_1 doi: 10.1109/ICECCE52056.2021.9514194 |
SSID | ssj0043895 |
Score | 2.432047 |
Snippet | Given the demanding and unpredictable operational conditions, autonomous underwater vehicles (AUVs) often encounter different propulsion faults, leading to... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 169 |
SubjectTerms | autonomous underwater vehicle Autonomous underwater vehicles Economic impact Excitation Fault diagnosis Faults Feature extraction Propulsion propulsion fault diagnosis squeeze‐and‐excitation attention residual network time series |
Title | Squeeze‐and‐excitation attention residual learning of propulsion fault features for diagnosing autonomous underwater vehicles |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.22405 https://www.proquest.com/docview/3141360305 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMfD2EkP_hanU4J48NKtTZq2wZO_xhBUmA52EEqaJgrKOrpWZSf9D_wb_UtM0nabgiBeSgtpaZO-vG_Ce58HwEFMfEaxgy2JGbVciVyL2lJYQmBKooBFbqAThS-vvG7fvRiQQQ0cVbkwBR9iuuGmLcPM19rAWTRuz6ChaRK1tD_SCeYO9jQ3_6w3RUfpot7EsFKJZ6lFAK2oQjZqT-_87otmAnNepho_01kGd9UbFuElj608i1p88gPe-M9PWAFLpf6Ex8UPswpqYrgGFueohOvg_Uavbifi8-2DDWN1FK-8JHlDTeM08ZFQLdNNHhcs607cw0TCkakHpjfgoGT5UwalMODQMVTaGMZFWJ9uy_JMZ1Mk-RjqLLb0RUneFD6LBxOltwH6nfPb065VVmqwuDJ5omYpypkfeBgFxKeSYq6EVey7MWcce5hjqWQe4VqNSCoI81BsO1LiGFFBA6WSNkF9mAzFFoCcOyLgno8Fwy6yEXMJUxcoUq6UCydogP1qzMJRAeQIC_QyClV_hqY_G6BZjWZY2uQ4xI5y2J6e4Brg0AzL7w8Ie9cn5mT77013wALSxYHN_kwT1LM0F7tKsWTRnvk1vwCZnOwx |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5WPagH3-LqqkE8eOm6TZq2AS8-Wd_gA7xISdNEQdlddlsVT_oP_I3-EpO0XR8giJfSQlqaTCbzzTDzDcBqQgPOiEscRThzPIU9hzWUdKQkjMYhj73QFAofn_jNS-_gil5VYKOshcn5IfoBN6MZ9rw2Cm4C0uufrKHddlw3BokOwJCngYZxvXbO-uRRpq03tWyp1He0G8BKXqEGXu-_-t0afULMr0DVWpq9cbgu_zFPMLmrZ2lcF88_6Bv_O4kJGCsgKNrM98wkVGRrCka_EBNOw-u5cXCf5fvLG28l-iqfREHmjQwhp02RRNpTt6VcqGg9cYPaCnVsSzATg0OKZ_cpUtJyh_aQhscoyTP7zFiepaagop31kClk6z5q1NtFD_LWJurNwOXe7sV20ymaNThCaz3VBxUTPAh9gkMaMMWI0NgqCbxEcEF8IojSSI8KA0gUk5T7OGm4SpEEM8lCDZRmYbDVbsk5QEK4MhR-QCQnHm5g7lGuH3CsramQbliFlVJoUSfn5Ihy9mUc6fWM7HpWoVaKMyrUshcRV9ts35xxVVizcvn9A9HZ6Za9mf_70GUYbl4cH0VH-yeHCzCCTa9gG66pwWDazeSiBjBpvGT36QdU1fBQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50BdGDb3F9BvHgpes2adoGT74W34oP8CCUNE0UlN1lt1XxpP_A3-gvMUnb9QGCeCktpKXJZDLfDDPfAKwkNOCMuMRRhDPHU9hzWF1JR0rCaBzy2AtNofDRsb976e1f0as-WC9rYXJ-iF7AzWiGPa-NgrcTtfZJGtppxTVjj2g_DHi-RhIGEZ31uKNMV29qyVKp72gvgJW0QnW81nv1uzH6RJhfcao1NI1RuC5_Mc8vuatlaVwTzz_YG_85hzEYKQAo2sh3zDj0yeYEDH-hJZyE13Pj3j7L95c33kz0VT6JgsobGTpOmyCJtJ9uC7lQ0XjiBrUUatuGYCYChxTP7lOkpGUO7SINjlGS5_WZsTxLTTlFK-siU8bWedSYt4Me5K1N05uCy8bOxdauU7RqcITWeaqPKSZ4EPoEhzRgihGhkVUSeInggvhEEKVxHhUGjigmKfdxUneVIglmkoUaJk1DpdlqyhlAQrgyFH5AJCcermPuUa4fcKxtqZBuWIXlUmZRO2fkiHLuZRzp9YzselZhvpRmVChlNyKutti-OeGqsGrF8vsHorOTTXsz-_ehSzB4ut2IDveOD-ZgCJtGwTZWMw-VtJPJBY1e0njR7tIPpGzu_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Squeeze%E2%80%90and%E2%80%90excitation+attention+residual+learning+of+propulsion+fault+features+for+diagnosing+autonomous+underwater+vehicles&rft.jtitle=Journal+of+field+robotics&rft.au=Du%2C+Wenliao&rft.au=Yu%2C+Xinlong&rft.au=Guo%2C+Zhen&rft.au=Wang%2C+Hongchao&rft.date=2025-01-01&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=42&rft.issue=1&rft.spage=169&rft.epage=179&rft_id=info:doi/10.1002%2Frob.22405&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rob_22405 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon |