Squeeze‐and‐excitation attention residual learning of propulsion fault features for diagnosing autonomous underwater vehicles

Given the demanding and unpredictable operational conditions, autonomous underwater vehicles (AUVs) often encounter different propulsion faults, leading to significant economic losses and mission impairments. To address this challenge, vibratory time‐series features can be extracted for the precise...

Full description

Saved in:
Bibliographic Details
Published inJournal of field robotics Vol. 42; no. 1; pp. 169 - 179
Main Authors Du, Wenliao, Yu, Xinlong, Guo, Zhen, Wang, Hongchao, Pu, Ziqiang, Li, Chuan
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2025
Subjects
Online AccessGet full text
ISSN1556-4959
1556-4967
DOI10.1002/rob.22405

Cover

Abstract Given the demanding and unpredictable operational conditions, autonomous underwater vehicles (AUVs) often encounter different propulsion faults, leading to significant economic losses and mission impairments. To address this challenge, vibratory time‐series features can be extracted for the precise propulsion fault diagnosis of AUVs. A squeeze‐and‐excitation (SE) attention residual network (SEResNet) is therefore put forward to enhance the feature extraction for AUV propulsion fault diagnosis. By leveraging the vibratory time‐series data obtained from the AUV, an SE attention mechanism is embedded into a residual network. This integration facilitates the extraction of pertinent vibratory fault features, subsequently utilized for accurate diagnosis of any propulsion faults. The effectiveness of the proposed SEResNet was validated through its application to an actual experimental AUV, with comparison against the state‐of‐the‐arts. The results reveal that the present SEResNet outperforms all other comparison methods in terms of diagnosis performance for AUV propulsion faults.
AbstractList Given the demanding and unpredictable operational conditions, autonomous underwater vehicles (AUVs) often encounter different propulsion faults, leading to significant economic losses and mission impairments. To address this challenge, vibratory time‐series features can be extracted for the precise propulsion fault diagnosis of AUVs. A squeeze‐and‐excitation (SE) attention residual network (SEResNet) is therefore put forward to enhance the feature extraction for AUV propulsion fault diagnosis. By leveraging the vibratory time‐series data obtained from the AUV, an SE attention mechanism is embedded into a residual network. This integration facilitates the extraction of pertinent vibratory fault features, subsequently utilized for accurate diagnosis of any propulsion faults. The effectiveness of the proposed SEResNet was validated through its application to an actual experimental AUV, with comparison against the state‐of‐the‐arts. The results reveal that the present SEResNet outperforms all other comparison methods in terms of diagnosis performance for AUV propulsion faults.
Author Wang, Hongchao
Pu, Ziqiang
Yu, Xinlong
Guo, Zhen
Li, Chuan
Du, Wenliao
Author_xml – sequence: 1
  givenname: Wenliao
  surname: Du
  fullname: Du, Wenliao
  organization: Zhengzhou University of Light Industry
– sequence: 2
  givenname: Xinlong
  surname: Yu
  fullname: Yu, Xinlong
  organization: Zhengzhou University of Light Industry
– sequence: 3
  givenname: Zhen
  surname: Guo
  fullname: Guo, Zhen
  email: 1372191562@qq.com
  organization: Zhengzhou University of Light Industry
– sequence: 4
  givenname: Hongchao
  surname: Wang
  fullname: Wang, Hongchao
  organization: Zhengzhou University of Light Industry
– sequence: 5
  givenname: Ziqiang
  surname: Pu
  fullname: Pu, Ziqiang
  organization: Chongqing Technology and Business University
– sequence: 6
  givenname: Chuan
  surname: Li
  fullname: Li, Chuan
  email: chuanli@21cn.com
  organization: Chongqing Technology and Business University
BookMark eNp1kMlOwzAQhi1UJNrCgTewxIlDW8eOk_gIFZtUqRLLOTLOuKRK7eKFUk7wBjwjT0JKEDcuM78032z_APWMNYDQcULGCSF04uzjmNKU8D3UTzjPRqnI8t6f5uIADbxfEpKyQvA--rh7jgBv8PX-KU3VRnhVdZChtgbLEMD8KAe-rqJscAPSmdossNV47ew6Nn5X1zI2AWuQIbYo1tbhqpYLY_2OlTFYY1c2ehxNBW4jAzj8Ak-1asAfon0tGw9Hv3mIHi4v7qfXo9n86mZ6NhspynM-YrlQMi8yRgueCy2Y4oRXeVopqVjGFNOcUq7yglItgMuMViTRmlVUgChIxobopJvb3t3-7EO5tNGZdmXJkjRhGWGEt9RpRylnvXegy7WrV9Jty4SUO4fL1uHyx-GWnXTspm5g-z9Y3s7Pu45vl8uD3w
Cites_doi 10.1109/LES.2020.2975055
10.1109/TIE.2021.3108719
10.1002/rob.22061
10.23919/OCEANS44145.2021.9705739
10.1016/j.sna.2021.112668
10.1109/TASE.2022.3179896
10.1088/1361-6501/acb000
10.1002/rob.22164
10.1007/s11071-023-08248-6
10.1177/09544062221104598
10.1109/TIM.2021.3118090
10.1109/JSEN.2023.3244929
10.1016/j.oceaneng.2021.108874
10.1109/TIM.2023.3322488
10.1088/1361-6501/acc885
10.3390/s23156730
10.1109/TMI.2021.3110730
10.1109/LGRS.2023.3276326
10.1016/j.renene.2021.12.054
10.1016/j.ymssp.2016.02.007
10.1109/TIM.2023.3293554
10.1007/s12555-022-0104-x
10.1109/TCAD.2020.3042155
10.1109/TII.2019.2955540
10.1109/TIA.2022.3159617
10.23919/ChiCC.2018.8483218
10.1109/TIM.2022.3187737
10.1109/ACCESS.2023.3274569
10.1109/JSEN.2022.3174340
10.1016/j.oceaneng.2022.112595
10.1109/ACCESS.2020.3032719
10.1109/ICECCE52056.2021.9514194
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rob.22405
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1556-4967
EndPage 179
ExternalDocumentID 10_1002_rob_22405
ROB22405
Genre researchArticle
GrantInformation_xml – fundername: Key R&D Plan (Industrial) Project in Yancheng City
  funderid: BE2023024
– fundername: Science and Technology Major Project of Henan Province of China
  funderid: 221100220200
– fundername: Key R&D Projects in Henan Province
  funderid: 231111221100; 221111240200
– fundername: National Nature Science Foundation of China
  funderid: 52275138; 52175112
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
I-F
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
~02
~IA
~WT
AAYXX
ADMLS
AGHNM
AGQPQ
AGYGG
CITATION
1OB
7SC
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2575-379ca786328579f93c505d74dcac363c3f5225c7822f9e5a62d01ff3d29e98063
IEDL.DBID DR2
ISSN 1556-4959
IngestDate Wed Aug 13 05:28:45 EDT 2025
Tue Jul 01 04:33:54 EDT 2025
Wed Jan 22 17:12:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2575-379ca786328579f93c505d74dcac363c3f5225c7822f9e5a62d01ff3d29e98063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3141360305
PQPubID 1006410
PageCount 11
ParticipantIDs proquest_journals_3141360305
crossref_primary_10_1002_rob_22405
wiley_primary_10_1002_rob_22405_ROB22405
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of field robotics
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 35
2021; 43
2023; 11
2023; 34
2016; 76–77
2022; 71
2021; 324
2020; 16
2022; 69
2022; 41
2022; 22
2022; 236
2021; 70
2023; 20
2020; 8
2022; 266
2021; 13
2023; 40
2022; 185
2023; 23
2021
2023; 111
2018
2022; 58
2024; 22
2021; 232
2019; 470
2021; 40
2023; 72
2022; 39
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_2_1
Du W. (e_1_2_8_3_1) 2023; 35
e_1_2_8_5_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_23_1
Yang C. (e_1_2_8_31_1) 2023; 72
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
Sun Y. (e_1_2_8_21_1) 2019; 470
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
Wang Q. (e_1_2_8_25_1) 2021; 43
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
Du W. (e_1_2_8_4_1) 2022; 71
He C. (e_1_2_8_7_1) 2023; 72
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 71
  start-page: 1
  year: 2022
  end-page: 10
  article-title: From anomaly detection to novel fault discrimination for wind turbine gearboxes with sparse isolation encoding forest
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 43
  start-page: 2582
  issue: 8
  year: 2021
  end-page: 2597
  article-title: Deep CNNs meet global covariance pooling: better representation and generalization
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 40
  start-page: 2426
  issue: 11
  year: 2021
  end-page: 2430
  article-title: On the stability of analog ReLU networks
  publication-title: IEEE Transactions on Computer‐Aided Design of Integrated Circuits and Systems
– volume: 70
  start-page: 1
  year: 2021
  end-page: 11
  article-title: Multitask learning based on lightweight 1DCNN for fault diagnosis of wheelset bearings
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 266
  year: 2022
  article-title: A fault diagnosis method with multi‐source data fusion based on hierarchical attention for AUV
  publication-title: Ocean Engineering
– volume: 111
  start-page: 7293
  issue: 8
  year: 2023
  end-page: 7307
  article-title: Harmonic‐Gaussian double‐well potential stochastic resonance with its application to enhance weak fault characteristics of machinery
  publication-title: Nonlinear Dynamics
– volume: 185
  start-page: 255
  year: 2022
  end-page: 266
  article-title: Improved adversarial learning for fault feature generation of wind turbine gearbox
  publication-title: Renewable Energy
– volume: 69
  start-page: 8411
  issue: 8
  year: 2022
  end-page: 8419
  article-title: A one‐class generative adversarial detection framework for multifunctional fault diagnoses
  publication-title: IEEE Transactions on Industrial Electronics
– start-page: 1
  year: 2021
  end-page: 6
– volume: 16
  start-page: 5735
  issue: 9
  year: 2020
  end-page: 5745
  article-title: Understanding and learning discriminant features based on multiattention 1DCNN for wheelset bearing fault diagnosis
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 72
  start-page: 1
  year: 2023
  end-page: 11
  article-title: An intelligent fault diagnosis method enhanced by noise injection for machinery
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 34
  issue: 5
  year: 2023
  article-title: A method for rolling bearing fault diagnosis based on GSC‐MDRNN with multi‐dimensional input
  publication-title: Measurement Science and Technology
– volume: 11
  start-page: 46678
  year: 2023
  end-page: 46690
  article-title: Chemical process fault diagnosis based on improved ResNet fusing CBAM and SPP
  publication-title: IEEE Access
– volume: 470
  issue: 1
  year: 2019
  article-title: Fault diagnosis method of autonomous underwater vehicle based on deep learning
  publication-title: IOP Conference Series: Materials Science and Engineering
– volume: 39
  start-page: 499
  issue: 5
  year: 2022
  end-page: 527
  article-title: Sensor‐driven autonomous underwater inspections: a receding‐horizon RRT‐based view planning solution for AUVs
  publication-title: Journal of Field Robotics
– volume: 35
  issue: 1
  year: 2023
  article-title: Efficient channel attention residual learning for the time‐series fault diagnosis of wind turbine gearboxes
  publication-title: Measurement Science and Technology
– start-page: 6067
  year: 2018
  end-page: 6072
– volume: 22
  start-page: 705
  issue: 2
  year: 2024
  end-page: 721
  article-title: RCLSTMNet: a residual–convolutional–LSTM neural network for forecasting cutterhead torque in shield machine
  publication-title: International Journal of Control, Automation and Systems
– volume: 23
  start-page: 6730
  issue: 15
  year: 2023
  article-title: A bearing fault diagnosis method based on a residual network and a gated recurrent unit under time‐varying working conditions
  publication-title: Sensors
– volume: 72
  start-page: 1
  year: 2023
  end-page: 11
  article-title: Fault diagnosis of rotating machinery based on the improved multidimensional normalization ResNet
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 232
  year: 2021
  article-title: Model‐free fault diagnosis for autonomous underwater vehicles using sequence convolutional neural network
  publication-title: Ocean Engineering
– volume: 58
  start-page: 3353
  issue: 3
  year: 2022
  end-page: 3360
  article-title: Few‐shot transfer learning with attention mechanism for high‐voltage circuit breaker fault diagnosis
  publication-title: in IEEE Transactions on Industry Applications
– volume: 22
  start-page: 12127
  issue: 12
  year: 2022
  end-page: 12138
  article-title: An IMU fault diagnosis and information reconstruction method based on analytical redundancy for autonomous underwater vehicle
  publication-title: IEEE Sensors Journal
– volume: 236
  start-page: 10615
  issue: 20
  year: 2022
  end-page: 10629
  article-title: Multi‐scale attention mechanism residual neural network for fault diagnosis of rolling bearings
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
– volume: 20
  start-page: 1349
  issue: 2
  year: 2023
  end-page: 1363
  article-title: High minimum inter‐execution time sigmoid event‐triggered control for spacecraft attitude tracking with actuator saturation
  publication-title: IEEE Transactions on Automation Science and Engineering
– volume: 41
  start-page: 266
  issue: 2
  year: 2022
  end-page: 278
  article-title: Switchable and tunable deep beamformer using adaptive instance normalization for medical ultrasound
  publication-title: IEEE Transactions on Medical Imaging
– volume: 23
  start-page: 7320
  issue: 7
  year: 2023
  end-page: 7333
  article-title: Fault diagnosis of wind turbine gearbox based on multiscale residual features and ECA‐stacked ResNet
  publication-title: IEEE Sensors Journal
– start-page: 1
  year: 2021
  end-page: 5
– volume: 40
  start-page: 983
  issue: 5
  year: 2023
  end-page: 1002
  article-title: A prototype autonomous robot for underwater crime scene investigation and emergency response
  publication-title: Journal of Field Robotics
– volume: 34
  issue: 7
  year: 2023
  article-title: Bearing fault diagnosis method using the joint feature extraction of transformer and ResNet
  publication-title: Measurement Science and Technology
– volume: 20
  start-page: 1
  year: 2023
  end-page: 5
  article-title: Lightweight infrared small target detection network using full‐scale skip connection U‐Net
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 76–77
  start-page: 283
  year: 2016
  end-page: 293
  article-title: Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals
  publication-title: Mechanical Systems and Signal Processing
– volume: 8
  start-page: 192248
  year: 2020
  end-page: 192258
  article-title: Research on bearing fault diagnosis of wind turbine gearbox based on 1DCNN‐PSO‐SVM
  publication-title: IEEE Access
– volume: 324
  year: 2021
  article-title: Actuator fault diagnosis in autonomous underwater vehicle based on neural network
  publication-title: Sensors and Actuators, A: Physical
– volume: 13
  start-page: 29
  issue: 1
  year: 2021
  end-page: 32
  article-title: Bactran: a hardware batch normalization implementation for CNN training engine
  publication-title: IEEE Embedded Systems Letters
– ident: e_1_2_8_35_1
  doi: 10.1109/LES.2020.2975055
– ident: e_1_2_8_16_1
  doi: 10.1109/TIE.2021.3108719
– volume: 43
  start-page: 2582
  issue: 8
  year: 2021
  ident: e_1_2_8_25_1
  article-title: Deep CNNs meet global covariance pooling: better representation and generalization
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: e_1_2_8_33_1
  doi: 10.1002/rob.22061
– ident: e_1_2_8_8_1
  doi: 10.23919/OCEANS44145.2021.9705739
– ident: e_1_2_8_11_1
  doi: 10.1016/j.sna.2021.112668
– ident: e_1_2_8_29_1
  doi: 10.1109/TASE.2022.3179896
– ident: e_1_2_8_24_1
  doi: 10.1088/1361-6501/acb000
– ident: e_1_2_8_20_1
  doi: 10.1002/rob.22164
– ident: e_1_2_8_17_1
  doi: 10.1007/s11071-023-08248-6
– ident: e_1_2_8_22_1
  doi: 10.1177/09544062221104598
– ident: e_1_2_8_15_1
  doi: 10.1109/TIM.2021.3118090
– ident: e_1_2_8_32_1
  doi: 10.1109/JSEN.2023.3244929
– ident: e_1_2_8_10_1
  doi: 10.1016/j.oceaneng.2021.108874
– volume: 72
  start-page: 1
  year: 2023
  ident: e_1_2_8_31_1
  article-title: An intelligent fault diagnosis method enhanced by noise injection for machinery
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2023.3322488
– ident: e_1_2_8_9_1
  doi: 10.1088/1361-6501/acc885
– ident: e_1_2_8_26_1
  doi: 10.3390/s23156730
– ident: e_1_2_8_12_1
  doi: 10.1109/TMI.2021.3110730
– ident: e_1_2_8_2_1
  doi: 10.1109/LGRS.2023.3276326
– ident: e_1_2_8_6_1
  doi: 10.1016/j.renene.2021.12.054
– ident: e_1_2_8_13_1
  doi: 10.1016/j.ymssp.2016.02.007
– volume: 72
  start-page: 1
  year: 2023
  ident: e_1_2_8_7_1
  article-title: Fault diagnosis of rotating machinery based on the improved multidimensional normalization ResNet
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2023.3293554
– ident: e_1_2_8_18_1
  doi: 10.1007/s12555-022-0104-x
– ident: e_1_2_8_5_1
  doi: 10.1109/TCAD.2020.3042155
– ident: e_1_2_8_23_1
  doi: 10.1109/TII.2019.2955540
– ident: e_1_2_8_27_1
  doi: 10.1109/TIA.2022.3159617
– ident: e_1_2_8_19_1
  doi: 10.23919/ChiCC.2018.8483218
– volume: 71
  start-page: 1
  year: 2022
  ident: e_1_2_8_4_1
  article-title: From anomaly detection to novel fault discrimination for wind turbine gearboxes with sparse isolation encoding forest
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2022.3187737
– volume: 35
  issue: 1
  year: 2023
  ident: e_1_2_8_3_1
  article-title: Efficient channel attention residual learning for the time‐series fault diagnosis of wind turbine gearboxes
  publication-title: Measurement Science and Technology
– volume: 470
  issue: 1
  year: 2019
  ident: e_1_2_8_21_1
  article-title: Fault diagnosis method of autonomous underwater vehicle based on deep learning
  publication-title: IOP Conference Series: Materials Science and Engineering
– ident: e_1_2_8_30_1
  doi: 10.1109/ACCESS.2023.3274569
– ident: e_1_2_8_14_1
  doi: 10.1109/JSEN.2022.3174340
– ident: e_1_2_8_28_1
  doi: 10.1016/j.oceaneng.2022.112595
– ident: e_1_2_8_34_1
  doi: 10.1109/ACCESS.2020.3032719
– ident: e_1_2_8_36_1
  doi: 10.1109/ICECCE52056.2021.9514194
SSID ssj0043895
Score 2.432047
Snippet Given the demanding and unpredictable operational conditions, autonomous underwater vehicles (AUVs) often encounter different propulsion faults, leading to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 169
SubjectTerms autonomous underwater vehicle
Autonomous underwater vehicles
Economic impact
Excitation
Fault diagnosis
Faults
Feature extraction
Propulsion
propulsion fault diagnosis
squeeze‐and‐excitation attention residual network
time series
Title Squeeze‐and‐excitation attention residual learning of propulsion fault features for diagnosing autonomous underwater vehicles
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.22405
https://www.proquest.com/docview/3141360305
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMfD2EkP_hanU4J48NKtTZq2wZO_xhBUmA52EEqaJgrKOrpWZSf9D_wb_UtM0nabgiBeSgtpaZO-vG_Ce58HwEFMfEaxgy2JGbVciVyL2lJYQmBKooBFbqAThS-vvG7fvRiQQQ0cVbkwBR9iuuGmLcPM19rAWTRuz6ChaRK1tD_SCeYO9jQ3_6w3RUfpot7EsFKJZ6lFAK2oQjZqT-_87otmAnNepho_01kGd9UbFuElj608i1p88gPe-M9PWAFLpf6Ex8UPswpqYrgGFueohOvg_Uavbifi8-2DDWN1FK-8JHlDTeM08ZFQLdNNHhcs607cw0TCkakHpjfgoGT5UwalMODQMVTaGMZFWJ9uy_JMZ1Mk-RjqLLb0RUneFD6LBxOltwH6nfPb065VVmqwuDJ5omYpypkfeBgFxKeSYq6EVey7MWcce5hjqWQe4VqNSCoI81BsO1LiGFFBA6WSNkF9mAzFFoCcOyLgno8Fwy6yEXMJUxcoUq6UCydogP1qzMJRAeQIC_QyClV_hqY_G6BZjWZY2uQ4xI5y2J6e4Brg0AzL7w8Ie9cn5mT77013wALSxYHN_kwT1LM0F7tKsWTRnvk1vwCZnOwx
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5WPagH3-LqqkE8eOm6TZq2AS8-Wd_gA7xISdNEQdlddlsVT_oP_I3-EpO0XR8giJfSQlqaTCbzzTDzDcBqQgPOiEscRThzPIU9hzWUdKQkjMYhj73QFAofn_jNS-_gil5VYKOshcn5IfoBN6MZ9rw2Cm4C0uufrKHddlw3BokOwJCngYZxvXbO-uRRpq03tWyp1He0G8BKXqEGXu-_-t0afULMr0DVWpq9cbgu_zFPMLmrZ2lcF88_6Bv_O4kJGCsgKNrM98wkVGRrCka_EBNOw-u5cXCf5fvLG28l-iqfREHmjQwhp02RRNpTt6VcqGg9cYPaCnVsSzATg0OKZ_cpUtJyh_aQhscoyTP7zFiepaagop31kClk6z5q1NtFD_LWJurNwOXe7sV20ymaNThCaz3VBxUTPAh9gkMaMMWI0NgqCbxEcEF8IojSSI8KA0gUk5T7OGm4SpEEM8lCDZRmYbDVbsk5QEK4MhR-QCQnHm5g7lGuH3CsramQbliFlVJoUSfn5Ihy9mUc6fWM7HpWoVaKMyrUshcRV9ts35xxVVizcvn9A9HZ6Za9mf_70GUYbl4cH0VH-yeHCzCCTa9gG66pwWDazeSiBjBpvGT36QdU1fBQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50BdGDb3F9BvHgpes2adoGT74W34oP8CCUNE0UlN1lt1XxpP_A3-gvMUnb9QGCeCktpKXJZDLfDDPfAKwkNOCMuMRRhDPHU9hzWF1JR0rCaBzy2AtNofDRsb976e1f0as-WC9rYXJ-iF7AzWiGPa-NgrcTtfZJGtppxTVjj2g_DHi-RhIGEZ31uKNMV29qyVKp72gvgJW0QnW81nv1uzH6RJhfcao1NI1RuC5_Mc8vuatlaVwTzz_YG_85hzEYKQAo2sh3zDj0yeYEDH-hJZyE13Pj3j7L95c33kz0VT6JgsobGTpOmyCJtJ9uC7lQ0XjiBrUUatuGYCYChxTP7lOkpGUO7SINjlGS5_WZsTxLTTlFK-siU8bWedSYt4Me5K1N05uCy8bOxdauU7RqcITWeaqPKSZ4EPoEhzRgihGhkVUSeInggvhEEKVxHhUGjigmKfdxUneVIglmkoUaJk1DpdlqyhlAQrgyFH5AJCcermPuUa4fcKxtqZBuWIXlUmZRO2fkiHLuZRzp9YzselZhvpRmVChlNyKutti-OeGqsGrF8vsHorOTTXsz-_ehSzB4ut2IDveOD-ZgCJtGwTZWMw-VtJPJBY1e0njR7tIPpGzu_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Squeeze%E2%80%90and%E2%80%90excitation+attention+residual+learning+of+propulsion+fault+features+for+diagnosing+autonomous+underwater+vehicles&rft.jtitle=Journal+of+field+robotics&rft.au=Du%2C+Wenliao&rft.au=Yu%2C+Xinlong&rft.au=Guo%2C+Zhen&rft.au=Wang%2C+Hongchao&rft.date=2025-01-01&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=42&rft.issue=1&rft.spage=169&rft.epage=179&rft_id=info:doi/10.1002%2Frob.22405&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rob_22405
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon