Dynamic Docking Anti‐Disturbance Control of Overactuated AUV: System, Method, and Lake Trails

ABSTRACT Dynamic docking control technology is crucial for autonomous underwater vehicles (AUV) to perform tasks underwater. To enhance the docking success rate of AUVs during dynamic docking, this paper presents a robust anti‐disturbance control algorithm specifically designed for overactuated AUV...

Full description

Saved in:
Bibliographic Details
Published inJournal of field robotics Vol. 42; no. 5; pp. 1617 - 1632
Main Authors Duan, Yu, Guan, Xiawei, Liu, Yifan, Yang, Shaolong, Xiang, Xianbo, Chen, Hong
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.08.2025
Subjects
Online AccessGet full text
ISSN1556-4959
1556-4967
DOI10.1002/rob.22444

Cover

Loading…
Abstract ABSTRACT Dynamic docking control technology is crucial for autonomous underwater vehicles (AUV) to perform tasks underwater. To enhance the docking success rate of AUVs during dynamic docking, this paper presents a robust anti‐disturbance control algorithm specifically designed for overactuated AUV dynamic docking scenarios. During a dynamic docking mission, the AUV's depth control is adversely affected by the complex flow field generated by the underwater recovery device. To address this issue, this research proposes an AUV control scheme that combines an extended state observer (ESO) with a combined disturbance rejection method of the elevator‐vertical tunnel controller. First, an ESO is constructed to estimate and compensate for complicated disturbances such as model uncertainty and environmental disturbances. These estimations are then incorporated into the control law to mitigate the effects of the complicated flow field interference experienced during the AUV's dynamic docking process. Second, as turbulence intensifies at the end of the docking stage, the vertical thrust allocation is achieved using a hyperbolic tangent transition function. This ensures the stability of the AUV's attitude and depth, thereby enabling precise docking. Finally, the effectiveness of the proposed control algorithm is verified through lake trials and compared against the classic proportional‐integral‐differential (PID) and active disturbance rejection control (ADRC) methods. The trial results indicate that the proposed control algorithm significantly reduces the pitch and depth errors of the AUV, resulting in a remarkable 91% success rate for dynamic docking (based on 45 tests). The lake trials demonstrate that the proposed control algorithm is highly precise and robust.
AbstractList ABSTRACT Dynamic docking control technology is crucial for autonomous underwater vehicles (AUV) to perform tasks underwater. To enhance the docking success rate of AUVs during dynamic docking, this paper presents a robust anti‐disturbance control algorithm specifically designed for overactuated AUV dynamic docking scenarios. During a dynamic docking mission, the AUV's depth control is adversely affected by the complex flow field generated by the underwater recovery device. To address this issue, this research proposes an AUV control scheme that combines an extended state observer (ESO) with a combined disturbance rejection method of the elevator‐vertical tunnel controller. First, an ESO is constructed to estimate and compensate for complicated disturbances such as model uncertainty and environmental disturbances. These estimations are then incorporated into the control law to mitigate the effects of the complicated flow field interference experienced during the AUV's dynamic docking process. Second, as turbulence intensifies at the end of the docking stage, the vertical thrust allocation is achieved using a hyperbolic tangent transition function. This ensures the stability of the AUV's attitude and depth, thereby enabling precise docking. Finally, the effectiveness of the proposed control algorithm is verified through lake trials and compared against the classic proportional‐integral‐differential (PID) and active disturbance rejection control (ADRC) methods. The trial results indicate that the proposed control algorithm significantly reduces the pitch and depth errors of the AUV, resulting in a remarkable 91% success rate for dynamic docking (based on 45 tests). The lake trials demonstrate that the proposed control algorithm is highly precise and robust.
Dynamic docking control technology is crucial for autonomous underwater vehicles (AUV) to perform tasks underwater. To enhance the docking success rate of AUVs during dynamic docking, this paper presents a robust anti‐disturbance control algorithm specifically designed for overactuated AUV dynamic docking scenarios. During a dynamic docking mission, the AUV's depth control is adversely affected by the complex flow field generated by the underwater recovery device. To address this issue, this research proposes an AUV control scheme that combines an extended state observer (ESO) with a combined disturbance rejection method of the elevator‐vertical tunnel controller. First, an ESO is constructed to estimate and compensate for complicated disturbances such as model uncertainty and environmental disturbances. These estimations are then incorporated into the control law to mitigate the effects of the complicated flow field interference experienced during the AUV's dynamic docking process. Second, as turbulence intensifies at the end of the docking stage, the vertical thrust allocation is achieved using a hyperbolic tangent transition function. This ensures the stability of the AUV's attitude and depth, thereby enabling precise docking. Finally, the effectiveness of the proposed control algorithm is verified through lake trials and compared against the classic proportional‐integral‐differential (PID) and active disturbance rejection control (ADRC) methods. The trial results indicate that the proposed control algorithm significantly reduces the pitch and depth errors of the AUV, resulting in a remarkable 91% success rate for dynamic docking (based on 45 tests). The lake trials demonstrate that the proposed control algorithm is highly precise and robust.
Author Yang, Shaolong
Xiang, Xianbo
Liu, Yifan
Guan, Xiawei
Chen, Hong
Duan, Yu
Author_xml – sequence: 1
  givenname: Yu
  surname: Duan
  fullname: Duan, Yu
  organization: Huazhong University of Science and Technology
– sequence: 2
  givenname: Xiawei
  surname: Guan
  fullname: Guan, Xiawei
  organization: Wuhan Second Ship Design and Research Institute
– sequence: 3
  givenname: Yifan
  surname: Liu
  fullname: Liu, Yifan
  organization: Huazhong University of Science and Technology
– sequence: 4
  givenname: Shaolong
  surname: Yang
  fullname: Yang, Shaolong
  organization: Huazhong University of Science and Technology
– sequence: 5
  givenname: Xianbo
  orcidid: 0000-0002-6215-9864
  surname: Xiang
  fullname: Xiang, Xianbo
  email: xbxiang@hust.edu.cn
  organization: Huazhong University of Science and Technology
– sequence: 6
  givenname: Hong
  surname: Chen
  fullname: Chen, Hong
  organization: Wuhan Second Ship Design and Research Institute
BookMark eNp1kEtOwzAURS1UJEphwA4sMUJqWv8SJ8xKy08qqgQtU8txHEib2sVOQJmxBNbISggEMWP07uDc-6RzCHrGGg3ACUYjjBAZO5uOCGGM7YE-DsMoYEnEe385TA7AofdrhBiNk7APxKwxclsoOLNqU5gnODFV8fn-MSt8VbtUGqXh1JrK2RLaHC5etZOqqmWlMzhZPZ7Dh8ZXejuEd7p6ttkQSpPBudxouHSyKP0R2M9l6fXx7x2A1dXlcnoTzBfXt9PJPFAk5CwIscooJ5ohFsaapxhTFuVKJ5HKFWOcpynSjOIQ0yzLWUp1zhHOaIyZyhJC6ACcdrs7Z19q7SuxtrUz7UtBCSWEo5jRljrrKOWs907nYueKrXSNwEh8-xOtP_Hjr2XHHftWlLr5HxT3i4uu8QVGpXL6
Cites_doi 10.1109/TIE.2008.2011621
10.1016/j.rineng.2021.100205
10.1002/rob.21740
10.1016/j.oceaneng.2023.114018
10.1016/j.oceaneng.2023.114692
10.1109/JOE.2023.3265767
10.1016/j.oceaneng.2015.10.015
10.1002/rob.22310
10.1016/j.conengprac.2022.105158
10.34133/olar.0036
10.1002/rob.22269
10.1109/TSMC.2022.3162862
10.1016/j.oceaneng.2022.110766
10.1016/j.engappai.2023.107728
10.1016/j.oceaneng.2022.112458
10.1109/TIE.2022.3198242
10.1016/j.apor.2023.103739
10.3390/math11163467
10.1109/CCDC49329.2020.9164395
10.3390/app11104368
10.1109/TCST.2023.3259819
10.1016/j.oceaneng.2021.108744
10.1016/j.oceaneng.2021.110452
10.1016/j.neucom.2021.03.136
10.1016/j.oceaneng.2014.04.022
10.1109/TIV.2023.3345467
10.1016/j.mechatronics.2016.11.006
10.1016/j.oceaneng.2019.106624
10.3182/20100915-3-DE-3008.00065
10.1016/j.automatica.2024.111556
10.3390/jmse11102002
10.3390/jmse11061119
10.1109/OCEANSE.2019.8867159
10.1080/00207179.2011.569954
10.1016/j.neucom.2015.09.010
10.1016/j.ifacsc.2019.100049
10.1575/1912/3040
10.1016/j.robot.2019.103382
10.1002/rob.22218
10.1016/S0019-0578(07)60037-8
10.1109/TMECH.2023.3256707
10.1109/JOE.2017.2769938
10.3390/jmse12010192
10.1109/ACCESS.2021.3083883
10.1109/UT.2017.7890282
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
2025 Wiley Periodicals LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
– notice: 2025 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rob.22444
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1556-4967
EndPage 1632
ExternalDocumentID 10_1002_rob_22444
ROB22444
Genre researchArticle
GrantInformation_xml – fundername: This work is supported by the National Key R&D Program of China—Intergovernmental International Scientific and Technological Innovation and Cooperation Program under Grant 2023YFE0115400, in part by National Natural Science Foundation of China under Grant 52071153, and in part by Hubei Provincial Natural Science Foundation for Innovation Groups under Grant 2021CFA026.
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
I-F
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
~02
~IA
~WT
AAYXX
CITATION
1OB
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2574-51cd372e40458e7b11346fce96cfc4477bb0e431513ddf4b3ef701d3814cd9223
IEDL.DBID DR2
ISSN 1556-4959
IngestDate Sat Aug 23 13:17:06 EDT 2025
Thu Jul 31 00:28:40 EDT 2025
Wed Jul 23 09:40:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2574-51cd372e40458e7b11346fce96cfc4477bb0e431513ddf4b3ef701d3814cd9223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6215-9864
PQID 3232270843
PQPubID 1006410
PageCount 16
ParticipantIDs proquest_journals_3232270843
crossref_primary_10_1002_rob_22444
wiley_primary_10_1002_rob_22444_ROB22444
PublicationCentury 2000
PublicationDate August 2025
2025-08-00
20250801
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of field robotics
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2023; 31
2004; 43
2019; 8
2022b; 123
2017; 41
2023; 280
2023; 11
2022; 70
2023; 141
2021; 224
2017; 43
2011; 84
2024; 163
2022a; 53
2024; 12
2020; 124
2014; 85
2009; 56
2023; 40
2010; 43
2022; 484
2022; 264
2021; 11
2023; 274
2023
2001
2023; 28
2023; 48
2020
2015; 110
2019
2024; 130
2024; 41
2017
2024; 3
2022; 249
2019; 193
2022; 245
2016; 173
2018; 35
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 9
  year: 2021
  article-title: Monitoring Marine Environments With Autonomous Underwater Vehicles: A Bibliometric Analysis
  publication-title: Results in Engineering
– volume: 56
  start-page: 900
  issue: 3
  year: 2009
  end-page: 906
  article-title: From PID to Active Disturbance Rejection Control
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 193
  year: 2019
  article-title: Study on Dynamic Docking Process and Collision Problems of Captured‐Rod Docking Method
  publication-title: Ocean Engineering
– start-page: 3045
  year: 2020
  end-page: 3049
– volume: 163
  year: 2024
  article-title: A Uniform Semiglobal Exponential Stable Adaptive Line‐of‐Sight (ALOS) Guidance Law for 3‐d Path Following
  publication-title: Automatica
– volume: 43
  start-page: 888
  issue: 4
  year: 2017
  end-page: 904
  article-title: Impact of Current Disturbances on AUV Docking: Model‐Based Motion Prediction and Countering Approaches
  publication-title: IEEE Journal of Oceanic Engineering
– volume: 245
  year: 2022
  article-title: Auv Position Tracking and Trajectory Control Based on Fast‐Deployed Deep Reinforcement Learning Method
  publication-title: Ocean Engineering
– volume: 12
  start-page: 192
  issue: 1
  year: 2024
  article-title: Terminal Phase Navigation for Auv Docking: An Innovative Electromagnetic Approach
  publication-title: Journal of Marine Science and Engineering
– year: 2001
– volume: 130
  year: 2024
  article-title: Adversarial Deep Reinforcement Learning Based Robust Depth Tracking Control for Underactuated Autonomous Underwater Vehicle
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 11
  start-page: 3467
  issue: 16
  year: 2023
  article-title: Two‐Step Adaptive Control for Planar Type Docking of Autonomous Underwater Vehicle
  publication-title: Mathematics
– volume: 124
  year: 2020
  article-title: A Survey of Underwater Docking Guidance Systems
  publication-title: Robotics and Autonomous Systems
– volume: 484
  start-page: 1
  year: 2022
  end-page: 12
  article-title: Robust Adaptive Neural Network Control for Dynamic Positioning of Marine Vessels With Prescribed Performance under Model Uncertainties and Input Saturation
  publication-title: Neurocomputing
– volume: 43
  start-page: 283
  issue: 2
  year: 2004
  end-page: 295
  article-title: PID Tuning Rules for SOPDT Systems: Review and Some New Results
  publication-title: ISA Transactions
– volume: 224
  year: 2021
  article-title: Visual Navigation and Docking for a Planar Type AUV Docking and Charging System
  publication-title: Ocean Engineering
– start-page: 1
  year: 2023
  end-page: 14
  article-title: AUV Tightly Coupled Terrain Aided Navigation Strategy Based on Isogonal MBES Modeling Method
  publication-title: IEEE Transactions on Intelligent Vehicles
– volume: 8
  year: 2019
  article-title: Learning an AUV Docking Maneuver With a Convolutional Neural Network
  publication-title: IFAC Journal of Systems and Control
– volume: 70
  start-page: 5674
  issue: 6
  year: 2022
  end-page: 5684
  article-title: Design and Implementation of a Uniform Power and Stable Efficiency Wireless Charging System for Autonomous Underwater Vehicles
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 11
  start-page: 2002
  issue: 10
  year: 2023
  article-title: Recognition and Tracking of an Underwater Pipeline From Stereo Images During AUV‐Based Inspection
  publication-title: Journal of Marine Science and Engineering
– volume: 53
  start-page: 12
  issue: 1
  year: 2022a
  end-page: 28
  article-title: Advances in Line‐of‐Sight Guidance for Path Following of Autonomous Marine Vehicles: An Overview
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 31
  start-page: 2887
  issue: 6
  year: 2023
  end-page: 2894
  article-title: An Adaptive Line‐of‐Sight (ALOS) Guidance Law for Path Following of Aircraft and Marine Craft
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 274
  year: 2023
  article-title: Prescribed Time Observer Based Trajectory Tracking Control of Autonomous Underwater Vehicle With Tracking Error Constraints
  publication-title: Ocean Engineering
– volume: 85
  start-page: 110
  year: 2014
  end-page: 126
  article-title: Hydrodynamic Analysis of AUV Underwater Docking with a Cone‐Shaped Dock under Ocean Currents
  publication-title: Ocean Engineering
– volume: 141
  year: 2023
  article-title: Nonlinear Dynamics of Novel Flight‐Style Autonomous Underwater Vehicle With Bow Wings, Part I: ASE and CFD Based Estimations of Hydrodynamic Coefficients, Part II: Nonlinear Dynamic Modeling and Experimental Validations
  publication-title: Applied Ocean Research
– volume: 11
  start-page: 1119
  issue: 6
  year: 2023
  article-title: A Review of Subsea AUV Technology
  publication-title: Journal of Marine Science and Engineering
– volume: 41
  start-page: 67
  year: 2017
  end-page: 81
  article-title: Depth Control for an Over‐Actuated, Hover‐Capable Autonomous Underwater Vehicle With Experimental Verification
  publication-title: Mechatronics
– volume: 41
  start-page: 1765
  year: 2024
  end-page: 1779
  article-title: Sparus Docking Station: A Current Aware Docking Station System for a Non‐Holonomic AUV
  publication-title: Journal of Field Robotics
– volume: 3
  start-page: 0036
  year: 2024
  article-title: Current Status and Technical Challenges in the Development of Biomimetic Robotic Fish‐Type Submersible
  publication-title: Ocean‐Land‐Atmosphere Research
– start-page: 1
  year: 2017
  end-page: 6
– volume: 11
  start-page: 4368
  issue: 10
  year: 2021
  article-title: Linear Parameter‐Varying Model Predictive Control of AUV for Docking Scenarios
  publication-title: Applied Sciences
– volume: 9
  start-page: 86607
  year: 2021
  end-page: 86631
  article-title: Docking of Non‐Holonomic AUVs in Presence of Ocean Currents: A Comparative Survey
  publication-title: IEEE Access
– volume: 84
  start-page: 693
  issue: 4
  year: 2011
  end-page: 701
  article-title: On Convergence of Tracking Differentiator
  publication-title: International Journal of Control
– volume: 264
  year: 2022
  article-title: A Hierarchical Disturbance Rejection Depth Tracking Control of Underactuated AUV With Experimental Verification
  publication-title: Ocean Engineering
– start-page: 1
  year: 2019
  end-page: 5
– volume: 249
  year: 2022
  article-title: Docking to an Underwater Suspended Charging Station: Systematic Design and Experimental Tests
  publication-title: Ocean Engineering
– volume: 173
  start-page: 1377
  year: 2016
  end-page: 1385
  article-title: Diving Control of Autonomous Underwater Vehicle Based on Improved Active Disturbance Rejection Control Approach
  publication-title: Neurocomputing
– volume: 35
  start-page: 299
  issue: 2
  year: 2018
  end-page: 308
  article-title: The Artemis Under‐Ice AUV Docking System
  publication-title: Journal of Field Robotics
– volume: 28
  start-page: 2976
  issue: 5
  year: 2023
  end-page: 2987
  article-title: Adaptive Neural Control of Flight‐Style AUV for Subsea Cable Tracking Under Electromagnetic Localization Guidance
  publication-title: IEEE/ASME Transactions on Mechatronics
– volume: 110
  start-page: 163
  year: 2015
  end-page: 173
  article-title: AUV Docking Experiments Based on Vision Positioning Using Two Cameras
  publication-title: Ocean Engineering
– volume: 280
  year: 2023
  article-title: Machine Learning‐Based Electro‐Magnetic Field Guided Localization Technique for Autonomous Underwater Vehicle Homing
  publication-title: Ocean Engineering
– volume: 48
  start-page: 677
  issue: 3
  year: 2023
  end-page: 688
  article-title: Light Beacon‐Aided AUV Electromagnetic Localization for Landing on a Planar Docking Station
  publication-title: IEEE Journal of Oceanic Engineering
– volume: 40
  start-page: 1840
  issue: 7
  year: 2023
  end-page: 1859
  article-title: Nonlinear Model Predictive Control for Hydrobatics: Experiments with an Underactuated AUV
  publication-title: Journal of Field Robotics
– volume: 43
  start-page: 5
  issue: 20
  year: 2010
  end-page: 10
  article-title: Underwater Docking Approach of an Under‐Actuated AUV in the Presence of Constant Ocean Current
  publication-title: IFAC proceedings volumes
– volume: 41
  start-page: 374
  issue: 2
  year: 2024
  end-page: 395
  article-title: A Stereo Visual Navigation Method for Docking Autonomous Underwater Vehicles
  publication-title: Journal of Field Robotics
– volume: 123
  year: 2022b
  article-title: Disturbance Observers and Extended State Observers for Marine Vehicles: A Survey
  publication-title: Control Engineering Practice
– ident: e_1_2_9_16_1
  doi: 10.1109/TIE.2008.2011621
– ident: e_1_2_9_5_1
  doi: 10.1016/j.rineng.2021.100205
– ident: e_1_2_9_17_1
  doi: 10.1002/rob.21740
– ident: e_1_2_9_19_1
  doi: 10.1016/j.oceaneng.2023.114018
– ident: e_1_2_9_36_1
  doi: 10.1016/j.oceaneng.2023.114692
– ident: e_1_2_9_22_1
  doi: 10.1109/JOE.2023.3265767
– ident: e_1_2_9_21_1
  doi: 10.1016/j.oceaneng.2015.10.015
– ident: e_1_2_9_7_1
  doi: 10.1002/rob.22310
– ident: e_1_2_9_13_1
  doi: 10.1016/j.conengprac.2022.105158
– ident: e_1_2_9_18_1
  doi: 10.34133/olar.0036
– ident: e_1_2_9_42_1
  doi: 10.1002/rob.22269
– ident: e_1_2_9_12_1
  doi: 10.1109/TSMC.2022.3162862
– ident: e_1_2_9_23_1
  doi: 10.1016/j.oceaneng.2022.110766
– ident: e_1_2_9_39_1
  doi: 10.1016/j.engappai.2023.107728
– ident: e_1_2_9_24_1
  doi: 10.1016/j.oceaneng.2022.112458
– ident: e_1_2_9_41_1
  doi: 10.1109/TIE.2022.3198242
– ident: e_1_2_9_2_1
  doi: 10.1016/j.apor.2023.103739
– ident: e_1_2_9_37_1
  doi: 10.3390/math11163467
– ident: e_1_2_9_43_1
  doi: 10.1109/CCDC49329.2020.9164395
– ident: e_1_2_9_35_1
  doi: 10.3390/app11104368
– ident: e_1_2_9_10_1
  doi: 10.1109/TCST.2023.3259819
– ident: e_1_2_9_38_1
  doi: 10.1016/j.oceaneng.2021.108744
– ident: e_1_2_9_9_1
  doi: 10.1016/j.oceaneng.2021.110452
– ident: e_1_2_9_20_1
  doi: 10.1016/j.neucom.2021.03.136
– ident: e_1_2_9_40_1
  doi: 10.1016/j.oceaneng.2014.04.022
– ident: e_1_2_9_27_1
  doi: 10.1109/TIV.2023.3345467
– ident: e_1_2_9_34_1
  doi: 10.1016/j.mechatronics.2016.11.006
– ident: e_1_2_9_25_1
  doi: 10.1016/j.oceaneng.2019.106624
– ident: e_1_2_9_29_1
  doi: 10.3182/20100915-3-DE-3008.00065
– ident: e_1_2_9_11_1
  doi: 10.1016/j.automatica.2024.111556
– ident: e_1_2_9_4_1
  doi: 10.3390/jmse11102002
– ident: e_1_2_9_46_1
  doi: 10.3390/jmse11061119
– ident: e_1_2_9_26_1
  doi: 10.1109/OCEANSE.2019.8867159
– ident: e_1_2_9_14_1
  doi: 10.1080/00207179.2011.569954
– ident: e_1_2_9_33_1
  doi: 10.1016/j.neucom.2015.09.010
– ident: e_1_2_9_31_1
  doi: 10.1016/j.ifacsc.2019.100049
– ident: e_1_2_9_30_1
  doi: 10.1575/1912/3040
– ident: e_1_2_9_44_1
  doi: 10.1016/j.robot.2019.103382
– ident: e_1_2_9_3_1
  doi: 10.1002/rob.22218
– ident: e_1_2_9_28_1
  doi: 10.1016/S0019-0578(07)60037-8
– ident: e_1_2_9_45_1
  doi: 10.1109/TMECH.2023.3256707
– ident: e_1_2_9_8_1
  doi: 10.1109/JOE.2017.2769938
– ident: e_1_2_9_15_1
  doi: 10.3390/jmse12010192
– ident: e_1_2_9_6_1
  doi: 10.1109/ACCESS.2021.3083883
– ident: e_1_2_9_32_1
  doi: 10.1109/UT.2017.7890282
SSID ssj0043895
Score 2.4261436
Snippet ABSTRACT Dynamic docking control technology is crucial for autonomous underwater vehicles (AUV) to perform tasks underwater. To enhance the docking success...
Dynamic docking control technology is crucial for autonomous underwater vehicles (AUV) to perform tasks underwater. To enhance the docking success rate of AUVs...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1617
SubjectTerms Algorithms
autonomous underwater vehicle
Autonomous underwater vehicles
Control algorithms
Control theory
Disturbances
dynamic docking
Elevators (control surfaces)
extended state observer
Hyperbolic functions
lake trail
Rejection
Robust control
State observers
Title Dynamic Docking Anti‐Disturbance Control of Overactuated AUV: System, Method, and Lake Trails
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.22444
https://www.proquest.com/docview/3232270843
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA_iSQ9-i_OLIB48rFvTpo3V0_wYIs7BcLKDEJI0gTHpZOsunvwT_Bv9S3xJ100FQbz10Ib2vffr-yV5-T2Ejk1EYkFM6gmZGI8qkQDmUuYBGfBPmUpD5nRmW_fxTZfe9qLeAjovz8IU-hCzBTeLDPe_tgAXclyfi4aOhrIG-YdaLVBbq2UJUWcmHWWbekdOKzWKPZgEJKWqkB_UZ09-z0VzgvmVpro801xFT-UbFuUlg9oklzX1-kO88Z-fsIZWpvwTN4qAWUcLOttAy19UCTcRvyq61GNIQHYhHTeyvP_x9n4FETEZSRsm-LKocMdDg9sABmGPoQB3xY3u4xkuVNCruOW6U1exyFJ8JwYaQ2LsP4-3ULd5_XB54037MHgKAE29iDifaWo3VTWThIQ0NkonsTKKUsak9DUQkYiEaWqoDLVhPkmBC1CVJsA_ttFiNsz0DsKaSKJoTHRiCIWxBWWa6cAIAfMawUgFHZUe4S-F3AYvhJUDDtbizloVtF_6ik8RN-YhUMOA-ac0rKATZ_TfB-Cd9oW72P37rXtoKbCtf13t3z5azEcTfQB8JJeHLvA-AXxp20I
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3R5dByKNCCWErBQj30QHbjxIlJxWXLghbYBQmxiAuybMeWECiL9uPSU38Cv5Ff0rGzWSgSEuKWQ2IlnpnM83j8HsAPm9BUUpsHUmU2YFpmGHM5DxAMhLtc5zH3PLO907TTZ8dXydUc7FVnYUp-iFnBzUWG_1-7AHcF6eYTa-hwoBqYgBj7APNO0dvpF7TPZ-RRTtY78WypSRrgMiCreIXCqDl79P9s9AQxnwNVn2kOF-G6eseyweS2MRmrhv7zgr7xvR-xBJ-nEJS0Sp9ZhjlTfIGFZ8SEX0G0S6F6gjnI1dJJqxjfPP59aKNTTIbKeQrZL5vcycCSM4wH6U6iIHwlrf7lL1ISoe-Qnheo3iGyyElX3hqCufHmbrQC_cODi_1OMJViCDTGNAsS6s1mmNtXNVxRGrPUapOl2mrGOFcqNIhFEhrnuWUqNpaHNEc4wHSeIQRZhVoxKMwaEEMV1SylJrOU4diSccNNZKXEpY3ktA7blUnEfcm4IUpu5UjgbAk_W3XYqIwlpkE3EjGiw4iHuyyuw08_668PIM7PfvuL9bffugUfOxe9rugenZ58g0-RUwL2rYAbUBsPJ-Y7wpOx2vRe-A81td9c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BlRAcgPIQy6tW1UMPZIkTJyZwWtiuaMujQl3EAcnyU0KgLFp2L5z4Cf2N_SWMnc1CkSohbjkkVjIzX-azPf4G4IvLaC6pM5FUhYuYlgVizvAIyUC8y7VJedCZPTnNj7rsx2V2OQH79VmYSh9ivODmkRH-1x7gd8btPIuG9nuqifmHsUn4wHIEi2dE52PtKN_VOwtiqVke4SygqGWF4mRn_Oi_yeiZYb7kqSHRdObhqn7Fqr7kpjkcqKZ-eKXe-M5vWIC5EQElrSpiPsKELRdh9oUs4RKIdtWmnmAG8ivppFUOrv8-_mljSAz7yscJOaxK3EnPkTNEg_TnUJC8klb3Yo9UMujb5CS0p94msjTkWN5Ygpnx-vZ-Gbqdb78Pj6JRI4ZII6JZlNHgNMv8rqrlitKU5U7bItdOM8a5UrFFJpLR1BjHVGodj6lBMsC0KZCArMBU2SvtKhBLFdUsp7ZwlOHYknHLbeKkxImN5LQBn2uPiLtKb0NUysqJQGuJYK0GbNS-EiPI3YsUuWHC412WNuBrMPr_BxDnZwfhYu3tt36C6V_tjjj-fvpzHWYS3wY41AFuwNSgP7SbyE0GaivE4BPOFd4U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Docking+Anti%E2%80%90Disturbance+Control+of+Overactuated+AUV%3A+System%2C+Method%2C+and+Lake+Trails&rft.jtitle=Journal+of+field+robotics&rft.au=Duan%2C+Yu&rft.au=Guan%2C+Xiawei&rft.au=Liu%2C+Yifan&rft.au=Yang%2C+Shaolong&rft.date=2025-08-01&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=42&rft.issue=5&rft.spage=1617&rft.epage=1632&rft_id=info:doi/10.1002%2Frob.22444&rft.externalDBID=10.1002%252Frob.22444&rft.externalDocID=ROB22444
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon