A tight upper bound on the average order of dominating sets of a graph

In this paper we study the average order of dominating sets in a graph, avd ( G ) $\,\text{avd}\,(G)$. Like other average graph parameters, the extremal graphs are of interest. Beaton and Brown conjectured that for all graphs G $G$ of order n $n$ without isolated vertices, avd ( G ) ≤ 2 n / 3 $\,\te...

Full description

Saved in:
Bibliographic Details
Published inJournal of graph theory Vol. 107; no. 3; pp. 463 - 477
Main Authors Beaton, Iain, Cameron, Ben
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.11.2024
Subjects
Online AccessGet full text
ISSN0364-9024
1097-0118
DOI10.1002/jgt.23143

Cover

Abstract In this paper we study the average order of dominating sets in a graph, avd ( G ) $\,\text{avd}\,(G)$. Like other average graph parameters, the extremal graphs are of interest. Beaton and Brown conjectured that for all graphs G $G$ of order n $n$ without isolated vertices, avd ( G ) ≤ 2 n / 3 $\,\text{avd}\,(G)\le 2n/3$. Recently, Erey proved the conjecture for forests without isolated vertices. In this paper we prove the conjecture and classify which graphs have avd ( G ) = 2 n / 3 $\,\text{avd}\,(G)=2n/3$. We also use our bounds to prove an average version of Vizing's conjecture.
AbstractList In this paper we study the average order of dominating sets in a graph, . Like other average graph parameters, the extremal graphs are of interest. Beaton and Brown conjectured that for all graphs of order without isolated vertices, . Recently, Erey proved the conjecture for forests without isolated vertices. In this paper we prove the conjecture and classify which graphs have . We also use our bounds to prove an average version of Vizing's conjecture.
In this paper we study the average order of dominating sets in a graph, avd ( G ) $\,\text{avd}\,(G)$. Like other average graph parameters, the extremal graphs are of interest. Beaton and Brown conjectured that for all graphs G $G$ of order n $n$ without isolated vertices, avd ( G ) ≤ 2 n / 3 $\,\text{avd}\,(G)\le 2n/3$. Recently, Erey proved the conjecture for forests without isolated vertices. In this paper we prove the conjecture and classify which graphs have avd ( G ) = 2 n / 3 $\,\text{avd}\,(G)=2n/3$. We also use our bounds to prove an average version of Vizing's conjecture.
In this paper we study the average order of dominating sets in a graph, avd(G) $\,\text{avd}\,(G)$. Like other average graph parameters, the extremal graphs are of interest. Beaton and Brown conjectured that for all graphs G $G$ of order n $n$ without isolated vertices, avd(G)≤2n/3 $\,\text{avd}\,(G)\le 2n/3$. Recently, Erey proved the conjecture for forests without isolated vertices. In this paper we prove the conjecture and classify which graphs have avd(G)=2n/3 $\,\text{avd}\,(G)=2n/3$. We also use our bounds to prove an average version of Vizing's conjecture.
Author Cameron, Ben
Beaton, Iain
Author_xml – sequence: 1
  givenname: Iain
  orcidid: 0000-0002-5464-8166
  surname: Beaton
  fullname: Beaton, Iain
  email: iain.beaton@acadiau.ca
  organization: Acadia University
– sequence: 2
  givenname: Ben
  surname: Cameron
  fullname: Cameron, Ben
  organization: University of Prince Edward Island
BookMark eNp1kD1PwzAQhi1UJNrCwD-wxMSQ9mwncTJWFS2gSixltvzVNFVrBzsB9d83JaxMJ733vHfSM0Ej551F6JHAjADQ-aFqZ5SRlN2gMYGSJ0BIMUJjYHmalEDTOzSJ8QB9nEExRqsFbutq3-KuaWzAynfOYO9wu7dYftsgK4t9MP3K77Dxp9rJtnYVjraN10jiKshmf49ud_IY7cPfnKLP1ct2-ZpsPtZvy8Um0TTjLNESUmkKaRXlRUYVoaTghNhSUwkmV5oondGUKqatkdLmoFhugHMugVGgbIqehrtN8F-dja04-C64_qVghJYEMgpZTz0PlA4-xmB3ogn1SYazICCumkSvSfxq6tn5wP7UR3v-HxTv6-3QuADhhmlz
Cites_doi 10.1007/s00283-012-9275-2
10.1002/jgt.22434
10.1016/0095-8956(83)90049-7
10.1002/jgt.22793
10.1016/j.ejc.2021.103388
10.1090/proc/13728
10.1016/j.disc.2022.112799
10.1016/0095-8956(84)90046-7
10.1214/aoms/1177703287
10.1016/j.disc.2022.113127
10.1016/j.jctb.2009.05.006
10.1007/s00373-013-1306-z
10.1016/0012-365X(77)90144-3
10.1112/jlms.12056
10.1002/jgt.22621
10.1016/j.dam.2015.12.010
10.1016/B978-1-898563-76-1.50006-8
10.1021/ja01193a005
10.1002/jgt.22359
10.1007/s00373-020-02136-1
10.1016/j.jctb.2021.09.008
10.1007/s40879-019-00333-8
10.1016/j.disc.2021.112595
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley Periodicals LLC.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by Wiley Periodicals LLC.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
DOI 10.1002/jgt.23143
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0118
EndPage 477
ExternalDocumentID 10_1002_jgt_23143
JGT23143
Genre article
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: DGECR‐2022‐00446; RGPIN‐2022‐03697
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
24P
3-9
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
V8K
VH1
VJK
VQA
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XJT
XPP
XV2
XXG
YQT
ZZTAW
~IA
~WT
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c2573-ca04ad8aeb27852b1218711e9c2a0d6bc1bc5242b3cedaae60b36d0777a032023
IEDL.DBID DR2
ISSN 0364-9024
IngestDate Fri Jul 25 12:14:31 EDT 2025
Tue Jul 01 01:47:46 EDT 2025
Wed Jan 22 17:14:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2573-ca04ad8aeb27852b1218711e9c2a0d6bc1bc5242b3cedaae60b36d0777a032023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5464-8166
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.23143
PQID 3129105205
PQPubID 1006407
PageCount 15
ParticipantIDs proquest_journals_3129105205
crossref_primary_10_1002_jgt_23143
wiley_primary_10_1002_jgt_23143_JGT23143
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of graph theory
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 91
1968; 23
2022; 152
2021; 344
1947; 69
2018; 146
2010; 100
2023; 346
2020; 36
2016; 205
2020; 76
2002
2018; 89
2012; 34
2021; 96
2014; 114
1983; 35
2015; 70560
2022; 100
2020; 6
2017; 96
2021; 97
1984; 37
1977; 17
1964; 35
2018; 71
2014; 30
2022; 345
e_1_2_6_10_1
Kroeker M. E. (e_1_2_6_21_1) 2018; 71
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_20_1
Vizing V. G. (e_1_2_6_27_1) 1968; 23
e_1_2_6_9_1
e_1_2_6_8_1
Alikhani S. (e_1_2_6_2_1) 2014; 114
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_22_1
Wagner S. (e_1_2_6_28_1) 2015; 70560
e_1_2_6_29_1
Balodis K. J. (e_1_2_6_5_1) 2020; 76
e_1_2_6_26_1
References_xml – volume: 23
  start-page: 117
  issue: no. 6
  year: 1968
  end-page: 134
  article-title: Some unsolved problems in graph theory
  publication-title: Usp. Mat. Nauk
– volume: 114
  start-page: 257
  year: 2014
  end-page: 266
  article-title: Introduction to domination polynomial of a graph
  publication-title: Ars Combin
– volume: 35
  start-page: 207
  year: 1983
  end-page: 223
  article-title: On the average number of nodes in a subtree of a tree
  publication-title: J. Combin. Theory Ser. B
– volume: 346
  issue: no. 1
  year: 2023
  article-title: On the average order of a dominating set of a forest
  publication-title: Discrete Math
– volume: 34
  start-page: 8
  issue: no. 1
  year: 2012
  end-page: 15
  article-title: Sketchy tweets: Ten minute conjectures in graph theory
  publication-title: Math. Intelligencer
– volume: 96
  start-page: 47
  issue: no. 1
  year: 2017
  end-page: 66
  article-title: Independent sets, matchings, and occupancy fractions
  publication-title: J. Lond. Math. Soc. (2)
– volume: 6
  start-page: 561
  year: 2020
  end-page: 576
  article-title: The average size of independent sets of graphs
  publication-title: Eur. J. Math
– volume: 344
  issue: no. 12
  year: 2021
  article-title: The average order of dominating sets of a graph
  publication-title: Discrete Math
– start-page: 16
  year: 2002
  end-page: 37
– volume: 70560
  start-page: 154
  year: 2015
  end-page: 166
  article-title: On the local and global means of subtree orders
  publication-title: J. Graph Theory
– volume: 36
  start-page: 539
  year: 2020
  end-page: 560
  article-title: The average size of matchings in graphs
  publication-title: Graphs Combin
– volume: 152
  start-page: 153
  year: 2022
  end-page: 170
  article-title: A lower bound on the average size of a connected vertex set of a graph
  publication-title: J. Combin. Theory Ser. B
– volume: 100
  start-page: 161
  issue: no. 2
  year: 2010
  end-page: 170
  article-title: The average order of a subtree of a tree
  publication-title: J. Combin. Theory Ser. B
– volume: 205
  start-page: 126
  year: 2016
  end-page: 131
  article-title: On the roots of domination polynomial of graphs
  publication-title: Discrete Appl. Math
– volume: 89
  start-page: 413
  issue: no. 4
  year: 2018
  end-page: 438
  article-title: Subtrees of graphs
  publication-title: J. Graph Theory
– volume: 30
  start-page: 527
  year: 2014
  end-page: 547
  article-title: On the roots of domination polynomials
  publication-title: Graphs Combin
– volume: 96
  start-page: 403
  issue: no. 3
  year: 2021
  end-page: 413
  article-title: On the mean subtree order of graphs under edge addition
  publication-title: J. Graph Theory
– volume: 345
  issue: no. 5
  year: 2022
  article-title: The path minimises the average size of a connected induced subgraph
  publication-title: Discrete Math
– volume: 37
  start-page: 70
  year: 1984
  end-page: 78
  article-title: Monotonicity of the mean order of subtrees
  publication-title: J. Combin. Theory Ser. B
– volume: 76
  start-page: 128
  year: 2020
  end-page: 148
  article-title: On the mean order of connected induced subgraphs of block graphs
  publication-title: Australas. J. Combin
– volume: 35
  start-page: 1317
  issue: no. 3
  year: 1964
  end-page: 1321
  article-title: On the distribution of the number of successes in independent trials
  publication-title: Ann. Math. Statist
– volume: 91
  start-page: 326
  year: 2019
  end-page: 352
  article-title: Maximizing the mean subtree order
  publication-title: J. Graph Theory
– volume: 69
  start-page: 17
  issue: no. 1
  year: 1947
  end-page: 20
  article-title: Structural determination of paraffin boiling points
  publication-title: J. Amer. Chem. Soc
– volume: 146
  start-page: 111
  year: 2018
  end-page: 124
  article-title: On the average size of independent sets in triangle‐free graphs
  publication-title: Proc. Amer. Math. Soc
– volume: 100
  start-page: 530
  issue: no. 3
  year: 2022
  end-page: 542
  article-title: The number and average size of connected sets in graphs with degree constraints
  publication-title: J. Graph Theory
– volume: 17
  start-page: 147
  year: 1977
  end-page: 154
  article-title: Mean distance in a graph
  publication-title: Discrete Math
– volume: 71
  start-page: 161
  year: 2018
  end-page: 183
  article-title: On the mean connected induced subgraph order of cographs
  publication-title: Australas. J. Combin
– volume: 97
  year: 2021
  article-title: On the maximum mean subtree order of trees
  publication-title: Eur. J. Combin
– ident: e_1_2_6_7_1
  doi: 10.1007/s00283-012-9275-2
– volume: 71
  start-page: 161
  year: 2018
  ident: e_1_2_6_21_1
  article-title: On the mean connected induced subgraph order of cographs
  publication-title: Australas. J. Combin
– volume: 114
  start-page: 257
  year: 2014
  ident: e_1_2_6_2_1
  article-title: Introduction to domination polynomial of a graph
  publication-title: Ars Combin
– ident: e_1_2_6_22_1
  doi: 10.1002/jgt.22434
– ident: e_1_2_6_19_1
  doi: 10.1016/0095-8956(83)90049-7
– volume: 23
  start-page: 117
  issue: 6
  year: 1968
  ident: e_1_2_6_27_1
  article-title: Some unsolved problems in graph theory
  publication-title: Usp. Mat. Nauk
– volume: 70560
  start-page: 154
  year: 2015
  ident: e_1_2_6_28_1
  article-title: On the local and global means of subtree orders
  publication-title: J. Graph Theory
– ident: e_1_2_6_17_1
  doi: 10.1002/jgt.22793
– ident: e_1_2_6_9_1
  doi: 10.1016/j.ejc.2021.103388
– ident: e_1_2_6_14_1
  doi: 10.1090/proc/13728
– ident: e_1_2_6_18_1
  doi: 10.1016/j.disc.2022.112799
– ident: e_1_2_6_20_1
  doi: 10.1016/0095-8956(84)90046-7
– volume: 76
  start-page: 128
  year: 2020
  ident: e_1_2_6_5_1
  article-title: On the mean order of connected induced subgraphs of block graphs
  publication-title: Australas. J. Combin
– ident: e_1_2_6_12_1
  doi: 10.1214/aoms/1177703287
– ident: e_1_2_6_16_1
  doi: 10.1016/j.disc.2022.113127
– ident: e_1_2_6_26_1
  doi: 10.1016/j.jctb.2009.05.006
– ident: e_1_2_6_8_1
  doi: 10.1007/s00373-013-1306-z
– ident: e_1_2_6_15_1
  doi: 10.1016/0012-365X(77)90144-3
– ident: e_1_2_6_13_1
  doi: 10.1112/jlms.12056
– ident: e_1_2_6_10_1
  doi: 10.1002/jgt.22621
– ident: e_1_2_6_23_1
  doi: 10.1016/j.dam.2015.12.010
– ident: e_1_2_6_24_1
  doi: 10.1016/B978-1-898563-76-1.50006-8
– ident: e_1_2_6_29_1
  doi: 10.1021/ja01193a005
– ident: e_1_2_6_11_1
  doi: 10.1002/jgt.22359
– ident: e_1_2_6_4_1
  doi: 10.1007/s00373-020-02136-1
– ident: e_1_2_6_25_1
  doi: 10.1016/j.jctb.2021.09.008
– ident: e_1_2_6_3_1
  doi: 10.1007/s40879-019-00333-8
– ident: e_1_2_6_6_1
  doi: 10.1016/j.disc.2021.112595
SSID ssj0011508
Score 2.3630722
Snippet In this paper we study the average order of dominating sets in a graph, avd ( G ) $\,\text{avd}\,(G)$. Like other average graph parameters, the extremal graphs...
In this paper we study the average order of dominating sets in a graph, . Like other average graph parameters, the extremal graphs are of interest. Beaton and...
In this paper we study the average order of dominating sets in a graph, avd(G) $\,\text{avd}\,(G)$. Like other average graph parameters, the extremal graphs...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 463
SubjectTerms Apexes
average graph parameters
dominating set
domination polynomial
Graph theory
Graphs
Upper bounds
Title A tight upper bound on the average order of dominating sets of a graph
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.23143
https://www.proquest.com/docview/3129105205
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_MnfTgtzidI4gHL93aJukHnoY6x2AissEOQsnXBIV2rN3Fv94kXTsVBPFWSlqa1_fy-yV5-T2Aq5AqHhHBHcYC1yGe0OMgVdTRUCAll1RTJLOgP34MhlMymtFZA26qszClPkS94GYiw47XJsAZz3sb0dC316KryQkxSp8eDoxu_t1zLR1liE5U7lMSJ9ZAVKkKuX6vfvI7Fm0I5leaanFmsAcv1ReW6SXv3VXBu-Ljh3jjP7uwD7tr_on6pcMcQEOlh7AzrsVb8yMY9FFhpuxotVioJeKm8BLKUqSbIKY9X49AyCp2omyOZGZyaUzuNMpVkZtbDFkV7GOYDu4nt0NnXW7BETpusSOYS5iMmJ5rhxH1uafRP_Q8FQufuTLgwuOCakTnWCjJmApcjgPphmHIyirsJ9BMs1SdAsIsNkWMfZcFAYmw5ESpkM85Mzn_MRYtuKwMnyxKVY2k1E_2E22UxBqlBe3qlyTrwMoTrPmJZ3J3aAuurW1_f0EyepjYi7O_Nz2Hbd0VUp42bEOzWK7UhaYdBe_Alk-eOtbLPgGkGdNM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHtSD8RlR1I3x4KXSdrevxAsxIiIQD5Bw2-wLEw-F0PL_nW1p0YOJt6bZNul0Zr5vd2e_AbiPAiNjpqQjROg6zFOYBwMTOAgFWksdIEWyC_qjcdifssEsmDXgqToLU-pD1AtuNjKKfG0D3C5Id7aqoV-f-SOyE0Z3YJchL7cFfT77qPcQrNJ5uVPJnAShqNIVcv1O_ehvNNpSzJ9EtUCa3hEcbigi6Zb_9BgaJj2Bg1Gtr5qdQq9LcjurJuvl0qyItL2RyCIlOIQIdE5MEqQQ1SSLOdELW-5iy5tJZvLM3hKkEKo-g2nvZfLcdzYdERyFoUUdJVwmdCxwOhzFgS89BOjI80yifOHqUCpPqgBBV1JltBAmdCUNtRtFkSgbpZ9DM12k5gIIFYntM-y7IgxZTLVkxkRyLoUty0-oasFdZRm-LIUveClx7HM0Hy_M14J2ZTO-8f2MU6QQni2vCVrwUNjx7xfwweukuLj8_9Bb2OtPRkM-fBu_X8E-fhYrDwe2oZmv1uYaWUIubwpn-AaVELXe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qBdGDb7FadREPXtLmsXnhqai1VltEWuhBCPuqoJCGNr34651NmlQFQbyFsAnZycx-3-7OfgNw4buKB1RwgzHPNKglcBx0lWsgFEjJpYsUSS_o9_peZ0i7I3dUgaviLEyuD1EuuOnIyMZrHeCJHDeXoqFvr2kDyQl1VmCVesgkNCN6LrWjNNMJ8o1KaoSIRIWskGk3y0e_g9GSYX7lqRnQtLfgpfjEPL_kvTFPeUN8_FBv_GcftmFzQUBJK_eYHaioeBc2eqV662wP2i2S6jk7mSeJmhKuKy-RSUywCWHo-jgEkUyyk0zGRE50Mo1OniYzlc70LUYyGex9GLZvB9cdY1FvwRAYuI4hmEmZDBhOtv3AtbmF8O9blgqFzUzpcWFx4SKkc0coyZjyTO540vR9n-Vl2A-gGk9idQjEYaGuYmybzPNo4EhOlfL5mDOd9B86ogbnheGjJJfViHIBZTtCo0SZUWpQL35JtIisWeQgQbF08o5bg8vMtr-_IOreDbKLo783PYO1p5t29HjffziGdewVzU8e1qGaTufqBClIyk8zV_sElE3VQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+tight+upper+bound+on+the+average+order+of+dominating+sets+of+a+graph&rft.jtitle=Journal+of+graph+theory&rft.au=Beaton%2C+Iain&rft.au=Cameron%2C+Ben&rft.date=2024-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=107&rft.issue=3&rft.spage=463&rft.epage=477&rft_id=info:doi/10.1002%2Fjgt.23143&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon