Removable edges in near‐bipartite bricks
An edge e of a matching covered graph G is removable if G − e is also matching covered. The notion of removable edge arises in connection with ear decompositions of matching covered graphs introduced by Lovász and Plummer. A nonbipartite matching covered graph G is a brick if it is free of nontrivia...
Saved in:
Published in | Journal of graph theory Vol. 108; no. 1; pp. 113 - 135 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0364-9024 1097-0118 |
DOI | 10.1002/jgt.23173 |
Cover
Abstract | An edge
e of a matching covered graph
G is removable if
G
−
e is also matching covered. The notion of removable edge arises in connection with ear decompositions of matching covered graphs introduced by Lovász and Plummer. A nonbipartite matching covered graph
G is a brick if it is free of nontrivial tight cuts. Carvalho, Lucchesi and Murty proved that every brick other than
K
4 and
C
6
¯ has at least
Δ
−
2 removable edges. A brick
G is near‐bipartite if it has a pair of edges
{
e
1
,
e
2
} such that
G
−
{
e
1
,
e
2
} is a bipartite matching covered graph. In this paper, we show that in a near‐bipartite brick
G with at least six vertices, every vertex of
G, except at most six vertices of degree three contained in two disjoint triangles, is incident with at most two nonremovable edges; consequently,
G has at least
|
V
(
G
)
|
−
6
2 removable edges. Moreover, all graphs attaining this lower bound are characterized. |
---|---|
AbstractList | An edge e of a matching covered graph G is removable if G−e is also matching covered. The notion of removable edge arises in connection with ear decompositions of matching covered graphs introduced by Lovász and Plummer. A nonbipartite matching covered graph G is a brick if it is free of nontrivial tight cuts. Carvalho, Lucchesi and Murty proved that every brick other than K4 and C6¯ has at least Δ−2 removable edges. A brick G is near‐bipartite if it has a pair of edges {e1,e2} such that G−{e1,e2} is a bipartite matching covered graph. In this paper, we show that in a near‐bipartite brick G with at least six vertices, every vertex of G, except at most six vertices of degree three contained in two disjoint triangles, is incident with at most two nonremovable edges; consequently, G has at least |V(G)|−62 removable edges. Moreover, all graphs attaining this lower bound are characterized. An edge e of a matching covered graph G is removable if G − e is also matching covered. The notion of removable edge arises in connection with ear decompositions of matching covered graphs introduced by Lovász and Plummer. A nonbipartite matching covered graph G is a brick if it is free of nontrivial tight cuts. Carvalho, Lucchesi and Murty proved that every brick other than K 4 and C 6 ¯ has at least Δ − 2 removable edges. A brick G is near‐bipartite if it has a pair of edges { e 1 , e 2 } such that G − { e 1 , e 2 } is a bipartite matching covered graph. In this paper, we show that in a near‐bipartite brick G with at least six vertices, every vertex of G, except at most six vertices of degree three contained in two disjoint triangles, is incident with at most two nonremovable edges; consequently, G has at least | V ( G ) | − 6 2 removable edges. Moreover, all graphs attaining this lower bound are characterized. An edge of a matching covered graph is removable if is also matching covered. The notion of removable edge arises in connection with ear decompositions of matching covered graphs introduced by Lovász and Plummer. A nonbipartite matching covered graph is a brick if it is free of nontrivial tight cuts. Carvalho, Lucchesi and Murty proved that every brick other than and has at least removable edges. A brick is near‐bipartite if it has a pair of edges such that is a bipartite matching covered graph. In this paper, we show that in a near‐bipartite brick with at least six vertices, every vertex of , except at most six vertices of degree three contained in two disjoint triangles, is incident with at most two nonremovable edges; consequently, has at least removable edges. Moreover, all graphs attaining this lower bound are characterized. |
Author | Yuan, Jinjiang Zhang, Yipei Lu, Fuliang Wang, Xiumei |
Author_xml | – sequence: 1 givenname: Yipei surname: Zhang fullname: Zhang, Yipei organization: Zhengzhou University – sequence: 2 givenname: Fuliang orcidid: 0000-0002-5516-1122 surname: Lu fullname: Lu, Fuliang email: flianglu@163.com organization: Minnan Normal University – sequence: 3 givenname: Xiumei orcidid: 0000-0001-8903-3367 surname: Wang fullname: Wang, Xiumei organization: Zhengzhou University – sequence: 4 givenname: Jinjiang orcidid: 0000-0002-9814-615X surname: Yuan fullname: Yuan, Jinjiang organization: Zhengzhou University |
BookMark | eNp1kMFKw0AQhhepYFs9-AYBTwppZ3az2fQoxValIEg9L5vtbElsk7qbKr35CD6jT2JqvHoaGL7_n-EbsF5VV8TYJcIIAfi4XDcjLlCJE9ZHmKgYELMe64NIk3gCPDljgxBKaNcSsj67eaZt_W7yDUW0WlOIiiqqyPjvz6-82BnfFA1FuS_sazhnp85sAl38zSF7md0tp_fx4mn-ML1dxJZLJeJJ22tkloJwqTVOIcfUSjS5k2CVs6uk_YtSqZC4cMIYYdPE5hYsGi5tIobsquvd-fptT6HRZb33VXtSC-RZJlFlR-q6o6yvQ_Dk9M4XW-MPGkEfVehWhf5V0bLjjv0oNnT4H9SP82WX-AFLJmDY |
Cites_doi | 10.1002/jgt.22411 10.1002/jgt.22579 10.1002/jgt.22414 10.1007/978-1-84628-970-5 10.1007/s004930050051 10.1002/jgt.20036 10.37236/8945 10.1006/jctb.2000.2025 10.1112/jlms/s1-22.2.107 10.1016/j.jctb.2012.07.004 10.1007/BF02579233 10.37236/8594 10.1016/j.disc.2009.10.024 10.1016/0095-8956(87)90021-9 |
ContentType | Journal Article |
Copyright | 2024 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2024 Wiley Periodicals LLC. |
DBID | AAYXX CITATION |
DOI | 10.1002/jgt.23173 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1097-0118 |
EndPage | 135 |
ExternalDocumentID | 10_1002_jgt_23173 JGT23173 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 12171440; 12271235; 12371318; 12371361 – fundername: Fujian Provincial Natural Science Foundation of China funderid: 2021J06029 |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 186 1L6 1OB 1OC 1ZS 3-9 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TN5 UB1 UPT V2E V8K VH1 VJK VQA W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XJT XPP XV2 XXG YQT ZZTAW ~IA ~WT AAYXX ADXHL AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c2573-9508a58603f6caf71216c51abf50c7fcd4109e6571e23f3aa3c64cbc0c1a25c43 |
IEDL.DBID | DR2 |
ISSN | 0364-9024 |
IngestDate | Fri Jul 25 12:06:09 EDT 2025 Tue Jul 01 01:47:46 EDT 2025 Wed Jan 22 17:12:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2573-9508a58603f6caf71216c51abf50c7fcd4109e6571e23f3aa3c64cbc0c1a25c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8903-3367 0000-0002-5516-1122 0000-0002-9814-615X |
PQID | 3128851784 |
PQPubID | 1006407 |
PageCount | 23 |
ParticipantIDs | proquest_journals_3128851784 crossref_primary_10_1002_jgt_23173 wiley_primary_10_1002_jgt_23173_JGT23173 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2025 2025-01-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Journal of graph theory |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2020; 27 2001; 82 1986; 29 2019; 90 1987; 43 2012; 102 2005; 48 1982; 2 1999; 19 2020; 95 1947; 22 2010; 310 e_1_2_6_10_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_3_1 e_1_2_6_11_1 e_1_2_6_2_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 Lovász L. (e_1_2_6_12_1) 1986 e_1_2_6_16_1 |
References_xml | – volume: 310 start-page: 1123 year: 2010 end-page: 1126 article-title: A lower bound on the number of removable ears of 1‐extendable graphs publication-title: Discrete Math – volume: 43 start-page: 187 year: 1987 end-page: 222 article-title: Matching structure and the matching lattice publication-title: J. Combin. Theory Ser. B – volume: 27 year: 2020 article-title: On essentially 4‐edge‐connected cubic bricks publication-title: Electron. J. Combin – volume: 48 start-page: 19 year: 2005 end-page: 50 article-title: Graphs with independent perfect matchings publication-title: J. Graph Theory – volume: 19 start-page: 151 year: 1999 end-page: 174 article-title: Ear decompositions of matching covered graphs publication-title: Combinatorica – volume: 27 year: 2020 article-title: b‐Invariant edges in essentially 4‐edge‐connected near‐bipartite cubic bricks publication-title: Electron. J. Combin. – volume: 102 start-page: 1241 year: 2012 end-page: 1266 article-title: A generalization of Little's theorem on Pfaffian orientations publication-title: J. Combin. Theory Ser. B – volume: 22 start-page: 107 year: 1947 end-page: 111 article-title: The factorization of linear graphs publication-title: J. Lond. Math. Soc – volume: 90 start-page: 535 year: 2019 end-page: 546 article-title: On perfect matchings in matching covered graphs publication-title: J. Graph Theory – volume: 90 start-page: 565 year: 2019 end-page: 590 article-title: Generating near‐bipartite bricks publication-title: J. Graph Theory – volume: 2 start-page: 247 year: 1982 end-page: 274 article-title: Brick decompositions and the matching rank of graphs publication-title: Combinatorica – volume: 29 year: 1986 – volume: 82 start-page: 175 year: 2001 end-page: 222 article-title: A characterisation of Pfaffian near bipartite graphs publication-title: J. Combin. Theory Ser. B – volume: 95 start-page: 594 year: 2020 end-page: 637 article-title: Generating simple near‐bipartite bricks publication-title: J. Graph Theory – ident: e_1_2_6_8_1 doi: 10.1002/jgt.22411 – ident: e_1_2_6_11_1 doi: 10.1002/jgt.22579 – ident: e_1_2_6_10_1 doi: 10.1002/jgt.22414 – ident: e_1_2_6_2_1 doi: 10.1007/978-1-84628-970-5 – ident: e_1_2_6_3_1 doi: 10.1007/s004930050051 – ident: e_1_2_6_16_1 – ident: e_1_2_6_4_1 doi: 10.1002/jgt.20036 – ident: e_1_2_6_14_1 – ident: e_1_2_6_15_1 doi: 10.37236/8945 – volume-title: Annals of Discrete Mathematics year: 1986 ident: e_1_2_6_12_1 – ident: e_1_2_6_7_1 doi: 10.1006/jctb.2000.2025 – ident: e_1_2_6_17_1 doi: 10.1112/jlms/s1-22.2.107 – ident: e_1_2_6_5_1 doi: 10.1016/j.jctb.2012.07.004 – ident: e_1_2_6_6_1 doi: 10.1007/BF02579233 – ident: e_1_2_6_9_1 doi: 10.37236/8594 – ident: e_1_2_6_18_1 doi: 10.1016/j.disc.2009.10.024 – ident: e_1_2_6_13_1 doi: 10.1016/0095-8956(87)90021-9 |
SSID | ssj0011508 |
Score | 2.3618422 |
Snippet | An edge
e of a matching covered graph
G is removable if
G
−
e is also matching covered. The notion of removable edge arises in connection with ear... An edge of a matching covered graph is removable if is also matching covered. The notion of removable edge arises in connection with ear decompositions of... An edge e of a matching covered graph G is removable if G−e is also matching covered. The notion of removable edge arises in connection with ear decompositions... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 113 |
SubjectTerms | Apexes brick Bricks Graph matching Graph theory Graphs Lower bounds near‐bipartite graph perfect matching removable edge |
Title | Removable edges in near‐bipartite bricks |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.23173 https://www.proquest.com/docview/3128851784 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1KT3rwW6xWCeJBhLT7lU2CJ1FrKdRDaaEHIexuN1LFtJjUgyd_gr_RX-Ju0rQqCCK55JANmWFe5jG78wbgBGMVBzpArgrtCDMVClf4FLtcB0r48YhqZhuFu7e8PWCdoTeswHnZC1PoQywKbhYZ-f_aAlzItLkUDX24zxqGnPhW6RNTbnXzr3oL6ShLdIJin5K5oUlEpaoQIs3Fyu-5aEkwv9LUPM-01uGu_MLieMljY5bJhnr9Id74TxM2YG3OP52LImA2oaKTLVjtLsRb02046-mnyYttqXJssS11xomTGEB8vL3L8dSGWqYdaeX00x0YtK77l213PlLBVQab1LUzX4UXcERjrkTsY4K58rCQsYeUH6sRwyjU3POxJjSmQlDFmZIKKSyIpxjdhWoySfQeOFwjqT1pLhEwSlFIiDJrtbRbwyMe1uC4dG40LZQzokIjmUTG8Cg3vAb10u3RHDxpRE3ONETQD1gNTnP__f6CqHPTz2_2__7oAawQO8U3L6TUoZo9z_ShoRaZPMpj6BNNQ8lZ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qPagHv8Vq1SAeREibzW42CXgRv2pteygt9CJhd7uRKqbFpB48-RP8jf4Sd5OmVUEQySWHbMgM8zIvs5k3AEcIidCTnmUKX48wEz4zmYuRSaUnmBv2sSS6UbjZorUuqfecXgFO816YTB9iWnDTyEjf1xrguiBdnamGPtwnFcVOXDwH80QRDf3pddGeikdpquNlO5XE9FUqynWFLLs6Xfo9G80o5leimmaaqxW4y58x-8HksTJOeEW8_pBv_K8Rq7A8oaDGWRYza1CQ0TosNaf6rfEGnLTl0_BFd1UZut4WG4PIiBQmPt7e-WCkoy2RBteK-vEmdK8uO-c1czJVwRQKntjUY1-Z41ELh1Sw0EU2osJBjIeOJdxQ9AmyfEkdF0kbh5gxLCgRXFgCMdsRBG9BMRpGchsMKi0uHa4O5hGMLd-2hVorud4d7lO_BIe5d4NRJp4RZDLJdqAMD1LDS1DO_R5M8BMHWKVNxQVdj5TgOHXg7zcI6ted9GTn75cewEKt02wEjZvW7S4s2nqob1pXKUMxeR7LPcU0Er6fBtQn_ZvNeA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qBdGD32K1ahAPIqTNZjebBE-iVq22SGmhByHsbjZSxbTY1IMnf4K_0V_ibtK0KggiueSQDZlhXuYxu_MG4AAhEXnSs0zh6xFmwmcmczEyqfQEc6MQS6IbhRtNetkh9a7TLcBx3guT6UNMCm4aGen_WgN8EEbVqWjow31SUeTExTMwS6hiEpoRtSbaUZrpeNlGJTF9lYlyWSHLrk6Wfk9GU4b5laemiaa2BHf5J2bnSx4ro4RXxOsP9cZ_2rAMi2MCapxkEbMCBRmvwkJjot46XIOjlnzqv-ieKkNX24ZGLzZihYiPt3feG-hYS6TBtZ7-cB06tfP26aU5nqlgCgVObOqhr8zxqIUjKljkIhtR4SDGI8cSbiRCgixfUsdF0sYRZgwLSgQXlkDMdgTBG1CM-7HcBINKi0uHq4t5BGPLt22h1kqu94ZD6pdgP3duMMikM4JMJNkOlOFBangJyrnbgzF6hgFWSVMxQdcjJThM_ff7C4L6RTu92fr7o3swd3tWC26umtfbMG_rib5pUaUMxeR5JHcUzUj4bhpOn8MczCc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removable+edges+in+near%E2%80%90bipartite+bricks&rft.jtitle=Journal+of+graph+theory&rft.au=Zhang%2C+Yipei&rft.au=Lu%2C+Fuliang&rft.au=Wang%2C+Xiumei&rft.au=Yuan%2C+Jinjiang&rft.date=2025-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=108&rft.issue=1&rft.spage=113&rft.epage=135&rft_id=info:doi/10.1002%2Fjgt.23173&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon |