Removable edges in near‐bipartite bricks

An edge e of a matching covered graph G is removable if G − e is also matching covered. The notion of removable edge arises in connection with ear decompositions of matching covered graphs introduced by Lovász and Plummer. A nonbipartite matching covered graph G is a brick if it is free of nontrivia...

Full description

Saved in:
Bibliographic Details
Published inJournal of graph theory Vol. 108; no. 1; pp. 113 - 135
Main Authors Zhang, Yipei, Lu, Fuliang, Wang, Xiumei, Yuan, Jinjiang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2025
Subjects
Online AccessGet full text
ISSN0364-9024
1097-0118
DOI10.1002/jgt.23173

Cover

Abstract An edge e of a matching covered graph G is removable if G − e is also matching covered. The notion of removable edge arises in connection with ear decompositions of matching covered graphs introduced by Lovász and Plummer. A nonbipartite matching covered graph G is a brick if it is free of nontrivial tight cuts. Carvalho, Lucchesi and Murty proved that every brick other than K 4 and C 6 ¯ has at least Δ − 2 removable edges. A brick G is near‐bipartite if it has a pair of edges { e 1 , e 2 } such that G − { e 1 , e 2 } is a bipartite matching covered graph. In this paper, we show that in a near‐bipartite brick G with at least six vertices, every vertex of G, except at most six vertices of degree three contained in two disjoint triangles, is incident with at most two nonremovable edges; consequently, G has at least | V ( G ) | − 6 2 removable edges. Moreover, all graphs attaining this lower bound are characterized.
AbstractList An edge e of a matching covered graph G is removable if G−e is also matching covered. The notion of removable edge arises in connection with ear decompositions of matching covered graphs introduced by Lovász and Plummer. A nonbipartite matching covered graph G is a brick if it is free of nontrivial tight cuts. Carvalho, Lucchesi and Murty proved that every brick other than K4 and C6¯ has at least Δ−2 removable edges. A brick G is near‐bipartite if it has a pair of edges {e1,e2} such that G−{e1,e2} is a bipartite matching covered graph. In this paper, we show that in a near‐bipartite brick G with at least six vertices, every vertex of G, except at most six vertices of degree three contained in two disjoint triangles, is incident with at most two nonremovable edges; consequently, G has at least |V(G)|−62 removable edges. Moreover, all graphs attaining this lower bound are characterized.
An edge e of a matching covered graph G is removable if G − e is also matching covered. The notion of removable edge arises in connection with ear decompositions of matching covered graphs introduced by Lovász and Plummer. A nonbipartite matching covered graph G is a brick if it is free of nontrivial tight cuts. Carvalho, Lucchesi and Murty proved that every brick other than K 4 and C 6 ¯ has at least Δ − 2 removable edges. A brick G is near‐bipartite if it has a pair of edges { e 1 , e 2 } such that G − { e 1 , e 2 } is a bipartite matching covered graph. In this paper, we show that in a near‐bipartite brick G with at least six vertices, every vertex of G, except at most six vertices of degree three contained in two disjoint triangles, is incident with at most two nonremovable edges; consequently, G has at least | V ( G ) | − 6 2 removable edges. Moreover, all graphs attaining this lower bound are characterized.
An edge of a matching covered graph is removable if is also matching covered. The notion of removable edge arises in connection with ear decompositions of matching covered graphs introduced by Lovász and Plummer. A nonbipartite matching covered graph is a brick if it is free of nontrivial tight cuts. Carvalho, Lucchesi and Murty proved that every brick other than and has at least removable edges. A brick is near‐bipartite if it has a pair of edges such that is a bipartite matching covered graph. In this paper, we show that in a near‐bipartite brick with at least six vertices, every vertex of , except at most six vertices of degree three contained in two disjoint triangles, is incident with at most two nonremovable edges; consequently, has at least removable edges. Moreover, all graphs attaining this lower bound are characterized.
Author Yuan, Jinjiang
Zhang, Yipei
Lu, Fuliang
Wang, Xiumei
Author_xml – sequence: 1
  givenname: Yipei
  surname: Zhang
  fullname: Zhang, Yipei
  organization: Zhengzhou University
– sequence: 2
  givenname: Fuliang
  orcidid: 0000-0002-5516-1122
  surname: Lu
  fullname: Lu, Fuliang
  email: flianglu@163.com
  organization: Minnan Normal University
– sequence: 3
  givenname: Xiumei
  orcidid: 0000-0001-8903-3367
  surname: Wang
  fullname: Wang, Xiumei
  organization: Zhengzhou University
– sequence: 4
  givenname: Jinjiang
  orcidid: 0000-0002-9814-615X
  surname: Yuan
  fullname: Yuan, Jinjiang
  organization: Zhengzhou University
BookMark eNp1kMFKw0AQhhepYFs9-AYBTwppZ3az2fQoxValIEg9L5vtbElsk7qbKr35CD6jT2JqvHoaGL7_n-EbsF5VV8TYJcIIAfi4XDcjLlCJE9ZHmKgYELMe64NIk3gCPDljgxBKaNcSsj67eaZt_W7yDUW0WlOIiiqqyPjvz6-82BnfFA1FuS_sazhnp85sAl38zSF7md0tp_fx4mn-ML1dxJZLJeJJ22tkloJwqTVOIcfUSjS5k2CVs6uk_YtSqZC4cMIYYdPE5hYsGi5tIobsquvd-fptT6HRZb33VXtSC-RZJlFlR-q6o6yvQ_Dk9M4XW-MPGkEfVehWhf5V0bLjjv0oNnT4H9SP82WX-AFLJmDY
Cites_doi 10.1002/jgt.22411
10.1002/jgt.22579
10.1002/jgt.22414
10.1007/978-1-84628-970-5
10.1007/s004930050051
10.1002/jgt.20036
10.37236/8945
10.1006/jctb.2000.2025
10.1112/jlms/s1-22.2.107
10.1016/j.jctb.2012.07.004
10.1007/BF02579233
10.37236/8594
10.1016/j.disc.2009.10.024
10.1016/0095-8956(87)90021-9
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
DOI 10.1002/jgt.23173
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0118
EndPage 135
ExternalDocumentID 10_1002_jgt_23173
JGT23173
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 12171440; 12271235; 12371318; 12371361
– fundername: Fujian Provincial Natural Science Foundation of China
  funderid: 2021J06029
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
3-9
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
V8K
VH1
VJK
VQA
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XJT
XPP
XV2
XXG
YQT
ZZTAW
~IA
~WT
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c2573-9508a58603f6caf71216c51abf50c7fcd4109e6571e23f3aa3c64cbc0c1a25c43
IEDL.DBID DR2
ISSN 0364-9024
IngestDate Fri Jul 25 12:06:09 EDT 2025
Tue Jul 01 01:47:46 EDT 2025
Wed Jan 22 17:12:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2573-9508a58603f6caf71216c51abf50c7fcd4109e6571e23f3aa3c64cbc0c1a25c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8903-3367
0000-0002-5516-1122
0000-0002-9814-615X
PQID 3128851784
PQPubID 1006407
PageCount 23
ParticipantIDs proquest_journals_3128851784
crossref_primary_10_1002_jgt_23173
wiley_primary_10_1002_jgt_23173_JGT23173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of graph theory
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020; 27
2001; 82
1986; 29
2019; 90
1987; 43
2012; 102
2005; 48
1982; 2
1999; 19
2020; 95
1947; 22
2010; 310
e_1_2_6_10_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_2_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
Lovász L. (e_1_2_6_12_1) 1986
e_1_2_6_16_1
References_xml – volume: 310
  start-page: 1123
  year: 2010
  end-page: 1126
  article-title: A lower bound on the number of removable ears of 1‐extendable graphs
  publication-title: Discrete Math
– volume: 43
  start-page: 187
  year: 1987
  end-page: 222
  article-title: Matching structure and the matching lattice
  publication-title: J. Combin. Theory Ser. B
– volume: 27
  year: 2020
  article-title: On essentially 4‐edge‐connected cubic bricks
  publication-title: Electron. J. Combin
– volume: 48
  start-page: 19
  year: 2005
  end-page: 50
  article-title: Graphs with independent perfect matchings
  publication-title: J. Graph Theory
– volume: 19
  start-page: 151
  year: 1999
  end-page: 174
  article-title: Ear decompositions of matching covered graphs
  publication-title: Combinatorica
– volume: 27
  year: 2020
  article-title: b‐Invariant edges in essentially 4‐edge‐connected near‐bipartite cubic bricks
  publication-title: Electron. J. Combin.
– volume: 102
  start-page: 1241
  year: 2012
  end-page: 1266
  article-title: A generalization of Little's theorem on Pfaffian orientations
  publication-title: J. Combin. Theory Ser. B
– volume: 22
  start-page: 107
  year: 1947
  end-page: 111
  article-title: The factorization of linear graphs
  publication-title: J. Lond. Math. Soc
– volume: 90
  start-page: 535
  year: 2019
  end-page: 546
  article-title: On perfect matchings in matching covered graphs
  publication-title: J. Graph Theory
– volume: 90
  start-page: 565
  year: 2019
  end-page: 590
  article-title: Generating near‐bipartite bricks
  publication-title: J. Graph Theory
– volume: 2
  start-page: 247
  year: 1982
  end-page: 274
  article-title: Brick decompositions and the matching rank of graphs
  publication-title: Combinatorica
– volume: 29
  year: 1986
– volume: 82
  start-page: 175
  year: 2001
  end-page: 222
  article-title: A characterisation of Pfaffian near bipartite graphs
  publication-title: J. Combin. Theory Ser. B
– volume: 95
  start-page: 594
  year: 2020
  end-page: 637
  article-title: Generating simple near‐bipartite bricks
  publication-title: J. Graph Theory
– ident: e_1_2_6_8_1
  doi: 10.1002/jgt.22411
– ident: e_1_2_6_11_1
  doi: 10.1002/jgt.22579
– ident: e_1_2_6_10_1
  doi: 10.1002/jgt.22414
– ident: e_1_2_6_2_1
  doi: 10.1007/978-1-84628-970-5
– ident: e_1_2_6_3_1
  doi: 10.1007/s004930050051
– ident: e_1_2_6_16_1
– ident: e_1_2_6_4_1
  doi: 10.1002/jgt.20036
– ident: e_1_2_6_14_1
– ident: e_1_2_6_15_1
  doi: 10.37236/8945
– volume-title: Annals of Discrete Mathematics
  year: 1986
  ident: e_1_2_6_12_1
– ident: e_1_2_6_7_1
  doi: 10.1006/jctb.2000.2025
– ident: e_1_2_6_17_1
  doi: 10.1112/jlms/s1-22.2.107
– ident: e_1_2_6_5_1
  doi: 10.1016/j.jctb.2012.07.004
– ident: e_1_2_6_6_1
  doi: 10.1007/BF02579233
– ident: e_1_2_6_9_1
  doi: 10.37236/8594
– ident: e_1_2_6_18_1
  doi: 10.1016/j.disc.2009.10.024
– ident: e_1_2_6_13_1
  doi: 10.1016/0095-8956(87)90021-9
SSID ssj0011508
Score 2.3618422
Snippet An edge e of a matching covered graph G is removable if G − e is also matching covered. The notion of removable edge arises in connection with ear...
An edge of a matching covered graph is removable if is also matching covered. The notion of removable edge arises in connection with ear decompositions of...
An edge e of a matching covered graph G is removable if G−e is also matching covered. The notion of removable edge arises in connection with ear decompositions...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 113
SubjectTerms Apexes
brick
Bricks
Graph matching
Graph theory
Graphs
Lower bounds
near‐bipartite graph
perfect matching
removable edge
Title Removable edges in near‐bipartite bricks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.23173
https://www.proquest.com/docview/3128851784
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1KT3rwW6xWCeJBhLT7lU2CJ1FrKdRDaaEHIexuN1LFtJjUgyd_gr_RX-Ju0rQqCCK55JANmWFe5jG78wbgBGMVBzpArgrtCDMVClf4FLtcB0r48YhqZhuFu7e8PWCdoTeswHnZC1PoQywKbhYZ-f_aAlzItLkUDX24zxqGnPhW6RNTbnXzr3oL6ShLdIJin5K5oUlEpaoQIs3Fyu-5aEkwv9LUPM-01uGu_MLieMljY5bJhnr9Id74TxM2YG3OP52LImA2oaKTLVjtLsRb02046-mnyYttqXJssS11xomTGEB8vL3L8dSGWqYdaeX00x0YtK77l213PlLBVQab1LUzX4UXcERjrkTsY4K58rCQsYeUH6sRwyjU3POxJjSmQlDFmZIKKSyIpxjdhWoySfQeOFwjqT1pLhEwSlFIiDJrtbRbwyMe1uC4dG40LZQzokIjmUTG8Cg3vAb10u3RHDxpRE3ONETQD1gNTnP__f6CqHPTz2_2__7oAawQO8U3L6TUoZo9z_ShoRaZPMpj6BNNQ8lZ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qPagHv8Vq1SAeREibzW42CXgRv2pteygt9CJhd7uRKqbFpB48-RP8jf4Sd5OmVUEQySWHbMgM8zIvs5k3AEcIidCTnmUKX48wEz4zmYuRSaUnmBv2sSS6UbjZorUuqfecXgFO816YTB9iWnDTyEjf1xrguiBdnamGPtwnFcVOXDwH80QRDf3pddGeikdpquNlO5XE9FUqynWFLLs6Xfo9G80o5leimmaaqxW4y58x-8HksTJOeEW8_pBv_K8Rq7A8oaDGWRYza1CQ0TosNaf6rfEGnLTl0_BFd1UZut4WG4PIiBQmPt7e-WCkoy2RBteK-vEmdK8uO-c1czJVwRQKntjUY1-Z41ELh1Sw0EU2osJBjIeOJdxQ9AmyfEkdF0kbh5gxLCgRXFgCMdsRBG9BMRpGchsMKi0uHa4O5hGMLd-2hVorud4d7lO_BIe5d4NRJp4RZDLJdqAMD1LDS1DO_R5M8BMHWKVNxQVdj5TgOHXg7zcI6ted9GTn75cewEKt02wEjZvW7S4s2nqob1pXKUMxeR7LPcU0Er6fBtQn_ZvNeA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qBdGD32K1ahAPIqTNZjebBE-iVq22SGmhByHsbjZSxbTY1IMnf4K_0V_ibtK0KggiueSQDZlhXuYxu_MG4AAhEXnSs0zh6xFmwmcmczEyqfQEc6MQS6IbhRtNetkh9a7TLcBx3guT6UNMCm4aGen_WgN8EEbVqWjow31SUeTExTMwS6hiEpoRtSbaUZrpeNlGJTF9lYlyWSHLrk6Wfk9GU4b5laemiaa2BHf5J2bnSx4ro4RXxOsP9cZ_2rAMi2MCapxkEbMCBRmvwkJjot46XIOjlnzqv-ieKkNX24ZGLzZihYiPt3feG-hYS6TBtZ7-cB06tfP26aU5nqlgCgVObOqhr8zxqIUjKljkIhtR4SDGI8cSbiRCgixfUsdF0sYRZgwLSgQXlkDMdgTBG1CM-7HcBINKi0uHq4t5BGPLt22h1kqu94ZD6pdgP3duMMikM4JMJNkOlOFBangJyrnbgzF6hgFWSVMxQdcjJThM_ff7C4L6RTu92fr7o3swd3tWC26umtfbMG_rib5pUaUMxeR5JHcUzUj4bhpOn8MczCc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removable+edges+in+near%E2%80%90bipartite+bricks&rft.jtitle=Journal+of+graph+theory&rft.au=Zhang%2C+Yipei&rft.au=Lu%2C+Fuliang&rft.au=Wang%2C+Xiumei&rft.au=Yuan%2C+Jinjiang&rft.date=2025-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=108&rft.issue=1&rft.spage=113&rft.epage=135&rft_id=info:doi/10.1002%2Fjgt.23173&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon