Microstructural damage assessment in alloy 617M near high cycle fatigue threshold at elevated temperature

High cycle fatigue (HCF) behavior of Ni superalloy 617M is investigated at 973 K and R‐ratio −1 on a resonance‐based fatigue testing system at 85 Hz frequency. The alloy experiences an abrupt drop in fatigue life within a narrow domain of 2.5–5 MPa near its fatigue strength at 320 MPa. Electron micr...

Full description

Saved in:
Bibliographic Details
Published inFatigue & fracture of engineering materials & structures Vol. 47; no. 4; pp. 1445 - 1465
Main Authors Kale, Sandeep, Thawre, M. M., Peshwe, D. R., Nagesha, A., Sarkar, Aritra, Dandekar, Tushar R.
Format Journal Article
LanguageEnglish
Published Oxford Wiley Subscription Services, Inc 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High cycle fatigue (HCF) behavior of Ni superalloy 617M is investigated at 973 K and R‐ratio −1 on a resonance‐based fatigue testing system at 85 Hz frequency. The alloy experiences an abrupt drop in fatigue life within a narrow domain of 2.5–5 MPa near its fatigue strength at 320 MPa. Electron microscopy and diffraction techniques were employed to thoroughly analyze the nominal fatigue damage. The characterization revealed the significance of precipitation of secondary phases M23C6, Ti (C, N), and γ′ phase in dictating the HCF strength of the alloy. Cyclic loading at high temperature causes γ‐matrix hardening and secondary phase precipitation synergistically strengthening the material beyond its yield strength. Conjunctively, dynamic strain aging was also seen to play a major role in the evolution of fatigue damage. The work highlights the collective contribution of γ′‐phase precipitation, carbides, and dynamic strain aging and their influence on the HCF behavior of alloy 617M. Highlights Response of alloy 617M under high cycle fatigue load is studied at high temperature. Near fatigue limit, sharp drop in fatigue life causes nominal microstructural damage. Precipitation of phases γ′ and carbides in matrix, DSA, and cyclic hardening strengthens alloy. Precipitates at the grain and twin boundaries weakened the fatigue resistance of alloy.
AbstractList High cycle fatigue (HCF) behavior of Ni superalloy 617M is investigated at 973 K and R‐ratio −1 on a resonance‐based fatigue testing system at 85 Hz frequency. The alloy experiences an abrupt drop in fatigue life within a narrow domain of 2.5–5 MPa near its fatigue strength at 320 MPa. Electron microscopy and diffraction techniques were employed to thoroughly analyze the nominal fatigue damage. The characterization revealed the significance of precipitation of secondary phases M23C6, Ti (C, N), and γ′ phase in dictating the HCF strength of the alloy. Cyclic loading at high temperature causes γ‐matrix hardening and secondary phase precipitation synergistically strengthening the material beyond its yield strength. Conjunctively, dynamic strain aging was also seen to play a major role in the evolution of fatigue damage. The work highlights the collective contribution of γ′‐phase precipitation, carbides, and dynamic strain aging and their influence on the HCF behavior of alloy 617M. Highlights Response of alloy 617M under high cycle fatigue load is studied at high temperature. Near fatigue limit, sharp drop in fatigue life causes nominal microstructural damage. Precipitation of phases γ′ and carbides in matrix, DSA, and cyclic hardening strengthens alloy. Precipitates at the grain and twin boundaries weakened the fatigue resistance of alloy.
High cycle fatigue (HCF) behavior of Ni superalloy 617M is investigated at 973 K and R‐ratio −1 on a resonance‐based fatigue testing system at 85 Hz frequency. The alloy experiences an abrupt drop in fatigue life within a narrow domain of 2.5–5 MPa near its fatigue strength at 320 MPa. Electron microscopy and diffraction techniques were employed to thoroughly analyze the nominal fatigue damage. The characterization revealed the significance of precipitation of secondary phases M23C6, Ti (C, N), and γ′ phase in dictating the HCF strength of the alloy. Cyclic loading at high temperature causes γ‐matrix hardening and secondary phase precipitation synergistically strengthening the material beyond its yield strength. Conjunctively, dynamic strain aging was also seen to play a major role in the evolution of fatigue damage. The work highlights the collective contribution of γ′‐phase precipitation, carbides, and dynamic strain aging and their influence on the HCF behavior of alloy 617M.
Abstract High cycle fatigue (HCF) behavior of Ni superalloy 617M is investigated at 973 K and R‐ratio −1 on a resonance‐based fatigue testing system at 85 Hz frequency. The alloy experiences an abrupt drop in fatigue life within a narrow domain of 2.5–5 MPa near its fatigue strength at 320 MPa. Electron microscopy and diffraction techniques were employed to thoroughly analyze the nominal fatigue damage. The characterization revealed the significance of precipitation of secondary phases M 23 C 6 , Ti (C, N), and γ′ phase in dictating the HCF strength of the alloy. Cyclic loading at high temperature causes γ‐matrix hardening and secondary phase precipitation synergistically strengthening the material beyond its yield strength. Conjunctively, dynamic strain aging was also seen to play a major role in the evolution of fatigue damage. The work highlights the collective contribution of γ′‐phase precipitation, carbides, and dynamic strain aging and their influence on the HCF behavior of alloy 617M. Highlights Response of alloy 617M under high cycle fatigue load is studied at high temperature. Near fatigue limit, sharp drop in fatigue life causes nominal microstructural damage. Precipitation of phases γ′ and carbides in matrix, DSA, and cyclic hardening strengthens alloy. Precipitates at the grain and twin boundaries weakened the fatigue resistance of alloy.
Author Kale, Sandeep
Thawre, M. M.
Sarkar, Aritra
Nagesha, A.
Peshwe, D. R.
Dandekar, Tushar R.
Author_xml – sequence: 1
  givenname: Sandeep
  orcidid: 0000-0002-6572-9455
  surname: Kale
  fullname: Kale, Sandeep
  email: sandeepkale25@gmail.com
  organization: Visvesvaraya National Institute of Technology (VNIT)
– sequence: 2
  givenname: M. M.
  surname: Thawre
  fullname: Thawre, M. M.
  organization: Visvesvaraya National Institute of Technology (VNIT)
– sequence: 3
  givenname: D. R.
  surname: Peshwe
  fullname: Peshwe, D. R.
  organization: Visvesvaraya National Institute of Technology (VNIT)
– sequence: 4
  givenname: A.
  surname: Nagesha
  fullname: Nagesha, A.
  organization: Homi Bhabha National Institute (HBNI)
– sequence: 5
  givenname: Aritra
  surname: Sarkar
  fullname: Sarkar, Aritra
  organization: Norwegian University of Science and Technology (NTNU)
– sequence: 6
  givenname: Tushar R.
  surname: Dandekar
  fullname: Dandekar, Tushar R.
  organization: University of Portsmouth
BookMark eNp1kLFOwzAQhi1UJNrCwBtYYmJIie3YSUZUtYDUigUkNsuJz00qJym2A8rbkxJWbjnp9N1_um-BZm3XAkK3JF6RsR6MgRVJKGcXaE4SEUdU5HyG5lnKRZTy7OMKLbw_xjERCWNzVO_r0nU-uL4MvVMWa9WoA2DlPXjfQBtw3WJlbTdgQdI9bkE5XNWHCpdDaQEbFepDDzhUDnzVWY1VwGDhSwXQOEBzAqfGaLhGl0ZZDzd_fYnet5u39XO0e316WT_uopLylEU8KzINoLgqBBdCa6MNy1Whc0gMsNgozU3MEs5MTiiHdByXGS2AgsjypGRLdDflnlz32YMP8tj1rh1PSppzTpigPBup-4k6f-8dGHlydaPcIEkszyblaFL-mhzZh4n9ri0M_4Nyu91MGz9YXXjZ
Cites_doi 10.1016/j.jnucmat.2012.08.040
10.1007/s41403-022-00321-7
10.1007/BF02652546
10.1007/BF02643879
10.1016/j.ijfatigue.2013.04.015
10.1016/j.ijpvp.2019.03.021
10.1016/j.ijfatigue.2005.08.015
10.1016/j.jnucmat.2014.08.003
10.1016/j.matchar.2017.06.021
10.1007/s11661-011-0877-7
10.1016/j.msea.2020.140280
10.1515/HTMP.2005.24.2.101
10.1016/j.ijfatigue.2017.03.001
10.1016/j.ijfatigue.2017.03.018
10.1016/S0142-1123(01)00123-2
10.1016/j.jnucmat.2013.03.083
10.1016/j.jallcom.2019.01.389
10.1080/09603409.2019.1638604
10.1016/j.net.2016.06.013
10.1007/BF02644197
10.1016/j.jmatprotec.2018.03.009
10.31399/asm.tb.sap.9781627083133
10.1088/0370-1301/64/9/303
10.1080/14786435.2012.704429
10.1016/j.ijfatigue.2021.106518
10.1016/j.actamat.2011.11.020
10.1007/s41403-021-00317-9
10.1007/s12666-015-0784-5
10.1016/j.jnucmat.2014.11.093
10.1016/j.msea.2008.08.052
10.1007/s40195-012-0249-3
10.1007/s11661-008-9618-y
10.1016/j.ijfatigue.2021.106258
10.1016/0921-5093(91)90829-C
10.1016/j.ijfatigue.2022.107158
10.1016/j.actamat.2017.06.025
10.1016/j.msea.2019.138286
10.1002/jemt.22359
10.1016/j.jnucmat.2019.04.032
10.1016/j.ijpvp.2022.104678
10.1046/j.1460-2695.1999.00183.x
10.1007/s11665-020-05013-3
10.1007/s12666-015-0748-9
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1111/ffe.14253
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1460-2695
EndPage 1465
ExternalDocumentID 10_1111_ffe_14253
FFE14253
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29H
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6KP
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDEX
ABEFU
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EAD
EAP
EBS
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WFSAM
WIH
WIK
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c2573-58b8deea5ab6566ddfdf39abd9e4fe30fad5f03453f9125e7e4fc82be2e6894c3
IEDL.DBID DR2
ISSN 8756-758X
IngestDate Tue Nov 12 22:10:29 EST 2024
Fri Aug 23 01:45:31 EDT 2024
Sat Aug 24 00:50:46 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2573-58b8deea5ab6566ddfdf39abd9e4fe30fad5f03453f9125e7e4fc82be2e6894c3
ORCID 0000-0002-6572-9455
PQID 2955136258
PQPubID 45644
PageCount 21
ParticipantIDs proquest_journals_2955136258
crossref_primary_10_1111_ffe_14253
wiley_primary_10_1111_ffe_14253_FFE14253
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Fatigue & fracture of engineering materials & structures
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 510‐511
2012; 60
2015; 78
2022; 198
2013; 26
1988; 19
2010
2021; 149
2008; 39
2019; 36
2021; 800
2019; 765
2019; 787
2013; 441
1999; 22
2019; 521
2005
2020; 35
2017; 130
2001; 23
2014; 62
2017; 136
1951; 64
2005; 24
1974; 5
2014; 454
2022; 164
2012; 92
2015; 457
1984; 15
2022; 7
2006; 28
2018; 258
2017
2013; 432
2021; 153
1981
2017; 100
2019; 172
2016; 48
1991; 148
2012; 43
2016; 69
2020; 29
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
Lee Y‐L (e_1_2_8_41_1) 2005
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
Kim K‐S (e_1_2_8_49_1) 2020; 35
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
Di Gianfrancesco A (e_1_2_8_4_1) 2017
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 164
  year: 2022
  article-title: Experimental and modeling study on small fatigue crack initiation and propagation behavior of Inconel 617
  publication-title: Int J Fatigue
– volume: 441
  start-page: 695
  issue: 1‐3
  year: 2013
  end-page: 703
  article-title: Mechanism of plastic deformation of a Ni‐based superalloy for VHTR applications
  publication-title: J Nucl Mater
– volume: 24
  start-page: 101
  issue: 2
  year: 2005
  end-page: 110
  article-title: Nitrogen in superalloys
  publication-title: High Temp Mater Process
– volume: 172
  start-page: 304
  year: 2019
  end-page: 312
  article-title: Evaluation of high cycle fatigue behaviour of alloy 617M at 973 K: Haigh diagram and associated mechanisms
  publication-title: Int J Press Vessels Pip
– volume: 26
  start-page: 307
  issue: 3
  year: 2013
  end-page: 312
  article-title: Aging precipitation behavior and mechanical properties of Inconel 617 superalloy
  publication-title: Acta Metall Sin
– volume: 22
  start-page: 559
  issue: 7
  year: 1999
  end-page: 565
  article-title: There is no infinite fatigue life in metallic materials
  publication-title: Fatigue Fract Eng Mater Struct
– year: 2005
– volume: 148
  start-page: 267
  issue: 2
  year: 1991
  end-page: 278
  article-title: High temperature low cycle fatigue properties of a thick‐section 9wt.%Cr‐1wt.%Mo ferritic steel forging
  publication-title: Mater Sci Eng A
– volume: 23
  start-page: 143
  year: 2001
  end-page: 151
  article-title: How and why the fatigue S–N curve does not approach a horizontal asymptote
  publication-title: Int J Fatigue
– volume: 64
  start-page: 747
  issue: 9
  year: 1951
  end-page: 753
  article-title: The deformation and ageing of mild steel: III discussion of results
  publication-title: Proc Phys Soc B
– volume: 454
  start-page: 265
  issue: 1‐3
  year: 2014
  end-page: 273
  article-title: Tensile deformation behavior and microstructure evolution of Ni‐based superalloy 617
  publication-title: J Nucl Mater
– volume: 198
  year: 2022
  article-title: Some studies on dissimilar welds joint P92 steel and Inconel 617 alloy for AUSC power plant application
  publication-title: Int J Press Vessels Pip
– volume: 28
  start-page: 1521
  issue: 11
  year: 2006
  end-page: 1532
  article-title: Subsurface crack initiation and propagation mechanism in high‐strength steel in a very high cycle fatigue regime
  publication-title: Int J Fatigue
– volume: 36
  start-page: 471
  issue: 6
  year: 2019
  end-page: 478
  article-title: Elevated temperature fatigue behaviour of structural materials for advanced ultra supercritical application
  publication-title: Mater High Temp
– volume: 48
  start-page: 1387
  issue: 6
  year: 2016
  end-page: 1395
  article-title: Influence of dynamic strain aging on tensile deformation behavior of alloy 617
  publication-title: Nucl Eng Technol
– volume: 457
  start-page: 362
  year: 2015
  end-page: 368
  article-title: Effects of the aging temperature and stress relaxation conditions on γ′ precipitation in Inconel X‐750
  publication-title: J Nucl Mater
– volume: 19
  start-page: 359
  issue: 2
  year: 1988
  end-page: 371
  article-title: Influence of time and temperature dependent processes on strain controlled low cycle fatigue behavior of alloy 617
  publication-title: Metall Trans A
– volume: 153
  year: 2021
  article-title: Investigation of the fatigue damage mechanism of Inconel 617 at elevated temperatures obtained by in situ SEM fatigue tests
  publication-title: Int J Fatigue
– volume: 100
  start-page: 388
  year: 2017
  end-page: 406
  article-title: A physically‐based constitutive model for high temperature microstructural degradation under cyclic deformation
  publication-title: Int J Fatigue
– volume: 35
  year: 2020
  article-title: High‐temperature tensile and high cycle fatigue properties of inconel 625 alloy manufactured by laser powder bed fusion
  publication-title: Addit Manuf
– start-page: 15
  year: 1981
– volume: 787
  start-page: 216
  year: 2019
  end-page: 228
  article-title: Dissolution behavior of intragranular M C carbide in 617B Ni‐base superalloy during long‐term aging
  publication-title: J Alloys Compd
– year: 2010
– volume: 432
  start-page: 94
  issue: 1‐3
  year: 2013
  end-page: 101
  article-title: Experimental and modeling results of creep–fatigue life of Inconel 617 and Haynes 230 at 850°C
  publication-title: J Nucl Mater
– volume: 130
  start-page: 270
  year: 2017
  end-page: 277
  article-title: Evolution of carbides and its characterization in HAZ during NG‐TIG welding of alloy 617B
  publication-title: Mater Charact
– volume: 39
  start-page: 2569
  issue: 11
  year: 2008
  end-page: 2585
  article-title: Microstructure of long‐term aged IN617 Ni‐base superalloy
  publication-title: Metall Mater Trans A
– volume: 78
  start-page: 336
  issue: 5
  year: 2015
  end-page: 342
  article-title: Effect of titanium carbonitride (Ti(C,N)) decomposition on failure mechanisms in inconel 617 alloy
  publication-title: Microsc Res Tech
– volume: 258
  start-page: 38
  year: 2018
  end-page: 46
  article-title: Behavior of M C phase in Inconel 617B superalloy during welding
  publication-title: J Mater Process Technol
– volume: 69
  start-page: 399
  issue: 2
  year: 2016
  end-page: 402
  article-title: Influence of dynamic strain aging on high cycle fatigue behavior of alloy 617M
  publication-title: Trans Indian Inst Met
– volume: 136
  start-page: 118
  year: 2017
  end-page: 125
  article-title: Lattice parameter misfit evolution during creep of a cobalt‐based superalloy single crystal with cuboidal and rafted gamma‐prime microstructures
  publication-title: Acta Mater
– volume: 92
  start-page: 4194
  issue: 33
  year: 2012
  end-page: 4204
  article-title: Correlation between full width at half maximum (FWHM) of XRD peak with residual stress on ground surfaces
  publication-title: Philos Mag
– volume: 5
  start-page: 2579
  issue: 12
  year: 1974
  end-page: 2590
  article-title: Microstructure and phase stability of INCONEL alloy 617
  publication-title: Metall Trans A
– volume: 7
  start-page: 677
  issue: 2
  year: 2022
  end-page: 683
  article-title: Cyclic behavior of nickel‐based superalloy 617 M at elevated temperature
  publication-title: Trans Indian Natl Acad Eng
– volume: 521
  start-page: 21
  year: 2019
  end-page: 30
  article-title: Tribochemistry of inconel 617 during sliding contact at 950 °C under helium environment for nuclear reactors
  publication-title: J Nucl Mater
– volume: 7
  start-page: 685
  issue: 2
  year: 2022
  end-page: 688
  article-title: High‐temperature fatigue behaviour of alloy 617M
  publication-title: Trans Indian Natl Acad Eng
– volume: 149
  year: 2021
  article-title: A re‐visit to the Haigh diagram with the effect of creep damage on the high cycle fatigue behavior of alloy 617M
  publication-title: Int J Fatigue
– volume: 29
  start-page: 5663
  issue: 9
  year: 2020
  end-page: 5671
  article-title: Mechanisms of fatigue endurance in alloy 617M at different temperatures (300‐1023 K)
  publication-title: J Mater Eng Perform
– volume: 43
  start-page: 491
  issue: 2
  year: 2012
  end-page: 504
  article-title: Time‐dependent fatigue crack propagation behavior of two solid‐solution‐strengthened Ni‐based superalloys—INCONEL 617 and HAYNES 230
  publication-title: Metall Mater Trans a
– volume: 765
  year: 2019
  article-title: Low cycle fatigue, deformation and fracture behaviour of Inconel 617 alloy
  publication-title: Mater Sci Eng A
– year: 2017
– volume: 800
  year: 2021
  article-title: Microstructure evolution dependence of work‐hardening characteristic in cold deformation of a difficult‐to‐deform nickel‐based superalloy
  publication-title: Mater Sci Eng A
– volume: 100
  start-page: 12
  year: 2017
  end-page: 20
  article-title: Occurrence of dynamic strain aging in alloy 617M under low cycle fatigue loading
  publication-title: Int J Fatigue
– volume: 60
  start-page: 1731
  issue: 4
  year: 2012
  end-page: 1740
  article-title: Microstructural evolution of a Ni‐based superalloy (617B) at 700°C studied by electron microscopy and atom probe tomography
  publication-title: Acta Mater
– volume: 69
  start-page: 325
  issue: 2
  year: 2016
  end-page: 329
  article-title: Strain amplitude and temperature effects on the low cycle fatigue behavior of alloy 617M
  publication-title: Trans Indian Inst Met
– volume: 15
  start-page: 661
  issue: 4
  year: 1984
  end-page: 670
  article-title: The high temperature low cycle fatigue behavior of the nickel base alloy IN‐617
  publication-title: Metall Trans A
– volume: 62
  start-page: 10
  year: 2014
  end-page: 20
  article-title: Influence of mean stress and variable amplitude loading on the fatigue behaviour of a high‐strength steel in VHCF regime
  publication-title: Int J Fatigue
– volume: 510‐511
  start-page: 295
  year: 2009
  end-page: 300
  article-title: Influence of lattice misfit on the internal stress and strain states before and after creep investigated in nickel‐base superalloys containing rhenium and ruthenium
  publication-title: Mater Sci Eng A
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jnucmat.2012.08.040
– ident: e_1_2_8_10_1
  doi: 10.1007/s41403-022-00321-7
– ident: e_1_2_8_20_1
  doi: 10.1007/BF02652546
– ident: e_1_2_8_38_1
  doi: 10.1007/BF02643879
– ident: e_1_2_8_31_1
  doi: 10.1016/j.ijfatigue.2013.04.015
– ident: e_1_2_8_8_1
  doi: 10.1016/j.ijpvp.2019.03.021
– ident: e_1_2_8_32_1
  doi: 10.1016/j.ijfatigue.2005.08.015
– ident: e_1_2_8_13_1
  doi: 10.1016/j.jnucmat.2014.08.003
– ident: e_1_2_8_34_1
  doi: 10.1016/j.matchar.2017.06.021
– ident: e_1_2_8_14_1
  doi: 10.1007/s11661-011-0877-7
– ident: e_1_2_8_51_1
  doi: 10.1016/j.msea.2020.140280
– ident: e_1_2_8_37_1
  doi: 10.1515/HTMP.2005.24.2.101
– ident: e_1_2_8_22_1
  doi: 10.1016/j.ijfatigue.2017.03.001
– ident: e_1_2_8_47_1
  doi: 10.1016/j.ijfatigue.2017.03.018
– ident: e_1_2_8_12_1
  doi: 10.1016/S0142-1123(01)00123-2
– ident: e_1_2_8_50_1
  doi: 10.1016/j.jnucmat.2013.03.083
– volume: 35
  year: 2020
  ident: e_1_2_8_49_1
  article-title: High‐temperature tensile and high cycle fatigue properties of inconel 625 alloy manufactured by laser powder bed fusion
  publication-title: Addit Manuf
  contributor:
    fullname: Kim K‐S
– ident: e_1_2_8_18_1
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jallcom.2019.01.389
– volume-title: Materials for Ultra‐Supercritical and Advanced Ultra‐Supercritical Power Plants
  year: 2017
  ident: e_1_2_8_4_1
  contributor:
    fullname: Di Gianfrancesco A
– ident: e_1_2_8_27_1
  doi: 10.1080/09603409.2019.1638604
– ident: e_1_2_8_42_1
  doi: 10.1016/j.net.2016.06.013
– ident: e_1_2_8_19_1
  doi: 10.1007/BF02644197
– ident: e_1_2_8_29_1
– ident: e_1_2_8_35_1
  doi: 10.1016/j.jmatprotec.2018.03.009
– ident: e_1_2_8_40_1
  doi: 10.31399/asm.tb.sap.9781627083133
– ident: e_1_2_8_48_1
  doi: 10.1088/0370-1301/64/9/303
– ident: e_1_2_8_45_1
  doi: 10.1080/14786435.2012.704429
– ident: e_1_2_8_24_1
  doi: 10.1016/j.ijfatigue.2021.106518
– ident: e_1_2_8_15_1
  doi: 10.1016/j.actamat.2011.11.020
– ident: e_1_2_8_25_1
  doi: 10.1007/s41403-021-00317-9
– ident: e_1_2_8_21_1
  doi: 10.1007/s12666-015-0784-5
– ident: e_1_2_8_7_1
– ident: e_1_2_8_43_1
  doi: 10.1016/j.jnucmat.2014.11.093
– ident: e_1_2_8_39_1
  doi: 10.1016/j.msea.2008.08.052
– ident: e_1_2_8_16_1
  doi: 10.1007/s40195-012-0249-3
– ident: e_1_2_8_17_1
  doi: 10.1007/s11661-008-9618-y
– ident: e_1_2_8_2_1
– ident: e_1_2_8_30_1
  doi: 10.1016/j.ijfatigue.2021.106258
– ident: e_1_2_8_44_1
  doi: 10.1016/0921-5093(91)90829-C
– ident: e_1_2_8_28_1
  doi: 10.1016/j.ijfatigue.2022.107158
– ident: e_1_2_8_46_1
  doi: 10.1016/j.actamat.2017.06.025
– ident: e_1_2_8_23_1
  doi: 10.1016/j.msea.2019.138286
– ident: e_1_2_8_36_1
  doi: 10.1002/jemt.22359
– ident: e_1_2_8_6_1
  doi: 10.1016/j.jnucmat.2019.04.032
– volume-title: Fatigue Testing and Analysis: Theory and Practice
  year: 2005
  ident: e_1_2_8_41_1
  contributor:
    fullname: Lee Y‐L
– ident: e_1_2_8_3_1
  doi: 10.1016/j.ijpvp.2022.104678
– ident: e_1_2_8_11_1
  doi: 10.1046/j.1460-2695.1999.00183.x
– ident: e_1_2_8_9_1
  doi: 10.1007/s11665-020-05013-3
– ident: e_1_2_8_26_1
  doi: 10.1007/s12666-015-0748-9
SSID ssj0016433
Score 2.4291925
Snippet High cycle fatigue (HCF) behavior of Ni superalloy 617M is investigated at 973 K and R‐ratio −1 on a resonance‐based fatigue testing system at 85 Hz frequency....
Abstract High cycle fatigue (HCF) behavior of Ni superalloy 617M is investigated at 973 K and R‐ratio −1 on a resonance‐based fatigue testing system at 85 Hz...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 1445
SubjectTerms Carbides
Cyclic loads
Damage assessment
Dynamic strain aging
Fatigue failure
Fatigue life
Fatigue limit
Fatigue strength
Fatigue tests
High cycle fatigue
High temperature
Metal fatigue
microstructural characteristics
Nickel base alloys
Precipitates
Precipitation hardening
superalloy 617M
Superalloys
Twin boundaries
γ′‐phase precipitation
Title Microstructural damage assessment in alloy 617M near high cycle fatigue threshold at elevated temperature
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fffe.14253
https://www.proquest.com/docview/2955136258
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMfD2EkP_hanU4J48JKxNf2R4kl0YwjzIA52EErSvMgQq7DuMP963-svpyCIt1La0Oa9l3yTvHzC2AX12SZWUjgrnfBTqYXpm0iEMtSgDSHXaEV3ch-Op_7dLJi12FW9F6bkQzQTbhQZRXtNAa7NYi3InQMMcy8g0udARpTOdfvQoKNwFFAcI49yPBSoiWcVVYiyeJo3v_dFXwJzXaYW_cxomz3VX1iml7z0lrnppR8_4I3__IUdtlXpT35dOswua0G2xzbXqIT7bD6hJL0SLEtQDm71K7Y6XDcQTz7POC3YrzgqkwnPMFo4cY95usJCuUNrPy-B5-gnC1re4jrntI8dda3lBMOqSM4HbDoaPt6MRXUig0gxtKUIlFEWQAfakA601lknY21sDL4D2XfaBq4v_UC6GJUTRHg7VZ4BD0IVoyccsnb2lsER43IAoa9sEDsFvtGgJLoH7csNooE2Kuyw89o2yXsJ3kjqAQvWW1LUW4d1a6slVewtEi-mQ2twXKc67LKo_t8LSEajYXFx_PdHT9iGh8qmTN_psjaaA05RmeTmrHDBT_K14FM
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7MeVAP_hanU4N48NKxNW2XghfRjanbDrLBLlKSJpEhVmHbYf71vtcfcwqCeCulDW3e-5IveS_fA7igOVuFgjtWc-t4MZeOqqumE_BAGqlIco0iur1-0Bl69yN_VIKr4ixMpg-x2HAjZKTjNQGcNqSXUG6tQZy7Pl-BVYQ7p8INt48L8ShcB6SF5JGQBw6y4lGuK0R5PItXv89GXxRzmaimM017C56Kb8wSTF5qs6mqxR8_5Bv_-xPbsJlTUHad-cwOlEyyCxtLwoR7MO5Rnl6mLUu6HEzLVxx4mFzoeLJxwihmP2dITnosQcAwkj5m8RwbZRYN_jwzbIquMqEIF5NTRkfZkdpqRnpYuZjzPgzbrcFNx8mLMjgxops7vlBCGyN9qYgKam215aFUOjSeNbxupfZtnXs-tyGSJ9PE27FwlXFNIEJ0hgMoJ2-JOQTGGybwhPZDK4ynpBEcPYSO5vrNhlQiqMB5YZzoPdPeiIo1C_ZblPZbBaqF2aIcfpPIDaluDS7tRAUu0_7_vYGo3W6lF0d_f_QM1jqDXjfq3vUfjmHdRaKTZfNUoYymMSdIVKbqNPXHT-955Gs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7MCaIP3sV5DeKDL5GtabsUn0Qt8zIRcbAHoSRNIkOsgtvD_PWe08ucgiC-ldKG9pzzJV-Sk-8AHNKYrSMpuDPCcT8ViuumbvNQhMoqTZJrtKPbvQ07Pf-qH_RrcFKdhSn0ISYLboSMvL8mgL8ZNwVy5yzC3AvEDMz6ITJfYkT3E-0onAbkdeSRj4ccSXG_lBWiNJ7Jq98Hoy-GOc1T84EmXoLH6hOL_JLn49FQH6cfP9Qb__kPy7BYElB2WkTMCtRstgoLU7KEazDoUpZeoSxLqhzMqBfsdpiaqHiyQcZox37MkJp0WYZwYSR8zNIxNsocuvtpZNkQA-Wd9reYGjI6yI7E1jBSwyqlnNehF188nHV4WZKBp4htwQOppbFWBUoTETTGGScipU1kfWdF0ykTuKbwA-EipE62jbdT6Wnr2VBGGAobUM9eM7sJTLRs6EsTRE5aXysrBcYHHcwN2i2lZdiAg8o3yVuhvJFUMxa0W5LbrQE7ldeSEnzviRdR1Rqc2MkGHOXm_72BJI4v8outvz-6D3N353Fyc3l7vQ3zHrKcIpVnB-roGbuLLGWo9_Jo_ARifeMa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructural+damage+assessment+in+alloy+617M+near+high+cycle+fatigue+threshold+at+elevated+temperature&rft.jtitle=Fatigue+%26+fracture+of+engineering+materials+%26+structures&rft.au=Kale%2C+Sandeep&rft.au=Thawre%2C+M+M&rft.au=Peshwe%2C+D+R&rft.au=Nagesha%2C+A&rft.date=2024-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=8756-758X&rft.eissn=1460-2695&rft.volume=47&rft.issue=4&rft.spage=1445&rft.epage=1465&rft_id=info:doi/10.1111%2Fffe.14253&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-758X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-758X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-758X&client=summon