Microstructural damage assessment in alloy 617M near high cycle fatigue threshold at elevated temperature
High cycle fatigue (HCF) behavior of Ni superalloy 617M is investigated at 973 K and R‐ratio −1 on a resonance‐based fatigue testing system at 85 Hz frequency. The alloy experiences an abrupt drop in fatigue life within a narrow domain of 2.5–5 MPa near its fatigue strength at 320 MPa. Electron micr...
Saved in:
Published in | Fatigue & fracture of engineering materials & structures Vol. 47; no. 4; pp. 1445 - 1465 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Wiley Subscription Services, Inc
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High cycle fatigue (HCF) behavior of Ni superalloy 617M is investigated at 973 K and R‐ratio −1 on a resonance‐based fatigue testing system at 85 Hz frequency. The alloy experiences an abrupt drop in fatigue life within a narrow domain of 2.5–5 MPa near its fatigue strength at 320 MPa. Electron microscopy and diffraction techniques were employed to thoroughly analyze the nominal fatigue damage. The characterization revealed the significance of precipitation of secondary phases M23C6, Ti (C, N), and γ′ phase in dictating the HCF strength of the alloy. Cyclic loading at high temperature causes γ‐matrix hardening and secondary phase precipitation synergistically strengthening the material beyond its yield strength. Conjunctively, dynamic strain aging was also seen to play a major role in the evolution of fatigue damage. The work highlights the collective contribution of γ′‐phase precipitation, carbides, and dynamic strain aging and their influence on the HCF behavior of alloy 617M.
Highlights
Response of alloy 617M under high cycle fatigue load is studied at high temperature.
Near fatigue limit, sharp drop in fatigue life causes nominal microstructural damage.
Precipitation of phases γ′ and carbides in matrix, DSA, and cyclic hardening strengthens alloy.
Precipitates at the grain and twin boundaries weakened the fatigue resistance of alloy. |
---|---|
AbstractList | High cycle fatigue (HCF) behavior of Ni superalloy 617M is investigated at 973 K and R‐ratio −1 on a resonance‐based fatigue testing system at 85 Hz frequency. The alloy experiences an abrupt drop in fatigue life within a narrow domain of 2.5–5 MPa near its fatigue strength at 320 MPa. Electron microscopy and diffraction techniques were employed to thoroughly analyze the nominal fatigue damage. The characterization revealed the significance of precipitation of secondary phases M23C6, Ti (C, N), and γ′ phase in dictating the HCF strength of the alloy. Cyclic loading at high temperature causes γ‐matrix hardening and secondary phase precipitation synergistically strengthening the material beyond its yield strength. Conjunctively, dynamic strain aging was also seen to play a major role in the evolution of fatigue damage. The work highlights the collective contribution of γ′‐phase precipitation, carbides, and dynamic strain aging and their influence on the HCF behavior of alloy 617M.
Highlights
Response of alloy 617M under high cycle fatigue load is studied at high temperature.
Near fatigue limit, sharp drop in fatigue life causes nominal microstructural damage.
Precipitation of phases γ′ and carbides in matrix, DSA, and cyclic hardening strengthens alloy.
Precipitates at the grain and twin boundaries weakened the fatigue resistance of alloy. High cycle fatigue (HCF) behavior of Ni superalloy 617M is investigated at 973 K and R‐ratio −1 on a resonance‐based fatigue testing system at 85 Hz frequency. The alloy experiences an abrupt drop in fatigue life within a narrow domain of 2.5–5 MPa near its fatigue strength at 320 MPa. Electron microscopy and diffraction techniques were employed to thoroughly analyze the nominal fatigue damage. The characterization revealed the significance of precipitation of secondary phases M23C6, Ti (C, N), and γ′ phase in dictating the HCF strength of the alloy. Cyclic loading at high temperature causes γ‐matrix hardening and secondary phase precipitation synergistically strengthening the material beyond its yield strength. Conjunctively, dynamic strain aging was also seen to play a major role in the evolution of fatigue damage. The work highlights the collective contribution of γ′‐phase precipitation, carbides, and dynamic strain aging and their influence on the HCF behavior of alloy 617M. Abstract High cycle fatigue (HCF) behavior of Ni superalloy 617M is investigated at 973 K and R‐ratio −1 on a resonance‐based fatigue testing system at 85 Hz frequency. The alloy experiences an abrupt drop in fatigue life within a narrow domain of 2.5–5 MPa near its fatigue strength at 320 MPa. Electron microscopy and diffraction techniques were employed to thoroughly analyze the nominal fatigue damage. The characterization revealed the significance of precipitation of secondary phases M 23 C 6 , Ti (C, N), and γ′ phase in dictating the HCF strength of the alloy. Cyclic loading at high temperature causes γ‐matrix hardening and secondary phase precipitation synergistically strengthening the material beyond its yield strength. Conjunctively, dynamic strain aging was also seen to play a major role in the evolution of fatigue damage. The work highlights the collective contribution of γ′‐phase precipitation, carbides, and dynamic strain aging and their influence on the HCF behavior of alloy 617M. Highlights Response of alloy 617M under high cycle fatigue load is studied at high temperature. Near fatigue limit, sharp drop in fatigue life causes nominal microstructural damage. Precipitation of phases γ′ and carbides in matrix, DSA, and cyclic hardening strengthens alloy. Precipitates at the grain and twin boundaries weakened the fatigue resistance of alloy. |
Author | Kale, Sandeep Thawre, M. M. Sarkar, Aritra Nagesha, A. Peshwe, D. R. Dandekar, Tushar R. |
Author_xml | – sequence: 1 givenname: Sandeep orcidid: 0000-0002-6572-9455 surname: Kale fullname: Kale, Sandeep email: sandeepkale25@gmail.com organization: Visvesvaraya National Institute of Technology (VNIT) – sequence: 2 givenname: M. M. surname: Thawre fullname: Thawre, M. M. organization: Visvesvaraya National Institute of Technology (VNIT) – sequence: 3 givenname: D. R. surname: Peshwe fullname: Peshwe, D. R. organization: Visvesvaraya National Institute of Technology (VNIT) – sequence: 4 givenname: A. surname: Nagesha fullname: Nagesha, A. organization: Homi Bhabha National Institute (HBNI) – sequence: 5 givenname: Aritra surname: Sarkar fullname: Sarkar, Aritra organization: Norwegian University of Science and Technology (NTNU) – sequence: 6 givenname: Tushar R. surname: Dandekar fullname: Dandekar, Tushar R. organization: University of Portsmouth |
BookMark | eNp1kLFOwzAQhi1UJNrCwBtYYmJIie3YSUZUtYDUigUkNsuJz00qJym2A8rbkxJWbjnp9N1_um-BZm3XAkK3JF6RsR6MgRVJKGcXaE4SEUdU5HyG5lnKRZTy7OMKLbw_xjERCWNzVO_r0nU-uL4MvVMWa9WoA2DlPXjfQBtw3WJlbTdgQdI9bkE5XNWHCpdDaQEbFepDDzhUDnzVWY1VwGDhSwXQOEBzAqfGaLhGl0ZZDzd_fYnet5u39XO0e316WT_uopLylEU8KzINoLgqBBdCa6MNy1Whc0gMsNgozU3MEs5MTiiHdByXGS2AgsjypGRLdDflnlz32YMP8tj1rh1PSppzTpigPBup-4k6f-8dGHlydaPcIEkszyblaFL-mhzZh4n9ri0M_4Nyu91MGz9YXXjZ |
Cites_doi | 10.1016/j.jnucmat.2012.08.040 10.1007/s41403-022-00321-7 10.1007/BF02652546 10.1007/BF02643879 10.1016/j.ijfatigue.2013.04.015 10.1016/j.ijpvp.2019.03.021 10.1016/j.ijfatigue.2005.08.015 10.1016/j.jnucmat.2014.08.003 10.1016/j.matchar.2017.06.021 10.1007/s11661-011-0877-7 10.1016/j.msea.2020.140280 10.1515/HTMP.2005.24.2.101 10.1016/j.ijfatigue.2017.03.001 10.1016/j.ijfatigue.2017.03.018 10.1016/S0142-1123(01)00123-2 10.1016/j.jnucmat.2013.03.083 10.1016/j.jallcom.2019.01.389 10.1080/09603409.2019.1638604 10.1016/j.net.2016.06.013 10.1007/BF02644197 10.1016/j.jmatprotec.2018.03.009 10.31399/asm.tb.sap.9781627083133 10.1088/0370-1301/64/9/303 10.1080/14786435.2012.704429 10.1016/j.ijfatigue.2021.106518 10.1016/j.actamat.2011.11.020 10.1007/s41403-021-00317-9 10.1007/s12666-015-0784-5 10.1016/j.jnucmat.2014.11.093 10.1016/j.msea.2008.08.052 10.1007/s40195-012-0249-3 10.1007/s11661-008-9618-y 10.1016/j.ijfatigue.2021.106258 10.1016/0921-5093(91)90829-C 10.1016/j.ijfatigue.2022.107158 10.1016/j.actamat.2017.06.025 10.1016/j.msea.2019.138286 10.1002/jemt.22359 10.1016/j.jnucmat.2019.04.032 10.1016/j.ijpvp.2022.104678 10.1046/j.1460-2695.1999.00183.x 10.1007/s11665-020-05013-3 10.1007/s12666-015-0748-9 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1111/ffe.14253 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1460-2695 |
EndPage | 1465 |
ExternalDocumentID | 10_1111_ffe_14253 FFE14253 |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29H 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6KP 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABDEX ABEFU ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM EAD EAP EBS EJD EMK EST ESX F00 F01 F04 FEDTE FOJGT FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TUS UB1 W8V W99 WBKPD WFSAM WIH WIK WOHZO WQJ WRC WTY WXSBR WYISQ XG1 ZZTAW ~IA ~WT AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c2573-58b8deea5ab6566ddfdf39abd9e4fe30fad5f03453f9125e7e4fc82be2e6894c3 |
IEDL.DBID | DR2 |
ISSN | 8756-758X |
IngestDate | Tue Nov 12 22:10:29 EST 2024 Fri Aug 23 01:45:31 EDT 2024 Sat Aug 24 00:50:46 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2573-58b8deea5ab6566ddfdf39abd9e4fe30fad5f03453f9125e7e4fc82be2e6894c3 |
ORCID | 0000-0002-6572-9455 |
PQID | 2955136258 |
PQPubID | 45644 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2955136258 crossref_primary_10_1111_ffe_14253 wiley_primary_10_1111_ffe_14253_FFE14253 |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Fatigue & fracture of engineering materials & structures |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2009; 510‐511 2012; 60 2015; 78 2022; 198 2013; 26 1988; 19 2010 2021; 149 2008; 39 2019; 36 2021; 800 2019; 765 2019; 787 2013; 441 1999; 22 2019; 521 2005 2020; 35 2017; 130 2001; 23 2014; 62 2017; 136 1951; 64 2005; 24 1974; 5 2014; 454 2022; 164 2012; 92 2015; 457 1984; 15 2022; 7 2006; 28 2018; 258 2017 2013; 432 2021; 153 1981 2017; 100 2019; 172 2016; 48 1991; 148 2012; 43 2016; 69 2020; 29 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_30_1 Lee Y‐L (e_1_2_8_41_1) 2005 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 Kim K‐S (e_1_2_8_49_1) 2020; 35 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 Di Gianfrancesco A (e_1_2_8_4_1) 2017 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – volume: 164 year: 2022 article-title: Experimental and modeling study on small fatigue crack initiation and propagation behavior of Inconel 617 publication-title: Int J Fatigue – volume: 441 start-page: 695 issue: 1‐3 year: 2013 end-page: 703 article-title: Mechanism of plastic deformation of a Ni‐based superalloy for VHTR applications publication-title: J Nucl Mater – volume: 24 start-page: 101 issue: 2 year: 2005 end-page: 110 article-title: Nitrogen in superalloys publication-title: High Temp Mater Process – volume: 172 start-page: 304 year: 2019 end-page: 312 article-title: Evaluation of high cycle fatigue behaviour of alloy 617M at 973 K: Haigh diagram and associated mechanisms publication-title: Int J Press Vessels Pip – volume: 26 start-page: 307 issue: 3 year: 2013 end-page: 312 article-title: Aging precipitation behavior and mechanical properties of Inconel 617 superalloy publication-title: Acta Metall Sin – volume: 22 start-page: 559 issue: 7 year: 1999 end-page: 565 article-title: There is no infinite fatigue life in metallic materials publication-title: Fatigue Fract Eng Mater Struct – year: 2005 – volume: 148 start-page: 267 issue: 2 year: 1991 end-page: 278 article-title: High temperature low cycle fatigue properties of a thick‐section 9wt.%Cr‐1wt.%Mo ferritic steel forging publication-title: Mater Sci Eng A – volume: 23 start-page: 143 year: 2001 end-page: 151 article-title: How and why the fatigue S–N curve does not approach a horizontal asymptote publication-title: Int J Fatigue – volume: 64 start-page: 747 issue: 9 year: 1951 end-page: 753 article-title: The deformation and ageing of mild steel: III discussion of results publication-title: Proc Phys Soc B – volume: 454 start-page: 265 issue: 1‐3 year: 2014 end-page: 273 article-title: Tensile deformation behavior and microstructure evolution of Ni‐based superalloy 617 publication-title: J Nucl Mater – volume: 198 year: 2022 article-title: Some studies on dissimilar welds joint P92 steel and Inconel 617 alloy for AUSC power plant application publication-title: Int J Press Vessels Pip – volume: 28 start-page: 1521 issue: 11 year: 2006 end-page: 1532 article-title: Subsurface crack initiation and propagation mechanism in high‐strength steel in a very high cycle fatigue regime publication-title: Int J Fatigue – volume: 36 start-page: 471 issue: 6 year: 2019 end-page: 478 article-title: Elevated temperature fatigue behaviour of structural materials for advanced ultra supercritical application publication-title: Mater High Temp – volume: 48 start-page: 1387 issue: 6 year: 2016 end-page: 1395 article-title: Influence of dynamic strain aging on tensile deformation behavior of alloy 617 publication-title: Nucl Eng Technol – volume: 457 start-page: 362 year: 2015 end-page: 368 article-title: Effects of the aging temperature and stress relaxation conditions on γ′ precipitation in Inconel X‐750 publication-title: J Nucl Mater – volume: 19 start-page: 359 issue: 2 year: 1988 end-page: 371 article-title: Influence of time and temperature dependent processes on strain controlled low cycle fatigue behavior of alloy 617 publication-title: Metall Trans A – volume: 153 year: 2021 article-title: Investigation of the fatigue damage mechanism of Inconel 617 at elevated temperatures obtained by in situ SEM fatigue tests publication-title: Int J Fatigue – volume: 100 start-page: 388 year: 2017 end-page: 406 article-title: A physically‐based constitutive model for high temperature microstructural degradation under cyclic deformation publication-title: Int J Fatigue – volume: 35 year: 2020 article-title: High‐temperature tensile and high cycle fatigue properties of inconel 625 alloy manufactured by laser powder bed fusion publication-title: Addit Manuf – start-page: 15 year: 1981 – volume: 787 start-page: 216 year: 2019 end-page: 228 article-title: Dissolution behavior of intragranular M C carbide in 617B Ni‐base superalloy during long‐term aging publication-title: J Alloys Compd – year: 2010 – volume: 432 start-page: 94 issue: 1‐3 year: 2013 end-page: 101 article-title: Experimental and modeling results of creep–fatigue life of Inconel 617 and Haynes 230 at 850°C publication-title: J Nucl Mater – volume: 130 start-page: 270 year: 2017 end-page: 277 article-title: Evolution of carbides and its characterization in HAZ during NG‐TIG welding of alloy 617B publication-title: Mater Charact – volume: 39 start-page: 2569 issue: 11 year: 2008 end-page: 2585 article-title: Microstructure of long‐term aged IN617 Ni‐base superalloy publication-title: Metall Mater Trans A – volume: 78 start-page: 336 issue: 5 year: 2015 end-page: 342 article-title: Effect of titanium carbonitride (Ti(C,N)) decomposition on failure mechanisms in inconel 617 alloy publication-title: Microsc Res Tech – volume: 258 start-page: 38 year: 2018 end-page: 46 article-title: Behavior of M C phase in Inconel 617B superalloy during welding publication-title: J Mater Process Technol – volume: 69 start-page: 399 issue: 2 year: 2016 end-page: 402 article-title: Influence of dynamic strain aging on high cycle fatigue behavior of alloy 617M publication-title: Trans Indian Inst Met – volume: 136 start-page: 118 year: 2017 end-page: 125 article-title: Lattice parameter misfit evolution during creep of a cobalt‐based superalloy single crystal with cuboidal and rafted gamma‐prime microstructures publication-title: Acta Mater – volume: 92 start-page: 4194 issue: 33 year: 2012 end-page: 4204 article-title: Correlation between full width at half maximum (FWHM) of XRD peak with residual stress on ground surfaces publication-title: Philos Mag – volume: 5 start-page: 2579 issue: 12 year: 1974 end-page: 2590 article-title: Microstructure and phase stability of INCONEL alloy 617 publication-title: Metall Trans A – volume: 7 start-page: 677 issue: 2 year: 2022 end-page: 683 article-title: Cyclic behavior of nickel‐based superalloy 617 M at elevated temperature publication-title: Trans Indian Natl Acad Eng – volume: 521 start-page: 21 year: 2019 end-page: 30 article-title: Tribochemistry of inconel 617 during sliding contact at 950 °C under helium environment for nuclear reactors publication-title: J Nucl Mater – volume: 7 start-page: 685 issue: 2 year: 2022 end-page: 688 article-title: High‐temperature fatigue behaviour of alloy 617M publication-title: Trans Indian Natl Acad Eng – volume: 149 year: 2021 article-title: A re‐visit to the Haigh diagram with the effect of creep damage on the high cycle fatigue behavior of alloy 617M publication-title: Int J Fatigue – volume: 29 start-page: 5663 issue: 9 year: 2020 end-page: 5671 article-title: Mechanisms of fatigue endurance in alloy 617M at different temperatures (300‐1023 K) publication-title: J Mater Eng Perform – volume: 43 start-page: 491 issue: 2 year: 2012 end-page: 504 article-title: Time‐dependent fatigue crack propagation behavior of two solid‐solution‐strengthened Ni‐based superalloys—INCONEL 617 and HAYNES 230 publication-title: Metall Mater Trans a – volume: 765 year: 2019 article-title: Low cycle fatigue, deformation and fracture behaviour of Inconel 617 alloy publication-title: Mater Sci Eng A – year: 2017 – volume: 800 year: 2021 article-title: Microstructure evolution dependence of work‐hardening characteristic in cold deformation of a difficult‐to‐deform nickel‐based superalloy publication-title: Mater Sci Eng A – volume: 100 start-page: 12 year: 2017 end-page: 20 article-title: Occurrence of dynamic strain aging in alloy 617M under low cycle fatigue loading publication-title: Int J Fatigue – volume: 60 start-page: 1731 issue: 4 year: 2012 end-page: 1740 article-title: Microstructural evolution of a Ni‐based superalloy (617B) at 700°C studied by electron microscopy and atom probe tomography publication-title: Acta Mater – volume: 69 start-page: 325 issue: 2 year: 2016 end-page: 329 article-title: Strain amplitude and temperature effects on the low cycle fatigue behavior of alloy 617M publication-title: Trans Indian Inst Met – volume: 15 start-page: 661 issue: 4 year: 1984 end-page: 670 article-title: The high temperature low cycle fatigue behavior of the nickel base alloy IN‐617 publication-title: Metall Trans A – volume: 62 start-page: 10 year: 2014 end-page: 20 article-title: Influence of mean stress and variable amplitude loading on the fatigue behaviour of a high‐strength steel in VHCF regime publication-title: Int J Fatigue – volume: 510‐511 start-page: 295 year: 2009 end-page: 300 article-title: Influence of lattice misfit on the internal stress and strain states before and after creep investigated in nickel‐base superalloys containing rhenium and ruthenium publication-title: Mater Sci Eng A – ident: e_1_2_8_5_1 doi: 10.1016/j.jnucmat.2012.08.040 – ident: e_1_2_8_10_1 doi: 10.1007/s41403-022-00321-7 – ident: e_1_2_8_20_1 doi: 10.1007/BF02652546 – ident: e_1_2_8_38_1 doi: 10.1007/BF02643879 – ident: e_1_2_8_31_1 doi: 10.1016/j.ijfatigue.2013.04.015 – ident: e_1_2_8_8_1 doi: 10.1016/j.ijpvp.2019.03.021 – ident: e_1_2_8_32_1 doi: 10.1016/j.ijfatigue.2005.08.015 – ident: e_1_2_8_13_1 doi: 10.1016/j.jnucmat.2014.08.003 – ident: e_1_2_8_34_1 doi: 10.1016/j.matchar.2017.06.021 – ident: e_1_2_8_14_1 doi: 10.1007/s11661-011-0877-7 – ident: e_1_2_8_51_1 doi: 10.1016/j.msea.2020.140280 – ident: e_1_2_8_37_1 doi: 10.1515/HTMP.2005.24.2.101 – ident: e_1_2_8_22_1 doi: 10.1016/j.ijfatigue.2017.03.001 – ident: e_1_2_8_47_1 doi: 10.1016/j.ijfatigue.2017.03.018 – ident: e_1_2_8_12_1 doi: 10.1016/S0142-1123(01)00123-2 – ident: e_1_2_8_50_1 doi: 10.1016/j.jnucmat.2013.03.083 – volume: 35 year: 2020 ident: e_1_2_8_49_1 article-title: High‐temperature tensile and high cycle fatigue properties of inconel 625 alloy manufactured by laser powder bed fusion publication-title: Addit Manuf contributor: fullname: Kim K‐S – ident: e_1_2_8_18_1 – ident: e_1_2_8_33_1 doi: 10.1016/j.jallcom.2019.01.389 – volume-title: Materials for Ultra‐Supercritical and Advanced Ultra‐Supercritical Power Plants year: 2017 ident: e_1_2_8_4_1 contributor: fullname: Di Gianfrancesco A – ident: e_1_2_8_27_1 doi: 10.1080/09603409.2019.1638604 – ident: e_1_2_8_42_1 doi: 10.1016/j.net.2016.06.013 – ident: e_1_2_8_19_1 doi: 10.1007/BF02644197 – ident: e_1_2_8_29_1 – ident: e_1_2_8_35_1 doi: 10.1016/j.jmatprotec.2018.03.009 – ident: e_1_2_8_40_1 doi: 10.31399/asm.tb.sap.9781627083133 – ident: e_1_2_8_48_1 doi: 10.1088/0370-1301/64/9/303 – ident: e_1_2_8_45_1 doi: 10.1080/14786435.2012.704429 – ident: e_1_2_8_24_1 doi: 10.1016/j.ijfatigue.2021.106518 – ident: e_1_2_8_15_1 doi: 10.1016/j.actamat.2011.11.020 – ident: e_1_2_8_25_1 doi: 10.1007/s41403-021-00317-9 – ident: e_1_2_8_21_1 doi: 10.1007/s12666-015-0784-5 – ident: e_1_2_8_7_1 – ident: e_1_2_8_43_1 doi: 10.1016/j.jnucmat.2014.11.093 – ident: e_1_2_8_39_1 doi: 10.1016/j.msea.2008.08.052 – ident: e_1_2_8_16_1 doi: 10.1007/s40195-012-0249-3 – ident: e_1_2_8_17_1 doi: 10.1007/s11661-008-9618-y – ident: e_1_2_8_2_1 – ident: e_1_2_8_30_1 doi: 10.1016/j.ijfatigue.2021.106258 – ident: e_1_2_8_44_1 doi: 10.1016/0921-5093(91)90829-C – ident: e_1_2_8_28_1 doi: 10.1016/j.ijfatigue.2022.107158 – ident: e_1_2_8_46_1 doi: 10.1016/j.actamat.2017.06.025 – ident: e_1_2_8_23_1 doi: 10.1016/j.msea.2019.138286 – ident: e_1_2_8_36_1 doi: 10.1002/jemt.22359 – ident: e_1_2_8_6_1 doi: 10.1016/j.jnucmat.2019.04.032 – volume-title: Fatigue Testing and Analysis: Theory and Practice year: 2005 ident: e_1_2_8_41_1 contributor: fullname: Lee Y‐L – ident: e_1_2_8_3_1 doi: 10.1016/j.ijpvp.2022.104678 – ident: e_1_2_8_11_1 doi: 10.1046/j.1460-2695.1999.00183.x – ident: e_1_2_8_9_1 doi: 10.1007/s11665-020-05013-3 – ident: e_1_2_8_26_1 doi: 10.1007/s12666-015-0748-9 |
SSID | ssj0016433 |
Score | 2.4291925 |
Snippet | High cycle fatigue (HCF) behavior of Ni superalloy 617M is investigated at 973 K and R‐ratio −1 on a resonance‐based fatigue testing system at 85 Hz frequency.... Abstract High cycle fatigue (HCF) behavior of Ni superalloy 617M is investigated at 973 K and R‐ratio −1 on a resonance‐based fatigue testing system at 85 Hz... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 1445 |
SubjectTerms | Carbides Cyclic loads Damage assessment Dynamic strain aging Fatigue failure Fatigue life Fatigue limit Fatigue strength Fatigue tests High cycle fatigue High temperature Metal fatigue microstructural characteristics Nickel base alloys Precipitates Precipitation hardening superalloy 617M Superalloys Twin boundaries γ′‐phase precipitation |
Title | Microstructural damage assessment in alloy 617M near high cycle fatigue threshold at elevated temperature |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fffe.14253 https://www.proquest.com/docview/2955136258 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMfD2EkP_hanU4J48JKxNf2R4kl0YwjzIA52EErSvMgQq7DuMP963-svpyCIt1La0Oa9l3yTvHzC2AX12SZWUjgrnfBTqYXpm0iEMtSgDSHXaEV3ch-Op_7dLJi12FW9F6bkQzQTbhQZRXtNAa7NYi3InQMMcy8g0udARpTOdfvQoKNwFFAcI49yPBSoiWcVVYiyeJo3v_dFXwJzXaYW_cxomz3VX1iml7z0lrnppR8_4I3__IUdtlXpT35dOswua0G2xzbXqIT7bD6hJL0SLEtQDm71K7Y6XDcQTz7POC3YrzgqkwnPMFo4cY95usJCuUNrPy-B5-gnC1re4jrntI8dda3lBMOqSM4HbDoaPt6MRXUig0gxtKUIlFEWQAfakA601lknY21sDL4D2XfaBq4v_UC6GJUTRHg7VZ4BD0IVoyccsnb2lsER43IAoa9sEDsFvtGgJLoH7csNooE2Kuyw89o2yXsJ3kjqAQvWW1LUW4d1a6slVewtEi-mQ2twXKc67LKo_t8LSEajYXFx_PdHT9iGh8qmTN_psjaaA05RmeTmrHDBT_K14FM |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7MeVAP_hanU4N48NKxNW2XghfRjanbDrLBLlKSJpEhVmHbYf71vtcfcwqCeCulDW3e-5IveS_fA7igOVuFgjtWc-t4MZeOqqumE_BAGqlIco0iur1-0Bl69yN_VIKr4ixMpg-x2HAjZKTjNQGcNqSXUG6tQZy7Pl-BVYQ7p8INt48L8ShcB6SF5JGQBw6y4lGuK0R5PItXv89GXxRzmaimM017C56Kb8wSTF5qs6mqxR8_5Bv_-xPbsJlTUHad-cwOlEyyCxtLwoR7MO5Rnl6mLUu6HEzLVxx4mFzoeLJxwihmP2dITnosQcAwkj5m8RwbZRYN_jwzbIquMqEIF5NTRkfZkdpqRnpYuZjzPgzbrcFNx8mLMjgxops7vlBCGyN9qYgKam215aFUOjSeNbxupfZtnXs-tyGSJ9PE27FwlXFNIEJ0hgMoJ2-JOQTGGybwhPZDK4ynpBEcPYSO5vrNhlQiqMB5YZzoPdPeiIo1C_ZblPZbBaqF2aIcfpPIDaluDS7tRAUu0_7_vYGo3W6lF0d_f_QM1jqDXjfq3vUfjmHdRaKTZfNUoYymMSdIVKbqNPXHT-955Gs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7MCaIP3sV5DeKDL5GtabsUn0Qt8zIRcbAHoSRNIkOsgtvD_PWe08ucgiC-ldKG9pzzJV-Sk-8AHNKYrSMpuDPCcT8ViuumbvNQhMoqTZJrtKPbvQ07Pf-qH_RrcFKdhSn0ISYLboSMvL8mgL8ZNwVy5yzC3AvEDMz6ITJfYkT3E-0onAbkdeSRj4ccSXG_lBWiNJ7Jq98Hoy-GOc1T84EmXoLH6hOL_JLn49FQH6cfP9Qb__kPy7BYElB2WkTMCtRstgoLU7KEazDoUpZeoSxLqhzMqBfsdpiaqHiyQcZox37MkJp0WYZwYSR8zNIxNsocuvtpZNkQA-Wd9reYGjI6yI7E1jBSwyqlnNehF188nHV4WZKBp4htwQOppbFWBUoTETTGGScipU1kfWdF0ykTuKbwA-EipE62jbdT6Wnr2VBGGAobUM9eM7sJTLRs6EsTRE5aXysrBcYHHcwN2i2lZdiAg8o3yVuhvJFUMxa0W5LbrQE7ldeSEnzviRdR1Rqc2MkGHOXm_72BJI4v8outvz-6D3N353Fyc3l7vQ3zHrKcIpVnB-roGbuLLGWo9_Jo_ARifeMa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructural+damage+assessment+in+alloy+617M+near+high+cycle+fatigue+threshold+at+elevated+temperature&rft.jtitle=Fatigue+%26+fracture+of+engineering+materials+%26+structures&rft.au=Kale%2C+Sandeep&rft.au=Thawre%2C+M+M&rft.au=Peshwe%2C+D+R&rft.au=Nagesha%2C+A&rft.date=2024-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=8756-758X&rft.eissn=1460-2695&rft.volume=47&rft.issue=4&rft.spage=1445&rft.epage=1465&rft_id=info:doi/10.1111%2Fffe.14253&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-758X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-758X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-758X&client=summon |