Advanced Gesture Recognition Method Based on Fractional Fourier Transform and Relevance Vector Machine for Smart Home Appliances
ABSTRACT Addressing the challenges of low feature extraction dimensions and insufficient distinct information for gesture differentiation for smart home appliances, this article proposed an innovative gesture recognition algorithm, integrating fractional Fourier transform (FrFT) with relevance vecto...
Saved in:
Published in | Computer animation and virtual worlds Vol. 36; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.01.2025
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Addressing the challenges of low feature extraction dimensions and insufficient distinct information for gesture differentiation for smart home appliances, this article proposed an innovative gesture recognition algorithm, integrating fractional Fourier transform (FrFT) with relevance vector machine (RVM). The process involves using FrFT to transform raw gesture data into the fractional domain, thereby expanding the dimensions of information extraction. Subsequently, high‐dimensional feature vectors are created from fractional domain, and RVM classifiers are employed for joint optimization of feature selection and classification decision functions, achieving optimal classification performance. A dataset was constructed using five different types of gestures recorded on the TI millimeter‐wave radar platform to validate the effectiveness of this method. The experimental results demonstrate that the RVM selected the optimal FrFT order of 0.6, with the best feature set comprising fractional spectral entropy, peak factor, and second‐order central moment. Recognition rates for each gesture exceeded 96.2%, with an average rate of 98.5%. This performance surpasses three comparative methods in both recognition accuracy and real‐time processing, indicating high potential for future applications.
Graphical of the paper. |
---|---|
AbstractList | ABSTRACT
Addressing the challenges of low feature extraction dimensions and insufficient distinct information for gesture differentiation for smart home appliances, this article proposed an innovative gesture recognition algorithm, integrating fractional Fourier transform (FrFT) with relevance vector machine (RVM). The process involves using FrFT to transform raw gesture data into the fractional domain, thereby expanding the dimensions of information extraction. Subsequently, high‐dimensional feature vectors are created from fractional domain, and RVM classifiers are employed for joint optimization of feature selection and classification decision functions, achieving optimal classification performance. A dataset was constructed using five different types of gestures recorded on the TI millimeter‐wave radar platform to validate the effectiveness of this method. The experimental results demonstrate that the RVM selected the optimal FrFT order of 0.6, with the best feature set comprising fractional spectral entropy, peak factor, and second‐order central moment. Recognition rates for each gesture exceeded 96.2%, with an average rate of 98.5%. This performance surpasses three comparative methods in both recognition accuracy and real‐time processing, indicating high potential for future applications.
Graphical of the paper. Addressing the challenges of low feature extraction dimensions and insufficient distinct information for gesture differentiation for smart home appliances, this article proposed an innovative gesture recognition algorithm, integrating fractional Fourier transform (FrFT) with relevance vector machine (RVM). The process involves using FrFT to transform raw gesture data into the fractional domain, thereby expanding the dimensions of information extraction. Subsequently, high‐dimensional feature vectors are created from fractional domain, and RVM classifiers are employed for joint optimization of feature selection and classification decision functions, achieving optimal classification performance. A dataset was constructed using five different types of gestures recorded on the TI millimeter‐wave radar platform to validate the effectiveness of this method. The experimental results demonstrate that the RVM selected the optimal FrFT order of 0.6, with the best feature set comprising fractional spectral entropy, peak factor, and second‐order central moment. Recognition rates for each gesture exceeded 96.2%, with an average rate of 98.5%. This performance surpasses three comparative methods in both recognition accuracy and real‐time processing, indicating high potential for future applications. |
Author | Yuan‐yuan, Zhao Hong‐qin, Xie |
Author_xml | – sequence: 1 givenname: Xie orcidid: 0009-0009-5217-6423 surname: Hong‐qin fullname: Hong‐qin, Xie email: sgehwgidf@163.com organization: Zhanjiang University of Science and Technology – sequence: 2 givenname: Zhao surname: Yuan‐yuan fullname: Yuan‐yuan, Zhao organization: Zhanjiang University of Science and Technology |
BookMark | eNp1kE9PAjEQxRuDiYAe_AZNPHlYaLt_CseVCJhATBSJt6bbncqSZbu2C4abH93CGm-eZibze5N5r4c6lakAoVtKBpQQNlTyMOCEUHqBujSOkiBi_L3z1yf0CvWc23o0YZR00XeaH2SlIMczcM3eAn4BZT6qoilMhZfQbEyOH6TzgJ-nVqrTQpZ4ava2AItXVlZOG7vDssq9uITzPbwG1RiLl1JtigqwJ_DrTtoGz80OcFrXZXHi3DW61LJ0cPNb--ht-riazIPF8-xpki4CxWJOg0jzMKMgcxqSPOI8JuNQMohUPEqyLJeScE2B6YzqjCScMJ7FWodZPiacJEkc9tFde7e25nPvvYqtd-CdOBFSThkdh2zkqfuWUtY4Z0GL2hb-7aOgRJwCFj5gcQ7Ys8OW_SpKOP4Pikm6bhU_WdN_KQ |
Cites_doi | 10.1109/ICCV.2017.406 10.1145/2984511.2984565 10.1145/2629500 10.1109/TSP.2012.2191965 10.1109/JSEN.2020.2994292 10.1109/ICSPCC.2018.8567834 10.1117/1.JRS.14.016508 10.1109/CVPR.2016.456 10.1016/j.ijhcs.2019.03.011 10.1007/s11390-017-1742-y 10.1109/ICCV.2015.510 10.1109/TGRS.2020.3010880 |
ContentType | Journal Article |
Copyright | 2025 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.70011 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_70011 CAV70011 |
Genre | article |
GrantInformation_xml | – fundername: 2022 Zhanjiang University of Science and Technology Brand Enhancement Program Project "Product Design Characteristic Major" funderid: PPJHYLZY‐202206 – fundername: Zhanjiang 2023 Philosophy and Social Science Planning Project funderid: ZJ23GJ07 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT 1OB AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2571-4f73b1ead130d4775093a2e4c586bbdaa07f1e2fb1fb067027b5ff3bd90706653 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Sat Aug 23 12:37:09 EDT 2025 Thu Aug 14 00:19:16 EDT 2025 Sun Jul 06 04:45:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2571-4f73b1ead130d4775093a2e4c586bbdaa07f1e2fb1fb067027b5ff3bd90706653 |
Notes | Funding This work was supported by Zhanjiang 2023 Philosophy and Social Science Planning project titled “Research on the Active Interactive Drive Design of Intelligent Home Appliances in Zhanjiang based on AI Technology,” with the project number ZJ23GJ07. 2022 Zhanjiang Institute of Science and Technology brand promotion plan project “Product Design Specialty,” project number PPJHYLZY‐202206. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0009-5217-6423 |
PQID | 3171219328 |
PQPubID | 2034909 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3171219328 crossref_primary_10_1002_cav_70011 wiley_primary_10_1002_cav_70011_CAV70011 |
PublicationCentury | 2000 |
PublicationDate | January/February 2025 2025-01-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January/February 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2012; 60 2015; 26 2021; 59 2013; 14 2020; 20 2020 2017; 32 2020; 70 2018 2017 2020; 14 2016 2015 2013 2019; 129 2014; 33 Cheng H. (e_1_2_9_2_1) 2013 Sun Y. (e_1_2_9_9_1) 2020 e_1_2_9_11_1 e_1_2_9_13_1 e_1_2_9_12_1 Watanabe S. (e_1_2_9_19_1) 2013; 14 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 Mueller F. (e_1_2_9_15_1) 2018 e_1_2_9_3_1 Zheng Q. (e_1_2_9_8_1) 2020; 70 Cheng H. (e_1_2_9_10_1) 2015; 26 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_18_1 |
References_xml | – volume: 60 start-page: 3546 issue: 7 year: 2012 end-page: 3559 article-title: Noise Robust Radar HRRP TargetRecognition Based on Multitask Factor Analysis with SmallTraining Data Size [J] publication-title: IEEE Transactions on Signal Processing – volume: 32 start-page: 536 issue: 3 year: 2017 end-page: 554 article-title: A Survey on Human Performance Capture and Animation publication-title: Journal of Computer Science and Technology – volume: 70 year: 2020 article-title: A Target Detection Scheme With Decreased Complexity and Enhanced Performance for Range‐Doppler FMCW Radar publication-title: IEEE Transactions on Instrumentation and Measurement – start-page: 4489 year: 2015 end-page: 4497 – volume: 26 start-page: 1 year: 2015 end-page: 1673 article-title: A Survey on 3D Hand Gesture Recognition publication-title: IEEE Transactions on Circuits and Systems for Video Technology – start-page: 351 year: 2020 end-page: 356 – volume: 14 start-page: 867 issue: 1 year: 2013 end-page: 897 article-title: A Widely Applicable Bayesian Information Criterion [J] publication-title: Journal of Machine Learning Research – volume: 129 start-page: 74 year: 2019 end-page: 94 article-title: Systematic Literature Review of Hand Gestures Used in Human Computer Interaction Interfaces publication-title: International Journal of Human‐Computer Studies – start-page: 1 year: 2013 end-page: 6 – volume: 14 start-page: 1 issue: 1 year: 2020 article-title: Foreign Object Debris Detection Method Based on Fractional Fourier Transform for Millimeter‐Wave Radar publication-title: Journal of Applied Remote Sensing – volume: 33 start-page: 1 issue: 5 year: 2014 end-page: 10 article-title: Real‐Time Continuous Pose Recovery of Human Hands Using Convolutional Networks publication-title: ACM Transactions on Graphics – volume: 59 start-page: 4749 issue: 6 year: 2021 end-page: 4764 article-title: Multidimensional Feature Representation and Learning for Robust Hand‐Gesture Recognition on Commercial Millimeter‐Wave Radar publication-title: IEEE Transactions on Geoscience and Remote Sensing – year: 2017 – year: 2016 – volume: 20 start-page: 10706 issue: 18 year: 2020 end-page: 10716 article-title: Real‐Time Radar Based Gesture Detection and Recognition Built in an Edge‐Computing Platform publication-title: IEEE Sensors Journal – start-page: 851 year: 2016 end-page: 860 – start-page: 1 year: 2018 end-page: 6 – start-page: 49 year: 2018 end-page: 59 – ident: e_1_2_9_12_1 doi: 10.1109/ICCV.2017.406 – ident: e_1_2_9_14_1 doi: 10.1145/2984511.2984565 – start-page: 351 volume-title: Proceedings of the 2020 IEEE International Radar Conference year: 2020 ident: e_1_2_9_9_1 – start-page: 1 volume-title: Proceedings of the 2013 IEEE International Conference on Multimedia and Expo year: 2013 ident: e_1_2_9_2_1 – ident: e_1_2_9_5_1 doi: 10.1145/2629500 – ident: e_1_2_9_18_1 doi: 10.1109/TSP.2012.2191965 – volume: 70 year: 2020 ident: e_1_2_9_8_1 article-title: A Target Detection Scheme With Decreased Complexity and Enhanced Performance for Range‐Doppler FMCW Radar publication-title: IEEE Transactions on Instrumentation and Measurement – ident: e_1_2_9_11_1 doi: 10.1109/JSEN.2020.2994292 – start-page: 49 volume-title: Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition year: 2018 ident: e_1_2_9_15_1 – ident: e_1_2_9_16_1 doi: 10.1109/ICSPCC.2018.8567834 – ident: e_1_2_9_17_1 doi: 10.1117/1.JRS.14.016508 – ident: e_1_2_9_7_1 doi: 10.1109/CVPR.2016.456 – ident: e_1_2_9_4_1 doi: 10.1016/j.ijhcs.2019.03.011 – volume: 26 start-page: 1 year: 2015 ident: e_1_2_9_10_1 article-title: A Survey on 3D Hand Gesture Recognition publication-title: IEEE Transactions on Circuits and Systems for Video Technology – ident: e_1_2_9_3_1 doi: 10.1007/s11390-017-1742-y – ident: e_1_2_9_13_1 doi: 10.1109/ICCV.2015.510 – volume: 14 start-page: 867 issue: 1 year: 2013 ident: e_1_2_9_19_1 article-title: A Widely Applicable Bayesian Information Criterion [J] publication-title: Journal of Machine Learning Research – ident: e_1_2_9_6_1 doi: 10.1109/TGRS.2020.3010880 |
SSID | ssj0026210 |
Score | 2.3610787 |
Snippet | ABSTRACT
Addressing the challenges of low feature extraction dimensions and insufficient distinct information for gesture differentiation for smart home... Addressing the challenges of low feature extraction dimensions and insufficient distinct information for gesture differentiation for smart home appliances,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Algorithms Classification Feature extraction feature selection Fourier transforms fractional Fourier transform Gesture recognition Household appliances human–computer interaction Information retrieval Machine learning millimeter‐wave radar Optimization relevance vector machine Smart buildings smart home appliances Smart houses |
Title | Advanced Gesture Recognition Method Based on Fractional Fourier Transform and Relevance Vector Machine for Smart Home Appliances |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70011 https://www.proquest.com/docview/3171219328 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jJz34LU6nBPHgpVub9Wt4msMqwjzMbewglKRNQNRO1tWDJ_9030vaTQVBvLUlCW3yXt_v5b38HiFnKlGB40jPUhgfdJUnLRG6qRUILnjXY9zWjDeDO_9m7N5OvWmNXFRnYQw_xHLDDTVD_69RwbnI2yvS0IS_tTBoiq4P5mohIBouqaOYzwwTgef6FroJFauQzdrLnt9t0QpgfoWp2s5Em-ShekOTXvLUKhailbz_IG_85ydskY0Sf9KeEZhtUpPZDlmfPOaFeZrvko9emRdAr-E9i7mkwyrLaJbRgS45TS_B-qUU7qO5ORoB3SNT_46OKjBMeZZC52epx6MTHSGgA52_KSm0oPcvILoUa7VTjYexXb5HxtHVqH9jlYUarAQ0HnxQFXSEAzIJBjF1AwQhHc6km3ihL0TKuR0oRzIlHCXwXBALhKdUR6TgmWPop7NP6tkskweEYj32hHOl7BCwjnJ5VyLqc0WqQvAdgwY5rZYsfjV8HLFhXmYxTGesp7NBmtVixqVK5jEAJYchXA0b5Fyvyu8DxP3eRF8c_r3pEVljWBtYb880SX0xL-QxAJaFONGS-QnqeObp |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB7xOAAH3oiywFoIpL2kNG7ShAOH8uiWRzmwpeIW7MSWEGxYNe0iOPGD-Cv8J2bspDwkJC4cuCWRbUXjGc839vgbgHUd68B1le9oOh_0tK8cGXqJE0ghxZbPRcUw3rROas0z7_DcPx-Cx-IujOWHGGy4kWWY9ZoMnDakN19YQ2Pxv0ynpm6eUnmk7m4xYMu2D_Zwdjc4b-y3d5tOXlPAiVE5MVzSQVW6KD5cuxMvIH9ZFVx5sR_WpEyEqATaVVxLV0u6wsID6WtdlQkGkXRKUcVxh2GUKogTU__e6YCsite45T7wvZpDgUnBY1Thm4Nffev9XiDta2BsPFtjCp4KmdiElqtyvyfL8f07usjvIrRpmMwhNqtbm5iBIZXOwkTnMuvbr9kcPNTz1Af2GwXT7yp2WiRS3aSsZapqsx108AnD90bX3v7A7g1b4o-1C7zPRJpg52tlxmMdcwjCWiZFVTFswf78RetkVI6eGchP7bJ5OPsSESzASHqTqkVgVHI-FkLrSohwTntiSxGw9WSiQwyPgxKsFToS_bOUI5Ell-YRTl9kpq8Ey4X2RPmqk0WIBV1OiDwswS-jBh8PEO3WO-Zh6fNNf8JYs906jo4PTo5-wDinUshmN2oZRnrdvlpBfNaTq8YsGFx8tUo9Azu7RIY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RkKpyAFqKWJ4WaqVesiRe57EHDgtLeC6qeKz2FuzElhAQ0GaXqpz4P_wVfhRjO1lapEpcOPSWRLYVjWc839jjbwC-qVSFnid9R-nzQaZ86YiIZU4ouOBNn3LXMN50joLdM7bf83tj8FjdhbH8EKMNN20ZZr3WBn6bqfUX0tCU39X1oalXZlQeyN-_MF4rNvbaOLnfKY23T7d2nbKkgJOibmK0pMKG8FB6uHRnLNTussGpZKkfBUJknLuh8iRVwlNC32ChofCVaogMY0h9SNHAcT_ABAvcpq4T0T4ecVXRgFrqA58Fjo5LKhojl66PfvVv5_eCaP_ExcaxxdPwVInE5rNc1ocDUU_vX7FF_icym4GpEmCTlrWIzzAm8y8w2b0ohvZrMQsPrTLxgeygXIZ9SY6rNKqbnHRMTW2yie49I_ge9-3dD-we2wJ_5LRC-4TnGXa-kmY80jVHIKRjElQlwRbk5Bptk-hi9MQAft2u-Apn7yKCORjPb3I5D0QXnE85V8qNEMwpxptSw1omMhVhcBzWYK1SkeTWEo4kllqaJjh9iZm-GixVypOUa06RIBL0qMbjUQ1-GC349wDJVqtrHhbe3nQVPv5sx8nh3tHBInyiug6y2YpagvFBfyiXEZwNxIoxCgLn761Rzw4PQzU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Gesture+Recognition+Method+Based+on+Fractional+Fourier+Transform+and+Relevance+Vector+Machine+for+Smart+Home+Appliances&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Hong%E2%80%90qin%2C+Xie&rft.au=Yuan%E2%80%90yuan%2C+Zhao&rft.date=2025-01-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=1&rft_id=info:doi/10.1002%2Fcav.70011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cav_70011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |