Dual independent pathway‐densely connected residual network with dilated convolution‐based arterial spin labeling MRI image reconstruction with minimum label‐control pairs
Arterial spin labeling (ASL) is a non‐invasive MRI technique widely used to measure cerebral blood flow (CBF), but it suffers from poor SNR, requiring the acquisition of a large number of multiple Label‐Control (L‐C) pairs at the expense of prolonged acquisition time. This work proposed a novel deep...
Saved in:
Published in | International journal of imaging systems and technology Vol. 34; no. 2 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.03.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Arterial spin labeling (ASL) is a non‐invasive MRI technique widely used to measure cerebral blood flow (CBF), but it suffers from poor SNR, requiring the acquisition of a large number of multiple Label‐Control (L‐C) pairs at the expense of prolonged acquisition time. This work proposed a novel deep learning network to reconstruct the ASL CBF map using the minimum number of L‐C pairs. A dataset comprising 72 normal ASL raw images with 52 L‐C pairs is obtained from ADNI2. The mean CBF map, derived from 52 L‐C pairs with Gaussian smoothing and outlier cleaning, serves as the reference. The mean CBF images obtained from randomly selected 10 pairs per subject, without preprocessing, are employed as input for the proposed model. A novel data augmentation technique for model training, leveraging the characteristics of ASL L‐C pairs, is implemented. The accuracy and reproducibility of the reconstructed ASL CBF map were assessed with various state‐of‐the‐art methods on both normal and Alzheimer's Disease (AD) data. The proposed model surpasses state‐of‐the‐art methods, yielding PSNR = 23.9542, SSIM = 0.81499, and Lin's CCC = 0.9168 for the ASL CBF map with 10 L‐C pairs in normal data. For AD patients, the model achieves PSNR of 22.5932, SSIM of 0.80923, and Lin's CCC of 0.9078. The Bland–Altman plot, using the radiologist's manual GMCBF ROI, consistently aligns the estimated and reference CBF values. The novel data augmentation technique improved the ASL CBF map quantification accuracy with Lin's CCC >0.9. The proposed work is a promising approach to reconstructing the ASL CBF map using a minimum number of ASL LC pairs that can lead to low image acquisition time with a reduction in motion artifacts. The use of a novel data augmentation approach, utilizing the properties of ASL L‐C pairs, allows for the generation of a large dataset for further experimentation and analysis. |
---|---|
AbstractList | Arterial spin labeling (ASL) is a non‐invasive MRI technique widely used to measure cerebral blood flow (CBF), but it suffers from poor SNR, requiring the acquisition of a large number of multiple Label‐Control (L‐C) pairs at the expense of prolonged acquisition time. This work proposed a novel deep learning network to reconstruct the ASL CBF map using the minimum number of L‐C pairs. A dataset comprising 72 normal ASL raw images with 52 L‐C pairs is obtained from ADNI2. The mean CBF map, derived from 52 L‐C pairs with Gaussian smoothing and outlier cleaning, serves as the reference. The mean CBF images obtained from randomly selected 10 pairs per subject, without preprocessing, are employed as input for the proposed model. A novel data augmentation technique for model training, leveraging the characteristics of ASL L‐C pairs, is implemented. The accuracy and reproducibility of the reconstructed ASL CBF map were assessed with various state‐of‐the‐art methods on both normal and Alzheimer's Disease (AD) data. The proposed model surpasses state‐of‐the‐art methods, yielding PSNR = 23.9542, SSIM = 0.81499, and Lin's CCC = 0.9168 for the ASL CBF map with 10 L‐C pairs in normal data. For AD patients, the model achieves PSNR of 22.5932, SSIM of 0.80923, and Lin's CCC of 0.9078. The Bland–Altman plot, using the radiologist's manual GMCBF ROI, consistently aligns the estimated and reference CBF values. The novel data augmentation technique improved the ASL CBF map quantification accuracy with Lin's CCC >0.9. The proposed work is a promising approach to reconstructing the ASL CBF map using a minimum number of ASL LC pairs that can lead to low image acquisition time with a reduction in motion artifacts. The use of a novel data augmentation approach, utilizing the properties of ASL L‐C pairs, allows for the generation of a large dataset for further experimentation and analysis. |
Author | Ushadevi Amma, C. Shyna, A. John, Ansamma Thomas, Bejoy Kesavadas, C. |
Author_xml | – sequence: 1 givenname: A. orcidid: 0000-0001-5098-3066 surname: Shyna fullname: Shyna, A. email: shyna@tkmce.ac.in organization: Thangal Kunju Musaliar College of Engineering, APJ Abdul Kalam Technological University – sequence: 2 givenname: C. surname: Ushadevi Amma fullname: Ushadevi Amma, C. organization: Amrita Vishwa Vidyapeetham, Amritapuri Campus – sequence: 3 givenname: Ansamma surname: John fullname: John, Ansamma organization: Thangal Kunju Musaliar College of Engineering, APJ Abdul Kalam Technological University – sequence: 4 givenname: C. surname: Kesavadas fullname: Kesavadas, C. organization: Sree Chitra Tirunal Institute of Medical Sciences and Technology – sequence: 5 givenname: Bejoy surname: Thomas fullname: Thomas, Bejoy organization: Sree Chitra Tirunal Institute of Medical Sciences and Technology |
BookMark | eNp1kU1O5DAQRq0RI03DsOAGllixCG07SSdZIn6GlkBIaGYdOXZ1Y3DbwXZo9W6OwFW4EiehQtiyKcv2e5_Lqn2y57wDQo44O-WMibnZyFORs4L9IDPOmjobyx6ZsbppsqYoq19kP8ZHxjgvWTkjbxeDtNQ4DT1gcYn2Mj1s5e79_ytuI9gdVd45UAk0DRCNHgUHaevDE92a9EC1sXK8Re7F2yEZ79DuZMQzGRIEg0bsjaNWdmCNW9Pb-yXFVteAkajFFAY1elPgxjizGTYTjlFIpOAttmZC_E1-rqSNcPi1HpB_V5d_z6-zm7s_y_Ozm0yJsmJZqQqhK1nnAlgjWA1FrUGxle4WC57zosmV0sBFLQA6qVXJdaNRUrmsdN7V-QE5nnL74J8HiKl99ENw-GQrmrpiYlEsKqROJkoFH2OAVdsH_FjYtZy140Ra3LWfE0F2PrFbY2H3Pdgub88m4wPPCpeL |
Cites_doi | 10.1016/j.neuroimage.2017.08.072 10.1089/brain.2014.0290 10.1016/j.neuroimage.2012.10.087 10.1109/ACCTHPA49271.2020.9213194 10.1016/j.jocs.2021.101546 10.1016/j.knosys.2021.106949 10.1002/jmri.27255 10.1002/jmri.24918 10.1148/radiol.2503081497 10.1002/ima.20218 10.1088/1361‐6579/ab86d6 10.1117/12.843960 10.2307/2532051 10.1109/CVPR.2018.00262 10.1016/j.neuroimage.2017.05.054 10.1002/mrm.22319 10.1016/j.neunet.2020.07.025 10.1109/CVPRW.2017.154 10.11613/BM.2015.015 10.1016/j.neuroimage.2006.01.026 10.1016/j.mri.2014.01.016 10.1016/j.jneumeth.2018.08.018 10.1007/s10334‐010‐0209‐8 10.1073/pnas.89.1.212 10.1016/j.jneumeth.2017.11.017 10.1002/mrm.21670 10.1109/ISBI.2015.7163920 10.1016/j.neuroimage.2015.05.048 10.1016/j.mri.2020.01.005 10.1002/mrm.1910230106 10.1002/mrm.22641 10.1002/jmri.25436 10.1109/CVPR.2016.90 10.1117/12.2549765 10.1016/j.mri.2007.07.003 10.1016/j.mri.2012.05.004 10.1007/978-3-319-24574-4_28 10.1109/TPAMI.2015.2439281 10.1109/CVPR.2017.243 10.1002/jmri.21721 10.1002/mrm.1910400308 |
ContentType | Journal Article |
Copyright | 2024 Wiley Periodicals LLC. 2024 Wiley Periodicals, LLC. |
Copyright_xml | – notice: 2024 Wiley Periodicals LLC. – notice: 2024 Wiley Periodicals, LLC. |
DBID | AAYXX CITATION |
DOI | 10.1002/ima.23040 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1098-1098 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ima_23040 IMA23040 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HDBZQ HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c2570-5c42d7a832e09208e48dec0fdb66131493ccde1282eebadc51d9d5c4c3a7d3b83 |
IEDL.DBID | DR2 |
ISSN | 0899-9457 |
IngestDate | Sat Jul 26 00:06:15 EDT 2025 Tue Jul 01 01:29:51 EDT 2025 Wed Jan 22 16:13:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2570-5c42d7a832e09208e48dec0fdb66131493ccde1282eebadc51d9d5c4c3a7d3b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5098-3066 |
PQID | 2987026467 |
PQPubID | 1026352 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2987026467 crossref_primary_10_1002_ima_23040 wiley_primary_10_1002_ima_23040_IMA23040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 20240301 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: New York |
PublicationTitle | International journal of imaging systems and technology |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2014; 116 2006; 31 2015; 5 1989; 45 2013; 66 2020; 41 2010 2021; 226 2017; 45 2009; 250 2017; 295 2018; 309 1998; 40 2017; 157 2009; 29 2012; 30 2021; 58 2010; 20 2010; 64 2015; 25 2020; 52 2022 2020; 131 2020 2015; 42 2014; 38 2008; 26 2018 2017 2011; 65 2016 2020; 68 2017; 162 2015 2015; 117 2017; 287 1992; 89 1992; 23 2008; 60 2010; 7623 2014; 32 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 The FIL Methods Group (e_1_2_9_50_1) 2020 e_1_2_9_14_1 Zhang Y (e_1_2_9_30_1) 2018 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 Kim Ki (e_1_2_9_34_1) 2017; 287 Alsop D (e_1_2_9_5_1) 2014; 116 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – start-page: 234 year: 2015 end-page: 241 – volume: 45 start-page: 255 year: 1989 end-page: 268 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics – volume: 42 start-page: 1377 issue: 5 year: 2015 end-page: 1385 article-title: Automated removal of spurious intermediate cerebral blood flow volumes improves image quality among older patients: a clinical arterial spin labeling investigation publication-title: J Magn Resonance Imaging JMRI – volume: 45 start-page: 1786 issue: 6 year: 2017 end-page: 1797 article-title: Structural correlation‐based outlier rejection (SCORE) algorithm for arterial spin labeling time series publication-title: J Magn Resonance Imaging JMRI – volume: 89 start-page: 212 year: 1992 end-page: 216 article-title: Magnetic resonance imaging of perfusion using spin inversion of arterial water publication-title: Proc Natl Acad Sci USA – volume: 60 start-page: 1362 year: 2008 end-page: 1371 article-title: Regression algorithm correcting for partial volume effects in arterial spin labeling MRI publication-title: Magn Reson Med – volume: 26 start-page: 261 year: 2008 end-page: 269 article-title: Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx publication-title: Magn Reson Imaging – volume: 29 start-page: 1134 year: 2009 end-page: 1139 article-title: A fast, effective filtering method for improving clinical pulsed arterial spin labeling MRI publication-title: J Magn Reson Imaging – volume: 295 start-page: 10 year: 2017 end-page: 19 article-title: Arterial spin labeling perfusion MRI signal denoising using robust principal component analysis publication-title: J Neurosci Methods – volume: 32 start-page: 497 issue: 5 year: 2014 end-page: 504 article-title: Robust estimation of the cerebral blood flow in arterial spin labelling publication-title: Magn Reson Imaging – volume: 38 start-page: 295 year: 2014 end-page: 307 article-title: Image super‐resolution using deep convolutional networks publication-title: IEEE Trans Pattern Anal Mach Intell – start-page: 770 year: 2016 end-page: 778 – volume: 23 start-page: 37 issue: 1 year: 1992 end-page: 45 article-title: Perfusion imaging publication-title: Magn Reson Med – volume: 250 start-page: 959 year: 2009 end-page: 960 article-title: Gadolinium‐based contrast agents and nephrogenic systemic fibrosis publication-title: Radiology – volume: 287 year: 2017 article-title: Improving arterial spin labeling by using deep learning publication-title: Radiology – volume: 68 start-page: 95 year: 2020 end-page: 105 article-title: Denoising arterial spin labeling perfusion MRI with deep machine learning publication-title: Magn Reson Imaging – volume: 65 start-page: 1173 year: 2011 end-page: 1183 article-title: Partial volume correction of multiple inversion time arterial spin labeling MRI data publication-title: Magn Reson Med – volume: 131 start-page: 251 year: 2020 end-page: 275 article-title: Deep learning on image denoising: an overview publication-title: Neural Netw – volume: 31 start-page: 1104 year: 2006 end-page: 1115 article-title: Physiological noise reduction for arterial spin labeling functional MRI publication-title: Neuroimage – volume: 52 start-page: 1413 year: 2020 end-page: 1426 article-title: Combined Denoising and suppression of transient artifacts in arterial spin labeling MRI using deep learning publication-title: J Magn Reson Imaging – volume: 226 year: 2021 article-title: Designing and training of a dual CNN for image denoising publication-title: Knowl‐Based Syst – year: 2016 – year: 2018 – volume: 162 start-page: 384 year: 2017 end-page: 397 article-title: A systematic study of the sensitivity of partial volume correction methods for the quantification of perfusion from pseudo‐continuous arterial spin labeling MRI publication-title: Neuroimage – volume: 64 start-page: 715 year: 2010 end-page: 724 article-title: Reduction of errors in ASL cerebral perfusion and arterial transit time maps using image de‐noising publication-title: Magn Reson Med – start-page: 125 year: 2010 end-page: 137 – volume: 5 start-page: 543 issue: 9 year: 2015 end-page: 553 article-title: Voxel‐wise functional Connectomics using arterial spin labeling functional magnetic resonance imaging: the role of denoising publication-title: Brain Connect – start-page: 242 year: 2020 end-page: 248 – volume: 117 start-page: 191 year: 2015 end-page: 201 article-title: Reproducibility of multiphasepseudo‐continuous arterial spin labeling and the effect of post‐ processing analysis methods publication-title: Neuroimage – start-page: 2472 year: 2018 end-page: 2481 article-title: Residual dense network for image superresolution publication-title: Proc IEEE Conf Comput Vis Pattern Recogn – volume: 58 year: 2021 article-title: Deep‐ASL enhancement technique in arterial spin labeling MRI‐ a novel approach for the error reduction of partial volume correction technique with linear regression algorithm publication-title: J Comput Sci – volume: 157 start-page: 81 year: 2017 end-page: 96 article-title: Spatio‐temporal TGV denoising for ASL perfusion imaging publication-title: Neuroimage – volume: 116 start-page: 102 year: 2014 end-page: 116 article-title: Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia publication-title: Magn Reson Med – volume: 40 start-page: 383 year: 1998 end-page: 396 article-title: A general kinetic model for quantitative perfusion imaging with arterial spin labeling publication-title: Magn Reson Med – volume: 7623 start-page: 76233B year: 2010 article-title: Improving arterial spin labeling by temporal filtering, SPIE medical imaging publication-title: Int Soc Optics Photon – start-page: 498 year: 2015 end-page: 502 – volume: 309 start-page: 121 year: 2018 end-page: 131 article-title: Spatially adaptive unsupervised multispectral nonlocal filtering for improved cerebral blood flow mapping using arterial spin labeling magnetic resonance imaging publication-title: J Neurosci Methods – year: 2022 – year: 2020 – volume: 20 start-page: 62 year: 2010 end-page: 70 article-title: Arterial spin labeling at ultra‐high field: all that glitters is not gold publication-title: Int J Imaging Syst Technol – volume: 41 issue: 5 year: 2020 article-title: A comprehensive guideline for bland‐Altman and intra class correlation calculations to properly compare two methods of measurement and interpret findings publication-title: Physiol Meas – start-page: 2261 year: 2017 end-page: 2269 – start-page: 2472 year: 2018 end-page: 2481 article-title: Residual dense network for image super‐resolution publication-title: IEEE/CVF Conf Comput Vis Pattern Recogn – volume: 30 start-page: 1409 issue: 10 year: 2012 end-page: 1415 article-title: Improving cerebral blood flow quantification for arterial spin labeled perfusion MRI by removing residual motion artifacts and global signal fluctuations publication-title: Magn Reson Imaging – volume: 66 start-page: 662 year: 2013 end-page: 671 article-title: Comparison of 2D and 3D single‐shot ASL perfusion fMRI sequences publication-title: Neuroimage – volume: 25 start-page: 141 issue: 2 year: 2015 end-page: 151 article-title: Understanding bland Altman analysis publication-title: Biochem Med – year: 2017 – start-page: 21 year: 2020 – ident: e_1_2_9_45_1 doi: 10.1016/j.neuroimage.2017.08.072 – ident: e_1_2_9_14_1 doi: 10.1089/brain.2014.0290 – ident: e_1_2_9_7_1 doi: 10.1016/j.neuroimage.2012.10.087 – ident: e_1_2_9_42_1 doi: 10.1109/ACCTHPA49271.2020.9213194 – ident: e_1_2_9_24_1 doi: 10.1016/j.jocs.2021.101546 – ident: e_1_2_9_52_1 doi: 10.1016/j.knosys.2021.106949 – ident: e_1_2_9_40_1 doi: 10.1002/jmri.27255 – ident: e_1_2_9_21_1 doi: 10.1002/jmri.24918 – ident: e_1_2_9_2_1 doi: 10.1148/radiol.2503081497 – ident: e_1_2_9_38_1 – volume: 116 start-page: 102 year: 2014 ident: e_1_2_9_5_1 article-title: Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia publication-title: Magn Reson Med – ident: e_1_2_9_35_1 – ident: e_1_2_9_8_1 doi: 10.1002/ima.20218 – ident: e_1_2_9_47_1 doi: 10.1088/1361‐6579/ab86d6 – ident: e_1_2_9_13_1 doi: 10.1117/12.843960 – ident: e_1_2_9_46_1 doi: 10.2307/2532051 – ident: e_1_2_9_31_1 doi: 10.1109/CVPR.2018.00262 – ident: e_1_2_9_41_1 – ident: e_1_2_9_49_1 – ident: e_1_2_9_16_1 doi: 10.1016/j.neuroimage.2017.05.054 – ident: e_1_2_9_33_1 – start-page: 2472 year: 2018 ident: e_1_2_9_30_1 article-title: Residual dense network for image super‐resolution publication-title: IEEE/CVF Conf Comput Vis Pattern Recogn – ident: e_1_2_9_12_1 doi: 10.1002/mrm.22319 – ident: e_1_2_9_27_1 doi: 10.1016/j.neunet.2020.07.025 – ident: e_1_2_9_32_1 doi: 10.1109/CVPRW.2017.154 – ident: e_1_2_9_48_1 doi: 10.11613/BM.2015.015 – ident: e_1_2_9_9_1 doi: 10.1016/j.neuroimage.2006.01.026 – ident: e_1_2_9_19_1 doi: 10.1016/j.mri.2014.01.016 – ident: e_1_2_9_18_1 doi: 10.1016/j.jneumeth.2018.08.018 – ident: e_1_2_9_11_1 doi: 10.1007/s10334‐010‐0209‐8 – ident: e_1_2_9_3_1 doi: 10.1073/pnas.89.1.212 – ident: e_1_2_9_17_1 doi: 10.1016/j.jneumeth.2017.11.017 – ident: e_1_2_9_43_1 doi: 10.1002/mrm.21670 – ident: e_1_2_9_15_1 doi: 10.1109/ISBI.2015.7163920 – ident: e_1_2_9_22_1 doi: 10.1016/j.neuroimage.2015.05.048 – ident: e_1_2_9_36_1 doi: 10.1016/j.mri.2020.01.005 – volume-title: Statistical Parametric Mapping (SPM12) [Computer Software] year: 2020 ident: e_1_2_9_50_1 – ident: e_1_2_9_4_1 doi: 10.1002/mrm.1910230106 – ident: e_1_2_9_44_1 doi: 10.1002/mrm.22641 – volume: 287 year: 2017 ident: e_1_2_9_34_1 article-title: Improving arterial spin labeling by using deep learning publication-title: Radiology – ident: e_1_2_9_23_1 doi: 10.1002/jmri.25436 – ident: e_1_2_9_28_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_9_39_1 doi: 10.1117/12.2549765 – ident: e_1_2_9_51_1 doi: 10.1016/j.mri.2007.07.003 – ident: e_1_2_9_20_1 doi: 10.1016/j.mri.2012.05.004 – ident: e_1_2_9_37_1 doi: 10.1007/978-3-319-24574-4_28 – ident: e_1_2_9_26_1 – ident: e_1_2_9_25_1 doi: 10.1109/TPAMI.2015.2439281 – ident: e_1_2_9_29_1 doi: 10.1109/CVPR.2017.243 – ident: e_1_2_9_10_1 doi: 10.1002/jmri.21721 – ident: e_1_2_9_6_1 doi: 10.1002/mrm.1910400308 |
SSID | ssj0011505 |
Score | 2.336767 |
Snippet | Arterial spin labeling (ASL) is a non‐invasive MRI technique widely used to measure cerebral blood flow (CBF), but it suffers from poor SNR, requiring the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Alzheimer's disease arterial spin labeling Blood flow cerebral blood flow Data augmentation Datasets densely connected residual network dilated convolution Image acquisition Image processing Image reconstruction Labeling Labels Magnetic resonance imaging Medical imaging Outliers (statistics) signal‐to‐noise ratio Smoothing |
Title | Dual independent pathway‐densely connected residual network with dilated convolution‐based arterial spin labeling MRI image reconstruction with minimum label‐control pairs |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.23040 https://www.proquest.com/docview/2987026467 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSuRAFL2IIswsxtcM9vigGFy4iXZXKi9ctY9GBWchCi4GQr1agpqRSTeiKz_BX_GX_BLvrUriA4TBTUhIVVFJ3Vt1bnHqXIA1ztNI214ciF6ClzAWQRYOVSCHpL4WayG1Y1v8jvdPxeFZdDYBW81ZGK8P0W64kWe4-ZocXKpq80U0tCDZIAzGKV4nrhYBouNWOoqAjqMvpqRAKaKkURXq8s225tu16AVgvoapbp0ZzMCfpoeeXnKxMR6pDX33Trzxk58wC99q_Mn63mDmYMKW8_D1lSrhPEw7VqiuFuBxd4xlizZT7ohRAuMbeft0_4CPlb28ZZqYMhpxK8PA3Z3sYqWnljPa42WmuJT0lujttZljbVo8DXN8UnQAVl0XJUN7dIfj2dHxAcNOn1vmwvVW4tY3SGIoV-MrXxybqsn22LXiX_UdTgd7Jzv7QZ3jIdCUPy-ItOAmkTiv2G7Gu6kVqbG6OzQKgUOI4VuotbG4iHJrlTQ66pnMYCUdysSEKg1_wGT5t7SLwIRUCEd0FHGVCkUnfo0dplliUs1FHKoO_GpGO7_2Uh65F23mOT7lbiQ6sNzYQV57c5XzDGc1RI5x0oF1N6AfN5AfHPXdzc__L7oEXzhiJU9tW4ZJ_K12BbHOSK3CVH97d3uw6oz7GWnaA0A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSuRAFL2IMowudHwMtqNjIbOYTbS7UnmBG_FBt9ouRMGNhNSjJYxGMd2IrvyE-RV_yS_x3qokOgOCuAkJqSoqqXurzi1OnQvwi_M4UKYTeqIT4cUPhZf4A-llA1JfC5XIlGVbHIXdU7F_FpyNwWZ9FsbpQzQbbuQZdr4mB6cN6Y1X1dCcdIMwGseAfYIyepNy_s5xIx5FUMcSGGPSoBRBVOsKtflGU_Xf1egVYr4Fqnal2ZuB87qPjmDyZ300lOvq4T_5xs9-xDeYriAo23I2MwtjppiDqTfChHPwxRJDVTkPTzsjLJs3yXKHjHIY32X3z49_8bE0l_dMEVlGIXRlGLvbw12scOxyRtu8TOeXGb0lhntl6Vib1k_NLKUUfYCVN3nB0CTt-XjWP-4x7PSFYTZib1RuXYOkh3I1unLFsamKb49dy2_LBTjd2z3Z7npVmgdPUQo9L1CC6yjDqcW0E96OjYi1Ue2BlogdfIzgfKW0wXWUGyMzrYKOTjRWUn4WaV_G_ncYL64LswhMZBIRiQoCLmMh6dCvNoM4iXSsuAh92YK1erjTG6fmkTrdZp7iU2pHogXLtSGklUOXKU9wYkPwGEYt-G1H9P0G0l5_y94sfbzoKnztnvQP08Pe0cEPmOQInRzTbRnG8RebFYQ-Q_nTWvgLTaQF6g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFD6I4qIP3tbF8RpkH3ypdtL0hk_iODjeWGQFHxZKc-lS1DrYGUSf_An-Ff-Sv8STpK0XEMSX0tIkpM05yXfCl-8A_KY08oVqBw5rh3jxAubEXsadNNPqa4FgqTBsi5Ng_4wdnPvnI7Bdn4Wx-hDNhpv2DDNfawfvy2zrVTQ017JBGIxjvD7GAjfWeRs6p412lEY6hr8YaQlK5oe1rJBLt5qq7xejV4T5FqeahaY7Df_qLlp-ycXmcMA3xf0H9cZvfsMMTFUAlOxYi5mFEVXMweQbWcI5GDe0UFH-hKfOEMvmTarcAdEZjG_Tu-eHR3ws1eUdEZoqIxC4EozczdEuUlhuOdGbvETml6l-q_ntlZ1jbb16SmIIpegBpOznBUGDNKfjyfFpj2Cn_yti4vVG49Y2qNVQroZXtjg2VbHtsWv5TTkPZ929v7v7TpXkwRE6gZ7jC0ZlmOLEotyYupFikVTCzSRH5OBh_OYJIRWuolQpnkrht2UssZLw0lB6PPJ-wWhxXagFICzliEeE71MeMa6P_EqVRXEoI0FZ4PEWrNejnfStlkdiVZtpgk-JGYkWLNd2kFTuXCY0xmkNoWMQtmDDDOjnDSS94x1zs_j1omvw40-nmxz1Tg6XYIIibrI0t2UYxT-sVhD3DPiqse8XUfMEmQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+independent+pathway%E2%80%90densely+connected+residual+network+with+dilated+convolution%E2%80%90based+arterial+spin+labeling+MRI+image+reconstruction+with+minimum+label%E2%80%90control+pairs&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Shyna%2C+A&rft.au=Amma%2C+C+Ushadevi&rft.au=Ansamma%2C+John&rft.au=Kesavadas%2C+C&rft.date=2024-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=34&rft.issue=2&rft_id=info:doi/10.1002%2Fima.23040&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon |