Dual independent pathway‐densely connected residual network with dilated convolution‐based arterial spin labeling MRI image reconstruction with minimum label‐control pairs

Arterial spin labeling (ASL) is a non‐invasive MRI technique widely used to measure cerebral blood flow (CBF), but it suffers from poor SNR, requiring the acquisition of a large number of multiple Label‐Control (L‐C) pairs at the expense of prolonged acquisition time. This work proposed a novel deep...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of imaging systems and technology Vol. 34; no. 2
Main Authors Shyna, A., Ushadevi Amma, C., John, Ansamma, Kesavadas, C., Thomas, Bejoy
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.03.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Arterial spin labeling (ASL) is a non‐invasive MRI technique widely used to measure cerebral blood flow (CBF), but it suffers from poor SNR, requiring the acquisition of a large number of multiple Label‐Control (L‐C) pairs at the expense of prolonged acquisition time. This work proposed a novel deep learning network to reconstruct the ASL CBF map using the minimum number of L‐C pairs. A dataset comprising 72 normal ASL raw images with 52 L‐C pairs is obtained from ADNI2. The mean CBF map, derived from 52 L‐C pairs with Gaussian smoothing and outlier cleaning, serves as the reference. The mean CBF images obtained from randomly selected 10 pairs per subject, without preprocessing, are employed as input for the proposed model. A novel data augmentation technique for model training, leveraging the characteristics of ASL L‐C pairs, is implemented. The accuracy and reproducibility of the reconstructed ASL CBF map were assessed with various state‐of‐the‐art methods on both normal and Alzheimer's Disease (AD) data. The proposed model surpasses state‐of‐the‐art methods, yielding PSNR = 23.9542, SSIM = 0.81499, and Lin's CCC = 0.9168 for the ASL CBF map with 10 L‐C pairs in normal data. For AD patients, the model achieves PSNR of 22.5932, SSIM of 0.80923, and Lin's CCC of 0.9078. The Bland–Altman plot, using the radiologist's manual GMCBF ROI, consistently aligns the estimated and reference CBF values. The novel data augmentation technique improved the ASL CBF map quantification accuracy with Lin's CCC >0.9. The proposed work is a promising approach to reconstructing the ASL CBF map using a minimum number of ASL LC pairs that can lead to low image acquisition time with a reduction in motion artifacts. The use of a novel data augmentation approach, utilizing the properties of ASL L‐C pairs, allows for the generation of a large dataset for further experimentation and analysis.
AbstractList Arterial spin labeling (ASL) is a non‐invasive MRI technique widely used to measure cerebral blood flow (CBF), but it suffers from poor SNR, requiring the acquisition of a large number of multiple Label‐Control (L‐C) pairs at the expense of prolonged acquisition time. This work proposed a novel deep learning network to reconstruct the ASL CBF map using the minimum number of L‐C pairs. A dataset comprising 72 normal ASL raw images with 52 L‐C pairs is obtained from ADNI2. The mean CBF map, derived from 52 L‐C pairs with Gaussian smoothing and outlier cleaning, serves as the reference. The mean CBF images obtained from randomly selected 10 pairs per subject, without preprocessing, are employed as input for the proposed model. A novel data augmentation technique for model training, leveraging the characteristics of ASL L‐C pairs, is implemented. The accuracy and reproducibility of the reconstructed ASL CBF map were assessed with various state‐of‐the‐art methods on both normal and Alzheimer's Disease (AD) data. The proposed model surpasses state‐of‐the‐art methods, yielding PSNR = 23.9542, SSIM = 0.81499, and Lin's CCC = 0.9168 for the ASL CBF map with 10 L‐C pairs in normal data. For AD patients, the model achieves PSNR of 22.5932, SSIM of 0.80923, and Lin's CCC of 0.9078. The Bland–Altman plot, using the radiologist's manual GMCBF ROI, consistently aligns the estimated and reference CBF values. The novel data augmentation technique improved the ASL CBF map quantification accuracy with Lin's CCC >0.9. The proposed work is a promising approach to reconstructing the ASL CBF map using a minimum number of ASL LC pairs that can lead to low image acquisition time with a reduction in motion artifacts. The use of a novel data augmentation approach, utilizing the properties of ASL L‐C pairs, allows for the generation of a large dataset for further experimentation and analysis.
Author Ushadevi Amma, C.
Shyna, A.
John, Ansamma
Thomas, Bejoy
Kesavadas, C.
Author_xml – sequence: 1
  givenname: A.
  orcidid: 0000-0001-5098-3066
  surname: Shyna
  fullname: Shyna, A.
  email: shyna@tkmce.ac.in
  organization: Thangal Kunju Musaliar College of Engineering, APJ Abdul Kalam Technological University
– sequence: 2
  givenname: C.
  surname: Ushadevi Amma
  fullname: Ushadevi Amma, C.
  organization: Amrita Vishwa Vidyapeetham, Amritapuri Campus
– sequence: 3
  givenname: Ansamma
  surname: John
  fullname: John, Ansamma
  organization: Thangal Kunju Musaliar College of Engineering, APJ Abdul Kalam Technological University
– sequence: 4
  givenname: C.
  surname: Kesavadas
  fullname: Kesavadas, C.
  organization: Sree Chitra Tirunal Institute of Medical Sciences and Technology
– sequence: 5
  givenname: Bejoy
  surname: Thomas
  fullname: Thomas, Bejoy
  organization: Sree Chitra Tirunal Institute of Medical Sciences and Technology
BookMark eNp1kU1O5DAQRq0RI03DsOAGllixCG07SSdZIn6GlkBIaGYdOXZ1Y3DbwXZo9W6OwFW4EiehQtiyKcv2e5_Lqn2y57wDQo44O-WMibnZyFORs4L9IDPOmjobyx6ZsbppsqYoq19kP8ZHxjgvWTkjbxeDtNQ4DT1gcYn2Mj1s5e79_ytuI9gdVd45UAk0DRCNHgUHaevDE92a9EC1sXK8Re7F2yEZ79DuZMQzGRIEg0bsjaNWdmCNW9Pb-yXFVteAkajFFAY1elPgxjizGTYTjlFIpOAttmZC_E1-rqSNcPi1HpB_V5d_z6-zm7s_y_Ozm0yJsmJZqQqhK1nnAlgjWA1FrUGxle4WC57zosmV0sBFLQA6qVXJdaNRUrmsdN7V-QE5nnL74J8HiKl99ENw-GQrmrpiYlEsKqROJkoFH2OAVdsH_FjYtZy140Ra3LWfE0F2PrFbY2H3Pdgub88m4wPPCpeL
Cites_doi 10.1016/j.neuroimage.2017.08.072
10.1089/brain.2014.0290
10.1016/j.neuroimage.2012.10.087
10.1109/ACCTHPA49271.2020.9213194
10.1016/j.jocs.2021.101546
10.1016/j.knosys.2021.106949
10.1002/jmri.27255
10.1002/jmri.24918
10.1148/radiol.2503081497
10.1002/ima.20218
10.1088/1361‐6579/ab86d6
10.1117/12.843960
10.2307/2532051
10.1109/CVPR.2018.00262
10.1016/j.neuroimage.2017.05.054
10.1002/mrm.22319
10.1016/j.neunet.2020.07.025
10.1109/CVPRW.2017.154
10.11613/BM.2015.015
10.1016/j.neuroimage.2006.01.026
10.1016/j.mri.2014.01.016
10.1016/j.jneumeth.2018.08.018
10.1007/s10334‐010‐0209‐8
10.1073/pnas.89.1.212
10.1016/j.jneumeth.2017.11.017
10.1002/mrm.21670
10.1109/ISBI.2015.7163920
10.1016/j.neuroimage.2015.05.048
10.1016/j.mri.2020.01.005
10.1002/mrm.1910230106
10.1002/mrm.22641
10.1002/jmri.25436
10.1109/CVPR.2016.90
10.1117/12.2549765
10.1016/j.mri.2007.07.003
10.1016/j.mri.2012.05.004
10.1007/978-3-319-24574-4_28
10.1109/TPAMI.2015.2439281
10.1109/CVPR.2017.243
10.1002/jmri.21721
10.1002/mrm.1910400308
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
2024 Wiley Periodicals, LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
– notice: 2024 Wiley Periodicals, LLC.
DBID AAYXX
CITATION
DOI 10.1002/ima.23040
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1098-1098
EndPage n/a
ExternalDocumentID 10_1002_ima_23040
IMA23040
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HDBZQ
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c2570-5c42d7a832e09208e48dec0fdb66131493ccde1282eebadc51d9d5c4c3a7d3b83
IEDL.DBID DR2
ISSN 0899-9457
IngestDate Sat Jul 26 00:06:15 EDT 2025
Tue Jul 01 01:29:51 EDT 2025
Wed Jan 22 16:13:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2570-5c42d7a832e09208e48dec0fdb66131493ccde1282eebadc51d9d5c4c3a7d3b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5098-3066
PQID 2987026467
PQPubID 1026352
PageCount 19
ParticipantIDs proquest_journals_2987026467
crossref_primary_10_1002_ima_23040
wiley_primary_10_1002_ima_23040_IMA23040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle International journal of imaging systems and technology
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2014; 116
2006; 31
2015; 5
1989; 45
2013; 66
2020; 41
2010
2021; 226
2017; 45
2009; 250
2017; 295
2018; 309
1998; 40
2017; 157
2009; 29
2012; 30
2021; 58
2010; 20
2010; 64
2015; 25
2020; 52
2022
2020; 131
2020
2015; 42
2014; 38
2008; 26
2018
2017
2011; 65
2016
2020; 68
2017; 162
2015
2015; 117
2017; 287
1992; 89
1992; 23
2008; 60
2010; 7623
2014; 32
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
The FIL Methods Group (e_1_2_9_50_1) 2020
e_1_2_9_14_1
Zhang Y (e_1_2_9_30_1) 2018
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
Kim Ki (e_1_2_9_34_1) 2017; 287
Alsop D (e_1_2_9_5_1) 2014; 116
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – start-page: 234
  year: 2015
  end-page: 241
– volume: 45
  start-page: 255
  year: 1989
  end-page: 268
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– volume: 42
  start-page: 1377
  issue: 5
  year: 2015
  end-page: 1385
  article-title: Automated removal of spurious intermediate cerebral blood flow volumes improves image quality among older patients: a clinical arterial spin labeling investigation
  publication-title: J Magn Resonance Imaging JMRI
– volume: 45
  start-page: 1786
  issue: 6
  year: 2017
  end-page: 1797
  article-title: Structural correlation‐based outlier rejection (SCORE) algorithm for arterial spin labeling time series
  publication-title: J Magn Resonance Imaging JMRI
– volume: 89
  start-page: 212
  year: 1992
  end-page: 216
  article-title: Magnetic resonance imaging of perfusion using spin inversion of arterial water
  publication-title: Proc Natl Acad Sci USA
– volume: 60
  start-page: 1362
  year: 2008
  end-page: 1371
  article-title: Regression algorithm correcting for partial volume effects in arterial spin labeling MRI
  publication-title: Magn Reson Med
– volume: 26
  start-page: 261
  year: 2008
  end-page: 269
  article-title: Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx
  publication-title: Magn Reson Imaging
– volume: 29
  start-page: 1134
  year: 2009
  end-page: 1139
  article-title: A fast, effective filtering method for improving clinical pulsed arterial spin labeling MRI
  publication-title: J Magn Reson Imaging
– volume: 295
  start-page: 10
  year: 2017
  end-page: 19
  article-title: Arterial spin labeling perfusion MRI signal denoising using robust principal component analysis
  publication-title: J Neurosci Methods
– volume: 32
  start-page: 497
  issue: 5
  year: 2014
  end-page: 504
  article-title: Robust estimation of the cerebral blood flow in arterial spin labelling
  publication-title: Magn Reson Imaging
– volume: 38
  start-page: 295
  year: 2014
  end-page: 307
  article-title: Image super‐resolution using deep convolutional networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 770
  year: 2016
  end-page: 778
– volume: 23
  start-page: 37
  issue: 1
  year: 1992
  end-page: 45
  article-title: Perfusion imaging
  publication-title: Magn Reson Med
– volume: 250
  start-page: 959
  year: 2009
  end-page: 960
  article-title: Gadolinium‐based contrast agents and nephrogenic systemic fibrosis
  publication-title: Radiology
– volume: 287
  year: 2017
  article-title: Improving arterial spin labeling by using deep learning
  publication-title: Radiology
– volume: 68
  start-page: 95
  year: 2020
  end-page: 105
  article-title: Denoising arterial spin labeling perfusion MRI with deep machine learning
  publication-title: Magn Reson Imaging
– volume: 65
  start-page: 1173
  year: 2011
  end-page: 1183
  article-title: Partial volume correction of multiple inversion time arterial spin labeling MRI data
  publication-title: Magn Reson Med
– volume: 131
  start-page: 251
  year: 2020
  end-page: 275
  article-title: Deep learning on image denoising: an overview
  publication-title: Neural Netw
– volume: 31
  start-page: 1104
  year: 2006
  end-page: 1115
  article-title: Physiological noise reduction for arterial spin labeling functional MRI
  publication-title: Neuroimage
– volume: 52
  start-page: 1413
  year: 2020
  end-page: 1426
  article-title: Combined Denoising and suppression of transient artifacts in arterial spin labeling MRI using deep learning
  publication-title: J Magn Reson Imaging
– volume: 226
  year: 2021
  article-title: Designing and training of a dual CNN for image denoising
  publication-title: Knowl‐Based Syst
– year: 2016
– year: 2018
– volume: 162
  start-page: 384
  year: 2017
  end-page: 397
  article-title: A systematic study of the sensitivity of partial volume correction methods for the quantification of perfusion from pseudo‐continuous arterial spin labeling MRI
  publication-title: Neuroimage
– volume: 64
  start-page: 715
  year: 2010
  end-page: 724
  article-title: Reduction of errors in ASL cerebral perfusion and arterial transit time maps using image de‐noising
  publication-title: Magn Reson Med
– start-page: 125
  year: 2010
  end-page: 137
– volume: 5
  start-page: 543
  issue: 9
  year: 2015
  end-page: 553
  article-title: Voxel‐wise functional Connectomics using arterial spin labeling functional magnetic resonance imaging: the role of denoising
  publication-title: Brain Connect
– start-page: 242
  year: 2020
  end-page: 248
– volume: 117
  start-page: 191
  year: 2015
  end-page: 201
  article-title: Reproducibility of multiphasepseudo‐continuous arterial spin labeling and the effect of post‐ processing analysis methods
  publication-title: Neuroimage
– start-page: 2472
  year: 2018
  end-page: 2481
  article-title: Residual dense network for image superresolution
  publication-title: Proc IEEE Conf Comput Vis Pattern Recogn
– volume: 58
  year: 2021
  article-title: Deep‐ASL enhancement technique in arterial spin labeling MRI‐ a novel approach for the error reduction of partial volume correction technique with linear regression algorithm
  publication-title: J Comput Sci
– volume: 157
  start-page: 81
  year: 2017
  end-page: 96
  article-title: Spatio‐temporal TGV denoising for ASL perfusion imaging
  publication-title: Neuroimage
– volume: 116
  start-page: 102
  year: 2014
  end-page: 116
  article-title: Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia
  publication-title: Magn Reson Med
– volume: 40
  start-page: 383
  year: 1998
  end-page: 396
  article-title: A general kinetic model for quantitative perfusion imaging with arterial spin labeling
  publication-title: Magn Reson Med
– volume: 7623
  start-page: 76233B
  year: 2010
  article-title: Improving arterial spin labeling by temporal filtering, SPIE medical imaging
  publication-title: Int Soc Optics Photon
– start-page: 498
  year: 2015
  end-page: 502
– volume: 309
  start-page: 121
  year: 2018
  end-page: 131
  article-title: Spatially adaptive unsupervised multispectral nonlocal filtering for improved cerebral blood flow mapping using arterial spin labeling magnetic resonance imaging
  publication-title: J Neurosci Methods
– year: 2022
– year: 2020
– volume: 20
  start-page: 62
  year: 2010
  end-page: 70
  article-title: Arterial spin labeling at ultra‐high field: all that glitters is not gold
  publication-title: Int J Imaging Syst Technol
– volume: 41
  issue: 5
  year: 2020
  article-title: A comprehensive guideline for bland‐Altman and intra class correlation calculations to properly compare two methods of measurement and interpret findings
  publication-title: Physiol Meas
– start-page: 2261
  year: 2017
  end-page: 2269
– start-page: 2472
  year: 2018
  end-page: 2481
  article-title: Residual dense network for image super‐resolution
  publication-title: IEEE/CVF Conf Comput Vis Pattern Recogn
– volume: 30
  start-page: 1409
  issue: 10
  year: 2012
  end-page: 1415
  article-title: Improving cerebral blood flow quantification for arterial spin labeled perfusion MRI by removing residual motion artifacts and global signal fluctuations
  publication-title: Magn Reson Imaging
– volume: 66
  start-page: 662
  year: 2013
  end-page: 671
  article-title: Comparison of 2D and 3D single‐shot ASL perfusion fMRI sequences
  publication-title: Neuroimage
– volume: 25
  start-page: 141
  issue: 2
  year: 2015
  end-page: 151
  article-title: Understanding bland Altman analysis
  publication-title: Biochem Med
– year: 2017
– start-page: 21
  year: 2020
– ident: e_1_2_9_45_1
  doi: 10.1016/j.neuroimage.2017.08.072
– ident: e_1_2_9_14_1
  doi: 10.1089/brain.2014.0290
– ident: e_1_2_9_7_1
  doi: 10.1016/j.neuroimage.2012.10.087
– ident: e_1_2_9_42_1
  doi: 10.1109/ACCTHPA49271.2020.9213194
– ident: e_1_2_9_24_1
  doi: 10.1016/j.jocs.2021.101546
– ident: e_1_2_9_52_1
  doi: 10.1016/j.knosys.2021.106949
– ident: e_1_2_9_40_1
  doi: 10.1002/jmri.27255
– ident: e_1_2_9_21_1
  doi: 10.1002/jmri.24918
– ident: e_1_2_9_2_1
  doi: 10.1148/radiol.2503081497
– ident: e_1_2_9_38_1
– volume: 116
  start-page: 102
  year: 2014
  ident: e_1_2_9_5_1
  article-title: Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia
  publication-title: Magn Reson Med
– ident: e_1_2_9_35_1
– ident: e_1_2_9_8_1
  doi: 10.1002/ima.20218
– ident: e_1_2_9_47_1
  doi: 10.1088/1361‐6579/ab86d6
– ident: e_1_2_9_13_1
  doi: 10.1117/12.843960
– ident: e_1_2_9_46_1
  doi: 10.2307/2532051
– ident: e_1_2_9_31_1
  doi: 10.1109/CVPR.2018.00262
– ident: e_1_2_9_41_1
– ident: e_1_2_9_49_1
– ident: e_1_2_9_16_1
  doi: 10.1016/j.neuroimage.2017.05.054
– ident: e_1_2_9_33_1
– start-page: 2472
  year: 2018
  ident: e_1_2_9_30_1
  article-title: Residual dense network for image super‐resolution
  publication-title: IEEE/CVF Conf Comput Vis Pattern Recogn
– ident: e_1_2_9_12_1
  doi: 10.1002/mrm.22319
– ident: e_1_2_9_27_1
  doi: 10.1016/j.neunet.2020.07.025
– ident: e_1_2_9_32_1
  doi: 10.1109/CVPRW.2017.154
– ident: e_1_2_9_48_1
  doi: 10.11613/BM.2015.015
– ident: e_1_2_9_9_1
  doi: 10.1016/j.neuroimage.2006.01.026
– ident: e_1_2_9_19_1
  doi: 10.1016/j.mri.2014.01.016
– ident: e_1_2_9_18_1
  doi: 10.1016/j.jneumeth.2018.08.018
– ident: e_1_2_9_11_1
  doi: 10.1007/s10334‐010‐0209‐8
– ident: e_1_2_9_3_1
  doi: 10.1073/pnas.89.1.212
– ident: e_1_2_9_17_1
  doi: 10.1016/j.jneumeth.2017.11.017
– ident: e_1_2_9_43_1
  doi: 10.1002/mrm.21670
– ident: e_1_2_9_15_1
  doi: 10.1109/ISBI.2015.7163920
– ident: e_1_2_9_22_1
  doi: 10.1016/j.neuroimage.2015.05.048
– ident: e_1_2_9_36_1
  doi: 10.1016/j.mri.2020.01.005
– volume-title: Statistical Parametric Mapping (SPM12) [Computer Software]
  year: 2020
  ident: e_1_2_9_50_1
– ident: e_1_2_9_4_1
  doi: 10.1002/mrm.1910230106
– ident: e_1_2_9_44_1
  doi: 10.1002/mrm.22641
– volume: 287
  year: 2017
  ident: e_1_2_9_34_1
  article-title: Improving arterial spin labeling by using deep learning
  publication-title: Radiology
– ident: e_1_2_9_23_1
  doi: 10.1002/jmri.25436
– ident: e_1_2_9_28_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_9_39_1
  doi: 10.1117/12.2549765
– ident: e_1_2_9_51_1
  doi: 10.1016/j.mri.2007.07.003
– ident: e_1_2_9_20_1
  doi: 10.1016/j.mri.2012.05.004
– ident: e_1_2_9_37_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_9_26_1
– ident: e_1_2_9_25_1
  doi: 10.1109/TPAMI.2015.2439281
– ident: e_1_2_9_29_1
  doi: 10.1109/CVPR.2017.243
– ident: e_1_2_9_10_1
  doi: 10.1002/jmri.21721
– ident: e_1_2_9_6_1
  doi: 10.1002/mrm.1910400308
SSID ssj0011505
Score 2.336767
Snippet Arterial spin labeling (ASL) is a non‐invasive MRI technique widely used to measure cerebral blood flow (CBF), but it suffers from poor SNR, requiring the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Alzheimer's disease
arterial spin labeling
Blood flow
cerebral blood flow
Data augmentation
Datasets
densely connected residual network
dilated convolution
Image acquisition
Image processing
Image reconstruction
Labeling
Labels
Magnetic resonance imaging
Medical imaging
Outliers (statistics)
signal‐to‐noise ratio
Smoothing
Title Dual independent pathway‐densely connected residual network with dilated convolution‐based arterial spin labeling MRI image reconstruction with minimum label‐control pairs
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.23040
https://www.proquest.com/docview/2987026467
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSuRAFL2IIswsxtcM9vigGFy4iXZXKi9ctY9GBWchCi4GQr1agpqRSTeiKz_BX_GX_BLvrUriA4TBTUhIVVFJ3Vt1bnHqXIA1ztNI214ciF6ClzAWQRYOVSCHpL4WayG1Y1v8jvdPxeFZdDYBW81ZGK8P0W64kWe4-ZocXKpq80U0tCDZIAzGKV4nrhYBouNWOoqAjqMvpqRAKaKkURXq8s225tu16AVgvoapbp0ZzMCfpoeeXnKxMR6pDX33Trzxk58wC99q_Mn63mDmYMKW8_D1lSrhPEw7VqiuFuBxd4xlizZT7ohRAuMbeft0_4CPlb28ZZqYMhpxK8PA3Z3sYqWnljPa42WmuJT0lujttZljbVo8DXN8UnQAVl0XJUN7dIfj2dHxAcNOn1vmwvVW4tY3SGIoV-MrXxybqsn22LXiX_UdTgd7Jzv7QZ3jIdCUPy-ItOAmkTiv2G7Gu6kVqbG6OzQKgUOI4VuotbG4iHJrlTQ66pnMYCUdysSEKg1_wGT5t7SLwIRUCEd0FHGVCkUnfo0dplliUs1FHKoO_GpGO7_2Uh65F23mOT7lbiQ6sNzYQV57c5XzDGc1RI5x0oF1N6AfN5AfHPXdzc__L7oEXzhiJU9tW4ZJ_K12BbHOSK3CVH97d3uw6oz7GWnaA0A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSuRAFL2IMowudHwMtqNjIbOYTbS7UnmBG_FBt9ouRMGNhNSjJYxGMd2IrvyE-RV_yS_x3qokOgOCuAkJqSoqqXurzi1OnQvwi_M4UKYTeqIT4cUPhZf4A-llA1JfC5XIlGVbHIXdU7F_FpyNwWZ9FsbpQzQbbuQZdr4mB6cN6Y1X1dCcdIMwGseAfYIyepNy_s5xIx5FUMcSGGPSoBRBVOsKtflGU_Xf1egVYr4Fqnal2ZuB87qPjmDyZ300lOvq4T_5xs9-xDeYriAo23I2MwtjppiDqTfChHPwxRJDVTkPTzsjLJs3yXKHjHIY32X3z49_8bE0l_dMEVlGIXRlGLvbw12scOxyRtu8TOeXGb0lhntl6Vib1k_NLKUUfYCVN3nB0CTt-XjWP-4x7PSFYTZib1RuXYOkh3I1unLFsamKb49dy2_LBTjd2z3Z7npVmgdPUQo9L1CC6yjDqcW0E96OjYi1Ue2BlogdfIzgfKW0wXWUGyMzrYKOTjRWUn4WaV_G_ncYL64LswhMZBIRiQoCLmMh6dCvNoM4iXSsuAh92YK1erjTG6fmkTrdZp7iU2pHogXLtSGklUOXKU9wYkPwGEYt-G1H9P0G0l5_y94sfbzoKnztnvQP08Pe0cEPmOQInRzTbRnG8RebFYQ-Q_nTWvgLTaQF6g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFD6I4qIP3tbF8RpkH3ypdtL0hk_iODjeWGQFHxZKc-lS1DrYGUSf_An-Ff-Sv8STpK0XEMSX0tIkpM05yXfCl-8A_KY08oVqBw5rh3jxAubEXsadNNPqa4FgqTBsi5Ng_4wdnPvnI7Bdn4Wx-hDNhpv2DDNfawfvy2zrVTQ017JBGIxjvD7GAjfWeRs6p412lEY6hr8YaQlK5oe1rJBLt5qq7xejV4T5FqeahaY7Df_qLlp-ycXmcMA3xf0H9cZvfsMMTFUAlOxYi5mFEVXMweQbWcI5GDe0UFH-hKfOEMvmTarcAdEZjG_Tu-eHR3ws1eUdEZoqIxC4EozczdEuUlhuOdGbvETml6l-q_ntlZ1jbb16SmIIpegBpOznBUGDNKfjyfFpj2Cn_yti4vVG49Y2qNVQroZXtjg2VbHtsWv5TTkPZ929v7v7TpXkwRE6gZ7jC0ZlmOLEotyYupFikVTCzSRH5OBh_OYJIRWuolQpnkrht2UssZLw0lB6PPJ-wWhxXagFICzliEeE71MeMa6P_EqVRXEoI0FZ4PEWrNejnfStlkdiVZtpgk-JGYkWLNd2kFTuXCY0xmkNoWMQtmDDDOjnDSS94x1zs_j1omvw40-nmxz1Tg6XYIIibrI0t2UYxT-sVhD3DPiqse8XUfMEmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+independent+pathway%E2%80%90densely+connected+residual+network+with+dilated+convolution%E2%80%90based+arterial+spin+labeling+MRI+image+reconstruction+with+minimum+label%E2%80%90control+pairs&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Shyna%2C+A&rft.au=Amma%2C+C+Ushadevi&rft.au=Ansamma%2C+John&rft.au=Kesavadas%2C+C&rft.date=2024-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=34&rft.issue=2&rft_id=info:doi/10.1002%2Fima.23040&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon