Metal and metal-oxide nanoparticles inducing changes in reactive oxygen species levels and enzymes of oxidative stress: a review focused on daphnids
In recent years, the number of publications on the effects of nanoparticles on freshwater organisms has increased. The Daphnia genus is widely used in ecotoxicological studies as a model organism for evaluating the environmental impact of nanomaterials. In this context, enzymatic biomarkers have bee...
Saved in:
Published in | Ecotoxicology (London) |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
25.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, the number of publications on the effects of nanoparticles on freshwater organisms has increased. The Daphnia genus is widely used in ecotoxicological studies as a model organism for evaluating the environmental impact of nanomaterials. In this context, enzymatic biomarkers have been increasingly adopted to understand the potential of metallic nanoparticles (MNPs) to induce oxidative stress. The present paper aims to synthesize the current knowledge on oxidative stress responses in daphnids exposed to metallic and metal-oxide MNPs, with a particular focus on enzymatic biomarkers (SOD, CAT, GPx, GR and GST). Specifically, we aimed to identify patterns of enzymatic responses promoted by the exposure of Daphnia species to MNPs and highlight research deficits that need to be addressed in further studies. A literature survey was performed in April 2025. This survey found 322 studies, which were screened, resulting in 36 studies included in this review. Based on our literature survey, Daphnia magna is the most commonly used daphnid to evaluate oxidative stress promoted by MNPs. Titanium-based nanomaterials have been the most studied MNPs, followed by silver and zinc. We observed that the enzymatic activity pattern is not directly associated with the metallic composition of the nanoparticle. We discuss how the chemical composition can reflect the specific toxicity of MNPs, although environmental, abiotic, and physicochemical factors can have a greater influence. Enzymatic biomarkers provide valuable information on the extent and nature of the biological effects of exposure to metallic and metal-oxide nanoparticles. |
---|---|
AbstractList | In recent years, the number of publications on the effects of nanoparticles on freshwater organisms has increased. The Daphnia genus is widely used in ecotoxicological studies as a model organism for evaluating the environmental impact of nanomaterials. In this context, enzymatic biomarkers have been increasingly adopted to understand the potential of metallic nanoparticles (MNPs) to induce oxidative stress. The present paper aims to synthesize the current knowledge on oxidative stress responses in daphnids exposed to metallic and metal-oxide MNPs, with a particular focus on enzymatic biomarkers (SOD, CAT, GPx, GR and GST). Specifically, we aimed to identify patterns of enzymatic responses promoted by the exposure of Daphnia species to MNPs and highlight research deficits that need to be addressed in further studies. A literature survey was performed in April 2025. This survey found 322 studies, which were screened, resulting in 36 studies included in this review. Based on our literature survey, Daphnia magna is the most commonly used daphnid to evaluate oxidative stress promoted by MNPs. Titanium-based nanomaterials have been the most studied MNPs, followed by silver and zinc. We observed that the enzymatic activity pattern is not directly associated with the metallic composition of the nanoparticle. We discuss how the chemical composition can reflect the specific toxicity of MNPs, although environmental, abiotic, and physicochemical factors can have a greater influence. Enzymatic biomarkers provide valuable information on the extent and nature of the biological effects of exposure to metallic and metal-oxide nanoparticles.In recent years, the number of publications on the effects of nanoparticles on freshwater organisms has increased. The Daphnia genus is widely used in ecotoxicological studies as a model organism for evaluating the environmental impact of nanomaterials. In this context, enzymatic biomarkers have been increasingly adopted to understand the potential of metallic nanoparticles (MNPs) to induce oxidative stress. The present paper aims to synthesize the current knowledge on oxidative stress responses in daphnids exposed to metallic and metal-oxide MNPs, with a particular focus on enzymatic biomarkers (SOD, CAT, GPx, GR and GST). Specifically, we aimed to identify patterns of enzymatic responses promoted by the exposure of Daphnia species to MNPs and highlight research deficits that need to be addressed in further studies. A literature survey was performed in April 2025. This survey found 322 studies, which were screened, resulting in 36 studies included in this review. Based on our literature survey, Daphnia magna is the most commonly used daphnid to evaluate oxidative stress promoted by MNPs. Titanium-based nanomaterials have been the most studied MNPs, followed by silver and zinc. We observed that the enzymatic activity pattern is not directly associated with the metallic composition of the nanoparticle. We discuss how the chemical composition can reflect the specific toxicity of MNPs, although environmental, abiotic, and physicochemical factors can have a greater influence. Enzymatic biomarkers provide valuable information on the extent and nature of the biological effects of exposure to metallic and metal-oxide nanoparticles. In recent years, the number of publications on the effects of nanoparticles on freshwater organisms has increased. The Daphnia genus is widely used in ecotoxicological studies as a model organism for evaluating the environmental impact of nanomaterials. In this context, enzymatic biomarkers have been increasingly adopted to understand the potential of metallic nanoparticles (MNPs) to induce oxidative stress. The present paper aims to synthesize the current knowledge on oxidative stress responses in daphnids exposed to metallic and metal-oxide MNPs, with a particular focus on enzymatic biomarkers (SOD, CAT, GPx, GR and GST). Specifically, we aimed to identify patterns of enzymatic responses promoted by the exposure of Daphnia species to MNPs and highlight research deficits that need to be addressed in further studies. A literature survey was performed in April 2025. This survey found 322 studies, which were screened, resulting in 36 studies included in this review. Based on our literature survey, Daphnia magna is the most commonly used daphnid to evaluate oxidative stress promoted by MNPs. Titanium-based nanomaterials have been the most studied MNPs, followed by silver and zinc. We observed that the enzymatic activity pattern is not directly associated with the metallic composition of the nanoparticle. We discuss how the chemical composition can reflect the specific toxicity of MNPs, although environmental, abiotic, and physicochemical factors can have a greater influence. Enzymatic biomarkers provide valuable information on the extent and nature of the biological effects of exposure to metallic and metal-oxide nanoparticles. |
Author | de Torresi, Susana Inés Córdoba Queiroz, Lucas Gonçalves |
Author_xml | – sequence: 1 givenname: Lucas Gonçalves orcidid: 0000-0003-3305-1042 surname: Queiroz fullname: Queiroz, Lucas Gonçalves – sequence: 2 givenname: Susana Inés Córdoba orcidid: 0000-0003-3290-172X surname: de Torresi fullname: de Torresi, Susana Inés Córdoba |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40560363$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kctuFDEQRS0URCaBH2CBvGTTUO3nmB2KwkMKygbWlseunhh12027e5LJd_DB8cwEFqUq3Tq6UtW9IGcpJyTkbQsfWgD9sbSghGqAyVoGdKNfkFUrNW84tPqMrMAo3hhm2Dm5KOU3ABgt4BU5FyAVcMVX5O8PnF1PXQp0OExNfogBaXIpj26ao--x0JjC4mPaUn_n0vYo0Amdn-MOaX7YbzHRMqKPddXjDvtyNMT0uB-qlDt6cHVHvMwTlvKJuuqwi3hPu-yXgoHmRIMb71IM5TV52bm-4Jvnfkl-fbn-efWtubn9-v3q803jmVRz0xnHNsLXmzqFsBYaN9jp1jGUreNCK7YOa6lN_ZUIQWycMgIFMCVxHbSU_JK8P_mOU_6zYJntEIvHvncJ81IsZ4wbLgXwir57RpfNgMGOUxzctLf_PlkBdgL8lEuZsPuPtGAPcdlTXLbGZY9xWc2fAL5Tibo |
Cites_doi | 10.1038/srep11121 10.1016/j.scitotenv.2022.153307 10.1016/S0300-483X(00)00231-6 10.1016/j.aquatox.2015.11.019 10.1016/j.cbpc.2021.109080 10.1016/j.aquatox.2020.105404 10.1186/s13227-022-00199-0 10.1080/03601230600964316 10.1104/pp.110.166181 10.1038/s41598-022-06279-4 10.1016/B978-0-12-822401-4.00037-4 10.1007/s44169-023-00046-w 10.1016/j.etap.2023.104078 10.1016/j.jinorgbio.2019.110699 10.1897/06-515R.1 10.1007/s11051-013-1692-4 10.1016/j.cbpc.2017.01.005 10.1016/j.envpol.2021.118726 10.1016/0167-4838(96)00043-X 10.1016/j.cotox.2020.05.006 10.1371/journal.pone.0214398 10.1016/j.envpol.2008.11.010 10.1007/s00204-023-03562-9 10.1007/s11270-016-3206-3 10.1038/414899a 10.1016/j.jhazmat.2025.137115 10.1007/s44246-022-00013-5 10.4194/1303-2712-v19_7_08 10.1039/C5CP00831J 10.1016/B978-0-12-805417-8.00004-4 10.1039/C9EN00231F 10.1039/D3EN00129F 10.1039/C9RA03513C 10.1039/C2CS35375J 10.1016/j.redox.2012.12.004 10.1039/D3NJ00383C 10.1080/17435390.2021.1936254 10.1016/j.scitotenv.2020.143038 10.3390/environments9020026 10.1016/j.scitotenv.2022.156079 10.1016/B978-0-12-803581-8.11585-1 10.1016/j.impact.2024.100515 10.1016/j.aquatox.2022.106176 10.3390/nano9101365 10.1039/D3CP01490H 10.1016/j.aquatox.2018.02.002 10.1039/9781782622208-00001 10.1016/j.trac.2023.116978 10.3390/ijms18010120 10.1016/j.cbi.2014.06.005 10.1080/10715762.2020.1851027 10.1155/2012/398720 10.1016/j.envpol.2019.113597 10.1016/j.aquatox.2014.03.011 10.1016/j.scitotenv.2024.176592 10.1016/j.jhazmat.2021.126112 10.1016/j.watres.2016.08.060 10.1039/C6CS00636A 10.1007/s11356-015-5201-4 10.1039/D2EN00622G 10.3390/ijerph120505581 10.1007/s11051-014-2559-z 10.1039/D1NH00260K 10.1039/c2ee21818f 10.1002/etc.5688 10.1016/j.toxlet.2011.05.1018 10.1039/C9EN01284B 10.1002/etc.1916 10.1039/C4CS00392F 10.1016/j.tibs.2017.08.008 10.1016/j.chemosphere.2021.132941 10.1016/j.jhazmat.2022.129303 10.3389/ftox.2023.1178482 10.1016/j.envpol.2015.10.035 10.1016/j.scitotenv.2010.01.041 10.1016/j.aquatox.2015.02.015 10.1021/es3011578 10.1039/C4RA13315C 10.1016/j.ajme.2017.09.001 10.1787/9789264069947-en 10.3390/nano6120222 10.1016/j.ecoenv.2018.06.054 10.1016/j.pdpdt.2020.101908 10.1039/C6EN00391E 10.1016/j.aquatox.2020.105517 10.3390/molecules28165979 10.1002/cssc.201100517 10.1186/1477-3155-12-5 10.1016/j.envres.2019.108987 10.1016/j.scitotenv.2023.161682 10.1016/j.scitotenv.2019.02.202 10.1016/j.watres.2019.01.055 10.1007/s10452-006-9050-6 10.1016/j.ecoenv.2017.10.042 10.1007/s00244-015-0165-4 10.1016/j.tice.2025.102748 |
ContentType | Journal Article |
Copyright | 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
Copyright_xml | – notice: 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1007/s10646-025-02907-7 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 1573-3017 |
ExternalDocumentID | 40560363 10_1007_s10646_025_02907_7 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo grantid: 2022/13146-2 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo grantid: 2018/13492-2 |
GroupedDBID | --- -~C .86 .VR 06D 0R~ 0VY 1N0 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67M 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACSTC ACZOJ ADBBV ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BENPR BGNMA BHPHI BSONS CITATION CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDH EIOEI EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y M7P MA- NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P PF0 PT4 PT5 QOK QOS R89 R9I RHV ROL RPX RRX RSV S16 S1Z S27 S3B SAP SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX VC2 W23 W48 WJK WK8 YLTOR Z45 ZMTXR ~A9 ~EX ~KM NPM 7X8 |
ID | FETCH-LOGICAL-c256t-f9a2b4c974f6e0847ebef71a2e51a347628d85790074dd4ba694e40265e8d7553 |
ISSN | 0963-9292 1573-3017 |
IngestDate | Fri Jul 11 16:59:43 EDT 2025 Thu Jun 26 01:52:39 EDT 2025 Sun Aug 03 02:38:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Daphnia spp Metallic nanoparticles Toxicity Sub-lethal effects Antioxidant enzymes |
Language | English |
License | 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c256t-f9a2b4c974f6e0847ebef71a2e51a347628d85790074dd4ba694e40265e8d7553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3305-1042 0000-0003-3290-172X |
PMID | 40560363 |
PQID | 3223935403 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3223935403 pubmed_primary_40560363 crossref_primary_10_1007_s10646_025_02907_7 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-25 |
PublicationDateYYYYMMDD | 2025-06-25 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Ecotoxicology (London) |
PublicationTitleAlternate | Ecotoxicology |
PublicationYear | 2025 |
References | OM Ighodaro (2907_CR33) 2018; 54 H Zhang (2907_CR96) 2019; 6 F Gottschalk (2907_CR30) 2015; 12 S Lekamge (2907_CR47) 2019; 14 D Ebert (2907_CR18) 2022; 13 J Kao (2907_CR38) 2013; 42 WH Fan (2907_CR21) 2012; 2012 RH Gottfredsen (2907_CR29) 2013; 1 H Ju (2907_CR36) 2024; 35 GA Dominguez (2907_CR16) 2015; 162 W Gao (2907_CR25) 2011; 205 TS Malatjie (2907_CR59) 2022; 247 J Gu (2907_CR31) 2022; 437 2907_CR1 SSS Sarma (2907_CR81) 2006; 41 DJ Nogueira (2907_CR68) 2020; 182 M Li (2907_CR49) 2025; 486 L Liu (2907_CR50) 2015; 5 S Liu (2907_CR51) 2019; 154 H-M Zhang (2907_CR97) 2014; 219 V Alekseev (2907_CR3) 2001; 414 L Gebicka (2907_CR26) 2019; 197 2907_CR79 R Dogra (2907_CR15) 2023; 10 K McNamara (2907_CR61) 2015; 17 A Tkaczyk (2907_CR86) 2021; 763 W Fan (2907_CR19) 2016; 105 S Villa (2907_CR91) 2020; 257 Z Liu (2907_CR53) 2022; 291 RTP da Silva (2907_CR11) 2020; 31 2907_CR69 A Stara (2907_CR85) 2019; 665 J Park (2907_CR71) 2022; 9 S Vesela (2907_CR90) 2007; 41 M Chen (2907_CR7) 2017; 42 AA Dayem (2907_CR12) 2017; 18 A Dhakshinamoorthy (2907_CR14) 2012; 5 JP Kehrer (2907_CR39) 2000; 149 X Zhou (2907_CR99) 2023; 160 V Galhano (2907_CR24) 2020; 220 MM Khin (2907_CR42) 2012; 5 G Qin (2907_CR74) 2015; 69 2907_CR72 Z Liu (2907_CR54) 2023; 261 BVC Oscar (2907_CR70) 2023; 10 2907_CR76 H Ma (2907_CR58) 2012; 31 P Sanpradit (2907_CR77) 2023; 869 F Nasser (2907_CR66) 2016; 6 R Cordiano (2907_CR9) 2023; 28 M Akagawa (2907_CR2) 2021; 55 S Schmid (2907_CR82) 2023; 42 R Klaper (2907_CR44) 2009; 157 2907_CR60 2907_CR62 2907_CR63 P Sanpradit (2907_CR78) 2020; 224 2907_CR45 V Galhano (2907_CR23) 2022; 839 2907_CR48 D Ebert (2907_CR17) 2005 JR Santos-Rasera (2907_CR80) 2022; 821 AA Keller (2907_CR40) 2013; 15 S Qi (2907_CR73) 2018; 148 OM Lardinois (2907_CR46) 1996; 1295 G Vale (2907_CR89) 2016; 170 M Khalid (2907_CR41) 2020; 20–21 R Cui (2907_CR10) 2018; 162 K Jomova (2907_CR35) 2023; 97 K Kansara (2907_CR37) 2022; 296 RA Gonçalves (2907_CR28) 2018; 197 CH Foyer (2907_CR22) 2011; 155 X Wang (2907_CR92) 2022; 1 2907_CR34 C Auría-Soro (2907_CR4) 2019; 9 AJ Wyrwoll (2907_CR94) 2016; 208 L Ulm (2907_CR88) 2015; 22 G Lu (2907_CR55) 2017; 228 G Morselli (2907_CR64) 2021; 6 AG Yisa (2907_CR95) 2023; 98 OS Wolfbeis (2907_CR93) 2015; 44 W Liu (2907_CR52) 2020; 7 T Zhou (2907_CR98) 2019; 9 LG Queiroz (2907_CR75) 2024; 954 L De Marchi (2907_CR13) 2017; 193 2907_CR27 W Fan (2907_CR20) 2012; 46 SO Shekaftik (2907_CR84) 2021; 15 B Ukhueduan (2907_CR87) 2022; 12 S Behzadi (2907_CR6) 2017; 46 F Başak (2907_CR5) 2025; 93 P Mwaanga (2907_CR65) 2014; 150 Y Lu (2907_CR57) 2021; 416 Z Clemente (2907_CR8) 2014; 16 TC Hoang (2907_CR32) 2007; 26 KT Kim (2907_CR43) 2010; 408 H Lu (2907_CR56) 2017; 4 L Shang (2907_CR83) 2014; 12 SB Nimse (2907_CR67) 2015; 5 |
References_xml | – volume: 5 year: 2015 ident: 2907_CR50 publication-title: Sci Rep. doi: 10.1038/srep11121 – volume: 821 year: 2022 ident: 2907_CR80 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.153307 – volume: 149 start-page: 43 year: 2000 ident: 2907_CR39 publication-title: Toxicology doi: 10.1016/S0300-483X(00)00231-6 – volume: 170 start-page: 162 year: 2016 ident: 2907_CR89 publication-title: Aquat Toxicol doi: 10.1016/j.aquatox.2015.11.019 – ident: 2907_CR72 doi: 10.1016/j.cbpc.2021.109080 – volume: 220 year: 2020 ident: 2907_CR24 publication-title: Aquat Toxicol doi: 10.1016/j.aquatox.2020.105404 – volume: 13 year: 2022 ident: 2907_CR18 publication-title: EvoDevo doi: 10.1186/s13227-022-00199-0 – volume: 41 start-page: 1417 year: 2006 ident: 2907_CR81 publication-title: J Environ Sci Health B doi: 10.1080/03601230600964316 – volume: 155 start-page: 93 year: 2011 ident: 2907_CR22 publication-title: Plant Physiol doi: 10.1104/pp.110.166181 – volume: 12 year: 2022 ident: 2907_CR87 publication-title: Sci Rep. doi: 10.1038/s41598-022-06279-4 – ident: 2907_CR60 doi: 10.1016/B978-0-12-822401-4.00037-4 – volume: 261 start-page: 23 year: 2023 ident: 2907_CR54 publication-title: Rev Environ Contam Toxicol doi: 10.1007/s44169-023-00046-w – volume: 98 year: 2023 ident: 2907_CR95 publication-title: Environ Toxicol Pharm doi: 10.1016/j.etap.2023.104078 – volume: 197 year: 2019 ident: 2907_CR26 publication-title: J Inorg Biochem doi: 10.1016/j.jinorgbio.2019.110699 – volume: 26 start-page: 1198 year: 2007 ident: 2907_CR32 publication-title: Environ Toxicol Chem doi: 10.1897/06-515R.1 – volume: 15 start-page: 1692 year: 2013 ident: 2907_CR40 publication-title: J Nanopart Res doi: 10.1007/s11051-013-1692-4 – volume: 193 start-page: 50 year: 2017 ident: 2907_CR13 publication-title: Comp Biochem Physiol C: Toxicol Pharm doi: 10.1016/j.cbpc.2017.01.005 – volume: 296 year: 2022 ident: 2907_CR37 publication-title: Environ Pollut doi: 10.1016/j.envpol.2021.118726 – volume: 1295 start-page: 222 year: 1996 ident: 2907_CR46 publication-title: Biochim Biophys Acta doi: 10.1016/0167-4838(96)00043-X – volume: 20–21 start-page: 55 year: 2020 ident: 2907_CR41 publication-title: Curr Opin Toxicol doi: 10.1016/j.cotox.2020.05.006 – volume: 14 start-page: e0214398 year: 2019 ident: 2907_CR47 publication-title: PLoS ONE doi: 10.1371/journal.pone.0214398 – volume: 157 start-page: 1152 year: 2009 ident: 2907_CR44 publication-title: Environ Pollut doi: 10.1016/j.envpol.2008.11.010 – volume: 97 start-page: 2499 year: 2023 ident: 2907_CR35 publication-title: Arch Toxicol doi: 10.1007/s00204-023-03562-9 – volume: 228 start-page: 18 year: 2017 ident: 2907_CR55 publication-title: Water Air Soil Pollut doi: 10.1007/s11270-016-3206-3 – volume: 414 start-page: 899 year: 2001 ident: 2907_CR3 publication-title: Nature doi: 10.1038/414899a – volume: 486 year: 2025 ident: 2907_CR49 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2025.137115 – volume: 1 start-page: 13 year: 2022 ident: 2907_CR92 publication-title: Carbon Res doi: 10.1007/s44246-022-00013-5 – ident: 2907_CR79 doi: 10.4194/1303-2712-v19_7_08 – volume: 17 start-page: 27981 year: 2015 ident: 2907_CR61 publication-title: Phys Chem Chem Phys doi: 10.1039/C5CP00831J – ident: 2907_CR27 doi: 10.1016/B978-0-12-805417-8.00004-4 – volume: 6 start-page: 1754 year: 2019 ident: 2907_CR96 publication-title: Environ Sci Nano doi: 10.1039/C9EN00231F – volume: 10 start-page: 2399 year: 2023 ident: 2907_CR15 publication-title: Environ Sci Nano doi: 10.1039/D3EN00129F – volume: 9 start-page: 24617 year: 2019 ident: 2907_CR98 publication-title: RSC Adv doi: 10.1039/C9RA03513C – volume: 42 start-page: 2654 year: 2013 ident: 2907_CR38 publication-title: Chem Soc Rev doi: 10.1039/C2CS35375J – volume: 1 start-page: 24 year: 2013 ident: 2907_CR29 publication-title: Redox Biol doi: 10.1016/j.redox.2012.12.004 – ident: 2907_CR48 doi: 10.1039/D3NJ00383C – ident: 2907_CR1 – volume: 15 start-page: 850 year: 2021 ident: 2907_CR84 publication-title: Nanotoxicology doi: 10.1080/17435390.2021.1936254 – volume: 763 year: 2021 ident: 2907_CR86 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.143038 – volume: 9 start-page: 26 year: 2022 ident: 2907_CR71 publication-title: Environments doi: 10.3390/environments9020026 – volume: 839 year: 2022 ident: 2907_CR23 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.156079 – ident: 2907_CR63 doi: 10.1016/B978-0-12-803581-8.11585-1 – volume: 35 year: 2024 ident: 2907_CR36 publication-title: NanoImpact doi: 10.1016/j.impact.2024.100515 – volume: 247 year: 2022 ident: 2907_CR59 publication-title: Aquat Toxicol doi: 10.1016/j.aquatox.2022.106176 – volume: 9 start-page: 1365 year: 2019 ident: 2907_CR4 publication-title: Nanomaterials doi: 10.3390/nano9101365 – ident: 2907_CR62 doi: 10.1039/D3CP01490H – volume: 197 start-page: 32 year: 2018 ident: 2907_CR28 publication-title: Aquat Toxicol doi: 10.1016/j.aquatox.2018.02.002 – ident: 2907_CR45 doi: 10.1039/9781782622208-00001 – volume: 160 year: 2023 ident: 2907_CR99 publication-title: TrAC Trends Anal Chem doi: 10.1016/j.trac.2023.116978 – volume: 18 start-page: 120 year: 2017 ident: 2907_CR12 publication-title: Int J Mol Sci doi: 10.3390/ijms18010120 – volume: 219 start-page: 168 year: 2014 ident: 2907_CR97 publication-title: Chem Biol Interact doi: 10.1016/j.cbi.2014.06.005 – volume: 55 start-page: 307 year: 2021 ident: 2907_CR2 publication-title: Free Radic Res doi: 10.1080/10715762.2020.1851027 – volume: 2012 start-page: 1 year: 2012 ident: 2907_CR21 publication-title: J Nanomater doi: 10.1155/2012/398720 – volume: 257 year: 2020 ident: 2907_CR91 publication-title: Environ Pollut doi: 10.1016/j.envpol.2019.113597 – volume: 150 start-page: 201 year: 2014 ident: 2907_CR65 publication-title: Aquat Toxicol doi: 10.1016/j.aquatox.2014.03.011 – volume: 954 year: 2024 ident: 2907_CR75 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2024.176592 – volume: 416 year: 2021 ident: 2907_CR57 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.126112 – volume: 105 start-page: 129 year: 2016 ident: 2907_CR19 publication-title: Water Res doi: 10.1016/j.watres.2016.08.060 – volume: 46 start-page: 4218 year: 2017 ident: 2907_CR6 publication-title: Chem Soc Rev doi: 10.1039/C6CS00636A – volume: 22 start-page: 19990 year: 2015 ident: 2907_CR88 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-015-5201-4 – volume: 10 start-page: 1190 year: 2023 ident: 2907_CR70 publication-title: Environ Sci Nano doi: 10.1039/D2EN00622G – volume: 12 start-page: 5581 year: 2015 ident: 2907_CR30 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph120505581 – volume: 16 start-page: 2559 year: 2014 ident: 2907_CR8 publication-title: J Nanopart Res doi: 10.1007/s11051-014-2559-z – volume: 6 start-page: 676 year: 2021 ident: 2907_CR64 publication-title: Nanoscale Horiz doi: 10.1039/D1NH00260K – volume: 5 start-page: 8075 year: 2012 ident: 2907_CR42 publication-title: Energy Environ Sci doi: 10.1039/c2ee21818f – volume: 42 start-page: 1806 year: 2023 ident: 2907_CR82 publication-title: Environ Toxicol Chem doi: 10.1002/etc.5688 – volume: 205 start-page: 86 year: 2011 ident: 2907_CR25 publication-title: Toxicol Lett doi: 10.1016/j.toxlet.2011.05.1018 – volume: 7 start-page: 1507 year: 2020 ident: 2907_CR52 publication-title: Environ Sci Nano doi: 10.1039/C9EN01284B – volume: 31 start-page: 2099 year: 2012 ident: 2907_CR58 publication-title: Environ Toxicol Chem doi: 10.1002/etc.1916 – volume: 44 start-page: 4743 year: 2015 ident: 2907_CR93 publication-title: Chem Soc Rev doi: 10.1039/C4CS00392F – volume: 42 start-page: 914 year: 2017 ident: 2907_CR7 publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2017.08.008 – volume: 291 year: 2022 ident: 2907_CR53 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132941 – volume: 437 year: 2022 ident: 2907_CR31 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2022.129303 – ident: 2907_CR76 doi: 10.3389/ftox.2023.1178482 – volume: 208 start-page: 859 year: 2016 ident: 2907_CR94 publication-title: Environ Pollut doi: 10.1016/j.envpol.2015.10.035 – volume: 408 start-page: 2268 year: 2010 ident: 2907_CR43 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2010.01.041 – volume: 162 start-page: 1 year: 2015 ident: 2907_CR16 publication-title: Aquat Toxicol doi: 10.1016/j.aquatox.2015.02.015 – volume: 46 start-page: 10255 year: 2012 ident: 2907_CR20 publication-title: Environ Sci Technol doi: 10.1021/es3011578 – volume: 5 start-page: 27986 year: 2015 ident: 2907_CR67 publication-title: RSC Adv doi: 10.1039/C4RA13315C – volume: 54 start-page: 287 year: 2018 ident: 2907_CR33 publication-title: Alexandria J Med doi: 10.1016/j.ajme.2017.09.001 – ident: 2907_CR69 doi: 10.1787/9789264069947-en – volume: 6 start-page: 222 year: 2016 ident: 2907_CR66 publication-title: Nanomaterials doi: 10.3390/nano6120222 – volume: 162 start-page: 63 year: 2018 ident: 2907_CR10 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2018.06.054 – volume: 31 year: 2020 ident: 2907_CR11 publication-title: Photodiagnosis Photodyn Ther doi: 10.1016/j.pdpdt.2020.101908 – volume: 4 start-page: 406 year: 2017 ident: 2907_CR56 publication-title: Environ Sci Nano doi: 10.1039/C6EN00391E – volume: 224 year: 2020 ident: 2907_CR78 publication-title: Aquat Toxicol doi: 10.1016/j.aquatox.2020.105517 – volume: 28 start-page: 5979 year: 2023 ident: 2907_CR9 publication-title: Molecules doi: 10.3390/molecules28165979 – volume: 5 start-page: 46 year: 2012 ident: 2907_CR14 publication-title: ChemSusChem doi: 10.1002/cssc.201100517 – volume: 12 year: 2014 ident: 2907_CR83 publication-title: J Nanobiotechnology doi: 10.1186/1477-3155-12-5 – volume: 182 year: 2020 ident: 2907_CR68 publication-title: Environ Res doi: 10.1016/j.envres.2019.108987 – volume: 869 year: 2023 ident: 2907_CR77 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2023.161682 – ident: 2907_CR34 – volume: 665 start-page: 718 year: 2019 ident: 2907_CR85 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.02.202 – volume: 154 start-page: 162 year: 2019 ident: 2907_CR51 publication-title: Water Res doi: 10.1016/j.watres.2019.01.055 – volume: 41 start-page: 67 year: 2007 ident: 2907_CR90 publication-title: Aquat Ecol doi: 10.1007/s10452-006-9050-6 – volume: 148 start-page: 352 year: 2018 ident: 2907_CR73 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2017.10.042 – volume: 69 start-page: 494 year: 2015 ident: 2907_CR74 publication-title: Arch Environ Contam Toxicol doi: 10.1007/s00244-015-0165-4 – volume: 93 year: 2025 ident: 2907_CR5 publication-title: Tissue Cell doi: 10.1016/j.tice.2025.102748 – volume-title: Ecology, epidemiology, and evolution of parasitism in Daphnia year: 2005 ident: 2907_CR17 |
SSID | ssj0009740 |
Score | 2.4233973 |
SecondaryResourceType | review_article online_first |
Snippet | In recent years, the number of publications on the effects of nanoparticles on freshwater organisms has increased. The Daphnia genus is widely used in... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
Title | Metal and metal-oxide nanoparticles inducing changes in reactive oxygen species levels and enzymes of oxidative stress: a review focused on daphnids |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40560363 https://www.proquest.com/docview/3223935403 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBVb-zIYY9_NvtBgb8bDiT-zt6Y0KyPNGCSQNyPLMgu0dkns0fZ37AfvSFe203WDbi9GKFgmOoere6V7rhj7kMdhWAwRlngKDA48ATuYqMwNx3mYJAJLiMkmPJ1HJ8vgyypc9Sf4Rl1SZx_l9R91Jf-DKvqAq1bJ_gOy3aDoQBv44gmE8bwTxqeqtlL_c91yq8t1rpxSlIiEbcKbg5i7kUZZa3QEWxKwCGPmnOryCoM7Wm6JiNk50xlEVLRZlddX51SQVo9K5cFJWEL6aKt5KSrZbOG0gkS5uPherkk43G32y6rG-5IqPe1cH9LtP3xr1HpTmW3smb6AzfmMn_XpfSzOfvQJjvhfC3ORyLrLJRIwbnTOv3WOdGPib3KYp92NjFGoE65I9Nza3th3YW9o_VW3-25Ze69VP0eBzqTWUnPE-m7cr23tef78azpdzmbp4ni1uM_2R4gpYBT3D6eTybyv0RyTfrb9ptVYWaXlb9-46cf8JTgxTsriMXtkowt-SOA_YfdU-ZQ9pK1ZToqzZ-ynoQ0HynyHNvwGbXhLG25pgw7e0oYTbbilDSfamAEtbXhV8I42nGjziQtOpOGWNLwqeUua52w5PV4cnbj2cg5Xwkuu3WIsRlkgMWdFpDz4OLAGRTwUIxUOhR9gjU3yJIzH2kfN8yAT0ThQASL-UCXaQPgv2F5ZleqAcU-O_LEXSU9ikmWW64JBSviF8PUtWrkaMKed6vSCarCkfbVtDUwKYFIDTBoP2PsWjRSmUp9_iVJVzTbF2qWF6IHnD9hLgqkbD3FLpHMaXt3h7dfsQc_fN2yv3jTqLVzTOntnKfULkGGP6g |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+and+metal-oxide+nanoparticles+inducing+changes+in+reactive+oxygen+species+levels+and+enzymes+of+oxidative+stress%3A+a+review+focused+on+daphnids&rft.jtitle=Ecotoxicology+%28London%29&rft.au=Queiroz%2C+Lucas+Gon%C3%A7alves&rft.au=de+Torresi%2C+Susana+In%C3%A9s+C%C3%B3rdoba&rft.date=2025-06-25&rft.issn=1573-3017&rft.eissn=1573-3017&rft_id=info:doi/10.1007%2Fs10646-025-02907-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0963-9292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0963-9292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0963-9292&client=summon |