Metal and metal-oxide nanoparticles inducing changes in reactive oxygen species levels and enzymes of oxidative stress: a review focused on daphnids

In recent years, the number of publications on the effects of nanoparticles on freshwater organisms has increased. The Daphnia genus is widely used in ecotoxicological studies as a model organism for evaluating the environmental impact of nanomaterials. In this context, enzymatic biomarkers have bee...

Full description

Saved in:
Bibliographic Details
Published inEcotoxicology (London)
Main Authors Queiroz, Lucas Gonçalves, de Torresi, Susana Inés Córdoba
Format Journal Article
LanguageEnglish
Published United States 25.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, the number of publications on the effects of nanoparticles on freshwater organisms has increased. The Daphnia genus is widely used in ecotoxicological studies as a model organism for evaluating the environmental impact of nanomaterials. In this context, enzymatic biomarkers have been increasingly adopted to understand the potential of metallic nanoparticles (MNPs) to induce oxidative stress. The present paper aims to synthesize the current knowledge on oxidative stress responses in daphnids exposed to metallic and metal-oxide MNPs, with a particular focus on enzymatic biomarkers (SOD, CAT, GPx, GR and GST). Specifically, we aimed to identify patterns of enzymatic responses promoted by the exposure of Daphnia species to MNPs and highlight research deficits that need to be addressed in further studies. A literature survey was performed in April 2025. This survey found 322 studies, which were screened, resulting in 36 studies included in this review. Based on our literature survey, Daphnia magna is the most commonly used daphnid to evaluate oxidative stress promoted by MNPs. Titanium-based nanomaterials have been the most studied MNPs, followed by silver and zinc. We observed that the enzymatic activity pattern is not directly associated with the metallic composition of the nanoparticle. We discuss how the chemical composition can reflect the specific toxicity of MNPs, although environmental, abiotic, and physicochemical factors can have a greater influence. Enzymatic biomarkers provide valuable information on the extent and nature of the biological effects of exposure to metallic and metal-oxide nanoparticles.
AbstractList In recent years, the number of publications on the effects of nanoparticles on freshwater organisms has increased. The Daphnia genus is widely used in ecotoxicological studies as a model organism for evaluating the environmental impact of nanomaterials. In this context, enzymatic biomarkers have been increasingly adopted to understand the potential of metallic nanoparticles (MNPs) to induce oxidative stress. The present paper aims to synthesize the current knowledge on oxidative stress responses in daphnids exposed to metallic and metal-oxide MNPs, with a particular focus on enzymatic biomarkers (SOD, CAT, GPx, GR and GST). Specifically, we aimed to identify patterns of enzymatic responses promoted by the exposure of Daphnia species to MNPs and highlight research deficits that need to be addressed in further studies. A literature survey was performed in April 2025. This survey found 322 studies, which were screened, resulting in 36 studies included in this review. Based on our literature survey, Daphnia magna is the most commonly used daphnid to evaluate oxidative stress promoted by MNPs. Titanium-based nanomaterials have been the most studied MNPs, followed by silver and zinc. We observed that the enzymatic activity pattern is not directly associated with the metallic composition of the nanoparticle. We discuss how the chemical composition can reflect the specific toxicity of MNPs, although environmental, abiotic, and physicochemical factors can have a greater influence. Enzymatic biomarkers provide valuable information on the extent and nature of the biological effects of exposure to metallic and metal-oxide nanoparticles.In recent years, the number of publications on the effects of nanoparticles on freshwater organisms has increased. The Daphnia genus is widely used in ecotoxicological studies as a model organism for evaluating the environmental impact of nanomaterials. In this context, enzymatic biomarkers have been increasingly adopted to understand the potential of metallic nanoparticles (MNPs) to induce oxidative stress. The present paper aims to synthesize the current knowledge on oxidative stress responses in daphnids exposed to metallic and metal-oxide MNPs, with a particular focus on enzymatic biomarkers (SOD, CAT, GPx, GR and GST). Specifically, we aimed to identify patterns of enzymatic responses promoted by the exposure of Daphnia species to MNPs and highlight research deficits that need to be addressed in further studies. A literature survey was performed in April 2025. This survey found 322 studies, which were screened, resulting in 36 studies included in this review. Based on our literature survey, Daphnia magna is the most commonly used daphnid to evaluate oxidative stress promoted by MNPs. Titanium-based nanomaterials have been the most studied MNPs, followed by silver and zinc. We observed that the enzymatic activity pattern is not directly associated with the metallic composition of the nanoparticle. We discuss how the chemical composition can reflect the specific toxicity of MNPs, although environmental, abiotic, and physicochemical factors can have a greater influence. Enzymatic biomarkers provide valuable information on the extent and nature of the biological effects of exposure to metallic and metal-oxide nanoparticles.
In recent years, the number of publications on the effects of nanoparticles on freshwater organisms has increased. The Daphnia genus is widely used in ecotoxicological studies as a model organism for evaluating the environmental impact of nanomaterials. In this context, enzymatic biomarkers have been increasingly adopted to understand the potential of metallic nanoparticles (MNPs) to induce oxidative stress. The present paper aims to synthesize the current knowledge on oxidative stress responses in daphnids exposed to metallic and metal-oxide MNPs, with a particular focus on enzymatic biomarkers (SOD, CAT, GPx, GR and GST). Specifically, we aimed to identify patterns of enzymatic responses promoted by the exposure of Daphnia species to MNPs and highlight research deficits that need to be addressed in further studies. A literature survey was performed in April 2025. This survey found 322 studies, which were screened, resulting in 36 studies included in this review. Based on our literature survey, Daphnia magna is the most commonly used daphnid to evaluate oxidative stress promoted by MNPs. Titanium-based nanomaterials have been the most studied MNPs, followed by silver and zinc. We observed that the enzymatic activity pattern is not directly associated with the metallic composition of the nanoparticle. We discuss how the chemical composition can reflect the specific toxicity of MNPs, although environmental, abiotic, and physicochemical factors can have a greater influence. Enzymatic biomarkers provide valuable information on the extent and nature of the biological effects of exposure to metallic and metal-oxide nanoparticles.
Author de Torresi, Susana Inés Córdoba
Queiroz, Lucas Gonçalves
Author_xml – sequence: 1
  givenname: Lucas Gonçalves
  orcidid: 0000-0003-3305-1042
  surname: Queiroz
  fullname: Queiroz, Lucas Gonçalves
– sequence: 2
  givenname: Susana Inés Córdoba
  orcidid: 0000-0003-3290-172X
  surname: de Torresi
  fullname: de Torresi, Susana Inés Córdoba
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40560363$$D View this record in MEDLINE/PubMed
BookMark eNo9kctuFDEQRS0URCaBH2CBvGTTUO3nmB2KwkMKygbWlseunhh12027e5LJd_DB8cwEFqUq3Tq6UtW9IGcpJyTkbQsfWgD9sbSghGqAyVoGdKNfkFUrNW84tPqMrMAo3hhm2Dm5KOU3ABgt4BU5FyAVcMVX5O8PnF1PXQp0OExNfogBaXIpj26ao--x0JjC4mPaUn_n0vYo0Amdn-MOaX7YbzHRMqKPddXjDvtyNMT0uB-qlDt6cHVHvMwTlvKJuuqwi3hPu-yXgoHmRIMb71IM5TV52bm-4Jvnfkl-fbn-efWtubn9-v3q803jmVRz0xnHNsLXmzqFsBYaN9jp1jGUreNCK7YOa6lN_ZUIQWycMgIFMCVxHbSU_JK8P_mOU_6zYJntEIvHvncJ81IsZ4wbLgXwir57RpfNgMGOUxzctLf_PlkBdgL8lEuZsPuPtGAPcdlTXLbGZY9xWc2fAL5Tibo
Cites_doi 10.1038/srep11121
10.1016/j.scitotenv.2022.153307
10.1016/S0300-483X(00)00231-6
10.1016/j.aquatox.2015.11.019
10.1016/j.cbpc.2021.109080
10.1016/j.aquatox.2020.105404
10.1186/s13227-022-00199-0
10.1080/03601230600964316
10.1104/pp.110.166181
10.1038/s41598-022-06279-4
10.1016/B978-0-12-822401-4.00037-4
10.1007/s44169-023-00046-w
10.1016/j.etap.2023.104078
10.1016/j.jinorgbio.2019.110699
10.1897/06-515R.1
10.1007/s11051-013-1692-4
10.1016/j.cbpc.2017.01.005
10.1016/j.envpol.2021.118726
10.1016/0167-4838(96)00043-X
10.1016/j.cotox.2020.05.006
10.1371/journal.pone.0214398
10.1016/j.envpol.2008.11.010
10.1007/s00204-023-03562-9
10.1007/s11270-016-3206-3
10.1038/414899a
10.1016/j.jhazmat.2025.137115
10.1007/s44246-022-00013-5
10.4194/1303-2712-v19_7_08
10.1039/C5CP00831J
10.1016/B978-0-12-805417-8.00004-4
10.1039/C9EN00231F
10.1039/D3EN00129F
10.1039/C9RA03513C
10.1039/C2CS35375J
10.1016/j.redox.2012.12.004
10.1039/D3NJ00383C
10.1080/17435390.2021.1936254
10.1016/j.scitotenv.2020.143038
10.3390/environments9020026
10.1016/j.scitotenv.2022.156079
10.1016/B978-0-12-803581-8.11585-1
10.1016/j.impact.2024.100515
10.1016/j.aquatox.2022.106176
10.3390/nano9101365
10.1039/D3CP01490H
10.1016/j.aquatox.2018.02.002
10.1039/9781782622208-00001
10.1016/j.trac.2023.116978
10.3390/ijms18010120
10.1016/j.cbi.2014.06.005
10.1080/10715762.2020.1851027
10.1155/2012/398720
10.1016/j.envpol.2019.113597
10.1016/j.aquatox.2014.03.011
10.1016/j.scitotenv.2024.176592
10.1016/j.jhazmat.2021.126112
10.1016/j.watres.2016.08.060
10.1039/C6CS00636A
10.1007/s11356-015-5201-4
10.1039/D2EN00622G
10.3390/ijerph120505581
10.1007/s11051-014-2559-z
10.1039/D1NH00260K
10.1039/c2ee21818f
10.1002/etc.5688
10.1016/j.toxlet.2011.05.1018
10.1039/C9EN01284B
10.1002/etc.1916
10.1039/C4CS00392F
10.1016/j.tibs.2017.08.008
10.1016/j.chemosphere.2021.132941
10.1016/j.jhazmat.2022.129303
10.3389/ftox.2023.1178482
10.1016/j.envpol.2015.10.035
10.1016/j.scitotenv.2010.01.041
10.1016/j.aquatox.2015.02.015
10.1021/es3011578
10.1039/C4RA13315C
10.1016/j.ajme.2017.09.001
10.1787/9789264069947-en
10.3390/nano6120222
10.1016/j.ecoenv.2018.06.054
10.1016/j.pdpdt.2020.101908
10.1039/C6EN00391E
10.1016/j.aquatox.2020.105517
10.3390/molecules28165979
10.1002/cssc.201100517
10.1186/1477-3155-12-5
10.1016/j.envres.2019.108987
10.1016/j.scitotenv.2023.161682
10.1016/j.scitotenv.2019.02.202
10.1016/j.watres.2019.01.055
10.1007/s10452-006-9050-6
10.1016/j.ecoenv.2017.10.042
10.1007/s00244-015-0165-4
10.1016/j.tice.2025.102748
ContentType Journal Article
Copyright 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Copyright_xml – notice: 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1007/s10646-025-02907-7
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1573-3017
ExternalDocumentID 40560363
10_1007_s10646_025_02907_7
Genre Journal Article
Review
GrantInformation_xml – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  grantid: 2022/13146-2
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  grantid: 2018/13492-2
GroupedDBID ---
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67M
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BENPR
BGNMA
BHPHI
BSONS
CITATION
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDH
EIOEI
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
M7P
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
ROL
RPX
RRX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
VC2
W23
W48
WJK
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
~KM
NPM
7X8
ID FETCH-LOGICAL-c256t-f9a2b4c974f6e0847ebef71a2e51a347628d85790074dd4ba694e40265e8d7553
ISSN 0963-9292
1573-3017
IngestDate Fri Jul 11 16:59:43 EDT 2025
Thu Jun 26 01:52:39 EDT 2025
Sun Aug 03 02:38:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Daphnia spp
Metallic nanoparticles
Toxicity
Sub-lethal effects
Antioxidant enzymes
Language English
License 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c256t-f9a2b4c974f6e0847ebef71a2e51a347628d85790074dd4ba694e40265e8d7553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3305-1042
0000-0003-3290-172X
PMID 40560363
PQID 3223935403
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3223935403
pubmed_primary_40560363
crossref_primary_10_1007_s10646_025_02907_7
PublicationCentury 2000
PublicationDate 2025-06-25
PublicationDateYYYYMMDD 2025-06-25
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Ecotoxicology (London)
PublicationTitleAlternate Ecotoxicology
PublicationYear 2025
References OM Ighodaro (2907_CR33) 2018; 54
H Zhang (2907_CR96) 2019; 6
F Gottschalk (2907_CR30) 2015; 12
S Lekamge (2907_CR47) 2019; 14
D Ebert (2907_CR18) 2022; 13
J Kao (2907_CR38) 2013; 42
WH Fan (2907_CR21) 2012; 2012
RH Gottfredsen (2907_CR29) 2013; 1
H Ju (2907_CR36) 2024; 35
GA Dominguez (2907_CR16) 2015; 162
W Gao (2907_CR25) 2011; 205
TS Malatjie (2907_CR59) 2022; 247
J Gu (2907_CR31) 2022; 437
2907_CR1
SSS Sarma (2907_CR81) 2006; 41
DJ Nogueira (2907_CR68) 2020; 182
M Li (2907_CR49) 2025; 486
L Liu (2907_CR50) 2015; 5
S Liu (2907_CR51) 2019; 154
H-M Zhang (2907_CR97) 2014; 219
V Alekseev (2907_CR3) 2001; 414
L Gebicka (2907_CR26) 2019; 197
2907_CR79
R Dogra (2907_CR15) 2023; 10
K McNamara (2907_CR61) 2015; 17
A Tkaczyk (2907_CR86) 2021; 763
W Fan (2907_CR19) 2016; 105
S Villa (2907_CR91) 2020; 257
Z Liu (2907_CR53) 2022; 291
RTP da Silva (2907_CR11) 2020; 31
2907_CR69
A Stara (2907_CR85) 2019; 665
J Park (2907_CR71) 2022; 9
S Vesela (2907_CR90) 2007; 41
M Chen (2907_CR7) 2017; 42
AA Dayem (2907_CR12) 2017; 18
A Dhakshinamoorthy (2907_CR14) 2012; 5
JP Kehrer (2907_CR39) 2000; 149
X Zhou (2907_CR99) 2023; 160
V Galhano (2907_CR24) 2020; 220
MM Khin (2907_CR42) 2012; 5
G Qin (2907_CR74) 2015; 69
2907_CR72
Z Liu (2907_CR54) 2023; 261
BVC Oscar (2907_CR70) 2023; 10
2907_CR76
H Ma (2907_CR58) 2012; 31
P Sanpradit (2907_CR77) 2023; 869
F Nasser (2907_CR66) 2016; 6
R Cordiano (2907_CR9) 2023; 28
M Akagawa (2907_CR2) 2021; 55
S Schmid (2907_CR82) 2023; 42
R Klaper (2907_CR44) 2009; 157
2907_CR60
2907_CR62
2907_CR63
P Sanpradit (2907_CR78) 2020; 224
2907_CR45
V Galhano (2907_CR23) 2022; 839
2907_CR48
D Ebert (2907_CR17) 2005
JR Santos-Rasera (2907_CR80) 2022; 821
AA Keller (2907_CR40) 2013; 15
S Qi (2907_CR73) 2018; 148
OM Lardinois (2907_CR46) 1996; 1295
G Vale (2907_CR89) 2016; 170
M Khalid (2907_CR41) 2020; 20–21
R Cui (2907_CR10) 2018; 162
K Jomova (2907_CR35) 2023; 97
K Kansara (2907_CR37) 2022; 296
RA Gonçalves (2907_CR28) 2018; 197
CH Foyer (2907_CR22) 2011; 155
X Wang (2907_CR92) 2022; 1
2907_CR34
C Auría-Soro (2907_CR4) 2019; 9
AJ Wyrwoll (2907_CR94) 2016; 208
L Ulm (2907_CR88) 2015; 22
G Lu (2907_CR55) 2017; 228
G Morselli (2907_CR64) 2021; 6
AG Yisa (2907_CR95) 2023; 98
OS Wolfbeis (2907_CR93) 2015; 44
W Liu (2907_CR52) 2020; 7
T Zhou (2907_CR98) 2019; 9
LG Queiroz (2907_CR75) 2024; 954
L De Marchi (2907_CR13) 2017; 193
2907_CR27
W Fan (2907_CR20) 2012; 46
SO Shekaftik (2907_CR84) 2021; 15
B Ukhueduan (2907_CR87) 2022; 12
S Behzadi (2907_CR6) 2017; 46
F Başak (2907_CR5) 2025; 93
P Mwaanga (2907_CR65) 2014; 150
Y Lu (2907_CR57) 2021; 416
Z Clemente (2907_CR8) 2014; 16
TC Hoang (2907_CR32) 2007; 26
KT Kim (2907_CR43) 2010; 408
H Lu (2907_CR56) 2017; 4
L Shang (2907_CR83) 2014; 12
SB Nimse (2907_CR67) 2015; 5
References_xml – volume: 5
  year: 2015
  ident: 2907_CR50
  publication-title: Sci Rep.
  doi: 10.1038/srep11121
– volume: 821
  year: 2022
  ident: 2907_CR80
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2022.153307
– volume: 149
  start-page: 43
  year: 2000
  ident: 2907_CR39
  publication-title: Toxicology
  doi: 10.1016/S0300-483X(00)00231-6
– volume: 170
  start-page: 162
  year: 2016
  ident: 2907_CR89
  publication-title: Aquat Toxicol
  doi: 10.1016/j.aquatox.2015.11.019
– ident: 2907_CR72
  doi: 10.1016/j.cbpc.2021.109080
– volume: 220
  year: 2020
  ident: 2907_CR24
  publication-title: Aquat Toxicol
  doi: 10.1016/j.aquatox.2020.105404
– volume: 13
  year: 2022
  ident: 2907_CR18
  publication-title: EvoDevo
  doi: 10.1186/s13227-022-00199-0
– volume: 41
  start-page: 1417
  year: 2006
  ident: 2907_CR81
  publication-title: J Environ Sci Health B
  doi: 10.1080/03601230600964316
– volume: 155
  start-page: 93
  year: 2011
  ident: 2907_CR22
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.166181
– volume: 12
  year: 2022
  ident: 2907_CR87
  publication-title: Sci Rep.
  doi: 10.1038/s41598-022-06279-4
– ident: 2907_CR60
  doi: 10.1016/B978-0-12-822401-4.00037-4
– volume: 261
  start-page: 23
  year: 2023
  ident: 2907_CR54
  publication-title: Rev Environ Contam Toxicol
  doi: 10.1007/s44169-023-00046-w
– volume: 98
  year: 2023
  ident: 2907_CR95
  publication-title: Environ Toxicol Pharm
  doi: 10.1016/j.etap.2023.104078
– volume: 197
  year: 2019
  ident: 2907_CR26
  publication-title: J Inorg Biochem
  doi: 10.1016/j.jinorgbio.2019.110699
– volume: 26
  start-page: 1198
  year: 2007
  ident: 2907_CR32
  publication-title: Environ Toxicol Chem
  doi: 10.1897/06-515R.1
– volume: 15
  start-page: 1692
  year: 2013
  ident: 2907_CR40
  publication-title: J Nanopart Res
  doi: 10.1007/s11051-013-1692-4
– volume: 193
  start-page: 50
  year: 2017
  ident: 2907_CR13
  publication-title: Comp Biochem Physiol C: Toxicol Pharm
  doi: 10.1016/j.cbpc.2017.01.005
– volume: 296
  year: 2022
  ident: 2907_CR37
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2021.118726
– volume: 1295
  start-page: 222
  year: 1996
  ident: 2907_CR46
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0167-4838(96)00043-X
– volume: 20–21
  start-page: 55
  year: 2020
  ident: 2907_CR41
  publication-title: Curr Opin Toxicol
  doi: 10.1016/j.cotox.2020.05.006
– volume: 14
  start-page: e0214398
  year: 2019
  ident: 2907_CR47
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0214398
– volume: 157
  start-page: 1152
  year: 2009
  ident: 2907_CR44
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2008.11.010
– volume: 97
  start-page: 2499
  year: 2023
  ident: 2907_CR35
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-023-03562-9
– volume: 228
  start-page: 18
  year: 2017
  ident: 2907_CR55
  publication-title: Water Air Soil Pollut
  doi: 10.1007/s11270-016-3206-3
– volume: 414
  start-page: 899
  year: 2001
  ident: 2907_CR3
  publication-title: Nature
  doi: 10.1038/414899a
– volume: 486
  year: 2025
  ident: 2907_CR49
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2025.137115
– volume: 1
  start-page: 13
  year: 2022
  ident: 2907_CR92
  publication-title: Carbon Res
  doi: 10.1007/s44246-022-00013-5
– ident: 2907_CR79
  doi: 10.4194/1303-2712-v19_7_08
– volume: 17
  start-page: 27981
  year: 2015
  ident: 2907_CR61
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C5CP00831J
– ident: 2907_CR27
  doi: 10.1016/B978-0-12-805417-8.00004-4
– volume: 6
  start-page: 1754
  year: 2019
  ident: 2907_CR96
  publication-title: Environ Sci Nano
  doi: 10.1039/C9EN00231F
– volume: 10
  start-page: 2399
  year: 2023
  ident: 2907_CR15
  publication-title: Environ Sci Nano
  doi: 10.1039/D3EN00129F
– volume: 9
  start-page: 24617
  year: 2019
  ident: 2907_CR98
  publication-title: RSC Adv
  doi: 10.1039/C9RA03513C
– volume: 42
  start-page: 2654
  year: 2013
  ident: 2907_CR38
  publication-title: Chem Soc Rev
  doi: 10.1039/C2CS35375J
– volume: 1
  start-page: 24
  year: 2013
  ident: 2907_CR29
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2012.12.004
– ident: 2907_CR48
  doi: 10.1039/D3NJ00383C
– ident: 2907_CR1
– volume: 15
  start-page: 850
  year: 2021
  ident: 2907_CR84
  publication-title: Nanotoxicology
  doi: 10.1080/17435390.2021.1936254
– volume: 763
  year: 2021
  ident: 2907_CR86
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.143038
– volume: 9
  start-page: 26
  year: 2022
  ident: 2907_CR71
  publication-title: Environments
  doi: 10.3390/environments9020026
– volume: 839
  year: 2022
  ident: 2907_CR23
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2022.156079
– ident: 2907_CR63
  doi: 10.1016/B978-0-12-803581-8.11585-1
– volume: 35
  year: 2024
  ident: 2907_CR36
  publication-title: NanoImpact
  doi: 10.1016/j.impact.2024.100515
– volume: 247
  year: 2022
  ident: 2907_CR59
  publication-title: Aquat Toxicol
  doi: 10.1016/j.aquatox.2022.106176
– volume: 9
  start-page: 1365
  year: 2019
  ident: 2907_CR4
  publication-title: Nanomaterials
  doi: 10.3390/nano9101365
– ident: 2907_CR62
  doi: 10.1039/D3CP01490H
– volume: 197
  start-page: 32
  year: 2018
  ident: 2907_CR28
  publication-title: Aquat Toxicol
  doi: 10.1016/j.aquatox.2018.02.002
– ident: 2907_CR45
  doi: 10.1039/9781782622208-00001
– volume: 160
  year: 2023
  ident: 2907_CR99
  publication-title: TrAC Trends Anal Chem
  doi: 10.1016/j.trac.2023.116978
– volume: 18
  start-page: 120
  year: 2017
  ident: 2907_CR12
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms18010120
– volume: 219
  start-page: 168
  year: 2014
  ident: 2907_CR97
  publication-title: Chem Biol Interact
  doi: 10.1016/j.cbi.2014.06.005
– volume: 55
  start-page: 307
  year: 2021
  ident: 2907_CR2
  publication-title: Free Radic Res
  doi: 10.1080/10715762.2020.1851027
– volume: 2012
  start-page: 1
  year: 2012
  ident: 2907_CR21
  publication-title: J Nanomater
  doi: 10.1155/2012/398720
– volume: 257
  year: 2020
  ident: 2907_CR91
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2019.113597
– volume: 150
  start-page: 201
  year: 2014
  ident: 2907_CR65
  publication-title: Aquat Toxicol
  doi: 10.1016/j.aquatox.2014.03.011
– volume: 954
  year: 2024
  ident: 2907_CR75
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2024.176592
– volume: 416
  year: 2021
  ident: 2907_CR57
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.126112
– volume: 105
  start-page: 129
  year: 2016
  ident: 2907_CR19
  publication-title: Water Res
  doi: 10.1016/j.watres.2016.08.060
– volume: 46
  start-page: 4218
  year: 2017
  ident: 2907_CR6
  publication-title: Chem Soc Rev
  doi: 10.1039/C6CS00636A
– volume: 22
  start-page: 19990
  year: 2015
  ident: 2907_CR88
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-015-5201-4
– volume: 10
  start-page: 1190
  year: 2023
  ident: 2907_CR70
  publication-title: Environ Sci Nano
  doi: 10.1039/D2EN00622G
– volume: 12
  start-page: 5581
  year: 2015
  ident: 2907_CR30
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph120505581
– volume: 16
  start-page: 2559
  year: 2014
  ident: 2907_CR8
  publication-title: J Nanopart Res
  doi: 10.1007/s11051-014-2559-z
– volume: 6
  start-page: 676
  year: 2021
  ident: 2907_CR64
  publication-title: Nanoscale Horiz
  doi: 10.1039/D1NH00260K
– volume: 5
  start-page: 8075
  year: 2012
  ident: 2907_CR42
  publication-title: Energy Environ Sci
  doi: 10.1039/c2ee21818f
– volume: 42
  start-page: 1806
  year: 2023
  ident: 2907_CR82
  publication-title: Environ Toxicol Chem
  doi: 10.1002/etc.5688
– volume: 205
  start-page: 86
  year: 2011
  ident: 2907_CR25
  publication-title: Toxicol Lett
  doi: 10.1016/j.toxlet.2011.05.1018
– volume: 7
  start-page: 1507
  year: 2020
  ident: 2907_CR52
  publication-title: Environ Sci Nano
  doi: 10.1039/C9EN01284B
– volume: 31
  start-page: 2099
  year: 2012
  ident: 2907_CR58
  publication-title: Environ Toxicol Chem
  doi: 10.1002/etc.1916
– volume: 44
  start-page: 4743
  year: 2015
  ident: 2907_CR93
  publication-title: Chem Soc Rev
  doi: 10.1039/C4CS00392F
– volume: 42
  start-page: 914
  year: 2017
  ident: 2907_CR7
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2017.08.008
– volume: 291
  year: 2022
  ident: 2907_CR53
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132941
– volume: 437
  year: 2022
  ident: 2907_CR31
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2022.129303
– ident: 2907_CR76
  doi: 10.3389/ftox.2023.1178482
– volume: 208
  start-page: 859
  year: 2016
  ident: 2907_CR94
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2015.10.035
– volume: 408
  start-page: 2268
  year: 2010
  ident: 2907_CR43
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2010.01.041
– volume: 162
  start-page: 1
  year: 2015
  ident: 2907_CR16
  publication-title: Aquat Toxicol
  doi: 10.1016/j.aquatox.2015.02.015
– volume: 46
  start-page: 10255
  year: 2012
  ident: 2907_CR20
  publication-title: Environ Sci Technol
  doi: 10.1021/es3011578
– volume: 5
  start-page: 27986
  year: 2015
  ident: 2907_CR67
  publication-title: RSC Adv
  doi: 10.1039/C4RA13315C
– volume: 54
  start-page: 287
  year: 2018
  ident: 2907_CR33
  publication-title: Alexandria J Med
  doi: 10.1016/j.ajme.2017.09.001
– ident: 2907_CR69
  doi: 10.1787/9789264069947-en
– volume: 6
  start-page: 222
  year: 2016
  ident: 2907_CR66
  publication-title: Nanomaterials
  doi: 10.3390/nano6120222
– volume: 162
  start-page: 63
  year: 2018
  ident: 2907_CR10
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2018.06.054
– volume: 31
  year: 2020
  ident: 2907_CR11
  publication-title: Photodiagnosis Photodyn Ther
  doi: 10.1016/j.pdpdt.2020.101908
– volume: 4
  start-page: 406
  year: 2017
  ident: 2907_CR56
  publication-title: Environ Sci Nano
  doi: 10.1039/C6EN00391E
– volume: 224
  year: 2020
  ident: 2907_CR78
  publication-title: Aquat Toxicol
  doi: 10.1016/j.aquatox.2020.105517
– volume: 28
  start-page: 5979
  year: 2023
  ident: 2907_CR9
  publication-title: Molecules
  doi: 10.3390/molecules28165979
– volume: 5
  start-page: 46
  year: 2012
  ident: 2907_CR14
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100517
– volume: 12
  year: 2014
  ident: 2907_CR83
  publication-title: J Nanobiotechnology
  doi: 10.1186/1477-3155-12-5
– volume: 182
  year: 2020
  ident: 2907_CR68
  publication-title: Environ Res
  doi: 10.1016/j.envres.2019.108987
– volume: 869
  year: 2023
  ident: 2907_CR77
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2023.161682
– ident: 2907_CR34
– volume: 665
  start-page: 718
  year: 2019
  ident: 2907_CR85
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.02.202
– volume: 154
  start-page: 162
  year: 2019
  ident: 2907_CR51
  publication-title: Water Res
  doi: 10.1016/j.watres.2019.01.055
– volume: 41
  start-page: 67
  year: 2007
  ident: 2907_CR90
  publication-title: Aquat Ecol
  doi: 10.1007/s10452-006-9050-6
– volume: 148
  start-page: 352
  year: 2018
  ident: 2907_CR73
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2017.10.042
– volume: 69
  start-page: 494
  year: 2015
  ident: 2907_CR74
  publication-title: Arch Environ Contam Toxicol
  doi: 10.1007/s00244-015-0165-4
– volume: 93
  year: 2025
  ident: 2907_CR5
  publication-title: Tissue Cell
  doi: 10.1016/j.tice.2025.102748
– volume-title: Ecology, epidemiology, and evolution of parasitism in Daphnia
  year: 2005
  ident: 2907_CR17
SSID ssj0009740
Score 2.4233973
SecondaryResourceType review_article
online_first
Snippet In recent years, the number of publications on the effects of nanoparticles on freshwater organisms has increased. The Daphnia genus is widely used in...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Title Metal and metal-oxide nanoparticles inducing changes in reactive oxygen species levels and enzymes of oxidative stress: a review focused on daphnids
URI https://www.ncbi.nlm.nih.gov/pubmed/40560363
https://www.proquest.com/docview/3223935403
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBVb-zIYY9_NvtBgb8bDiT-zt6Y0KyPNGCSQNyPLMgu0dkns0fZ37AfvSFe203WDbi9GKFgmOoere6V7rhj7kMdhWAwRlngKDA48ATuYqMwNx3mYJAJLiMkmPJ1HJ8vgyypc9Sf4Rl1SZx_l9R91Jf-DKvqAq1bJ_gOy3aDoQBv44gmE8bwTxqeqtlL_c91yq8t1rpxSlIiEbcKbg5i7kUZZa3QEWxKwCGPmnOryCoM7Wm6JiNk50xlEVLRZlddX51SQVo9K5cFJWEL6aKt5KSrZbOG0gkS5uPherkk43G32y6rG-5IqPe1cH9LtP3xr1HpTmW3smb6AzfmMn_XpfSzOfvQJjvhfC3ORyLrLJRIwbnTOv3WOdGPib3KYp92NjFGoE65I9Nza3th3YW9o_VW3-25Ze69VP0eBzqTWUnPE-m7cr23tef78azpdzmbp4ni1uM_2R4gpYBT3D6eTybyv0RyTfrb9ptVYWaXlb9-46cf8JTgxTsriMXtkowt-SOA_YfdU-ZQ9pK1ZToqzZ-ynoQ0HynyHNvwGbXhLG25pgw7e0oYTbbilDSfamAEtbXhV8I42nGjziQtOpOGWNLwqeUua52w5PV4cnbj2cg5Xwkuu3WIsRlkgMWdFpDz4OLAGRTwUIxUOhR9gjU3yJIzH2kfN8yAT0ThQASL-UCXaQPgv2F5ZleqAcU-O_LEXSU9ikmWW64JBSviF8PUtWrkaMKed6vSCarCkfbVtDUwKYFIDTBoP2PsWjRSmUp9_iVJVzTbF2qWF6IHnD9hLgqkbD3FLpHMaXt3h7dfsQc_fN2yv3jTqLVzTOntnKfULkGGP6g
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+and+metal-oxide+nanoparticles+inducing+changes+in+reactive+oxygen+species+levels+and+enzymes+of+oxidative+stress%3A+a+review+focused+on+daphnids&rft.jtitle=Ecotoxicology+%28London%29&rft.au=Queiroz%2C+Lucas+Gon%C3%A7alves&rft.au=de+Torresi%2C+Susana+In%C3%A9s+C%C3%B3rdoba&rft.date=2025-06-25&rft.issn=1573-3017&rft.eissn=1573-3017&rft_id=info:doi/10.1007%2Fs10646-025-02907-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0963-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0963-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0963-9292&client=summon