Leakage Diagnosis Technologies for Heating Pipe Networks: A Comprehensive Review of Currently Used Methods
The development of district heating systems (DHSs) has increased the demand for leakage diagnosis in heating networks due to its impact on thermal efficiency, heating effectiveness, and security. This paper introduces various leakage diagnosis methods, provides solutions to the challenges of current...
Saved in:
Published in | International journal of energy research Vol. 2025; no. 1 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
John Wiley & Sons, Inc
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of district heating systems (DHSs) has increased the demand for leakage diagnosis in heating networks due to its impact on thermal efficiency, heating effectiveness, and security. This paper introduces various leakage diagnosis methods, provides solutions to the challenges of current diagnosis methods, and makes suggestions for future research. Internal methods include transient analysis, machine learning (ML), and negative pressure wave (NPW) technology. External methods include unmanned aerial vehicle (UAV) infrared thermography (UAIT), acoustic sensing, and fiber optic sensing methods. Some of these methods diagnose leakages through mathematical modeling and simulations, while others use various sensors to monitor changes in the internal medium of the pipeline to identify leakages. Additionally, UAIT and other special equipment are employed for leakage diagnosis. Detailed diagnosis principles of these methods as well as the solutions provided to address existing diagnosis bottlenecks were also introduced. Furthermore, this paper also reviews the performance of these diagnosis methods in terms of sensitivity, resolution, monitoring, accuracy, and cost. Based on the characteristics of each method, it offers guidance on the selection of pipeline leakage diagnosis methods for practical engineering applications. |
---|---|
AbstractList | The development of district heating systems (DHSs) has increased the demand for leakage diagnosis in heating networks due to its impact on thermal efficiency, heating effectiveness, and security. This paper introduces various leakage diagnosis methods, provides solutions to the challenges of current diagnosis methods, and makes suggestions for future research. Internal methods include transient analysis, machine learning (ML), and negative pressure wave (NPW) technology. External methods include unmanned aerial vehicle (UAV) infrared thermography (UAIT), acoustic sensing, and fiber optic sensing methods. Some of these methods diagnose leakages through mathematical modeling and simulations, while others use various sensors to monitor changes in the internal medium of the pipeline to identify leakages. Additionally, UAIT and other special equipment are employed for leakage diagnosis. Detailed diagnosis principles of these methods as well as the solutions provided to address existing diagnosis bottlenecks were also introduced. Furthermore, this paper also reviews the performance of these diagnosis methods in terms of sensitivity, resolution, monitoring, accuracy, and cost. Based on the characteristics of each method, it offers guidance on the selection of pipeline leakage diagnosis methods for practical engineering applications. |
Author | Cui, Kaige Du, Yuntan Wu, Menghai Ye, Shengtao Yu, Fuzhong Chen, Dandan Bu, Changsheng Hao, Min Lu, Ping |
Author_xml | – sequence: 1 givenname: Shengtao surname: Ye fullname: Ye, Shengtao – sequence: 2 givenname: Fuzhong surname: Yu fullname: Yu, Fuzhong – sequence: 3 givenname: Min surname: Hao fullname: Hao, Min – sequence: 4 givenname: Menghai surname: Wu fullname: Wu, Menghai – sequence: 5 givenname: Dandan orcidid: 0000-0002-5936-6176 surname: Chen fullname: Chen, Dandan – sequence: 6 givenname: Changsheng orcidid: 0000-0001-7928-8665 surname: Bu fullname: Bu, Changsheng – sequence: 7 givenname: Ping orcidid: 0000-0002-0233-9580 surname: Lu fullname: Lu, Ping – sequence: 8 givenname: Yuntan surname: Du fullname: Du, Yuntan – sequence: 9 givenname: Kaige surname: Cui fullname: Cui, Kaige |
BookMark | eNotkEtrAjEYRUNpoWq76S8IdFeYmsdkkulOpg8L9kFRcDfEmS9jfCQ2GRX_fS26uot7uBdOF1067wChO0oeKRWiD6GvFEuV4BeoQ0meJ5Sm00vUITzjSU7k9Bp1Y1wQcuyo7KDFCPRSN4CfrW6cjzbiMVRz51e-sRCx8QEPQbfWNfjbbgB_Qrv3YRmf8AAXfr0JMAcX7Q7wD-ws7LE3uNiGAK5dHfAkQo0_oJ37Ot6gK6NXEW7P2UOT15dxMUxGX2_vxWCUVExkbWLEDHQloU5nlRQmJ1oSwyiv0kqrNGPCEMpqxVPBaqm1pISznDOla6pmJpe8h-5Pu5vgf7cQ23Lht8EdL0vOaCaZzDN1pB5OVBV8jAFMuQl2rcOhpKT8d1lCKM8u-R8y2Wk1 |
Cites_doi | 10.1109/ICCIS.2011.190 10.1155/2013/278794 10.1016/j.cie.2018.11.008 10.1016/j.energy.2013.10.067 10.1016/j.energy.2017.05.165 10.7901/2169-3358-1997-1-379 10.3390/app11094004 10.1109/MCOM.003.2200643 10.1016/j.energy.2024.131051 10.1109/JSEN.2022.3157872 10.1016/j.rser.2020.110577 10.1109/JLT.2016.2615468 10.1117/12.818021 10.1016/j.energy.2012.03.056 10.1016/j.ymssp.2020.106787 10.1145/3555802 10.1016/j.compchemeng.2007.08.011 10.1016/j.applthermaleng.2014.12.070 10.1016/j.psep.2018.07.023 10.1016/j.ymssp.2021.108580 10.1016/j.apacoust.2023.109798 10.1016/j.engfracmech.2018.03.010 10.1115/IPC2006-10471 10.1061/(ASCE)0733-9496(2010)136:2(248) 10.1016/j.psep.2022.03.002 10.1016/j.energy.2014.02.089 10.1016/j.psep.2016.08.014 10.1016/j.ijpvp.2020.104243 10.1016/j.cosrev.2023.100614 10.1016/j.energy.2009.11.023 10.1016/j.energy.2021.121604 10.1016/j.jlp.2016.03.010 10.1115/IPC2014-33297 10.1016/j.psep.2023.04.006 10.1016/j.yofte.2018.10.013 10.1109/TSTE.2015.2467383 10.1016/j.tust.2023.105065 10.1109/TII.2023.3295409 10.1109/CAC51589.2020.9327447 10.1115/1.4000736 10.1016/j.measurement.2009.12.022 10.1016/j.energy.2019.116496 10.1016/j.measurement.2024.114190 10.1016/j.scs.2013.10.002 10.1016/j.energy.2010.08.041 10.1016/j.renene.2015.05.061 10.1080/00221680109499828 10.1016/j.enconman.2018.10.005 10.1016/j.jlp.2016.06.018 10.1016/j.measurement.2023.112691 10.5194/isprs-archives-XLIII-B1-2020-499-2020 10.1016/j.rser.2016.08.024 10.1016/j.egypro.2018.08.192 10.3390/computers13040100 10.2118/183290-MS 10.1016/j.chaos.2016.09.002 10.1117/12.302533 10.1016/j.measurement.2018.03.018 10.1115/IPC2018-78426 10.1080/15732479.2017.1330892 10.1016/j.rser.2016.02.023 10.1016/j.enconman.2003.09.005 10.1016/j.energy.2022.126125 10.1016/j.patrec.2020.05.024 10.1016/j.applthermaleng.2018.04.010 10.1016/j.psep.2023.04.020 10.1002/stc.1931 10.1016/j.icheatmasstransfer.2022.106123 10.1038/s41598-023-41177-3 10.1016/j.energy.2022.125291 10.1080/15732470903213740 10.1109/ICIEA.2009.5138796 10.1016/j.enbuild.2020.110161 10.1016/j.jpse.2022.100074 10.2166/hydro.2010.012 10.1016/j.psep.2019.01.010 10.1061/(ASCE)0733-9429(1999)125:7(761) 10.1016/j.comnet.2020.107148 10.1016/j.rser.2011.07.070 10.1784/insi.2023.65.11.609 10.1109/TII.2018.2794987 10.1016/j.applthermaleng.2015.12.015 10.1016/j.tust.2024.105945 10.1016/j.energy.2021.120520 10.1109/JPROC.2019.2921977 10.1016/j.energy.2023.128696 |
ContentType | Journal Article |
Copyright | Copyright © 2025 Shengtao Ye et al. International Journal of Energy Research published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (the “License”), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2025 Shengtao Ye et al. International Journal of Energy Research published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (the “License”), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | AAYXX CITATION 7SP 7ST 7TB 7TN 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W F28 FR3 GNUQQ H96 HCIFZ KR7 L.G L6V L7M M7S P5Z P62 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY SOI |
DOI | 10.1155/er/8824853 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Environment Abstracts |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-114X |
Editor | Dongdong Yuan |
Editor_xml | – fullname: Dongdong Yuan |
ExternalDocumentID | 10_1155_er_8824853 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAJEY AAMMB AANHP AAONW AASGY AAXRX AAYXX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ACAHQ ACBWZ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIMD AENEX AEUYN AFBPY AFGKR AFKRA AFRAH AFZJQ AGQPQ AGXDD AI. AIDQK AIDYY AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CITATION CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HCIFZ HF~ HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PCBAR PHGZM PHGZT PIMPY PTHSS PYCSY Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT 7SP 7ST 7TB 7TN 8FD 8FE 8FG ABUWG AZQEC C1K DWQXO F1W F28 FR3 GNUQQ H96 KR7 L.G L6V L7M P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS SOI |
ID | FETCH-LOGICAL-c256t-f5beac7ed4bc75f90a70f213c4ca84625f012d83452d7aa710329328ad18bf973 |
IEDL.DBID | BENPR |
ISSN | 0363-907X |
IngestDate | Fri Jul 25 09:32:22 EDT 2025 Thu Jul 03 08:28:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c256t-f5beac7ed4bc75f90a70f213c4ca84625f012d83452d7aa710329328ad18bf973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0233-9580 0000-0002-5936-6176 0000-0001-7928-8665 |
OpenAccessLink | https://www.proquest.com/docview/3216727968?pq-origsite=%requestingapplication% |
PQID | 3216727968 |
PQPubID | 996365 |
ParticipantIDs | proquest_journals_3216727968 crossref_primary_10_1155_er_8824853 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-00 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal of energy research |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | e_1_2_12_2_2 Covas D. (e_1_2_12_50_2) 2010; 136 e_1_2_12_4_2 e_1_2_12_17_2 e_1_2_12_15_2 Liu J. (e_1_2_12_59_2) 2016; 91 e_1_2_12_38_2 Abdulshaheed A. (e_1_2_12_51_2) 2017; 69 Sonkar S. K. (e_1_2_12_26_2) 2022; 22 Hossain K. (e_1_2_12_76_2) 2020; 140 Ge C. (e_1_2_12_23_2) 2008; 32 e_1_2_12_64_2 e_1_2_12_87_2 e_1_2_12_85_2 Yao J. (e_1_2_12_70_2) 2023; 6 Valinčius M. (e_1_2_12_3_2) 2018; 14 e_1_2_12_45_2 e_1_2_12_68_2 e_1_2_12_47_2 e_1_2_12_89_2 Østergaard P. A. (e_1_2_12_5_2) 2010; 35 Shen G. (e_1_2_12_66_2) 2018; 119 e_1_2_12_60_2 e_1_2_12_83_2 Datta S. (e_1_2_12_25_2) 2016; 41 e_1_2_12_81_2 Tafuri A. N. (e_1_2_12_31_2) 1997; 1997 Huang S. (e_1_2_12_57_2) 2018; 15 Wu H. (e_1_2_12_90_2) 2024; 62 Sledz A. (e_1_2_12_28_2) 2020; 43 e_1_2_12_49_2 e_1_2_12_75_2 e_1_2_12_73_2 e_1_2_12_33_2 e_1_2_12_56_2 e_1_2_12_79_2 e_1_2_12_35_2 e_1_2_12_77_2 e_1_2_12_14_2 Kopbayev A. (e_1_2_12_20_2) 2022; 160 Hallberg D. (e_1_2_12_12_2) 2012; 8 e_1_2_12_10_2 e_1_2_12_6_2 e_1_2_12_8_2 Ommen T. (e_1_2_12_43_2) 2017; 137 Usamentiaga R. (e_1_2_12_74_2) 2024; 20 Zhang Y. (e_1_2_12_80_2) 2025; 21 e_1_2_12_16_2 e_1_2_12_37_2 e_1_2_12_39_2 Lu W. (e_1_2_12_63_2) 2016; 104 Xie J. (e_1_2_12_58_2) 2023; 174 Jiang X. S. (e_1_2_12_41_2) 2014; 64 Zhang X. (e_1_2_12_54_2) 2023; 174 Qu Z. (e_1_2_12_32_2) 2010; 43 e_1_2_12_65_2 e_1_2_12_86_2 e_1_2_12_21_2 e_1_2_12_42_2 e_1_2_12_84_2 e_1_2_12_44_2 Nash G. (e_1_2_12_71_2) 1999; 125 Lund R. (e_1_2_12_40_2) 2016; 98 e_1_2_12_46_2 Zadkarami M. (e_1_2_12_53_2) 2016; 43 e_1_2_12_88_2 Li J. (e_1_2_12_67_2) 2019; 123 e_1_2_12_61_2 e_1_2_12_82_2 Soares A. K. (e_1_2_12_18_2) 2011; 13 Hou Q. (e_1_2_12_22_2) 2013; 2013 e_1_2_12_48_2 Hua H. (e_1_2_12_62_2) 2023; 55 e_1_2_12_29_2 Moos T. (e_1_2_12_69_2) 2021 Chen J. (e_1_2_12_52_2) 2019; 107 e_1_2_12_30_2 Lund H. (e_1_2_12_1_2) 2010; 35 Wang J. (e_1_2_12_24_2) 2016; 35 e_1_2_12_34_2 e_1_2_12_55_2 Chen J. (e_1_2_12_27_2) 2023; 65 e_1_2_12_36_2 Zhou S. (e_1_2_12_11_2) 2018; 137 e_1_2_12_13_2 Jiao Z. (e_1_2_12_19_2) 2019; 135 e_1_2_12_7_2 e_1_2_12_72_2 e_1_2_12_9_2 Xu T. (e_1_2_12_78_2) 2020 e_1_2_12_91_2 |
References_xml | – ident: e_1_2_12_17_2 doi: 10.1109/ICCIS.2011.190 – volume: 2013 start-page: 1 year: 2013 ident: e_1_2_12_22_2 article-title: An Improved Negative Pressure Wave Method for Natural Gas Pipeline Leak Location Using FBG Based Strain Sensor and Wavelet Transform publication-title: Mathematical Problems in Engineering doi: 10.1155/2013/278794 – volume: 135 start-page: 1300 year: 2019 ident: e_1_2_12_19_2 article-title: A New Approach to Oil Spill Detection That Combines Deep Learning With Unmanned Aerial Vehicles publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2018.11.008 – volume: 64 start-page: 375 year: 2014 ident: e_1_2_12_41_2 article-title: Modelling and Operation Optimization of an Integrated Energy Based Direct District Water-Heating System publication-title: Energy doi: 10.1016/j.energy.2013.10.067 – volume: 137 start-page: 544 year: 2017 ident: e_1_2_12_43_2 article-title: Performance of Ultra Low Temperature District Heating Systems With Utility Plant and Booster Heat Pumps publication-title: Energy doi: 10.1016/j.energy.2017.05.165 – volume: 1997 start-page: 379 year: 1997 ident: e_1_2_12_31_2 article-title: Leak Detection and Leak Location in Underground Pipelines publication-title: International Oil Spill Conference Proceedings doi: 10.7901/2169-3358-1997-1-379 – ident: e_1_2_12_77_2 doi: 10.3390/app11094004 – volume: 62 start-page: 126 year: 2024 ident: e_1_2_12_90_2 article-title: Leveraging Optical Communication Fiber and AI for Distributed Water Pipe Leak Detection publication-title: IEEE Communications Magazine doi: 10.1109/MCOM.003.2200643 – ident: e_1_2_12_85_2 doi: 10.1016/j.energy.2024.131051 – volume: 22 start-page: 8041 year: 2022 ident: e_1_2_12_26_2 article-title: Detection and Estimation of Natural Gas Leakage Using UAV by Machine Learning Algorithms publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2022.3157872 – start-page: 552 volume-title: IACR Transactions on Cryptographic Hardware and Embedded Systems year: 2021 ident: e_1_2_12_69_2 – ident: e_1_2_12_42_2 doi: 10.1016/j.rser.2020.110577 – volume: 35 start-page: 3366 year: 2016 ident: e_1_2_12_24_2 article-title: Novel Negative Pressure Wave-Based Pipeline Leak Detection System Using Fiber Bragg Grating-Based Pressure Sensors publication-title: Lightwave Technology doi: 10.1109/JLT.2016.2615468 – ident: e_1_2_12_33_2 doi: 10.1117/12.818021 – ident: e_1_2_12_39_2 doi: 10.1016/j.energy.2012.03.056 – ident: e_1_2_12_82_2 doi: 10.1016/j.ymssp.2020.106787 – volume: 55 start-page: 1 year: 2023 ident: e_1_2_12_62_2 article-title: Edge Computing With Artificial Intelligence: A Machine Learning Perspective publication-title: ACM Computing Surveys doi: 10.1145/3555802 – volume: 32 start-page: 1669 year: 2008 ident: e_1_2_12_23_2 article-title: Analysis of the Smallest Detectable Leakage Flow Rate of Negative Pressure Wave-Based Leak Detection Systems for Liquid Pipelines publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2007.08.011 – ident: e_1_2_12_36_2 doi: 10.1016/j.applthermaleng.2014.12.070 – volume: 119 start-page: 181 year: 2018 ident: e_1_2_12_66_2 article-title: Effect of Rubber Washers on Leak Location for Assembled Pressurized Liquid Pipeline Based on Negative Pressure Wave Method publication-title: Process Safety and Environmental Protection doi: 10.1016/j.psep.2018.07.023 – ident: e_1_2_12_16_2 doi: 10.1016/j.ymssp.2021.108580 – ident: e_1_2_12_81_2 doi: 10.1016/j.apacoust.2023.109798 – ident: e_1_2_12_86_2 doi: 10.1016/j.engfracmech.2018.03.010 – ident: e_1_2_12_64_2 doi: 10.1115/IPC2006-10471 – volume: 136 start-page: 248 year: 2010 ident: e_1_2_12_50_2 article-title: Case Studies of Leak Detection and Location in Water Pipe Systems by Inverse Transient Analysis publication-title: Journal of Water Resources Planning and Management doi: 10.1061/(ASCE)0733-9496(2010)136:2(248) – volume: 160 start-page: 968 year: 2022 ident: e_1_2_12_20_2 article-title: Gas Leakage Detection Using Spatial and Temporal Neural Network Model publication-title: Process Safety and Environmental Protection doi: 10.1016/j.psep.2022.03.002 – ident: e_1_2_12_38_2 doi: 10.1016/j.energy.2014.02.089 – volume: 104 start-page: 142 year: 2016 ident: e_1_2_12_63_2 article-title: A Novel Noise Reduction Method Applied in Negative Pressure Wave for Pipeline Leakage Localization publication-title: Process Safety and Environmental Protection doi: 10.1016/j.psep.2016.08.014 – ident: e_1_2_12_21_2 doi: 10.1016/j.ijpvp.2020.104243 – ident: e_1_2_12_72_2 doi: 10.1016/j.cosrev.2023.100614 – volume: 35 start-page: 1381 year: 2010 ident: e_1_2_12_1_2 article-title: The Role of District Heating in Future Renewable Energy Systems publication-title: Energy doi: 10.1016/j.energy.2009.11.023 – ident: e_1_2_12_14_2 doi: 10.1016/j.energy.2021.121604 – volume: 41 start-page: 97 year: 2016 ident: e_1_2_12_25_2 article-title: A Review on Different Pipeline Fault Detection Methods publication-title: Journal of Loss Prevention in the Process Industries doi: 10.1016/j.jlp.2016.03.010 – ident: e_1_2_12_83_2 doi: 10.1115/IPC2014-33297 – volume: 174 start-page: 39 year: 2023 ident: e_1_2_12_58_2 article-title: Automated Leakage Detection Method of Pipeline Networks Under Complicated Backgrounds by Combining Infrared Thermography and Faster R-CNN Technique publication-title: Process Safety and Environmental Protection doi: 10.1016/j.psep.2023.04.006 – ident: e_1_2_12_34_2 doi: 10.1016/j.yofte.2018.10.013 – ident: e_1_2_12_35_2 doi: 10.1109/TSTE.2015.2467383 – ident: e_1_2_12_4_2 doi: 10.1016/j.tust.2023.105065 – volume: 20 start-page: 2540 year: 2024 ident: e_1_2_12_74_2 article-title: Semiautonomous Pipeline Inspection Using Infrared Thermography and Unmanned Aerial Vehicles publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2023.3295409 – start-page: 2289 volume-title: 2020 Chinese Automation Congress (CAC) year: 2020 ident: e_1_2_12_78_2 doi: 10.1109/CAC51589.2020.9327447 – ident: e_1_2_12_15_2 – ident: e_1_2_12_29_2 doi: 10.1115/1.4000736 – volume: 43 start-page: 513 year: 2010 ident: e_1_2_12_32_2 article-title: A SVM-Based Pipeline Leakage Detection and Pre-Warning System publication-title: Measurement doi: 10.1016/j.measurement.2009.12.022 – ident: e_1_2_12_45_2 doi: 10.1016/j.energy.2019.116496 – ident: e_1_2_12_89_2 doi: 10.1016/j.measurement.2024.114190 – ident: e_1_2_12_9_2 doi: 10.1016/j.scs.2013.10.002 – volume: 35 start-page: 4892 year: 2010 ident: e_1_2_12_5_2 article-title: A Renewable Energy Scenario for Aalborg Municipality Based on Low-Temperature Geothermal Heat, Wind Power and Biomass publication-title: Energy doi: 10.1016/j.energy.2010.08.041 – ident: e_1_2_12_8_2 doi: 10.1016/j.renene.2015.05.061 – ident: e_1_2_12_49_2 doi: 10.1080/00221680109499828 – volume: 6 year: 2023 ident: e_1_2_12_70_2 article-title: Systematic Review of Digital Twin Technology and Applications publication-title: Visual Computing for Industry, Biomedicine, and Art – ident: e_1_2_12_10_2 doi: 10.1016/j.enconman.2018.10.005 – volume: 43 start-page: 479 year: 2016 ident: e_1_2_12_53_2 article-title: Pipeline Leakage Detection and Isolation: An Integrated Approach of Statistical and Wavelet Feature Extraction With Multi-Layer Perceptron Neural Network (MLPNN) publication-title: Journal of Loss Prevention in the Process Industries doi: 10.1016/j.jlp.2016.06.018 – ident: e_1_2_12_68_2 doi: 10.1016/j.measurement.2023.112691 – volume: 43 start-page: 499 year: 2020 ident: e_1_2_12_28_2 article-title: UAV-Based Thermal Anomaly Detection for Distributed Heating Networks publication-title: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences doi: 10.5194/isprs-archives-XLIII-B1-2020-499-2020 – volume: 69 start-page: 902 year: 2017 ident: e_1_2_12_51_2 article-title: A Pressure-Based Method for Monitoring Leaks in a Pipe Distribution System: A Review publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2016.08.024 – ident: e_1_2_12_46_2 doi: 10.1016/j.egypro.2018.08.192 – ident: e_1_2_12_61_2 doi: 10.3390/computers13040100 – ident: e_1_2_12_84_2 doi: 10.2118/183290-MS – volume: 91 start-page: 656 year: 2016 ident: e_1_2_12_59_2 article-title: Chaos Characteristics and Least Squares Support Vector Machines Based Online Pipeline Small Leakages Detection publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2016.09.002 – ident: e_1_2_12_75_2 doi: 10.1117/12.302533 – ident: e_1_2_12_88_2 doi: 10.1016/j.measurement.2018.03.018 – ident: e_1_2_12_47_2 doi: 10.1115/IPC2018-78426 – volume: 14 start-page: 151 year: 2018 ident: e_1_2_12_3_2 article-title: Study and Demonstration of Pressure Wave-Based Leak Detection in a District Heating Network publication-title: Structure and Infrastructure Engineering doi: 10.1080/15732479.2017.1330892 – ident: e_1_2_12_7_2 doi: 10.1016/j.rser.2016.02.023 – ident: e_1_2_12_37_2 doi: 10.1016/j.enconman.2003.09.005 – ident: e_1_2_12_56_2 doi: 10.1016/j.energy.2022.126125 – volume: 140 start-page: 158 year: 2020 ident: e_1_2_12_76_2 article-title: UAV Image Analysis for Leakage Detection in District Heating Systems Using Machine Learning publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2020.05.024 – volume: 137 start-page: 567 year: 2018 ident: e_1_2_12_11_2 article-title: A Review of Leakage Detection Methods for District Heating Networks publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2018.04.010 – volume: 174 start-page: 460 year: 2023 ident: e_1_2_12_54_2 article-title: Real-Time Pipeline Leak Detection and Localization Using an Attention-Based LSTM Approach publication-title: Process Safety and Environmental Protection doi: 10.1016/j.psep.2023.04.020 – ident: e_1_2_12_91_2 doi: 10.1002/stc.1931 – ident: e_1_2_12_13_2 doi: 10.1016/j.icheatmasstransfer.2022.106123 – ident: e_1_2_12_30_2 doi: 10.1038/s41598-023-41177-3 – ident: e_1_2_12_2_2 doi: 10.1016/j.energy.2022.125291 – volume: 8 start-page: 41 year: 2012 ident: e_1_2_12_12_2 article-title: Status, Needs and Possibilities for Service Life Prediction and Estimation of District Heating Distribution Networks publication-title: Structure and Infrastructure Engineering doi: 10.1080/15732470903213740 – ident: e_1_2_12_65_2 doi: 10.1109/ICIEA.2009.5138796 – ident: e_1_2_12_55_2 doi: 10.1016/j.enbuild.2020.110161 – volume: 21 year: 2025 ident: e_1_2_12_80_2 article-title: High-Efficiency Broadband Electroacoustic Energy Conversion Using Non-Foster-Inspired Circuit and Adaptively Switched Capacitor publication-title: IEEE Transactions on Industrial Electronics – ident: e_1_2_12_79_2 doi: 10.1016/j.jpse.2022.100074 – volume: 13 start-page: 153 year: 2011 ident: e_1_2_12_18_2 article-title: Leak Detection by Inverse Transient Analysis in an Experimental PVC Pipe System publication-title: Journal of Hydroinformatics doi: 10.2166/hydro.2010.012 – volume: 123 start-page: 309 year: 2019 ident: e_1_2_12_67_2 article-title: A Novel Location Algorithm for Pipeline Leakage Based on the Attenuation of Negative Pressure Wave publication-title: Process Safety and Environmental Protection doi: 10.1016/j.psep.2019.01.010 – volume: 125 start-page: 761 year: 1999 ident: e_1_2_12_71_2 article-title: Efficient Inverse Transient Analysis in Series Pipe Systems publication-title: Journal of Hydraulic Engineering doi: 10.1061/(ASCE)0733-9429(1999)125:7(761) – ident: e_1_2_12_73_2 doi: 10.1016/j.comnet.2020.107148 – ident: e_1_2_12_6_2 doi: 10.1016/j.rser.2011.07.070 – volume: 65 start-page: 609 year: 2023 ident: e_1_2_12_27_2 article-title: Heating Pipeline Identification and Leakage Detection Method Based on Improved R3Det publication-title: Insight-Non-Destructive Testing and Condition Monitoring doi: 10.1784/insi.2023.65.11.609 – ident: e_1_2_12_48_2 doi: 10.1109/TII.2018.2794987 – volume: 15 start-page: 41 year: 2018 ident: e_1_2_12_57_2 article-title: Applications of Support Vector Machine (SVM) Learning in Cancer Genomics publication-title: Cancer Genomics & Proteomics – volume: 98 start-page: 256 year: 2016 ident: e_1_2_12_40_2 article-title: Choice of Insulation Standard for Pipe Networks in 4th Generation District Heating Systems publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2015.12.015 – ident: e_1_2_12_87_2 doi: 10.1016/j.tust.2024.105945 – ident: e_1_2_12_44_2 doi: 10.1016/j.energy.2021.120520 – volume: 107 start-page: 1655 year: 2019 ident: e_1_2_12_52_2 article-title: Deep Learning With Edge Computing: A Review publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2019.2921977 – ident: e_1_2_12_60_2 doi: 10.1016/j.energy.2023.128696 |
SSID | ssj0009917 |
Score | 2.4057214 |
SecondaryResourceType | review_article |
Snippet | The development of district heating systems (DHSs) has increased the demand for leakage diagnosis in heating networks due to its impact on thermal efficiency,... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
SubjectTerms | 20th century Accuracy Acoustic imagery Aerial thermography Alternative energy sources Carbon Cooling Diagnosis District heating Efficiency Elastic waves Energy consumption External pressure Fiber optics Heat pipes Heat transfer Heating Heating systems Infrared imaging Leakage Machine learning Mathematical models Methods Optical fibres Principles Renewable resources Sensors Temperature Thermodynamic efficiency Thermography Transient analysis Unmanned aerial vehicles |
Title | Leakage Diagnosis Technologies for Heating Pipe Networks: A Comprehensive Review of Currently Used Methods |
URI | https://www.proquest.com/docview/3216727968 |
Volume | 2025 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEN0oXPRg_Iwokk302tBtu-3Wi0EFiVFCjCTcmu1-KGoKUjz4753dLiIXz3ubzbx5b2byBqELAUVQaR54mtPci9KYQ86BSklpkoe-JpxU2xaDuD-K7sd07BpupVurXGKiBWo5FaZH3g4DYoaGacyuZp-euRplpqvuhMYmqgMEMxBf9evuYPi0st1N7c1dO60EGTh2BqVQRNtq3gZ2GTEarpekdUS2Zaa3i3YcP8Sd6kP30IYq9tH2H9fAA_T2oPg7wAC-rdbkJiX-bZCD7sVAQ3HfUMHiBQ8nM4UH1ap3eYk72OT_XL1Wa-u4mgzgqcbOp-njG49KJfGjPSxdHqJRr_t80_fcyQRPAHdZeJrmgKSJklEuEqpTnye-DkgoIsGBaQRUQ0GSLIxoIBPOE2OnBwyOcUlYrtMkPEK1YlqoY4S1n0tClC-ZBBEYKsZEnBChQaEJEiraQOfLqGWzyhkjs4qC0kzNMxfbBmouA5q57Ciz1V-e_P98irYCc2_XtjyaqLaYf6kzIAGLvIU2We-u5f67ZaX0D_N5s-c |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhU7loBj1DiOGwcJIQSUAqXiQKXeguOFVW1pihA_xTcyzsJy4cY5kg_j8XvzZiYzALsKSdBYGXhW8tQL47rEN4cqJeZRynxLJS26Ldr1Zie86PLuGHxU_8K4tsoKE3Og1n3lcuQ1FlBXNIzr4nDw4rmtUa66Wq3QKNzi0ry_oWTLDs5P8H73gqBxenPc9MqtAp5Ceh95lqcINpHRYaoibmNfRr4NKFOhkkjGAbeI2VqwkAc6kjJyE-cwyBFSU5HaOGJ47jhMhozF7kWJxtn3kN843_Cb10ZRdHbLcahI2TUzrGEsGwrOfhPgb_zPSa0xB7NlNEqOCveZhzHTW4CZHzMKF-GxZeQTgg45KZryHjLylY5HlU0w6CVNF3j27sj1w8CQdtFYnu2TI-LQZmjuiyZ5UtQhSN-ScirU8zvpZEaTq3yNdbYEnX8x5TJM9Po9swLE-qmm1PhaaJSczAih6hFVFvWgoszwVdiprJYMijkcSa5fOE_MMCltuwoblUGT8i1mybfnrP39eRummjdXraR13r5ch-nAbfrNky0bMDEavppNDD9G6VZ-5wRu_9vJPgHUC-1A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60guhBfOLbBfUYmk2y3UQQUWupr1LEQm9xsw-tSlubivjX_HXO5uHj4s1zYA-zs_PNNzOZD2BPIghqIzzHCJY4QVQT-OaQpUSMJ75rqKD5tEWr1uwEF13WnYCP8l8YO1ZZxsQsUKuBtDXyqu9R2zSMamHVFGMR7XrjaPjiWAUp22kt5TRyF7nU729I39LD8zre9b7nNc5uT5tOoTDgSIT6sWNYgoGHaxUkkjMTuYK7xqO-DKRAYPaYwfitQj9gnuJCcLt9DhOeUCgaJibiPp47CVMcWZFbgamTs1b75nvlb5Tp_WadUqSg3WI5KgJ4VY-qmNkGIfN_w-FvNMggrjEPc0VuSo5zZ1qACd1fhNkfGwuX4PFKiycMQaSej-j1UvJVnEfOTTAFJk2bhvbvSbs31KSVj5mnB-SY2Ngz0g_5yDzJuxJkYEixI-r5nXRSrch1JmqdLkPnX4y5ApX-oK9XgRg3UZRqV4UKCaivw1DWOJUG2aGkvmZrsFtaLR7mWznijM0wFutRXNh2DTZLg8bFy0zjbz9a__vzDkyjg8VX563LDZjxrOxvVnnZhMp49Kq3MBcZJ9vFpRO4-28_-wSYyfLS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leakage+Diagnosis+Technologies+for+Heating+Pipe+Networks%3A+A+Comprehensive+Review+of+Currently+Used+Methods&rft.jtitle=International+journal+of+energy+research&rft.au=Ye%2C+Shengtao&rft.au=Yu%2C+Fuzhong&rft.au=Hao%2C+Min&rft.au=Wu%2C+Menghai&rft.date=2025-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=2025&rft_id=info:doi/10.1155%2Fer%2F8824853&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |