Leakage Diagnosis Technologies for Heating Pipe Networks: A Comprehensive Review of Currently Used Methods

The development of district heating systems (DHSs) has increased the demand for leakage diagnosis in heating networks due to its impact on thermal efficiency, heating effectiveness, and security. This paper introduces various leakage diagnosis methods, provides solutions to the challenges of current...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of energy research Vol. 2025; no. 1
Main Authors Ye, Shengtao, Yu, Fuzhong, Hao, Min, Wu, Menghai, Chen, Dandan, Bu, Changsheng, Lu, Ping, Du, Yuntan, Cui, Kaige
Format Journal Article
LanguageEnglish
Published Bognor Regis John Wiley & Sons, Inc 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of district heating systems (DHSs) has increased the demand for leakage diagnosis in heating networks due to its impact on thermal efficiency, heating effectiveness, and security. This paper introduces various leakage diagnosis methods, provides solutions to the challenges of current diagnosis methods, and makes suggestions for future research. Internal methods include transient analysis, machine learning (ML), and negative pressure wave (NPW) technology. External methods include unmanned aerial vehicle (UAV) infrared thermography (UAIT), acoustic sensing, and fiber optic sensing methods. Some of these methods diagnose leakages through mathematical modeling and simulations, while others use various sensors to monitor changes in the internal medium of the pipeline to identify leakages. Additionally, UAIT and other special equipment are employed for leakage diagnosis. Detailed diagnosis principles of these methods as well as the solutions provided to address existing diagnosis bottlenecks were also introduced. Furthermore, this paper also reviews the performance of these diagnosis methods in terms of sensitivity, resolution, monitoring, accuracy, and cost. Based on the characteristics of each method, it offers guidance on the selection of pipeline leakage diagnosis methods for practical engineering applications.
AbstractList The development of district heating systems (DHSs) has increased the demand for leakage diagnosis in heating networks due to its impact on thermal efficiency, heating effectiveness, and security. This paper introduces various leakage diagnosis methods, provides solutions to the challenges of current diagnosis methods, and makes suggestions for future research. Internal methods include transient analysis, machine learning (ML), and negative pressure wave (NPW) technology. External methods include unmanned aerial vehicle (UAV) infrared thermography (UAIT), acoustic sensing, and fiber optic sensing methods. Some of these methods diagnose leakages through mathematical modeling and simulations, while others use various sensors to monitor changes in the internal medium of the pipeline to identify leakages. Additionally, UAIT and other special equipment are employed for leakage diagnosis. Detailed diagnosis principles of these methods as well as the solutions provided to address existing diagnosis bottlenecks were also introduced. Furthermore, this paper also reviews the performance of these diagnosis methods in terms of sensitivity, resolution, monitoring, accuracy, and cost. Based on the characteristics of each method, it offers guidance on the selection of pipeline leakage diagnosis methods for practical engineering applications.
Author Cui, Kaige
Du, Yuntan
Wu, Menghai
Ye, Shengtao
Yu, Fuzhong
Chen, Dandan
Bu, Changsheng
Hao, Min
Lu, Ping
Author_xml – sequence: 1
  givenname: Shengtao
  surname: Ye
  fullname: Ye, Shengtao
– sequence: 2
  givenname: Fuzhong
  surname: Yu
  fullname: Yu, Fuzhong
– sequence: 3
  givenname: Min
  surname: Hao
  fullname: Hao, Min
– sequence: 4
  givenname: Menghai
  surname: Wu
  fullname: Wu, Menghai
– sequence: 5
  givenname: Dandan
  orcidid: 0000-0002-5936-6176
  surname: Chen
  fullname: Chen, Dandan
– sequence: 6
  givenname: Changsheng
  orcidid: 0000-0001-7928-8665
  surname: Bu
  fullname: Bu, Changsheng
– sequence: 7
  givenname: Ping
  orcidid: 0000-0002-0233-9580
  surname: Lu
  fullname: Lu, Ping
– sequence: 8
  givenname: Yuntan
  surname: Du
  fullname: Du, Yuntan
– sequence: 9
  givenname: Kaige
  surname: Cui
  fullname: Cui, Kaige
BookMark eNotkEtrAjEYRUNpoWq76S8IdFeYmsdkkulOpg8L9kFRcDfEmS9jfCQ2GRX_fS26uot7uBdOF1067wChO0oeKRWiD6GvFEuV4BeoQ0meJ5Sm00vUITzjSU7k9Bp1Y1wQcuyo7KDFCPRSN4CfrW6cjzbiMVRz51e-sRCx8QEPQbfWNfjbbgB_Qrv3YRmf8AAXfr0JMAcX7Q7wD-ws7LE3uNiGAK5dHfAkQo0_oJ37Ot6gK6NXEW7P2UOT15dxMUxGX2_vxWCUVExkbWLEDHQloU5nlRQmJ1oSwyiv0kqrNGPCEMpqxVPBaqm1pISznDOla6pmJpe8h-5Pu5vgf7cQ23Lht8EdL0vOaCaZzDN1pB5OVBV8jAFMuQl2rcOhpKT8d1lCKM8u-R8y2Wk1
Cites_doi 10.1109/ICCIS.2011.190
10.1155/2013/278794
10.1016/j.cie.2018.11.008
10.1016/j.energy.2013.10.067
10.1016/j.energy.2017.05.165
10.7901/2169-3358-1997-1-379
10.3390/app11094004
10.1109/MCOM.003.2200643
10.1016/j.energy.2024.131051
10.1109/JSEN.2022.3157872
10.1016/j.rser.2020.110577
10.1109/JLT.2016.2615468
10.1117/12.818021
10.1016/j.energy.2012.03.056
10.1016/j.ymssp.2020.106787
10.1145/3555802
10.1016/j.compchemeng.2007.08.011
10.1016/j.applthermaleng.2014.12.070
10.1016/j.psep.2018.07.023
10.1016/j.ymssp.2021.108580
10.1016/j.apacoust.2023.109798
10.1016/j.engfracmech.2018.03.010
10.1115/IPC2006-10471
10.1061/(ASCE)0733-9496(2010)136:2(248)
10.1016/j.psep.2022.03.002
10.1016/j.energy.2014.02.089
10.1016/j.psep.2016.08.014
10.1016/j.ijpvp.2020.104243
10.1016/j.cosrev.2023.100614
10.1016/j.energy.2009.11.023
10.1016/j.energy.2021.121604
10.1016/j.jlp.2016.03.010
10.1115/IPC2014-33297
10.1016/j.psep.2023.04.006
10.1016/j.yofte.2018.10.013
10.1109/TSTE.2015.2467383
10.1016/j.tust.2023.105065
10.1109/TII.2023.3295409
10.1109/CAC51589.2020.9327447
10.1115/1.4000736
10.1016/j.measurement.2009.12.022
10.1016/j.energy.2019.116496
10.1016/j.measurement.2024.114190
10.1016/j.scs.2013.10.002
10.1016/j.energy.2010.08.041
10.1016/j.renene.2015.05.061
10.1080/00221680109499828
10.1016/j.enconman.2018.10.005
10.1016/j.jlp.2016.06.018
10.1016/j.measurement.2023.112691
10.5194/isprs-archives-XLIII-B1-2020-499-2020
10.1016/j.rser.2016.08.024
10.1016/j.egypro.2018.08.192
10.3390/computers13040100
10.2118/183290-MS
10.1016/j.chaos.2016.09.002
10.1117/12.302533
10.1016/j.measurement.2018.03.018
10.1115/IPC2018-78426
10.1080/15732479.2017.1330892
10.1016/j.rser.2016.02.023
10.1016/j.enconman.2003.09.005
10.1016/j.energy.2022.126125
10.1016/j.patrec.2020.05.024
10.1016/j.applthermaleng.2018.04.010
10.1016/j.psep.2023.04.020
10.1002/stc.1931
10.1016/j.icheatmasstransfer.2022.106123
10.1038/s41598-023-41177-3
10.1016/j.energy.2022.125291
10.1080/15732470903213740
10.1109/ICIEA.2009.5138796
10.1016/j.enbuild.2020.110161
10.1016/j.jpse.2022.100074
10.2166/hydro.2010.012
10.1016/j.psep.2019.01.010
10.1061/(ASCE)0733-9429(1999)125:7(761)
10.1016/j.comnet.2020.107148
10.1016/j.rser.2011.07.070
10.1784/insi.2023.65.11.609
10.1109/TII.2018.2794987
10.1016/j.applthermaleng.2015.12.015
10.1016/j.tust.2024.105945
10.1016/j.energy.2021.120520
10.1109/JPROC.2019.2921977
10.1016/j.energy.2023.128696
ContentType Journal Article
Copyright Copyright © 2025 Shengtao Ye et al. International Journal of Energy Research published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (the “License”), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2025 Shengtao Ye et al. International Journal of Energy Research published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (the “License”), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID AAYXX
CITATION
7SP
7ST
7TB
7TN
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
F28
FR3
GNUQQ
H96
HCIFZ
KR7
L.G
L6V
L7M
M7S
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
SOI
DOI 10.1155/er/8824853
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Environment Abstracts
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-114X
Editor Dongdong Yuan
Editor_xml – fullname: Dongdong Yuan
ExternalDocumentID 10_1155_er_8824853
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAJEY
AAMMB
AANHP
AAONW
AASGY
AAXRX
AAYXX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCMX
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIMD
AENEX
AEUYN
AFBPY
AFGKR
AFKRA
AFRAH
AFZJQ
AGQPQ
AGXDD
AI.
AIDQK
AIDYY
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CITATION
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HCIFZ
HF~
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PTHSS
PYCSY
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
7SP
7ST
7TB
7TN
8FD
8FE
8FG
ABUWG
AZQEC
C1K
DWQXO
F1W
F28
FR3
GNUQQ
H96
KR7
L.G
L6V
L7M
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
SOI
ID FETCH-LOGICAL-c256t-f5beac7ed4bc75f90a70f213c4ca84625f012d83452d7aa710329328ad18bf973
IEDL.DBID BENPR
ISSN 0363-907X
IngestDate Fri Jul 25 09:32:22 EDT 2025
Thu Jul 03 08:28:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c256t-f5beac7ed4bc75f90a70f213c4ca84625f012d83452d7aa710329328ad18bf973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0233-9580
0000-0002-5936-6176
0000-0001-7928-8665
OpenAccessLink https://www.proquest.com/docview/3216727968?pq-origsite=%requestingapplication%
PQID 3216727968
PQPubID 996365
ParticipantIDs proquest_journals_3216727968
crossref_primary_10_1155_er_8824853
PublicationCentury 2000
PublicationDate 2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-00
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of energy research
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References e_1_2_12_2_2
Covas D. (e_1_2_12_50_2) 2010; 136
e_1_2_12_4_2
e_1_2_12_17_2
e_1_2_12_15_2
Liu J. (e_1_2_12_59_2) 2016; 91
e_1_2_12_38_2
Abdulshaheed A. (e_1_2_12_51_2) 2017; 69
Sonkar S. K. (e_1_2_12_26_2) 2022; 22
Hossain K. (e_1_2_12_76_2) 2020; 140
Ge C. (e_1_2_12_23_2) 2008; 32
e_1_2_12_64_2
e_1_2_12_87_2
e_1_2_12_85_2
Yao J. (e_1_2_12_70_2) 2023; 6
Valinčius M. (e_1_2_12_3_2) 2018; 14
e_1_2_12_45_2
e_1_2_12_68_2
e_1_2_12_47_2
e_1_2_12_89_2
Østergaard P. A. (e_1_2_12_5_2) 2010; 35
Shen G. (e_1_2_12_66_2) 2018; 119
e_1_2_12_60_2
e_1_2_12_83_2
Datta S. (e_1_2_12_25_2) 2016; 41
e_1_2_12_81_2
Tafuri A. N. (e_1_2_12_31_2) 1997; 1997
Huang S. (e_1_2_12_57_2) 2018; 15
Wu H. (e_1_2_12_90_2) 2024; 62
Sledz A. (e_1_2_12_28_2) 2020; 43
e_1_2_12_49_2
e_1_2_12_75_2
e_1_2_12_73_2
e_1_2_12_33_2
e_1_2_12_56_2
e_1_2_12_79_2
e_1_2_12_35_2
e_1_2_12_77_2
e_1_2_12_14_2
Kopbayev A. (e_1_2_12_20_2) 2022; 160
Hallberg D. (e_1_2_12_12_2) 2012; 8
e_1_2_12_10_2
e_1_2_12_6_2
e_1_2_12_8_2
Ommen T. (e_1_2_12_43_2) 2017; 137
Usamentiaga R. (e_1_2_12_74_2) 2024; 20
Zhang Y. (e_1_2_12_80_2) 2025; 21
e_1_2_12_16_2
e_1_2_12_37_2
e_1_2_12_39_2
Lu W. (e_1_2_12_63_2) 2016; 104
Xie J. (e_1_2_12_58_2) 2023; 174
Jiang X. S. (e_1_2_12_41_2) 2014; 64
Zhang X. (e_1_2_12_54_2) 2023; 174
Qu Z. (e_1_2_12_32_2) 2010; 43
e_1_2_12_65_2
e_1_2_12_86_2
e_1_2_12_21_2
e_1_2_12_42_2
e_1_2_12_84_2
e_1_2_12_44_2
Nash G. (e_1_2_12_71_2) 1999; 125
Lund R. (e_1_2_12_40_2) 2016; 98
e_1_2_12_46_2
Zadkarami M. (e_1_2_12_53_2) 2016; 43
e_1_2_12_88_2
Li J. (e_1_2_12_67_2) 2019; 123
e_1_2_12_61_2
e_1_2_12_82_2
Soares A. K. (e_1_2_12_18_2) 2011; 13
Hou Q. (e_1_2_12_22_2) 2013; 2013
e_1_2_12_48_2
Hua H. (e_1_2_12_62_2) 2023; 55
e_1_2_12_29_2
Moos T. (e_1_2_12_69_2) 2021
Chen J. (e_1_2_12_52_2) 2019; 107
e_1_2_12_30_2
Lund H. (e_1_2_12_1_2) 2010; 35
Wang J. (e_1_2_12_24_2) 2016; 35
e_1_2_12_34_2
e_1_2_12_55_2
Chen J. (e_1_2_12_27_2) 2023; 65
e_1_2_12_36_2
Zhou S. (e_1_2_12_11_2) 2018; 137
e_1_2_12_13_2
Jiao Z. (e_1_2_12_19_2) 2019; 135
e_1_2_12_7_2
e_1_2_12_72_2
e_1_2_12_9_2
Xu T. (e_1_2_12_78_2) 2020
e_1_2_12_91_2
References_xml – ident: e_1_2_12_17_2
  doi: 10.1109/ICCIS.2011.190
– volume: 2013
  start-page: 1
  year: 2013
  ident: e_1_2_12_22_2
  article-title: An Improved Negative Pressure Wave Method for Natural Gas Pipeline Leak Location Using FBG Based Strain Sensor and Wavelet Transform
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2013/278794
– volume: 135
  start-page: 1300
  year: 2019
  ident: e_1_2_12_19_2
  article-title: A New Approach to Oil Spill Detection That Combines Deep Learning With Unmanned Aerial Vehicles
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.11.008
– volume: 64
  start-page: 375
  year: 2014
  ident: e_1_2_12_41_2
  article-title: Modelling and Operation Optimization of an Integrated Energy Based Direct District Water-Heating System
  publication-title: Energy
  doi: 10.1016/j.energy.2013.10.067
– volume: 137
  start-page: 544
  year: 2017
  ident: e_1_2_12_43_2
  article-title: Performance of Ultra Low Temperature District Heating Systems With Utility Plant and Booster Heat Pumps
  publication-title: Energy
  doi: 10.1016/j.energy.2017.05.165
– volume: 1997
  start-page: 379
  year: 1997
  ident: e_1_2_12_31_2
  article-title: Leak Detection and Leak Location in Underground Pipelines
  publication-title: International Oil Spill Conference Proceedings
  doi: 10.7901/2169-3358-1997-1-379
– ident: e_1_2_12_77_2
  doi: 10.3390/app11094004
– volume: 62
  start-page: 126
  year: 2024
  ident: e_1_2_12_90_2
  article-title: Leveraging Optical Communication Fiber and AI for Distributed Water Pipe Leak Detection
  publication-title: IEEE Communications Magazine
  doi: 10.1109/MCOM.003.2200643
– ident: e_1_2_12_85_2
  doi: 10.1016/j.energy.2024.131051
– volume: 22
  start-page: 8041
  year: 2022
  ident: e_1_2_12_26_2
  article-title: Detection and Estimation of Natural Gas Leakage Using UAV by Machine Learning Algorithms
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2022.3157872
– start-page: 552
  volume-title: IACR Transactions on Cryptographic Hardware and Embedded Systems
  year: 2021
  ident: e_1_2_12_69_2
– ident: e_1_2_12_42_2
  doi: 10.1016/j.rser.2020.110577
– volume: 35
  start-page: 3366
  year: 2016
  ident: e_1_2_12_24_2
  article-title: Novel Negative Pressure Wave-Based Pipeline Leak Detection System Using Fiber Bragg Grating-Based Pressure Sensors
  publication-title: Lightwave Technology
  doi: 10.1109/JLT.2016.2615468
– ident: e_1_2_12_33_2
  doi: 10.1117/12.818021
– ident: e_1_2_12_39_2
  doi: 10.1016/j.energy.2012.03.056
– ident: e_1_2_12_82_2
  doi: 10.1016/j.ymssp.2020.106787
– volume: 55
  start-page: 1
  year: 2023
  ident: e_1_2_12_62_2
  article-title: Edge Computing With Artificial Intelligence: A Machine Learning Perspective
  publication-title: ACM Computing Surveys
  doi: 10.1145/3555802
– volume: 32
  start-page: 1669
  year: 2008
  ident: e_1_2_12_23_2
  article-title: Analysis of the Smallest Detectable Leakage Flow Rate of Negative Pressure Wave-Based Leak Detection Systems for Liquid Pipelines
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2007.08.011
– ident: e_1_2_12_36_2
  doi: 10.1016/j.applthermaleng.2014.12.070
– volume: 119
  start-page: 181
  year: 2018
  ident: e_1_2_12_66_2
  article-title: Effect of Rubber Washers on Leak Location for Assembled Pressurized Liquid Pipeline Based on Negative Pressure Wave Method
  publication-title: Process Safety and Environmental Protection
  doi: 10.1016/j.psep.2018.07.023
– ident: e_1_2_12_16_2
  doi: 10.1016/j.ymssp.2021.108580
– ident: e_1_2_12_81_2
  doi: 10.1016/j.apacoust.2023.109798
– ident: e_1_2_12_86_2
  doi: 10.1016/j.engfracmech.2018.03.010
– ident: e_1_2_12_64_2
  doi: 10.1115/IPC2006-10471
– volume: 136
  start-page: 248
  year: 2010
  ident: e_1_2_12_50_2
  article-title: Case Studies of Leak Detection and Location in Water Pipe Systems by Inverse Transient Analysis
  publication-title: Journal of Water Resources Planning and Management
  doi: 10.1061/(ASCE)0733-9496(2010)136:2(248)
– volume: 160
  start-page: 968
  year: 2022
  ident: e_1_2_12_20_2
  article-title: Gas Leakage Detection Using Spatial and Temporal Neural Network Model
  publication-title: Process Safety and Environmental Protection
  doi: 10.1016/j.psep.2022.03.002
– ident: e_1_2_12_38_2
  doi: 10.1016/j.energy.2014.02.089
– volume: 104
  start-page: 142
  year: 2016
  ident: e_1_2_12_63_2
  article-title: A Novel Noise Reduction Method Applied in Negative Pressure Wave for Pipeline Leakage Localization
  publication-title: Process Safety and Environmental Protection
  doi: 10.1016/j.psep.2016.08.014
– ident: e_1_2_12_21_2
  doi: 10.1016/j.ijpvp.2020.104243
– ident: e_1_2_12_72_2
  doi: 10.1016/j.cosrev.2023.100614
– volume: 35
  start-page: 1381
  year: 2010
  ident: e_1_2_12_1_2
  article-title: The Role of District Heating in Future Renewable Energy Systems
  publication-title: Energy
  doi: 10.1016/j.energy.2009.11.023
– ident: e_1_2_12_14_2
  doi: 10.1016/j.energy.2021.121604
– volume: 41
  start-page: 97
  year: 2016
  ident: e_1_2_12_25_2
  article-title: A Review on Different Pipeline Fault Detection Methods
  publication-title: Journal of Loss Prevention in the Process Industries
  doi: 10.1016/j.jlp.2016.03.010
– ident: e_1_2_12_83_2
  doi: 10.1115/IPC2014-33297
– volume: 174
  start-page: 39
  year: 2023
  ident: e_1_2_12_58_2
  article-title: Automated Leakage Detection Method of Pipeline Networks Under Complicated Backgrounds by Combining Infrared Thermography and Faster R-CNN Technique
  publication-title: Process Safety and Environmental Protection
  doi: 10.1016/j.psep.2023.04.006
– ident: e_1_2_12_34_2
  doi: 10.1016/j.yofte.2018.10.013
– ident: e_1_2_12_35_2
  doi: 10.1109/TSTE.2015.2467383
– ident: e_1_2_12_4_2
  doi: 10.1016/j.tust.2023.105065
– volume: 20
  start-page: 2540
  year: 2024
  ident: e_1_2_12_74_2
  article-title: Semiautonomous Pipeline Inspection Using Infrared Thermography and Unmanned Aerial Vehicles
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2023.3295409
– start-page: 2289
  volume-title: 2020 Chinese Automation Congress (CAC)
  year: 2020
  ident: e_1_2_12_78_2
  doi: 10.1109/CAC51589.2020.9327447
– ident: e_1_2_12_15_2
– ident: e_1_2_12_29_2
  doi: 10.1115/1.4000736
– volume: 43
  start-page: 513
  year: 2010
  ident: e_1_2_12_32_2
  article-title: A SVM-Based Pipeline Leakage Detection and Pre-Warning System
  publication-title: Measurement
  doi: 10.1016/j.measurement.2009.12.022
– ident: e_1_2_12_45_2
  doi: 10.1016/j.energy.2019.116496
– ident: e_1_2_12_89_2
  doi: 10.1016/j.measurement.2024.114190
– ident: e_1_2_12_9_2
  doi: 10.1016/j.scs.2013.10.002
– volume: 35
  start-page: 4892
  year: 2010
  ident: e_1_2_12_5_2
  article-title: A Renewable Energy Scenario for Aalborg Municipality Based on Low-Temperature Geothermal Heat, Wind Power and Biomass
  publication-title: Energy
  doi: 10.1016/j.energy.2010.08.041
– ident: e_1_2_12_8_2
  doi: 10.1016/j.renene.2015.05.061
– ident: e_1_2_12_49_2
  doi: 10.1080/00221680109499828
– volume: 6
  year: 2023
  ident: e_1_2_12_70_2
  article-title: Systematic Review of Digital Twin Technology and Applications
  publication-title: Visual Computing for Industry, Biomedicine, and Art
– ident: e_1_2_12_10_2
  doi: 10.1016/j.enconman.2018.10.005
– volume: 43
  start-page: 479
  year: 2016
  ident: e_1_2_12_53_2
  article-title: Pipeline Leakage Detection and Isolation: An Integrated Approach of Statistical and Wavelet Feature Extraction With Multi-Layer Perceptron Neural Network (MLPNN)
  publication-title: Journal of Loss Prevention in the Process Industries
  doi: 10.1016/j.jlp.2016.06.018
– ident: e_1_2_12_68_2
  doi: 10.1016/j.measurement.2023.112691
– volume: 43
  start-page: 499
  year: 2020
  ident: e_1_2_12_28_2
  article-title: UAV-Based Thermal Anomaly Detection for Distributed Heating Networks
  publication-title: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  doi: 10.5194/isprs-archives-XLIII-B1-2020-499-2020
– volume: 69
  start-page: 902
  year: 2017
  ident: e_1_2_12_51_2
  article-title: A Pressure-Based Method for Monitoring Leaks in a Pipe Distribution System: A Review
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2016.08.024
– ident: e_1_2_12_46_2
  doi: 10.1016/j.egypro.2018.08.192
– ident: e_1_2_12_61_2
  doi: 10.3390/computers13040100
– ident: e_1_2_12_84_2
  doi: 10.2118/183290-MS
– volume: 91
  start-page: 656
  year: 2016
  ident: e_1_2_12_59_2
  article-title: Chaos Characteristics and Least Squares Support Vector Machines Based Online Pipeline Small Leakages Detection
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2016.09.002
– ident: e_1_2_12_75_2
  doi: 10.1117/12.302533
– ident: e_1_2_12_88_2
  doi: 10.1016/j.measurement.2018.03.018
– ident: e_1_2_12_47_2
  doi: 10.1115/IPC2018-78426
– volume: 14
  start-page: 151
  year: 2018
  ident: e_1_2_12_3_2
  article-title: Study and Demonstration of Pressure Wave-Based Leak Detection in a District Heating Network
  publication-title: Structure and Infrastructure Engineering
  doi: 10.1080/15732479.2017.1330892
– ident: e_1_2_12_7_2
  doi: 10.1016/j.rser.2016.02.023
– ident: e_1_2_12_37_2
  doi: 10.1016/j.enconman.2003.09.005
– ident: e_1_2_12_56_2
  doi: 10.1016/j.energy.2022.126125
– volume: 140
  start-page: 158
  year: 2020
  ident: e_1_2_12_76_2
  article-title: UAV Image Analysis for Leakage Detection in District Heating Systems Using Machine Learning
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2020.05.024
– volume: 137
  start-page: 567
  year: 2018
  ident: e_1_2_12_11_2
  article-title: A Review of Leakage Detection Methods for District Heating Networks
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2018.04.010
– volume: 174
  start-page: 460
  year: 2023
  ident: e_1_2_12_54_2
  article-title: Real-Time Pipeline Leak Detection and Localization Using an Attention-Based LSTM Approach
  publication-title: Process Safety and Environmental Protection
  doi: 10.1016/j.psep.2023.04.020
– ident: e_1_2_12_91_2
  doi: 10.1002/stc.1931
– ident: e_1_2_12_13_2
  doi: 10.1016/j.icheatmasstransfer.2022.106123
– ident: e_1_2_12_30_2
  doi: 10.1038/s41598-023-41177-3
– ident: e_1_2_12_2_2
  doi: 10.1016/j.energy.2022.125291
– volume: 8
  start-page: 41
  year: 2012
  ident: e_1_2_12_12_2
  article-title: Status, Needs and Possibilities for Service Life Prediction and Estimation of District Heating Distribution Networks
  publication-title: Structure and Infrastructure Engineering
  doi: 10.1080/15732470903213740
– ident: e_1_2_12_65_2
  doi: 10.1109/ICIEA.2009.5138796
– ident: e_1_2_12_55_2
  doi: 10.1016/j.enbuild.2020.110161
– volume: 21
  year: 2025
  ident: e_1_2_12_80_2
  article-title: High-Efficiency Broadband Electroacoustic Energy Conversion Using Non-Foster-Inspired Circuit and Adaptively Switched Capacitor
  publication-title: IEEE Transactions on Industrial Electronics
– ident: e_1_2_12_79_2
  doi: 10.1016/j.jpse.2022.100074
– volume: 13
  start-page: 153
  year: 2011
  ident: e_1_2_12_18_2
  article-title: Leak Detection by Inverse Transient Analysis in an Experimental PVC Pipe System
  publication-title: Journal of Hydroinformatics
  doi: 10.2166/hydro.2010.012
– volume: 123
  start-page: 309
  year: 2019
  ident: e_1_2_12_67_2
  article-title: A Novel Location Algorithm for Pipeline Leakage Based on the Attenuation of Negative Pressure Wave
  publication-title: Process Safety and Environmental Protection
  doi: 10.1016/j.psep.2019.01.010
– volume: 125
  start-page: 761
  year: 1999
  ident: e_1_2_12_71_2
  article-title: Efficient Inverse Transient Analysis in Series Pipe Systems
  publication-title: Journal of Hydraulic Engineering
  doi: 10.1061/(ASCE)0733-9429(1999)125:7(761)
– ident: e_1_2_12_73_2
  doi: 10.1016/j.comnet.2020.107148
– ident: e_1_2_12_6_2
  doi: 10.1016/j.rser.2011.07.070
– volume: 65
  start-page: 609
  year: 2023
  ident: e_1_2_12_27_2
  article-title: Heating Pipeline Identification and Leakage Detection Method Based on Improved R3Det
  publication-title: Insight-Non-Destructive Testing and Condition Monitoring
  doi: 10.1784/insi.2023.65.11.609
– ident: e_1_2_12_48_2
  doi: 10.1109/TII.2018.2794987
– volume: 15
  start-page: 41
  year: 2018
  ident: e_1_2_12_57_2
  article-title: Applications of Support Vector Machine (SVM) Learning in Cancer Genomics
  publication-title: Cancer Genomics & Proteomics
– volume: 98
  start-page: 256
  year: 2016
  ident: e_1_2_12_40_2
  article-title: Choice of Insulation Standard for Pipe Networks in 4th Generation District Heating Systems
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2015.12.015
– ident: e_1_2_12_87_2
  doi: 10.1016/j.tust.2024.105945
– ident: e_1_2_12_44_2
  doi: 10.1016/j.energy.2021.120520
– volume: 107
  start-page: 1655
  year: 2019
  ident: e_1_2_12_52_2
  article-title: Deep Learning With Edge Computing: A Review
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2019.2921977
– ident: e_1_2_12_60_2
  doi: 10.1016/j.energy.2023.128696
SSID ssj0009917
Score 2.4057214
SecondaryResourceType review_article
Snippet The development of district heating systems (DHSs) has increased the demand for leakage diagnosis in heating networks due to its impact on thermal efficiency,...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms 20th century
Accuracy
Acoustic imagery
Aerial thermography
Alternative energy sources
Carbon
Cooling
Diagnosis
District heating
Efficiency
Elastic waves
Energy consumption
External pressure
Fiber optics
Heat pipes
Heat transfer
Heating
Heating systems
Infrared imaging
Leakage
Machine learning
Mathematical models
Methods
Optical fibres
Principles
Renewable resources
Sensors
Temperature
Thermodynamic efficiency
Thermography
Transient analysis
Unmanned aerial vehicles
Title Leakage Diagnosis Technologies for Heating Pipe Networks: A Comprehensive Review of Currently Used Methods
URI https://www.proquest.com/docview/3216727968
Volume 2025
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEN0oXPRg_Iwokk302tBtu-3Wi0EFiVFCjCTcmu1-KGoKUjz4753dLiIXz3ubzbx5b2byBqELAUVQaR54mtPci9KYQ86BSklpkoe-JpxU2xaDuD-K7sd07BpupVurXGKiBWo5FaZH3g4DYoaGacyuZp-euRplpqvuhMYmqgMEMxBf9evuYPi0st1N7c1dO60EGTh2BqVQRNtq3gZ2GTEarpekdUS2Zaa3i3YcP8Sd6kP30IYq9tH2H9fAA_T2oPg7wAC-rdbkJiX-bZCD7sVAQ3HfUMHiBQ8nM4UH1ap3eYk72OT_XL1Wa-u4mgzgqcbOp-njG49KJfGjPSxdHqJRr_t80_fcyQRPAHdZeJrmgKSJklEuEqpTnye-DkgoIsGBaQRUQ0GSLIxoIBPOE2OnBwyOcUlYrtMkPEK1YlqoY4S1n0tClC-ZBBEYKsZEnBChQaEJEiraQOfLqGWzyhkjs4qC0kzNMxfbBmouA5q57Ciz1V-e_P98irYCc2_XtjyaqLaYf6kzIAGLvIU2We-u5f67ZaX0D_N5s-c
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhU7loBj1DiOGwcJIQSUAqXiQKXeguOFVW1pihA_xTcyzsJy4cY5kg_j8XvzZiYzALsKSdBYGXhW8tQL47rEN4cqJeZRynxLJS26Ldr1Zie86PLuGHxU_8K4tsoKE3Og1n3lcuQ1FlBXNIzr4nDw4rmtUa66Wq3QKNzi0ry_oWTLDs5P8H73gqBxenPc9MqtAp5Ceh95lqcINpHRYaoibmNfRr4NKFOhkkjGAbeI2VqwkAc6kjJyE-cwyBFSU5HaOGJ47jhMhozF7kWJxtn3kN843_Cb10ZRdHbLcahI2TUzrGEsGwrOfhPgb_zPSa0xB7NlNEqOCveZhzHTW4CZHzMKF-GxZeQTgg45KZryHjLylY5HlU0w6CVNF3j27sj1w8CQdtFYnu2TI-LQZmjuiyZ5UtQhSN-ScirU8zvpZEaTq3yNdbYEnX8x5TJM9Po9swLE-qmm1PhaaJSczAih6hFVFvWgoszwVdiprJYMijkcSa5fOE_MMCltuwoblUGT8i1mybfnrP39eRummjdXraR13r5ch-nAbfrNky0bMDEavppNDD9G6VZ-5wRu_9vJPgHUC-1A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60guhBfOLbBfUYmk2y3UQQUWupr1LEQm9xsw-tSlubivjX_HXO5uHj4s1zYA-zs_PNNzOZD2BPIghqIzzHCJY4QVQT-OaQpUSMJ75rqKD5tEWr1uwEF13WnYCP8l8YO1ZZxsQsUKuBtDXyqu9R2zSMamHVFGMR7XrjaPjiWAUp22kt5TRyF7nU729I39LD8zre9b7nNc5uT5tOoTDgSIT6sWNYgoGHaxUkkjMTuYK7xqO-DKRAYPaYwfitQj9gnuJCcLt9DhOeUCgaJibiPp47CVMcWZFbgamTs1b75nvlb5Tp_WadUqSg3WI5KgJ4VY-qmNkGIfN_w-FvNMggrjEPc0VuSo5zZ1qACd1fhNkfGwuX4PFKiycMQaSej-j1UvJVnEfOTTAFJk2bhvbvSbs31KSVj5mnB-SY2Ngz0g_5yDzJuxJkYEixI-r5nXRSrch1JmqdLkPnX4y5ApX-oK9XgRg3UZRqV4UKCaivw1DWOJUG2aGkvmZrsFtaLR7mWznijM0wFutRXNh2DTZLg8bFy0zjbz9a__vzDkyjg8VX563LDZjxrOxvVnnZhMp49Kq3MBcZJ9vFpRO4-28_-wSYyfLS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leakage+Diagnosis+Technologies+for+Heating+Pipe+Networks%3A+A+Comprehensive+Review+of+Currently+Used+Methods&rft.jtitle=International+journal+of+energy+research&rft.au=Ye%2C+Shengtao&rft.au=Yu%2C+Fuzhong&rft.au=Hao%2C+Min&rft.au=Wu%2C+Menghai&rft.date=2025-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=2025&rft_id=info:doi/10.1155%2Fer%2F8824853&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon