Short-Term Traffic Flow Prediction with Regime Switching Models

Accurate short-term prediction of traffic parameters is a critical component for many intelligent transportation system applications. Traffic flow is subject to abrupt disturbances because of various unexpected events (e.g., accidents, weather-induced disruption) that may change the underlying dynam...

Full description

Saved in:
Bibliographic Details
Published inTransportation research record Vol. 1965; no. 1965; pp. 23 - 31
Main Authors Cetin, Mecit, Comert, Gurcan
Format Journal Article
LanguageEnglish
Published 01.01.2006
Online AccessGet full text
ISSN0361-1981
DOI10.3141/1965-03

Cover

Loading…
Abstract Accurate short-term prediction of traffic parameters is a critical component for many intelligent transportation system applications. Traffic flow is subject to abrupt disturbances because of various unexpected events (e.g., accidents, weather-induced disruption) that may change the underlying dynamics and the stability of the data generation process. Short-term prediction models that do not account for these changes produce biased and less accurate predictions. This paper proposes a new adaptive approach to short-term prediction that explicitly accounts for occasional regime changes by using statistical change-point detection algorithms. In this context, the expectation maximization and the CUSUM (cumulative sum) algorithms are implemented to detect shifts in the mean level of the process in real time. Autoregressive integrated moving average models are used for developing the forecasting models while the process mean is monitored by the two detection algorithms. The intercept of the forecasting models is updated on the basis of the detected shifts in the mean level to adapt to any potential new regimes. The proposed approach is tested on real-world loop data sets. The results show significant improvements in prediction accuracy compared with traditional autoregressive integrated moving average models with fixed parameters.
AbstractList Accurate short-term prediction of traffic parameters is a critical component for many intelligent transportation system applications. Traffic flow is subject to abrupt disturbances because of various unexpected events (e.g., accidents, weather-induced disruption) that may change the underlying dynamics and the stability of the data generation process. Short-term prediction models that do not account for these changes produce biased and less accurate predictions. This paper proposes a new adaptive approach to short-term prediction that explicitly accounts for occasional regime changes by using statistical change-point detection algorithms. In this context, the expectation maximization and the CUSUM (cumulative sum) algorithms are implemented to detect shifts in the mean level of the process in real time. Autoregressive integrated moving average models are used for developing the forecasting models while the process mean is monitored by the two detection algorithms. The intercept of the forecasting models is updated on the basis of the detected shifts in the mean level to adapt to any potential new regimes. The proposed approach is tested on real-world loop data sets. The results show significant improvements in prediction accuracy compared with traditional autoregressive integrated moving average models with fixed parameters.
Author Cetin, Mecit
Comert, Gurcan
Author_xml – sequence: 1
  givenname: Mecit
  surname: Cetin
  fullname: Cetin, Mecit
– sequence: 2
  givenname: Gurcan
  surname: Comert
  fullname: Comert, Gurcan
BookMark eNplkM1KAzEYRbOoYFvFV8hKV9H8zCSTlUixVagotq6HNPOljcxMapJSfHtb6kpXlwuHC-eO0KAPPSB0xeitYAW7Y1qWhIoBGlIhGWG6YudolNInpUIUSgzR_WITYiZLiB1eRuOct3jahj1-i9B4m33o8d7nDX6Hte8ALw7Fbny_xi-hgTZdoDNn2gSXvzlGH9PH5eSJzF9nz5OHObG8lJmstDWcrWjFqkboqlBcrAR3qqSulK5SvKBWWguFM8IwaYBZ2SgNDbhCOcrEGF2fdrcxfO0g5brzyULbmh7CLtVca65VRQ_gzQm0MaQUwdXb6DsTv2tG6-Mp9fGU-uA_RuQPaX02R-McjW__8T_-rmXm
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2950327
crossref_primary_10_1139_cjce_2014_0447
crossref_primary_10_1109_TITS_2016_2643005
crossref_primary_10_1109_ACCESS_2019_2931920
crossref_primary_10_1016_j_trc_2016_10_019
crossref_primary_10_1016_j_trc_2009_11_001
crossref_primary_10_1007_s10182_012_0202_9
crossref_primary_10_3328_TL_2011_03_01_37_49
crossref_primary_10_1109_TITS_2015_2457240
crossref_primary_10_1109_TITS_2012_2227475
crossref_primary_10_1109_TNNLS_2017_2700429
crossref_primary_10_3141_2399_02
crossref_primary_10_1109_ACCESS_2018_2849600
crossref_primary_10_1016_j_trc_2014_01_005
crossref_primary_10_1016_j_trc_2010_10_005
crossref_primary_10_1109_TITS_2013_2260540
crossref_primary_10_1080_15472450_2016_1149700
crossref_primary_10_1109_MITS_2014_2332591
crossref_primary_10_1016_j_trb_2015_02_008
crossref_primary_10_1007_s00521_012_0977_3
crossref_primary_10_1214_23_AOAS1795
crossref_primary_10_1109_ACCESS_2017_2788639
crossref_primary_10_1007_s11071_012_0399_x
crossref_primary_10_3390_s19224967
crossref_primary_10_1080_15472450_2016_1220306
crossref_primary_10_3141_2263_15
crossref_primary_10_1016_j_trc_2014_02_007
crossref_primary_10_1109_TITS_2020_2997352
crossref_primary_10_1139_cjce_2017_0231
crossref_primary_10_1002_asmb_1939
crossref_primary_10_1109_TITS_2019_2955794
crossref_primary_10_1016_j_trc_2009_03_001
crossref_primary_10_1109_TITS_2014_2345663
crossref_primary_10_3141_2308_07
Cites_doi 10.1016/S0968-090X(02)00009-8
10.1007/978-0-387-21606-5
10.1016/S0968-090X(03)00026-3
10.1016/j.trb.2004.03.003
10.1093/biomet/47.3-4.363
10.1093/biomet/41.1-2.100
10.1111/j.2517-6161.1961.tb00398.x
10.1016/0191-2615(84)90002-X
10.1214/aos/1176350164
10.1016/S0169-2070(96)00700-5
10.1257/jep.15.4.117
10.1002/(SICI)1099-1255(199609)11:5<475::AID-JAE409>3.0.CO;2-9
10.1016/S0968-090X(03)00004-4
10.1002/0471721182
10.1093/biomet/59.3.539
10.1080/00401706.1982.10487759
10.1061/(ASCE)0733-947X(2003)129:6(664)
10.1007/BF02925223
10.1111/j.2517-6161.1977.tb01600.x
10.1016/S0169-2070(03)00068-2
10.1061/(ASCE)0733-947X(1997)123:4(261)
10.1080/0144164042000195072
ContentType Journal Article
DBID AAYXX
CITATION
8FD
FR3
KR7
DOI 10.3141/1965-03
DatabaseName CrossRef
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 31
ExternalDocumentID 10_3141_1965_03
GroupedDBID -TM
-~X
0R~
4.4
54M
5WW
AADUE
AAGGD
AAGLT
AAHPS
AAPEO
AAQXI
AARIX
AATAA
AAULN
AAWLO
AAYOK
AAYXX
AAZLU
ABCCA
ABCQX
ABDEX
ABFXH
ABIDT
ABKRH
ABPNF
ABQPY
ABRHV
ABUJY
ABYTW
ACCVC
ACCVJ
ACDXX
ACFZE
ACGFS
ACJER
ACKIV
ACOFE
ACOXC
ACSIQ
ACUFS
ACUIR
ADEBD
ADEIA
ADPEE
ADRRZ
ADUKL
AEDFJ
AEDXQ
AENEX
AESZF
AEWDL
AEWHI
AEXNY
AFKRG
AFMOU
AFQAA
AFUIA
AGDVU
AGKLV
AGNHF
AGNWV
AHDMH
AHHCN
AHWHD
AIZZC
AJGYC
AJUZI
AKSRI
ALMA_UNASSIGNED_HOLDINGS
AMNSR
ARTOV
AYPQM
BPACV
CBRKF
CCGJY
CEADM
CITATION
DH.
DOPDO
DU5
DV7
DV8
EBS
EJD
F5P
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
H~9
J8X
K-O
L7B
MET
MFT
P2P
Q1R
SAFTQ
SAUOL
SCNPE
SFC
TN5
Y4B
ZPLXX
ZPPRI
ZY4
~02
~32
8FD
AJVBE
FR3
KR7
ID FETCH-LOGICAL-c256t-b9ca21b0818d3984723b32f750f56f87240c6cce4fa3a16ae1c6d79edef47f013
ISSN 0361-1981
IngestDate Fri Jul 11 13:29:14 EDT 2025
Tue Jul 01 01:42:02 EDT 2025
Thu Apr 24 23:11:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1965
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c256t-b9ca21b0818d3984723b32f750f56f87240c6cce4fa3a16ae1c6d79edef47f013
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29929780
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_29929780
crossref_primary_10_3141_1965_03
crossref_citationtrail_10_3141_1965_03
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-01-00
20060101
PublicationDateYYYYMMDD 2006-01-01
PublicationDate_xml – month: 01
  year: 2006
  text: 2006-01-00
PublicationDecade 2000
PublicationTitle Transportation research record
PublicationYear 2006
References E00017
E00016
E00019
E00018
E00031
E00030
E00011
E00033
E00010
E00032
E00013
E00012
E00034
E00015
E00014
E00006
E00028
E00005
E00027
E00008
E00007
E00029
E00009
E00020
E00022
E00021
E00002
E00024
E00001
E00023
E00004
E00026
E00003
E00025
References_xml – ident: E00012
– ident: E00001
  doi: 10.1016/S0968-090X(02)00009-8
– ident: E00028
  doi: 10.1007/978-0-387-21606-5
– ident: E00016
  doi: 10.1016/S0968-090X(03)00026-3
– ident: E00007
  doi: 10.1016/j.trb.2004.03.003
– ident: E00008
– ident: E00024
– ident: E00025
– ident: E00033
  doi: 10.1093/biomet/47.3-4.363
– ident: E00030
  doi: 10.1093/biomet/41.1-2.100
– ident: E00032
  doi: 10.1111/j.2517-6161.1961.tb00398.x
– ident: E00019
– ident: E00005
  doi: 10.1016/0191-2615(84)90002-X
– ident: E00015
  doi: 10.1214/aos/1176350164
– ident: E00006
  doi: 10.1016/S0169-2070(96)00700-5
– ident: E00017
– ident: E00020
  doi: 10.1257/jep.15.4.117
– ident: E00022
  doi: 10.1002/(SICI)1099-1255(199609)11:5<475::AID-JAE409>3.0.CO;2-9
– ident: E00011
– ident: E00002
  doi: 10.1016/S0968-090X(03)00004-4
– ident: E00029
  doi: 10.1002/0471721182
– ident: E00014
  doi: 10.1093/biomet/59.3.539
– ident: E00023
– ident: E00026
– ident: E00034
  doi: 10.1080/00401706.1982.10487759
– ident: E00003
  doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
– ident: E00013
  doi: 10.1007/BF02925223
– ident: E00027
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: E00021
  doi: 10.1016/S0169-2070(03)00068-2
– ident: E00018
– ident: E00031
– ident: E00004
  doi: 10.1061/(ASCE)0733-947X(1997)123:4(261)
– ident: E00009
  doi: 10.1080/0144164042000195072
– ident: E00010
SSID ssj0033473
Score 2.1037729
Snippet Accurate short-term prediction of traffic parameters is a critical component for many intelligent transportation system applications. Traffic flow is subject...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 23
Title Short-Term Traffic Flow Prediction with Regime Switching Models
URI https://www.proquest.com/docview/29929780
Volume 1965
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgXOCAWEVZfUBcqkATO0lzrBAFIShbKpVT5Dg2rVQKKu2Fr2emdtIWkFguURI5bjXPmnle5g0hh5xDXNAezE10EDmcwzylllVTx-dhqH0ukLbjaYtmcNHil22_PanNOc4uGabH8v3bvJL_oArvAFfMkv0DskWn8ALuAV-4AsJw_RXGDx0gz04MzhVFylEMotLoYW7bALdfxsiO11nv1VP3WVUe4MEcncQKaL23aWJaiJybAWE1gDoVs4hT7FQoqzlwrWS3ODADPsVm_pyPBtIOt-9WEvIMKtdxI1NCpfCOkanlkI-D_NH6OzYVOY07_-yTmcvRJ-OHTpVNwk6-1d68SRqtq6skPmvH82TBA7oPDnah_nh7d53HVMa4OSuQ_0OT_oxdn9iOZ3nFbFgdc4V4hSxbkk_rBrFVMqf6a2RpSvpxHSZJBXbUYkcROzrBjiJ21GBHC-yowW6DtBpn8emFY4tZOBJY5dBJIyk8N0UFwYxFwAk8ljJPA2HTfqBrITArGUipuBZMuIFQrgyyMFKZ0jzUQNQ3San_0ldbhIqAub5gIU-lBj6Z1cBk8BtcqFAAXVNlcpSbIpFW6R0LjvQSmPGhzRK0WVJlZUKLhq9G3ORrk4Pclgk4HtxNEn31MnpLgMd4KF-1_WOLHbI4GW67pDQcjNQeULlhum9x_gBeIkph
linkProvider SAGE Publications
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-Term+Traffic+Flow+Prediction+with+Regime+Switching+Models&rft.jtitle=Transportation+research+record&rft.au=Cetin%2C+Mecit&rft.au=Comert%2C+Gurcan&rft.date=2006-01-01&rft.issn=0361-1981&rft.volume=1965&rft.issue=1965&rft.spage=23&rft.epage=31&rft_id=info:doi/10.3141%2F1965-03&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-1981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-1981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-1981&client=summon