Short-Term Traffic Flow Prediction with Regime Switching Models
Accurate short-term prediction of traffic parameters is a critical component for many intelligent transportation system applications. Traffic flow is subject to abrupt disturbances because of various unexpected events (e.g., accidents, weather-induced disruption) that may change the underlying dynam...
Saved in:
Published in | Transportation research record Vol. 1965; no. 1965; pp. 23 - 31 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.01.2006
|
Online Access | Get full text |
ISSN | 0361-1981 |
DOI | 10.3141/1965-03 |
Cover
Loading…
Abstract | Accurate short-term prediction of traffic parameters is a critical component for many intelligent transportation system applications. Traffic flow is subject to abrupt disturbances because of various unexpected events (e.g., accidents, weather-induced disruption) that may change the underlying dynamics and the stability of the data generation process. Short-term prediction models that do not account for these changes produce biased and less accurate predictions. This paper proposes a new adaptive approach to short-term prediction that explicitly accounts for occasional regime changes by using statistical change-point detection algorithms. In this context, the expectation maximization and the CUSUM (cumulative sum) algorithms are implemented to detect shifts in the mean level of the process in real time. Autoregressive integrated moving average models are used for developing the forecasting models while the process mean is monitored by the two detection algorithms. The intercept of the forecasting models is updated on the basis of the detected shifts in the mean level to adapt to any potential new regimes. The proposed approach is tested on real-world loop data sets. The results show significant improvements in prediction accuracy compared with traditional autoregressive integrated moving average models with fixed parameters. |
---|---|
AbstractList | Accurate short-term prediction of traffic parameters is a critical component for many intelligent transportation system applications. Traffic flow is subject to abrupt disturbances because of various unexpected events (e.g., accidents, weather-induced disruption) that may change the underlying dynamics and the stability of the data generation process. Short-term prediction models that do not account for these changes produce biased and less accurate predictions. This paper proposes a new adaptive approach to short-term prediction that explicitly accounts for occasional regime changes by using statistical change-point detection algorithms. In this context, the expectation maximization and the CUSUM (cumulative sum) algorithms are implemented to detect shifts in the mean level of the process in real time. Autoregressive integrated moving average models are used for developing the forecasting models while the process mean is monitored by the two detection algorithms. The intercept of the forecasting models is updated on the basis of the detected shifts in the mean level to adapt to any potential new regimes. The proposed approach is tested on real-world loop data sets. The results show significant improvements in prediction accuracy compared with traditional autoregressive integrated moving average models with fixed parameters. |
Author | Cetin, Mecit Comert, Gurcan |
Author_xml | – sequence: 1 givenname: Mecit surname: Cetin fullname: Cetin, Mecit – sequence: 2 givenname: Gurcan surname: Comert fullname: Comert, Gurcan |
BookMark | eNplkM1KAzEYRbOoYFvFV8hKV9H8zCSTlUixVagotq6HNPOljcxMapJSfHtb6kpXlwuHC-eO0KAPPSB0xeitYAW7Y1qWhIoBGlIhGWG6YudolNInpUIUSgzR_WITYiZLiB1eRuOct3jahj1-i9B4m33o8d7nDX6Hte8ALw7Fbny_xi-hgTZdoDNn2gSXvzlGH9PH5eSJzF9nz5OHObG8lJmstDWcrWjFqkboqlBcrAR3qqSulK5SvKBWWguFM8IwaYBZ2SgNDbhCOcrEGF2fdrcxfO0g5brzyULbmh7CLtVca65VRQ_gzQm0MaQUwdXb6DsTv2tG6-Mp9fGU-uA_RuQPaX02R-McjW__8T_-rmXm |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2950327 crossref_primary_10_1139_cjce_2014_0447 crossref_primary_10_1109_TITS_2016_2643005 crossref_primary_10_1109_ACCESS_2019_2931920 crossref_primary_10_1016_j_trc_2016_10_019 crossref_primary_10_1016_j_trc_2009_11_001 crossref_primary_10_1007_s10182_012_0202_9 crossref_primary_10_3328_TL_2011_03_01_37_49 crossref_primary_10_1109_TITS_2015_2457240 crossref_primary_10_1109_TITS_2012_2227475 crossref_primary_10_1109_TNNLS_2017_2700429 crossref_primary_10_3141_2399_02 crossref_primary_10_1109_ACCESS_2018_2849600 crossref_primary_10_1016_j_trc_2014_01_005 crossref_primary_10_1016_j_trc_2010_10_005 crossref_primary_10_1109_TITS_2013_2260540 crossref_primary_10_1080_15472450_2016_1149700 crossref_primary_10_1109_MITS_2014_2332591 crossref_primary_10_1016_j_trb_2015_02_008 crossref_primary_10_1007_s00521_012_0977_3 crossref_primary_10_1214_23_AOAS1795 crossref_primary_10_1109_ACCESS_2017_2788639 crossref_primary_10_1007_s11071_012_0399_x crossref_primary_10_3390_s19224967 crossref_primary_10_1080_15472450_2016_1220306 crossref_primary_10_3141_2263_15 crossref_primary_10_1016_j_trc_2014_02_007 crossref_primary_10_1109_TITS_2020_2997352 crossref_primary_10_1139_cjce_2017_0231 crossref_primary_10_1002_asmb_1939 crossref_primary_10_1109_TITS_2019_2955794 crossref_primary_10_1016_j_trc_2009_03_001 crossref_primary_10_1109_TITS_2014_2345663 crossref_primary_10_3141_2308_07 |
Cites_doi | 10.1016/S0968-090X(02)00009-8 10.1007/978-0-387-21606-5 10.1016/S0968-090X(03)00026-3 10.1016/j.trb.2004.03.003 10.1093/biomet/47.3-4.363 10.1093/biomet/41.1-2.100 10.1111/j.2517-6161.1961.tb00398.x 10.1016/0191-2615(84)90002-X 10.1214/aos/1176350164 10.1016/S0169-2070(96)00700-5 10.1257/jep.15.4.117 10.1002/(SICI)1099-1255(199609)11:5<475::AID-JAE409>3.0.CO;2-9 10.1016/S0968-090X(03)00004-4 10.1002/0471721182 10.1093/biomet/59.3.539 10.1080/00401706.1982.10487759 10.1061/(ASCE)0733-947X(2003)129:6(664) 10.1007/BF02925223 10.1111/j.2517-6161.1977.tb01600.x 10.1016/S0169-2070(03)00068-2 10.1061/(ASCE)0733-947X(1997)123:4(261) 10.1080/0144164042000195072 |
ContentType | Journal Article |
DBID | AAYXX CITATION 8FD FR3 KR7 |
DOI | 10.3141/1965-03 |
DatabaseName | CrossRef Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Technology Research Database Civil Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 31 |
ExternalDocumentID | 10_3141_1965_03 |
GroupedDBID | -TM -~X 0R~ 4.4 54M 5WW AADUE AAGGD AAGLT AAHPS AAPEO AAQXI AARIX AATAA AAULN AAWLO AAYOK AAYXX AAZLU ABCCA ABCQX ABDEX ABFXH ABIDT ABKRH ABPNF ABQPY ABRHV ABUJY ABYTW ACCVC ACCVJ ACDXX ACFZE ACGFS ACJER ACKIV ACOFE ACOXC ACSIQ ACUFS ACUIR ADEBD ADEIA ADPEE ADRRZ ADUKL AEDFJ AEDXQ AENEX AESZF AEWDL AEWHI AEXNY AFKRG AFMOU AFQAA AFUIA AGDVU AGKLV AGNHF AGNWV AHDMH AHHCN AHWHD AIZZC AJGYC AJUZI AKSRI ALMA_UNASSIGNED_HOLDINGS AMNSR ARTOV AYPQM BPACV CBRKF CCGJY CEADM CITATION DH. DOPDO DU5 DV7 DV8 EBS EJD F5P FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 H~9 J8X K-O L7B MET MFT P2P Q1R SAFTQ SAUOL SCNPE SFC TN5 Y4B ZPLXX ZPPRI ZY4 ~02 ~32 8FD AJVBE FR3 KR7 |
ID | FETCH-LOGICAL-c256t-b9ca21b0818d3984723b32f750f56f87240c6cce4fa3a16ae1c6d79edef47f013 |
ISSN | 0361-1981 |
IngestDate | Fri Jul 11 13:29:14 EDT 2025 Tue Jul 01 01:42:02 EDT 2025 Thu Apr 24 23:11:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1965 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c256t-b9ca21b0818d3984723b32f750f56f87240c6cce4fa3a16ae1c6d79edef47f013 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 29929780 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_29929780 crossref_primary_10_3141_1965_03 crossref_citationtrail_10_3141_1965_03 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-01-00 20060101 |
PublicationDateYYYYMMDD | 2006-01-01 |
PublicationDate_xml | – month: 01 year: 2006 text: 2006-01-00 |
PublicationDecade | 2000 |
PublicationTitle | Transportation research record |
PublicationYear | 2006 |
References | E00017 E00016 E00019 E00018 E00031 E00030 E00011 E00033 E00010 E00032 E00013 E00012 E00034 E00015 E00014 E00006 E00028 E00005 E00027 E00008 E00007 E00029 E00009 E00020 E00022 E00021 E00002 E00024 E00001 E00023 E00004 E00026 E00003 E00025 |
References_xml | – ident: E00012 – ident: E00001 doi: 10.1016/S0968-090X(02)00009-8 – ident: E00028 doi: 10.1007/978-0-387-21606-5 – ident: E00016 doi: 10.1016/S0968-090X(03)00026-3 – ident: E00007 doi: 10.1016/j.trb.2004.03.003 – ident: E00008 – ident: E00024 – ident: E00025 – ident: E00033 doi: 10.1093/biomet/47.3-4.363 – ident: E00030 doi: 10.1093/biomet/41.1-2.100 – ident: E00032 doi: 10.1111/j.2517-6161.1961.tb00398.x – ident: E00019 – ident: E00005 doi: 10.1016/0191-2615(84)90002-X – ident: E00015 doi: 10.1214/aos/1176350164 – ident: E00006 doi: 10.1016/S0169-2070(96)00700-5 – ident: E00017 – ident: E00020 doi: 10.1257/jep.15.4.117 – ident: E00022 doi: 10.1002/(SICI)1099-1255(199609)11:5<475::AID-JAE409>3.0.CO;2-9 – ident: E00011 – ident: E00002 doi: 10.1016/S0968-090X(03)00004-4 – ident: E00029 doi: 10.1002/0471721182 – ident: E00014 doi: 10.1093/biomet/59.3.539 – ident: E00023 – ident: E00026 – ident: E00034 doi: 10.1080/00401706.1982.10487759 – ident: E00003 doi: 10.1061/(ASCE)0733-947X(2003)129:6(664) – ident: E00013 doi: 10.1007/BF02925223 – ident: E00027 doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: E00021 doi: 10.1016/S0169-2070(03)00068-2 – ident: E00018 – ident: E00031 – ident: E00004 doi: 10.1061/(ASCE)0733-947X(1997)123:4(261) – ident: E00009 doi: 10.1080/0144164042000195072 – ident: E00010 |
SSID | ssj0033473 |
Score | 2.1037729 |
Snippet | Accurate short-term prediction of traffic parameters is a critical component for many intelligent transportation system applications. Traffic flow is subject... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 23 |
Title | Short-Term Traffic Flow Prediction with Regime Switching Models |
URI | https://www.proquest.com/docview/29929780 |
Volume | 1965 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgXOCAWEVZfUBcqkATO0lzrBAFIShbKpVT5Dg2rVQKKu2Fr2emdtIWkFguURI5bjXPmnle5g0hh5xDXNAezE10EDmcwzylllVTx-dhqH0ukLbjaYtmcNHil22_PanNOc4uGabH8v3bvJL_oArvAFfMkv0DskWn8ALuAV-4AsJw_RXGDx0gz04MzhVFylEMotLoYW7bALdfxsiO11nv1VP3WVUe4MEcncQKaL23aWJaiJybAWE1gDoVs4hT7FQoqzlwrWS3ODADPsVm_pyPBtIOt-9WEvIMKtdxI1NCpfCOkanlkI-D_NH6OzYVOY07_-yTmcvRJ-OHTpVNwk6-1d68SRqtq6skPmvH82TBA7oPDnah_nh7d53HVMa4OSuQ_0OT_oxdn9iOZ3nFbFgdc4V4hSxbkk_rBrFVMqf6a2RpSvpxHSZJBXbUYkcROzrBjiJ21GBHC-yowW6DtBpn8emFY4tZOBJY5dBJIyk8N0UFwYxFwAk8ljJPA2HTfqBrITArGUipuBZMuIFQrgyyMFKZ0jzUQNQ3San_0ldbhIqAub5gIU-lBj6Z1cBk8BtcqFAAXVNlcpSbIpFW6R0LjvQSmPGhzRK0WVJlZUKLhq9G3ORrk4Pclgk4HtxNEn31MnpLgMd4KF-1_WOLHbI4GW67pDQcjNQeULlhum9x_gBeIkph |
linkProvider | SAGE Publications |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-Term+Traffic+Flow+Prediction+with+Regime+Switching+Models&rft.jtitle=Transportation+research+record&rft.au=Cetin%2C+Mecit&rft.au=Comert%2C+Gurcan&rft.date=2006-01-01&rft.issn=0361-1981&rft.volume=1965&rft.issue=1965&rft.spage=23&rft.epage=31&rft_id=info:doi/10.3141%2F1965-03&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-1981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-1981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-1981&client=summon |