Hygroscopic Properties of Water-Soluble Counterpart of Ultrafine Particles from Agriculture Crop-Residue Burning in Patiala, Northwestern India

To determine the link between hygroscopicity and the constituent chemical composition of real biomass-burning atmospheric particles, we collected and analyzed aerosols during wheat-straw (April–May), rice-straw (October–November), and no-burning periods (August–September) in 2008 and 2009 in Patiala...

Full description

Saved in:
Bibliographic Details
Published inAtmosphere Vol. 15; no. 7; p. 835
Main Authors Alang, Ashmeet Kaur, Aggarwal, Shankar G., Singh, Khem, Johri, Prabha, Agarwal, Ravinder, Kawamura, Kimitaka
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To determine the link between hygroscopicity and the constituent chemical composition of real biomass-burning atmospheric particles, we collected and analyzed aerosols during wheat-straw (April–May), rice-straw (October–November), and no-burning periods (August–September) in 2008 and 2009 in Patiala, Punjab. A hygroscopicity tandem differential mobility analyzer (HTDMA) system was used to measure hygroscopicity at ~5 to ~95% relative humidity (RH) of aerosolized 100 nm particles generated from the water extracts of PM0.4 burning and no-burning aerosol samples. The chemical analyses of the extracts show that organic carbon and water-soluble inorganic-ion concentrations are 2 to 3 times higher in crop-residue burning aerosol samples compared to no-burning aerosols, suggesting the substantial contribution of biomass burning to the carbonaceous aerosols at the sampling site. We observed that aerosolized 100 nm particles collected during the crop-residue burning period show higher and more variable hygroscopic growth factor (g(RH)) ranging from 1.21 to 1.68 at 85% RH, compared to no-burning samples (1.27 to 1.33). Interestingly, crop-residue burning particles also show considerable shrinkage in their size (i.e., g(RH) < 1) at lower RH (<50%) in the dehumidification mode. The increased level of major inorganic ions in biomass-burning period aerosols is a possible reason for higher g(RH) as well as the observed particle shrinkage. Overall, the measured g(RH), together with the correlation observed between aerosol water content and ionic-species volume fraction, and the study of the abundance of individual constituent ionic species suggests that inorganic salts and their proportion in aerosol particles primarily governed the aerosol hygroscopicity.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos15070835