Using Adaptive Directed Acyclic Graph for Human In-Hand Motion Identification with Hybrid Surface Electromyography and Kinect
The multi-fingered dexterous robotic hand is increasingly used to achieve more complex and sophisticated human-like manipulation tasks on various occasions. This paper proposes a hybrid Surface Electromyography (SEMG) and Kinect-based human in-hand motion (HIM) capture system architecture for recogn...
Saved in:
Published in | Symmetry (Basel) Vol. 14; no. 10; p. 2093 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The multi-fingered dexterous robotic hand is increasingly used to achieve more complex and sophisticated human-like manipulation tasks on various occasions. This paper proposes a hybrid Surface Electromyography (SEMG) and Kinect-based human in-hand motion (HIM) capture system architecture for recognizing complex motions of the humans by observing the state information between an object and the human hand, then transferring the manipulation skills into bionic multi-fingered robotic hand realizing dexterous in-hand manipulation. First, an Adaptive Directed Acyclic Graph (ADAG) algorithm for recognizing HIMs is proposed and optimized based on the comparison of multi-class support vector machines; second, ten representative complex in-hand motions are demonstrated by ten subjects, and SEMG and Kinect signals are obtained based on a multi-modal data acquisition platform; then, combined with the proposed algorithm framework, a series of data preprocessing algorithms are realized. There is statistical symmetry in similar types of SEMG signals and images, and asymmetry in different types of SEMG signals and images. A detailed analysis and an in-depth discussion are given from the results of the ADAG recognizing HIMs, motion recognition rates of different perceptrons, motion recognition rates of different subjects, motion recognition rates of different multi-class SVM methods, and motion recognition rates of different machine learning methods. The results of this experiment confirm the feasibility of the proposed method, with a recognition rate of 95.10%. |
---|---|
AbstractList | The multi-fingered dexterous robotic hand is increasingly used to achieve more complex and sophisticated human-like manipulation tasks on various occasions. This paper proposes a hybrid Surface Electromyography (SEMG) and Kinect-based human in-hand motion (HIM) capture system architecture for recognizing complex motions of the humans by observing the state information between an object and the human hand, then transferring the manipulation skills into bionic multi-fingered robotic hand realizing dexterous in-hand manipulation. First, an Adaptive Directed Acyclic Graph (ADAG) algorithm for recognizing HIMs is proposed and optimized based on the comparison of multi-class support vector machines; second, ten representative complex in-hand motions are demonstrated by ten subjects, and SEMG and Kinect signals are obtained based on a multi-modal data acquisition platform; then, combined with the proposed algorithm framework, a series of data preprocessing algorithms are realized. There is statistical symmetry in similar types of SEMG signals and images, and asymmetry in different types of SEMG signals and images. A detailed analysis and an in-depth discussion are given from the results of the ADAG recognizing HIMs, motion recognition rates of different perceptrons, motion recognition rates of different subjects, motion recognition rates of different multi-class SVM methods, and motion recognition rates of different machine learning methods. The results of this experiment confirm the feasibility of the proposed method, with a recognition rate of 95.10%. |
Author | Yin, Kaiyang Yu, Yadong Ju, Zhaojie Dai, Kejie Xue, Yaxu Li, Pengfei Du, Haojie |
Author_xml | – sequence: 1 givenname: Yaxu orcidid: 0000-0002-9218-4251 surname: Xue fullname: Xue, Yaxu – sequence: 2 givenname: Yadong surname: Yu fullname: Yu, Yadong – sequence: 3 givenname: Kaiyang orcidid: 0000-0003-1718-9551 surname: Yin fullname: Yin, Kaiyang – sequence: 4 givenname: Haojie surname: Du fullname: Du, Haojie – sequence: 5 givenname: Pengfei surname: Li fullname: Li, Pengfei – sequence: 6 givenname: Kejie surname: Dai fullname: Dai, Kejie – sequence: 7 givenname: Zhaojie surname: Ju fullname: Ju, Zhaojie |
BookMark | eNpNUMtOwzAQtFCRKKUnfsASRxRw_EyOVSlNRREH6DlybKd11djFSUA58O8klEP3sjur2RntXIOR884AcBujB0JS9Fh3VUxjhFFKLsAYI0GiJE3p6Gy-AtO63qO-GGKUozH42dTWbeFMy2Njvwx8ssGoxmg4U506WAWXQR53sPQBZm0lHVy5KJNOw1ffWN9DbVxjS6vkH_y2zQ5mXRGshu9tKKUycHHoFYOvOr8dtDo4nL9Y129vwGUpD7WZ_vcJ2DwvPuZZtH5bruazdaQw401ECU8ok2WqUVGwVEqaUlUqJWJeEMMKEpPhHcZFQXXBdYmFijEWknMjiGZkAu5OusfgP1tTN_net8H1ljkWOGE4oQL1rPsTSwVf18GU-THYSoYuj1E-RJyfRUx-AbVrcPI |
Cites_doi | 10.1016/j.aej.2020.01.007 10.1109/TCDS.2018.2800167 10.1109/LRA.2021.3098803 10.1109/MRA.2016.2636372 10.1111/j.1469-8749.1984.tb04445.x 10.1109/ICICI.2017.8365354 10.1016/S0031-3203(02)00100-0 10.1109/TBME.2016.2641584 10.3390/app7040358 10.1016/j.bspc.2020.102074 10.1007/s11633-018-1115-1 10.1109/72.991427 10.1109/TOH.2012.53 10.1177/0278364919887447 10.1186/1743-0003-7-21 10.1007/s11042-018-5722-1 10.1109/JSEN.2022.3148992 10.1111/j.1440-1630.2008.00774.x 10.1007/s10462-018-9614-6 10.1109/RiiSS.2013.6607927 10.5014/ajot.44.10.884 10.1109/JSEN.2021.3068521 10.1371/journal.pone.0206049 10.1109/TIP.2019.2925285 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.3390/sym14102093 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2073-8994 |
ExternalDocumentID | 10_3390_sym14102093 |
GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c256t-436845af9d0bb59aa494cfcc716b3e5b3130546567b4db6df27c1227a66e73d53 |
IEDL.DBID | BENPR |
ISSN | 2073-8994 |
IngestDate | Fri Jul 25 11:51:57 EDT 2025 Tue Jul 01 03:48:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c256t-436845af9d0bb59aa494cfcc716b3e5b3130546567b4db6df27c1227a66e73d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9218-4251 0000-0003-1718-9551 |
OpenAccessLink | https://www.proquest.com/docview/2728528470?pq-origsite=%requestingapplication% |
PQID | 2728528470 |
PQPubID | 2032326 |
ParticipantIDs | proquest_journals_2728528470 crossref_primary_10_3390_sym14102093 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Symmetry (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wang (ref_19) 2020; 29 Andrychowicz (ref_13) 2020; 39 Wang (ref_1) 2018; 15 Hsu (ref_23) 2002; 13 Fang (ref_2) 2017; 64 Li (ref_3) 2017; 24 Exner (ref_9) 1990; 44 Pagoli (ref_14) 2021; 6 Xue (ref_11) 2022; 22 Sun (ref_21) 2018; 77 ref_20 Elliott (ref_8) 1984; 26 Xu (ref_16) 2021; 21 Li (ref_15) 2020; 62 ref_17 Tkach (ref_24) 2010; 7 Pont (ref_10) 2009; 56 Chauhan (ref_22) 2019; 52 ref_5 Xue (ref_7) 2019; 11 Ma (ref_18) 2020; 59 Wang (ref_4) 2017; 36 ref_6 IBullock (ref_12) 2013; 6 |
References_xml | – volume: 59 start-page: 1135 year: 2020 ident: ref_18 article-title: Grasping force prediction based on sEMG signals publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.01.007 – volume: 11 start-page: 162 year: 2019 ident: ref_7 article-title: Multimodal Human Hand Motion Sensing and Analysis—A Review publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2018.2800167 – volume: 6 start-page: 7706 year: 2021 ident: ref_14 article-title: A soft robotic gripper with an active palm and reconfigurable fingers for fully dexterous in-hand manipulation publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3098803 – volume: 24 start-page: 77 year: 2017 ident: ref_3 article-title: Bringing robotics to formal education: The Thymio open-source hardware robot publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/MRA.2016.2636372 – volume: 26 start-page: 283 year: 1984 ident: ref_8 article-title: A classification of manipulative hand movements publication-title: Dev. Med. Child Neurol. doi: 10.1111/j.1469-8749.1984.tb04445.x – ident: ref_6 doi: 10.1109/ICICI.2017.8365354 – volume: 36 start-page: 585 year: 2017 ident: ref_4 article-title: Recent developments in human motion analysis publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(02)00100-0 – volume: 64 start-page: 2575 year: 2017 ident: ref_2 article-title: Interface prostheses with classifier-feedback-based user training publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2641584 – ident: ref_5 doi: 10.3390/app7040358 – volume: 62 start-page: 102074 year: 2020 ident: ref_15 article-title: A review of the key technologies for sEMG-based human-robot interaction systems publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102074 – volume: 15 start-page: 525 year: 2018 ident: ref_1 article-title: Current Researches and Future Development Trend of Intelligent Robot: A Review publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-018-1115-1 – volume: 13 start-page: 415 year: 2002 ident: ref_23 article-title: A comparison of methods for multiclass support vector machines publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.991427 – volume: 6 start-page: 129 year: 2013 ident: ref_12 article-title: A hand-centric classification of human and robot dexterous manipulation publication-title: IEEE Trans. Haptics doi: 10.1109/TOH.2012.53 – volume: 39 start-page: 3 year: 2020 ident: ref_13 article-title: Learning dexterous in-hand manipulation publication-title: Int. J. Robot. Res. doi: 10.1177/0278364919887447 – volume: 7 start-page: 21 year: 2010 ident: ref_24 article-title: Study of stability of time domain features for electromyographic pattern recognition publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-7-21 – volume: 77 start-page: 24909 year: 2018 ident: ref_21 article-title: View-invariant gait recognition based on kinect skeleton feature publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-5722-1 – volume: 22 start-page: 6793 year: 2022 ident: ref_11 article-title: Human In-Hand Motion Recognition Based on Multi-Modal Perception Information Fusion publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3148992 – volume: 56 start-page: 2 year: 2009 ident: ref_10 article-title: Conceptualising a modified system for classification of in-hand manipulation publication-title: Aust. Occup. Ther. J. doi: 10.1111/j.1440-1630.2008.00774.x – volume: 52 start-page: 803 year: 2019 ident: ref_22 article-title: Problem formulations and solvers in linear SVM: A review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-018-9614-6 – ident: ref_20 doi: 10.1109/RiiSS.2013.6607927 – volume: 44 start-page: 884 year: 1990 ident: ref_9 article-title: The zone of proximal development in in-hand manipulation skills of nondysfunctional 3-and 4-year-old children publication-title: Am. J. Occup. Ther. doi: 10.5014/ajot.44.10.884 – volume: 21 start-page: 13019 year: 2021 ident: ref_16 article-title: Advances and Disturbances in sEMG-Based Intentions and Movements Recognition: A Review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3068521 – ident: ref_17 doi: 10.1371/journal.pone.0206049 – volume: 29 start-page: 15 year: 2020 ident: ref_19 article-title: A Comparative Review of Recent Kinect-Based Action Recognition Algorithms publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2925285 |
SSID | ssj0000505460 |
Score | 2.252073 |
Snippet | The multi-fingered dexterous robotic hand is increasingly used to achieve more complex and sophisticated human-like manipulation tasks on various occasions.... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 2093 |
SubjectTerms | Algorithms Bionics Classification Computer architecture Data acquisition Dextrous hands Electromyography End effectors Hands Human motion Machine learning Methods Modal data Motion perception Recognition Robotics Robots Sensors Signal processing Skills Support vector machines Task complexity |
Title | Using Adaptive Directed Acyclic Graph for Human In-Hand Motion Identification with Hybrid Surface Electromyography and Kinect |
URI | https://www.proquest.com/docview/2728528470 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV25TsNAEF1B0tAgwiGOEE1BAYWFs4ePCgWUA1AQ4pDSWd5LQiJOIKFwwb-zY284GkrL3mbG8-bYmXmEnDDJbJImIqBJaAJurLM5ybtBHBrOhRWJZDgoPL6LRs_8ZiImvuC28G2VK0ysgFrPFNbIz2lME4FYGl7M3wJkjcLbVU-hsU6aDoITl3w1L_t39w_fVRbkaeNRWA_mMZffny_KKbY20jBlf13RXySu3Mtgi2z6uBB6tSJbZM0U26TlLW8Bp3499NkO-axu-aGn8zlCFdSgZTT0VKleXxQMcQc1uGAUqgo9XBfBKC80jCvCHqhHc62v1QEWYmFU4uAWPH6821wZ6NfcONPS77MGPH7r4lG13CXPg_7T1SjwJAqBctHMMsAN81zkNtWhlCLNc55yZZVyeZJTg5DMOTEkRI9iybWMtKWx6lIa51FkYqYF2yONYlaYfQKp1TmyDDHu1Om-ktI5fGm6SqpQp1QekJOVPLN5vSsjczkGij37JfYD0l7JOvMGs8h-1Hv4_-sjskFxAqHqp2uTxvL9wxy7uGApO2Q9GQw7_hdwT8NJ9wslBbvf |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsNAEF1FUECDCIe4mQIkKCyc3fVVIBRBgkMSGoJEZ7yXhAQmkETIBb_EN7Ljg6Oho15bssYzb46dmUfIARPMhFHoOTR0tcO1sTYneMsJXM25Z7xQMBwUHl778S2_uvPuGuSjnoXBtsoaEwugVs8Sa-QnNKChh1jqno1fHGSNwtvVmkKjVIu-zt9syjY57V3Y_3tIabczOo-dilXAkda9Tx1cuc691ETKFcKL0pRHXBopbeJgv8sTzKI6MoT7geBK-MrQQLYoDVLf1wFTyBJhIX-eMxahRYXdy6-aDrLCcd8txwDtuXsyyZ-wkZK6Efvt-H7jfuHMustkqYpCoV2qTZM0dLZCmpWdT-CoWkZ9vErei54CaKt0jMAIJURqBW2Zy8cHCZe48Rps6AvFfQD0MidOMwXDgh4IykFgU1UGAcu-EOc4JgY3s1eTSg2dkonnKa-2ZwO-3rfRr5yukdt_Ee46mcueM71BIDIqRU4jxq3y2KeEsOGF0C0ppKsiKjbJQS3PZFxu5khsRoNiT36IfZPs1LJOKvOcJN_KtPX38T5ZiEfDQTLoXfe3ySLF2Yeik2-HzE1fZ3rXRiRTsVeoAZD7_9a7T7um9PI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqYS4oBaK6AOYQ5HgYGWzu34dqirQhIS0UQVU6s14X1Kl1k2bVMiH_jF-HTv2GuiFW8-2JWv87TcPz8wHsC-UcFmexRHPmI2kdf7MKTmIUmaljF2cKUGDwifzZHImv5zH52vwq5uFobbKjhMbojbXmmrkfZ7yLCYuZX0X2iJOj8aHi5uIFKToT2snp9FCZGbrnz59Wx5Mj_y3fsf5ePT90yQKCgOR9q5-FdH6dRmXLjdMqTgvS5lL7bT2SYR_x1gJz_CkFp6kShqVGMdTPeA8LZPEpsKQYoSn__XUZ0WsB-sfR_PTr38qPKQRJxPWDgUKkbP-sr6itkrOcvHQDT70Ao1rG2_AsxCT4rAF0Sas2eo5bIZTv8T3YTX1hxdw33QY4NCUC6JJbAnTGhzqWl9eaPxM-6_RB8LY_B3AaRVNysrgSSMWhO1YsAt1QqQiME5qGhrDb3e3rtQWR60uz1UddmkjPT7zsbBebcHZo5j3JfSq68q-AsydKUnhSEgPJX-XUj7YUHaglWYm52ob9jt7Fot2T0fh8xsye_GP2bdhr7N1EQ7rsvgLrZ3_X34LTzzmiuPpfLYLTzkNQjRtfXvQW93e2dc-PFmpNwEHCD8eG3q_Aeka-oQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Adaptive+Directed+Acyclic+Graph+for+Human+In-Hand+Motion+Identification+with+Hybrid+Surface+Electromyography+and+Kinect&rft.jtitle=Symmetry+%28Basel%29&rft.au=Xue%2C+Yaxu&rft.au=Yu%2C+Yadong&rft.au=Yin%2C+Kaiyang&rft.au=Du%2C+Haojie&rft.date=2022-10-01&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=14&rft.issue=10&rft.spage=2093&rft_id=info:doi/10.3390%2Fsym14102093&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_sym14102093 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |