Using Adaptive Directed Acyclic Graph for Human In-Hand Motion Identification with Hybrid Surface Electromyography and Kinect

The multi-fingered dexterous robotic hand is increasingly used to achieve more complex and sophisticated human-like manipulation tasks on various occasions. This paper proposes a hybrid Surface Electromyography (SEMG) and Kinect-based human in-hand motion (HIM) capture system architecture for recogn...

Full description

Saved in:
Bibliographic Details
Published inSymmetry (Basel) Vol. 14; no. 10; p. 2093
Main Authors Xue, Yaxu, Yu, Yadong, Yin, Kaiyang, Du, Haojie, Li, Pengfei, Dai, Kejie, Ju, Zhaojie
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The multi-fingered dexterous robotic hand is increasingly used to achieve more complex and sophisticated human-like manipulation tasks on various occasions. This paper proposes a hybrid Surface Electromyography (SEMG) and Kinect-based human in-hand motion (HIM) capture system architecture for recognizing complex motions of the humans by observing the state information between an object and the human hand, then transferring the manipulation skills into bionic multi-fingered robotic hand realizing dexterous in-hand manipulation. First, an Adaptive Directed Acyclic Graph (ADAG) algorithm for recognizing HIMs is proposed and optimized based on the comparison of multi-class support vector machines; second, ten representative complex in-hand motions are demonstrated by ten subjects, and SEMG and Kinect signals are obtained based on a multi-modal data acquisition platform; then, combined with the proposed algorithm framework, a series of data preprocessing algorithms are realized. There is statistical symmetry in similar types of SEMG signals and images, and asymmetry in different types of SEMG signals and images. A detailed analysis and an in-depth discussion are given from the results of the ADAG recognizing HIMs, motion recognition rates of different perceptrons, motion recognition rates of different subjects, motion recognition rates of different multi-class SVM methods, and motion recognition rates of different machine learning methods. The results of this experiment confirm the feasibility of the proposed method, with a recognition rate of 95.10%.
AbstractList The multi-fingered dexterous robotic hand is increasingly used to achieve more complex and sophisticated human-like manipulation tasks on various occasions. This paper proposes a hybrid Surface Electromyography (SEMG) and Kinect-based human in-hand motion (HIM) capture system architecture for recognizing complex motions of the humans by observing the state information between an object and the human hand, then transferring the manipulation skills into bionic multi-fingered robotic hand realizing dexterous in-hand manipulation. First, an Adaptive Directed Acyclic Graph (ADAG) algorithm for recognizing HIMs is proposed and optimized based on the comparison of multi-class support vector machines; second, ten representative complex in-hand motions are demonstrated by ten subjects, and SEMG and Kinect signals are obtained based on a multi-modal data acquisition platform; then, combined with the proposed algorithm framework, a series of data preprocessing algorithms are realized. There is statistical symmetry in similar types of SEMG signals and images, and asymmetry in different types of SEMG signals and images. A detailed analysis and an in-depth discussion are given from the results of the ADAG recognizing HIMs, motion recognition rates of different perceptrons, motion recognition rates of different subjects, motion recognition rates of different multi-class SVM methods, and motion recognition rates of different machine learning methods. The results of this experiment confirm the feasibility of the proposed method, with a recognition rate of 95.10%.
Author Yin, Kaiyang
Yu, Yadong
Ju, Zhaojie
Dai, Kejie
Xue, Yaxu
Li, Pengfei
Du, Haojie
Author_xml – sequence: 1
  givenname: Yaxu
  orcidid: 0000-0002-9218-4251
  surname: Xue
  fullname: Xue, Yaxu
– sequence: 2
  givenname: Yadong
  surname: Yu
  fullname: Yu, Yadong
– sequence: 3
  givenname: Kaiyang
  orcidid: 0000-0003-1718-9551
  surname: Yin
  fullname: Yin, Kaiyang
– sequence: 4
  givenname: Haojie
  surname: Du
  fullname: Du, Haojie
– sequence: 5
  givenname: Pengfei
  surname: Li
  fullname: Li, Pengfei
– sequence: 6
  givenname: Kejie
  surname: Dai
  fullname: Dai, Kejie
– sequence: 7
  givenname: Zhaojie
  surname: Ju
  fullname: Ju, Zhaojie
BookMark eNpNUMtOwzAQtFCRKKUnfsASRxRw_EyOVSlNRREH6DlybKd11djFSUA58O8klEP3sjur2RntXIOR884AcBujB0JS9Fh3VUxjhFFKLsAYI0GiJE3p6Gy-AtO63qO-GGKUozH42dTWbeFMy2Njvwx8ssGoxmg4U506WAWXQR53sPQBZm0lHVy5KJNOw1ffWN9DbVxjS6vkH_y2zQ5mXRGshu9tKKUycHHoFYOvOr8dtDo4nL9Y129vwGUpD7WZ_vcJ2DwvPuZZtH5bruazdaQw401ECU8ok2WqUVGwVEqaUlUqJWJeEMMKEpPhHcZFQXXBdYmFijEWknMjiGZkAu5OusfgP1tTN_net8H1ljkWOGE4oQL1rPsTSwVf18GU-THYSoYuj1E-RJyfRUx-AbVrcPI
Cites_doi 10.1016/j.aej.2020.01.007
10.1109/TCDS.2018.2800167
10.1109/LRA.2021.3098803
10.1109/MRA.2016.2636372
10.1111/j.1469-8749.1984.tb04445.x
10.1109/ICICI.2017.8365354
10.1016/S0031-3203(02)00100-0
10.1109/TBME.2016.2641584
10.3390/app7040358
10.1016/j.bspc.2020.102074
10.1007/s11633-018-1115-1
10.1109/72.991427
10.1109/TOH.2012.53
10.1177/0278364919887447
10.1186/1743-0003-7-21
10.1007/s11042-018-5722-1
10.1109/JSEN.2022.3148992
10.1111/j.1440-1630.2008.00774.x
10.1007/s10462-018-9614-6
10.1109/RiiSS.2013.6607927
10.5014/ajot.44.10.884
10.1109/JSEN.2021.3068521
10.1371/journal.pone.0206049
10.1109/TIP.2019.2925285
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.3390/sym14102093
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2073-8994
ExternalDocumentID 10_3390_sym14102093
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c256t-436845af9d0bb59aa494cfcc716b3e5b3130546567b4db6df27c1227a66e73d53
IEDL.DBID BENPR
ISSN 2073-8994
IngestDate Fri Jul 25 11:51:57 EDT 2025
Tue Jul 01 03:48:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c256t-436845af9d0bb59aa494cfcc716b3e5b3130546567b4db6df27c1227a66e73d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9218-4251
0000-0003-1718-9551
OpenAccessLink https://www.proquest.com/docview/2728528470?pq-origsite=%requestingapplication%
PQID 2728528470
PQPubID 2032326
ParticipantIDs proquest_journals_2728528470
crossref_primary_10_3390_sym14102093
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wang (ref_19) 2020; 29
Andrychowicz (ref_13) 2020; 39
Wang (ref_1) 2018; 15
Hsu (ref_23) 2002; 13
Fang (ref_2) 2017; 64
Li (ref_3) 2017; 24
Exner (ref_9) 1990; 44
Pagoli (ref_14) 2021; 6
Xue (ref_11) 2022; 22
Sun (ref_21) 2018; 77
ref_20
Elliott (ref_8) 1984; 26
Xu (ref_16) 2021; 21
Li (ref_15) 2020; 62
ref_17
Tkach (ref_24) 2010; 7
Pont (ref_10) 2009; 56
Chauhan (ref_22) 2019; 52
ref_5
Xue (ref_7) 2019; 11
Ma (ref_18) 2020; 59
Wang (ref_4) 2017; 36
ref_6
IBullock (ref_12) 2013; 6
References_xml – volume: 59
  start-page: 1135
  year: 2020
  ident: ref_18
  article-title: Grasping force prediction based on sEMG signals
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.01.007
– volume: 11
  start-page: 162
  year: 2019
  ident: ref_7
  article-title: Multimodal Human Hand Motion Sensing and Analysis—A Review
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2018.2800167
– volume: 6
  start-page: 7706
  year: 2021
  ident: ref_14
  article-title: A soft robotic gripper with an active palm and reconfigurable fingers for fully dexterous in-hand manipulation
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3098803
– volume: 24
  start-page: 77
  year: 2017
  ident: ref_3
  article-title: Bringing robotics to formal education: The Thymio open-source hardware robot
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2016.2636372
– volume: 26
  start-page: 283
  year: 1984
  ident: ref_8
  article-title: A classification of manipulative hand movements
  publication-title: Dev. Med. Child Neurol.
  doi: 10.1111/j.1469-8749.1984.tb04445.x
– ident: ref_6
  doi: 10.1109/ICICI.2017.8365354
– volume: 36
  start-page: 585
  year: 2017
  ident: ref_4
  article-title: Recent developments in human motion analysis
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(02)00100-0
– volume: 64
  start-page: 2575
  year: 2017
  ident: ref_2
  article-title: Interface prostheses with classifier-feedback-based user training
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2641584
– ident: ref_5
  doi: 10.3390/app7040358
– volume: 62
  start-page: 102074
  year: 2020
  ident: ref_15
  article-title: A review of the key technologies for sEMG-based human-robot interaction systems
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102074
– volume: 15
  start-page: 525
  year: 2018
  ident: ref_1
  article-title: Current Researches and Future Development Trend of Intelligent Robot: A Review
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-018-1115-1
– volume: 13
  start-page: 415
  year: 2002
  ident: ref_23
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.991427
– volume: 6
  start-page: 129
  year: 2013
  ident: ref_12
  article-title: A hand-centric classification of human and robot dexterous manipulation
  publication-title: IEEE Trans. Haptics
  doi: 10.1109/TOH.2012.53
– volume: 39
  start-page: 3
  year: 2020
  ident: ref_13
  article-title: Learning dexterous in-hand manipulation
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364919887447
– volume: 7
  start-page: 21
  year: 2010
  ident: ref_24
  article-title: Study of stability of time domain features for electromyographic pattern recognition
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-7-21
– volume: 77
  start-page: 24909
  year: 2018
  ident: ref_21
  article-title: View-invariant gait recognition based on kinect skeleton feature
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-5722-1
– volume: 22
  start-page: 6793
  year: 2022
  ident: ref_11
  article-title: Human In-Hand Motion Recognition Based on Multi-Modal Perception Information Fusion
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3148992
– volume: 56
  start-page: 2
  year: 2009
  ident: ref_10
  article-title: Conceptualising a modified system for classification of in-hand manipulation
  publication-title: Aust. Occup. Ther. J.
  doi: 10.1111/j.1440-1630.2008.00774.x
– volume: 52
  start-page: 803
  year: 2019
  ident: ref_22
  article-title: Problem formulations and solvers in linear SVM: A review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-018-9614-6
– ident: ref_20
  doi: 10.1109/RiiSS.2013.6607927
– volume: 44
  start-page: 884
  year: 1990
  ident: ref_9
  article-title: The zone of proximal development in in-hand manipulation skills of nondysfunctional 3-and 4-year-old children
  publication-title: Am. J. Occup. Ther.
  doi: 10.5014/ajot.44.10.884
– volume: 21
  start-page: 13019
  year: 2021
  ident: ref_16
  article-title: Advances and Disturbances in sEMG-Based Intentions and Movements Recognition: A Review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3068521
– ident: ref_17
  doi: 10.1371/journal.pone.0206049
– volume: 29
  start-page: 15
  year: 2020
  ident: ref_19
  article-title: A Comparative Review of Recent Kinect-Based Action Recognition Algorithms
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2925285
SSID ssj0000505460
Score 2.252073
Snippet The multi-fingered dexterous robotic hand is increasingly used to achieve more complex and sophisticated human-like manipulation tasks on various occasions....
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 2093
SubjectTerms Algorithms
Bionics
Classification
Computer architecture
Data acquisition
Dextrous hands
Electromyography
End effectors
Hands
Human motion
Machine learning
Methods
Modal data
Motion perception
Recognition
Robotics
Robots
Sensors
Signal processing
Skills
Support vector machines
Task complexity
Title Using Adaptive Directed Acyclic Graph for Human In-Hand Motion Identification with Hybrid Surface Electromyography and Kinect
URI https://www.proquest.com/docview/2728528470
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV25TsNAEF1B0tAgwiGOEE1BAYWFs4ePCgWUA1AQ4pDSWd5LQiJOIKFwwb-zY284GkrL3mbG8-bYmXmEnDDJbJImIqBJaAJurLM5ybtBHBrOhRWJZDgoPL6LRs_8ZiImvuC28G2VK0ysgFrPFNbIz2lME4FYGl7M3wJkjcLbVU-hsU6aDoITl3w1L_t39w_fVRbkaeNRWA_mMZffny_KKbY20jBlf13RXySu3Mtgi2z6uBB6tSJbZM0U26TlLW8Bp3499NkO-axu-aGn8zlCFdSgZTT0VKleXxQMcQc1uGAUqgo9XBfBKC80jCvCHqhHc62v1QEWYmFU4uAWPH6821wZ6NfcONPS77MGPH7r4lG13CXPg_7T1SjwJAqBctHMMsAN81zkNtWhlCLNc55yZZVyeZJTg5DMOTEkRI9iybWMtKWx6lIa51FkYqYF2yONYlaYfQKp1TmyDDHu1Om-ktI5fGm6SqpQp1QekJOVPLN5vSsjczkGij37JfYD0l7JOvMGs8h-1Hv4_-sjskFxAqHqp2uTxvL9wxy7uGApO2Q9GQw7_hdwT8NJ9wslBbvf
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsNAEF1FUECDCIe4mQIkKCyc3fVVIBRBgkMSGoJEZ7yXhAQmkETIBb_EN7Ljg6Oho15bssYzb46dmUfIARPMhFHoOTR0tcO1sTYneMsJXM25Z7xQMBwUHl778S2_uvPuGuSjnoXBtsoaEwugVs8Sa-QnNKChh1jqno1fHGSNwtvVmkKjVIu-zt9syjY57V3Y_3tIabczOo-dilXAkda9Tx1cuc691ETKFcKL0pRHXBopbeJgv8sTzKI6MoT7geBK-MrQQLYoDVLf1wFTyBJhIX-eMxahRYXdy6-aDrLCcd8txwDtuXsyyZ-wkZK6Efvt-H7jfuHMustkqYpCoV2qTZM0dLZCmpWdT-CoWkZ9vErei54CaKt0jMAIJURqBW2Zy8cHCZe48Rps6AvFfQD0MidOMwXDgh4IykFgU1UGAcu-EOc4JgY3s1eTSg2dkonnKa-2ZwO-3rfRr5yukdt_Ee46mcueM71BIDIqRU4jxq3y2KeEsOGF0C0ppKsiKjbJQS3PZFxu5khsRoNiT36IfZPs1LJOKvOcJN_KtPX38T5ZiEfDQTLoXfe3ySLF2Yeik2-HzE1fZ3rXRiRTsVeoAZD7_9a7T7um9PI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqYS4oBaK6AOYQ5HgYGWzu34dqirQhIS0UQVU6s14X1Kl1k2bVMiH_jF-HTv2GuiFW8-2JWv87TcPz8wHsC-UcFmexRHPmI2kdf7MKTmIUmaljF2cKUGDwifzZHImv5zH52vwq5uFobbKjhMbojbXmmrkfZ7yLCYuZX0X2iJOj8aHi5uIFKToT2snp9FCZGbrnz59Wx5Mj_y3fsf5ePT90yQKCgOR9q5-FdH6dRmXLjdMqTgvS5lL7bT2SYR_x1gJz_CkFp6kShqVGMdTPeA8LZPEpsKQYoSn__XUZ0WsB-sfR_PTr38qPKQRJxPWDgUKkbP-sr6itkrOcvHQDT70Ao1rG2_AsxCT4rAF0Sas2eo5bIZTv8T3YTX1hxdw33QY4NCUC6JJbAnTGhzqWl9eaPxM-6_RB8LY_B3AaRVNysrgSSMWhO1YsAt1QqQiME5qGhrDb3e3rtQWR60uz1UddmkjPT7zsbBebcHZo5j3JfSq68q-AsydKUnhSEgPJX-XUj7YUHaglWYm52ob9jt7Fot2T0fh8xsye_GP2bdhr7N1EQ7rsvgLrZ3_X34LTzzmiuPpfLYLTzkNQjRtfXvQW93e2dc-PFmpNwEHCD8eG3q_Aeka-oQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Adaptive+Directed+Acyclic+Graph+for+Human+In-Hand+Motion+Identification+with+Hybrid+Surface+Electromyography+and+Kinect&rft.jtitle=Symmetry+%28Basel%29&rft.au=Xue%2C+Yaxu&rft.au=Yu%2C+Yadong&rft.au=Yin%2C+Kaiyang&rft.au=Du%2C+Haojie&rft.date=2022-10-01&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=14&rft.issue=10&rft.spage=2093&rft_id=info:doi/10.3390%2Fsym14102093&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_sym14102093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon