PolyLaneNet: Lane Estimation via Deep Polynomial Regression
One of the main factors that contributed to the large advances in autonomous driving is the advent of deep learning. For safer self-driving vehicles, one of the problems that has yet to be solved completely is lane detection. Since methods for this task have to work in real-time (+30 FPS), they not...
Saved in:
Published in | 2020 25th International Conference on Pattern Recognition (ICPR) pp. 6150 - 6156 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
10.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the main factors that contributed to the large advances in autonomous driving is the advent of deep learning. For safer self-driving vehicles, one of the problems that has yet to be solved completely is lane detection. Since methods for this task have to work in real-time (+30 FPS), they not only have to be effective (i.e., have high accuracy) but they also have to be efficient (i.e., fast). In this work, we present a novel method for lane detection that uses as input an image from a forward-looking camera mounted in the vehicle and outputs polynomials representing each lane marking in the image, via deep polynomial regression. The proposed method is shown to be competitive with existing state-of-the-art methods in the TuSimple dataset while maintaining its efficiency (115 FPS). Additionally, extensive qualitative results on two additional public datasets are presented, alongside with limitations in the evaluation metrics used by recent works for lane detection. Finally, we provide source code and trained models that allow others to replicate all the results shown in this paper, which is surprisingly rare in state-of-the-art lane detection methods. |
---|---|
AbstractList | One of the main factors that contributed to the large advances in autonomous driving is the advent of deep learning. For safer self-driving vehicles, one of the problems that has yet to be solved completely is lane detection. Since methods for this task have to work in real-time (+30 FPS), they not only have to be effective (i.e., have high accuracy) but they also have to be efficient (i.e., fast). In this work, we present a novel method for lane detection that uses as input an image from a forward-looking camera mounted in the vehicle and outputs polynomials representing each lane marking in the image, via deep polynomial regression. The proposed method is shown to be competitive with existing state-of-the-art methods in the TuSimple dataset while maintaining its efficiency (115 FPS). Additionally, extensive qualitative results on two additional public datasets are presented, alongside with limitations in the evaluation metrics used by recent works for lane detection. Finally, we provide source code and trained models that allow others to replicate all the results shown in this paper, which is surprisingly rare in state-of-the-art lane detection methods. |
Author | Berriel, Rodrigo Paixao, Thiago M. De Souza, Alberto F. Badue, Claudine Tabelini, Lucas Oliveira-Santos, Thiago |
Author_xml | – sequence: 1 givenname: Lucas surname: Tabelini fullname: Tabelini, Lucas email: tabelini@lcad.inf.ufes.br organization: Universidade Federal do Espírito Santo (UFES),Brazil – sequence: 2 givenname: Rodrigo surname: Berriel fullname: Berriel, Rodrigo organization: Universidade Federal do Espírito Santo (UFES),Brazil – sequence: 3 givenname: Thiago M. surname: Paixao fullname: Paixao, Thiago M. organization: Instituto Federal do Espírito Santo (IFES),Brazil – sequence: 4 givenname: Claudine surname: Badue fullname: Badue, Claudine organization: Universidade Federal do Espírito Santo (UFES),Brazil – sequence: 5 givenname: Alberto F. surname: De Souza fullname: De Souza, Alberto F. organization: Universidade Federal do Espírito Santo (UFES),Brazil – sequence: 6 givenname: Thiago surname: Oliveira-Santos fullname: Oliveira-Santos, Thiago organization: Universidade Federal do Espírito Santo (UFES),Brazil |
BookMark | eNotj1FLwzAUhSPog5v-AkHyB1pzkya50SepUwdFx9j7SNNbCXTpaIuwf2-HezoHvsPhnAW7Tn0ixh5B5ADCPa3LzbZAFCaXQkLuCpDS6Cu2ACsRZoDqlr1s-u5U-URfND3zs-GrcYoHP8U-8d_o-RvRkZ9TqT9E3_Et_Qw0jjO-Yzet70a6v-iS7d5Xu_Izq74_1uVrlQWpzZQVAiyBQwBydVCmVk2tgkZXeAwGlLPg9Yxl0A0gacBamtab0LTaWqmW7OG_NhLR_jjM44bT_nJH_QEG2UPu |
CitedBy_id | crossref_primary_10_3390_app12125975 crossref_primary_10_1109_TITS_2023_3305015 crossref_primary_10_1109_TITS_2023_3290991 crossref_primary_10_1177_03611981241243078 crossref_primary_10_3390_ijgi12030132 crossref_primary_10_4236_jcc_2023_113005 crossref_primary_10_1007_s11276_024_03750_0 crossref_primary_10_1109_TITS_2023_3328379 crossref_primary_10_1109_ACCESS_2024_3364612 crossref_primary_10_1007_s00371_024_03275_9 crossref_primary_10_1016_j_eswa_2023_122848 crossref_primary_10_1109_TITS_2023_3295807 crossref_primary_10_1111_mice_12829 crossref_primary_10_1109_TIV_2022_3158750 crossref_primary_10_1016_j_jvcir_2022_103574 crossref_primary_10_1038_s41598_022_15353_w crossref_primary_10_1109_TIP_2024_3407675 crossref_primary_10_1109_TVT_2023_3292401 crossref_primary_10_1109_JSEN_2022_3187997 crossref_primary_10_1007_s11760_022_02480_0 crossref_primary_10_1080_15389588_2023_2219794 crossref_primary_10_1016_j_jvcir_2023_103771 crossref_primary_10_1109_TITS_2021_3102479 crossref_primary_10_3390_s23146545 crossref_primary_10_1109_TPAMI_2022_3182097 crossref_primary_10_1088_1742_6596_2347_1_012012 crossref_primary_10_1109_TCSVT_2023_3271275 crossref_primary_10_1109_TVT_2024_3352543 crossref_primary_10_7717_peerj_cs_1824 crossref_primary_10_1007_s12652_022_04346_2 crossref_primary_10_1109_TIM_2024_3387496 crossref_primary_10_3390_s23156661 crossref_primary_10_3390_s24072116 crossref_primary_10_3103_S0146411623020050 crossref_primary_10_1109_LGRS_2024_3400514 crossref_primary_10_1109_TAI_2022_3212347 crossref_primary_10_15701_kcgs_2022_29_1_1 crossref_primary_10_1109_TVT_2023_3275571 crossref_primary_10_3390_s22155595 crossref_primary_10_1109_TGRS_2023_3344150 crossref_primary_10_1109_TITS_2022_3170454 crossref_primary_10_1002_jsid_1193 crossref_primary_10_1109_TIM_2023_3282656 crossref_primary_10_1007_s11831_022_09741_8 crossref_primary_10_1109_ACCESS_2024_3402239 crossref_primary_10_1109_TITS_2023_3309948 crossref_primary_10_3390_electronics12092097 crossref_primary_10_3390_wevj15050176 crossref_primary_10_3390_s23198285 crossref_primary_10_1049_itr2_12188 crossref_primary_10_1088_1361_6501_acc479 crossref_primary_10_1109_TITS_2022_3195742 crossref_primary_10_1109_TII_2023_3233975 crossref_primary_10_1007_s11042_024_19297_3 crossref_primary_10_3390_rs15051212 crossref_primary_10_3390_s24113502 crossref_primary_10_1109_JIOT_2024_3362851 crossref_primary_10_1007_s11042_023_14622_8 crossref_primary_10_1109_ACCESS_2024_3381488 crossref_primary_10_3390_electronics12244911 crossref_primary_10_1109_TPAMI_2022_3152247 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICPR48806.2021.9412265 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1728188083 9781728188089 |
EndPage | 6156 |
ExternalDocumentID | 9412265 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-c256t-4017e19811e9bc36b3db3c5894a8c613971a59812c5d18e518b26fa6cdf57723 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:39:16 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c256t-4017e19811e9bc36b3db3c5894a8c613971a59812c5d18e518b26fa6cdf57723 |
PageCount | 7 |
ParticipantIDs | ieee_primary_9412265 |
PublicationCentury | 2000 |
PublicationDate | 2021-Jan.-10 |
PublicationDateYYYYMMDD | 2021-01-10 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-Jan.-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | 2020 25th International Conference on Pattern Recognition (ICPR) |
PublicationTitleAbbrev | ICPR |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 2.5952685 |
Snippet | One of the main factors that contributed to the large advances in autonomous driving is the advent of deep learning. For safer self-driving vehicles, one of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 6150 |
SubjectTerms | Cameras Deep learning Estimation Lane detection Measurement Pattern recognition Real-time systems |
Title | PolyLaneNet: Lane Estimation via Deep Polynomial Regression |
URI | https://ieeexplore.ieee.org/document/9412265 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH8BTp7UgPE7PXh0Y93abtMjQtAIIQQTbqQfb8ZIBiHDRP96221iNB68NW3T7_b9-vp-rwBXQmVJzKTwmBUvHqPGbiluQk8GUYgmtuefctzh0VgMn9jDnM8bcL3jwiBiaXyGvguWb_lmpbdOVdZNGbVogTehaQupuFo16ZcGafe-N5m65egMD0Lq15l__JpSCo3BPoy-qqtsRV79baF8_fHLE-N_23MAnW96HpnsBM8hNDBvw-1ktXx_lDmOsbghLkD6dvtWzETy9iLJHeKauFyOiSyXZIrPlRFs3oHZoD_rDb36ZwRPW4hS2EsfjZGmCaWYKh0JFRkVaZ6kTCZaOFBHJbfJoeaGJshpokKRSaFNxi2cjo6gla9yPAaC2gIMZmcsoMgyjKUMWGZRjkmlcj6MT6Dt-r1YV74vFnWXT_-OPoM9N_ZORUGDc2gVmy1eWKFdqMtytj4BVqiXTw |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pSA8Zve_Doxrq1XadHhIACIQQTbqQfb8ZIBjHDRP96221iNB68NW2T9uW1fb-27_ceQldcpSKmknvUmhePEmO3FDOhJ4MoBBPb80857vBwxHuP9H7GZjV0veHCAEDhfAa-KxZ_-Wap1-6prJVQYtEC20LbFlcLXrK1KtovCZJWvz2euAXpXA9C4lfdf-RNKcxGdw8NvwYsvUVe_HWufP3xKxbjf2e0j5rfBD083pieA1SDrIFux8vF-0BmMIL8BrsC7tgNXHIT8duzxHcAK-x6OS6yXOAJPJVusFkTTbudabvnVbkRPG1BSm6vfSQGkghCIFE64ioyKtJMJFQKzR2sI5LZ5lAzQwQwIlTIU8m1SZkF1NEhqmfLDI4QBm0hBrU6CwjQFGIpA5panGMSqVwU42PUcHLPV2X0i3kl8snf1ZdopzcdDuaD_ujhFO06PbgHCxKcoXr-uoZza8JzdVFo7hNy1Zqa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+25th+International+Conference+on+Pattern+Recognition+%28ICPR%29&rft.atitle=PolyLaneNet%3A+Lane+Estimation+via+Deep+Polynomial+Regression&rft.au=Tabelini%2C+Lucas&rft.au=Berriel%2C+Rodrigo&rft.au=Paixao%2C+Thiago+M.&rft.au=Badue%2C+Claudine&rft.date=2021-01-10&rft.pub=IEEE&rft.spage=6150&rft.epage=6156&rft_id=info:doi/10.1109%2FICPR48806.2021.9412265&rft.externalDocID=9412265 |