PolyLaneNet: Lane Estimation via Deep Polynomial Regression

One of the main factors that contributed to the large advances in autonomous driving is the advent of deep learning. For safer self-driving vehicles, one of the problems that has yet to be solved completely is lane detection. Since methods for this task have to work in real-time (+30 FPS), they not...

Full description

Saved in:
Bibliographic Details
Published in2020 25th International Conference on Pattern Recognition (ICPR) pp. 6150 - 6156
Main Authors Tabelini, Lucas, Berriel, Rodrigo, Paixao, Thiago M., Badue, Claudine, De Souza, Alberto F., Oliveira-Santos, Thiago
Format Conference Proceeding
LanguageEnglish
Published IEEE 10.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the main factors that contributed to the large advances in autonomous driving is the advent of deep learning. For safer self-driving vehicles, one of the problems that has yet to be solved completely is lane detection. Since methods for this task have to work in real-time (+30 FPS), they not only have to be effective (i.e., have high accuracy) but they also have to be efficient (i.e., fast). In this work, we present a novel method for lane detection that uses as input an image from a forward-looking camera mounted in the vehicle and outputs polynomials representing each lane marking in the image, via deep polynomial regression. The proposed method is shown to be competitive with existing state-of-the-art methods in the TuSimple dataset while maintaining its efficiency (115 FPS). Additionally, extensive qualitative results on two additional public datasets are presented, alongside with limitations in the evaluation metrics used by recent works for lane detection. Finally, we provide source code and trained models that allow others to replicate all the results shown in this paper, which is surprisingly rare in state-of-the-art lane detection methods.
AbstractList One of the main factors that contributed to the large advances in autonomous driving is the advent of deep learning. For safer self-driving vehicles, one of the problems that has yet to be solved completely is lane detection. Since methods for this task have to work in real-time (+30 FPS), they not only have to be effective (i.e., have high accuracy) but they also have to be efficient (i.e., fast). In this work, we present a novel method for lane detection that uses as input an image from a forward-looking camera mounted in the vehicle and outputs polynomials representing each lane marking in the image, via deep polynomial regression. The proposed method is shown to be competitive with existing state-of-the-art methods in the TuSimple dataset while maintaining its efficiency (115 FPS). Additionally, extensive qualitative results on two additional public datasets are presented, alongside with limitations in the evaluation metrics used by recent works for lane detection. Finally, we provide source code and trained models that allow others to replicate all the results shown in this paper, which is surprisingly rare in state-of-the-art lane detection methods.
Author Berriel, Rodrigo
Paixao, Thiago M.
De Souza, Alberto F.
Badue, Claudine
Tabelini, Lucas
Oliveira-Santos, Thiago
Author_xml – sequence: 1
  givenname: Lucas
  surname: Tabelini
  fullname: Tabelini, Lucas
  email: tabelini@lcad.inf.ufes.br
  organization: Universidade Federal do Espírito Santo (UFES),Brazil
– sequence: 2
  givenname: Rodrigo
  surname: Berriel
  fullname: Berriel, Rodrigo
  organization: Universidade Federal do Espírito Santo (UFES),Brazil
– sequence: 3
  givenname: Thiago M.
  surname: Paixao
  fullname: Paixao, Thiago M.
  organization: Instituto Federal do Espírito Santo (IFES),Brazil
– sequence: 4
  givenname: Claudine
  surname: Badue
  fullname: Badue, Claudine
  organization: Universidade Federal do Espírito Santo (UFES),Brazil
– sequence: 5
  givenname: Alberto F.
  surname: De Souza
  fullname: De Souza, Alberto F.
  organization: Universidade Federal do Espírito Santo (UFES),Brazil
– sequence: 6
  givenname: Thiago
  surname: Oliveira-Santos
  fullname: Oliveira-Santos, Thiago
  organization: Universidade Federal do Espírito Santo (UFES),Brazil
BookMark eNotj1FLwzAUhSPog5v-AkHyB1pzkya50SepUwdFx9j7SNNbCXTpaIuwf2-HezoHvsPhnAW7Tn0ixh5B5ADCPa3LzbZAFCaXQkLuCpDS6Cu2ACsRZoDqlr1s-u5U-URfND3zs-GrcYoHP8U-8d_o-RvRkZ9TqT9E3_Et_Qw0jjO-Yzet70a6v-iS7d5Xu_Izq74_1uVrlQWpzZQVAiyBQwBydVCmVk2tgkZXeAwGlLPg9Yxl0A0gacBamtab0LTaWqmW7OG_NhLR_jjM44bT_nJH_QEG2UPu
CitedBy_id crossref_primary_10_3390_app12125975
crossref_primary_10_1109_TITS_2023_3305015
crossref_primary_10_1109_TITS_2023_3290991
crossref_primary_10_1177_03611981241243078
crossref_primary_10_3390_ijgi12030132
crossref_primary_10_4236_jcc_2023_113005
crossref_primary_10_1007_s11276_024_03750_0
crossref_primary_10_1109_TITS_2023_3328379
crossref_primary_10_1109_ACCESS_2024_3364612
crossref_primary_10_1007_s00371_024_03275_9
crossref_primary_10_1016_j_eswa_2023_122848
crossref_primary_10_1109_TITS_2023_3295807
crossref_primary_10_1111_mice_12829
crossref_primary_10_1109_TIV_2022_3158750
crossref_primary_10_1016_j_jvcir_2022_103574
crossref_primary_10_1038_s41598_022_15353_w
crossref_primary_10_1109_TIP_2024_3407675
crossref_primary_10_1109_TVT_2023_3292401
crossref_primary_10_1109_JSEN_2022_3187997
crossref_primary_10_1007_s11760_022_02480_0
crossref_primary_10_1080_15389588_2023_2219794
crossref_primary_10_1016_j_jvcir_2023_103771
crossref_primary_10_1109_TITS_2021_3102479
crossref_primary_10_3390_s23146545
crossref_primary_10_1109_TPAMI_2022_3182097
crossref_primary_10_1088_1742_6596_2347_1_012012
crossref_primary_10_1109_TCSVT_2023_3271275
crossref_primary_10_1109_TVT_2024_3352543
crossref_primary_10_7717_peerj_cs_1824
crossref_primary_10_1007_s12652_022_04346_2
crossref_primary_10_1109_TIM_2024_3387496
crossref_primary_10_3390_s23156661
crossref_primary_10_3390_s24072116
crossref_primary_10_3103_S0146411623020050
crossref_primary_10_1109_LGRS_2024_3400514
crossref_primary_10_1109_TAI_2022_3212347
crossref_primary_10_15701_kcgs_2022_29_1_1
crossref_primary_10_1109_TVT_2023_3275571
crossref_primary_10_3390_s22155595
crossref_primary_10_1109_TGRS_2023_3344150
crossref_primary_10_1109_TITS_2022_3170454
crossref_primary_10_1002_jsid_1193
crossref_primary_10_1109_TIM_2023_3282656
crossref_primary_10_1007_s11831_022_09741_8
crossref_primary_10_1109_ACCESS_2024_3402239
crossref_primary_10_1109_TITS_2023_3309948
crossref_primary_10_3390_electronics12092097
crossref_primary_10_3390_wevj15050176
crossref_primary_10_3390_s23198285
crossref_primary_10_1049_itr2_12188
crossref_primary_10_1088_1361_6501_acc479
crossref_primary_10_1109_TITS_2022_3195742
crossref_primary_10_1109_TII_2023_3233975
crossref_primary_10_1007_s11042_024_19297_3
crossref_primary_10_3390_rs15051212
crossref_primary_10_3390_s24113502
crossref_primary_10_1109_JIOT_2024_3362851
crossref_primary_10_1007_s11042_023_14622_8
crossref_primary_10_1109_ACCESS_2024_3381488
crossref_primary_10_3390_electronics12244911
crossref_primary_10_1109_TPAMI_2022_3152247
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPR48806.2021.9412265
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728188083
9781728188089
EndPage 6156
ExternalDocumentID 9412265
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-c256t-4017e19811e9bc36b3db3c5894a8c613971a59812c5d18e518b26fa6cdf57723
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:16 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c256t-4017e19811e9bc36b3db3c5894a8c613971a59812c5d18e518b26fa6cdf57723
PageCount 7
ParticipantIDs ieee_primary_9412265
PublicationCentury 2000
PublicationDate 2021-Jan.-10
PublicationDateYYYYMMDD 2021-01-10
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.-10
  day: 10
PublicationDecade 2020
PublicationTitle 2020 25th International Conference on Pattern Recognition (ICPR)
PublicationTitleAbbrev ICPR
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.5952685
Snippet One of the main factors that contributed to the large advances in autonomous driving is the advent of deep learning. For safer self-driving vehicles, one of...
SourceID ieee
SourceType Publisher
StartPage 6150
SubjectTerms Cameras
Deep learning
Estimation
Lane detection
Measurement
Pattern recognition
Real-time systems
Title PolyLaneNet: Lane Estimation via Deep Polynomial Regression
URI https://ieeexplore.ieee.org/document/9412265
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH8BTp7UgPE7PXh0Y93abtMjQtAIIQQTbqQfb8ZIBiHDRP96221iNB68NW3T7_b9-vp-rwBXQmVJzKTwmBUvHqPGbiluQk8GUYgmtuefctzh0VgMn9jDnM8bcL3jwiBiaXyGvguWb_lmpbdOVdZNGbVogTehaQupuFo16ZcGafe-N5m65egMD0Lq15l__JpSCo3BPoy-qqtsRV79baF8_fHLE-N_23MAnW96HpnsBM8hNDBvw-1ktXx_lDmOsbghLkD6dvtWzETy9iLJHeKauFyOiSyXZIrPlRFs3oHZoD_rDb36ZwRPW4hS2EsfjZGmCaWYKh0JFRkVaZ6kTCZaOFBHJbfJoeaGJshpokKRSaFNxi2cjo6gla9yPAaC2gIMZmcsoMgyjKUMWGZRjkmlcj6MT6Dt-r1YV74vFnWXT_-OPoM9N_ZORUGDc2gVmy1eWKFdqMtytj4BVqiXTw
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pSA8Zve_Doxrq1XadHhIACIQQTbqQfb8ZIBjHDRP96221iNB68NW2T9uW1fb-27_ceQldcpSKmknvUmhePEmO3FDOhJ4MoBBPb80857vBwxHuP9H7GZjV0veHCAEDhfAa-KxZ_-Wap1-6prJVQYtEC20LbFlcLXrK1KtovCZJWvz2euAXpXA9C4lfdf-RNKcxGdw8NvwYsvUVe_HWufP3xKxbjf2e0j5rfBD083pieA1SDrIFux8vF-0BmMIL8BrsC7tgNXHIT8duzxHcAK-x6OS6yXOAJPJVusFkTTbudabvnVbkRPG1BSm6vfSQGkghCIFE64ioyKtJMJFQKzR2sI5LZ5lAzQwQwIlTIU8m1SZkF1NEhqmfLDI4QBm0hBrU6CwjQFGIpA5panGMSqVwU42PUcHLPV2X0i3kl8snf1ZdopzcdDuaD_ujhFO06PbgHCxKcoXr-uoZza8JzdVFo7hNy1Zqa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+25th+International+Conference+on+Pattern+Recognition+%28ICPR%29&rft.atitle=PolyLaneNet%3A+Lane+Estimation+via+Deep+Polynomial+Regression&rft.au=Tabelini%2C+Lucas&rft.au=Berriel%2C+Rodrigo&rft.au=Paixao%2C+Thiago+M.&rft.au=Badue%2C+Claudine&rft.date=2021-01-10&rft.pub=IEEE&rft.spage=6150&rft.epage=6156&rft_id=info:doi/10.1109%2FICPR48806.2021.9412265&rft.externalDocID=9412265