The alternative electron acceptor tetrathionate supports B12-dependent anaerobic growth of Salmonella enterica serovar typhimurium on ethanolamine or 1,2-propanediol
Synthesis of cobalamin de novo by Salmonella enterica serovar Typhimurium strain LT2 and the absence of this ability in Escherichia coli present several problems. This large synthetic pathway is shared by virtually all salmonellae and must be maintained by selection, yet no conditions are known unde...
Saved in:
Published in | Journal of bacteriology Vol. 183; no. 8; pp. 2463 - 2475 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.04.2001
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Synthesis of cobalamin de novo by Salmonella enterica serovar Typhimurium strain LT2 and the absence of this ability in Escherichia coli present several problems. This large synthetic pathway is shared by virtually all salmonellae and must be maintained by selection, yet no conditions are known under which growth depends on endogenous B12. The cofactor is required for degradation of 1,2-propanediol and ethanolamine. However, cofactor synthesis occurs only anaerobically, and neither of these carbon sources supports anaerobic growth with any of the alternative electron acceptors tested thus far. This paradox is resolved by the electron acceptor tetrathionate, which allows Salmonella to grow anaerobically on ethanolamine or 1,2-propanediol by using endogenously synthesized B12. Tetrathionate provides the only known conditions under which simple cob mutants (unable to make B12) show a growth defect. Genes involved in this metabolism include the ttr operon, which encodes tetrathionate reductase. This operon is globally regulated by OxrA (Fnr) and induced anaerobically by a two-component system in response to tetrathionate. Salmonella reduces tetrathionate to thiosulfate, which it can further reduce to H2S, by using enzymes encoded by the genes phs and asr. The genes for 1,2-propanediol degradation (pdu) and B12 synthesis (cob), along with the genes for sulfur reduction (ttr, phs, and asr), constitute more than 1% of the Salmonella genome and are all absent from E. coli. In diverging from E. coli, Salmonella acquired some of these genes unilaterally and maintained others that are ancestral but have been lost from the E. coli lineage. |
---|---|
AbstractList | Synthesis of cobalamin de novo by Salmonella enterica serovar Typhimurium strain LT2 and the absence of this ability in Escherichia coli present several problems. This large synthetic pathway is shared by virtually all salmonellae and must be maintained by selection, yet no conditions are known under which growth depends on endogenous B12. The cofactor is required for degradation of 1,2-propanediol and ethanolamine. However, cofactor synthesis occurs only anaerobically, and neither of these carbon sources supports anaerobic growth with any of the alternative electron acceptors tested thus far. This paradox is resolved by the electron acceptor tetrathionate, which allows Salmonella to grow anaerobically on ethanolamine or 1,2-propanediol by using endogenously synthesized B12. Tetrathionate provides the only known conditions under which simple cob mutants (unable to make B12) show a growth defect. Genes involved in this metabolism include the ttr operon, which encodes tetrathionate reductase. This operon is globally regulated by OxrA (Fnr) and induced anaerobically by a two-component system in response to tetrathionate. Salmonella reduces tetrathionate to thiosulfate, which it can further reduce to H2S, by using enzymes encoded by the genes phs and asr. The genes for 1,2-propanediol degradation (pdu) and B12 synthesis (cob), along with the genes for sulfur reduction (ttr, phs, and asr), constitute more than 1% of the Salmonella genome and are all absent from E. coli. In diverging from E. coli, Salmonella acquired some of these genes unilaterally and maintained others that are ancestral but have been lost from the E. coli lineage. Synthesis of cobalamin de novo by Salmenella enterica serovar Typhimurium strain LT2 and the absence of this ability in Escherichia coli present several problems. This large synthetic pathway is shared by virtually all salmonellae and must be maintained by selection, yet no conditions are known under which growth depends on endogenous B12. Synthesis of cobalamin de novo by Salmonella enterica serovar Typhimurium strain LT2 and the absence of this ability in Escherichia coli present several problems. This large synthetic pathway is shared by virtually all salmonellae and must be maintained by selection, yet no conditions are known under which growth depends on endogenous B 12 . The cofactor is required for degradation of 1,2-propanediol and ethanolamine. However, cofactor synthesis occurs only anaerobically, and neither of these carbon sources supports anaerobic growth with any of the alternative electron acceptors tested thus far. This paradox is resolved by the electron acceptor tetrathionate, which allows Salmonella to grow anaerobically on ethanolamine or 1,2-propanediol by using endogenously synthesized B 12 . Tetrathionate provides the only known conditions under which simple cob mutants (unable to make B 12 ) show a growth defect. Genes involved in this metabolism include the ttr operon, which encodes tetrathionate reductase. This operon is globally regulated by OxrA (Fnr) and induced anaerobically by a two-component system in response to tetrathionate. Salmonella reduces tetrathionate to thiosulfate, which it can further reduce to H 2 S, by using enzymes encoded by the genes phs and asr . The genes for 1,2-propanediol degradation ( pdu ) and B 12 synthesis ( cob ), along with the genes for sulfur reduction ( ttr , phs, and asr ), constitute more than 1% of the Salmonella genome and are all absent from E. coli . In diverging from E. coli , Salmonella acquired some of these genes unilaterally and maintained others that are ancestral but have been lost from the E. coli lineage. |
Author | Price-Carter, M Tingey, J Roth, J R Bobik, T A |
AuthorAffiliation | Department of Biology, University of Utah, Salt Lake City, Utah 84112, 1 and Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611 2 |
AuthorAffiliation_xml | – name: Department of Biology, University of Utah, Salt Lake City, Utah 84112, 1 and Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611 2 |
Author_xml | – sequence: 1 givenname: M surname: Price-Carter fullname: Price-Carter, M organization: Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA – sequence: 2 givenname: J surname: Tingey fullname: Tingey, J – sequence: 3 givenname: T A surname: Bobik fullname: Bobik, T A – sequence: 4 givenname: J R surname: Roth fullname: Roth, J R |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11274105$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkctu1DAUhi3Uik4HXgEsFqxI6ks8diQ2bcWlVSUWlHXkcU4aV45tbGdQH4j3xIiCgJUX_v7_fDrnFB354AGhl5S0lDJ1dn3RUsVb1bJuxxvWSdEyQugTtKGkV40QnByhDSGMNj3t-Qk6zfm-Al0n2FN0UjtkR4nYoO-3M2DtCiSviz0ABgempOCxNgZiCQkXKEmX2YZKAM5rjCGVjC8oa0aI4EfwBWuvIYW9NfguhW9lxmHCn7VbqrZzGlcEkjUa50oddC19iLNd1mTXBddhUGbtg9OL9YDrTPqGNTGFqD2MNrhn6HjSLsPzx3eLvrx_d3v5sbn59OHq8vymMUzsSsMJJVPXGUVgr3YGGNGT2E8UOEhhlJR9RzljVFI6jr0iQgL0ZiSK14zoFN-it79647pfYDRVO2k3xGQXnR6GoO3w74-383AXDkMv6I7V-OvHeApfV8hlWGw2PxfgIax5kLIKquqwRa_-A-_DWi_g8sCYJJIr1Vfoxd8yfyx-H4__AJgWo6g |
CODEN | JOBAAY |
CitedBy_id | crossref_primary_10_1021_acssynbio_3c00445 crossref_primary_10_3389_fmicb_2020_00006 |
ContentType | Journal Article |
Copyright | Copyright American Society for Microbiology Apr 2001 Copyright © 2001, American Society for Microbiology 2001 |
Copyright_xml | – notice: Copyright American Society for Microbiology Apr 2001 – notice: Copyright © 2001, American Society for Microbiology 2001 |
DBID | CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1128/JB.183.8.2463-2475.2001 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-5530 |
EndPage | 2475 |
ExternalDocumentID | 72779646 11274105 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM34804 – fundername: NIGMS NIH HHS grantid: R01 GM034804 – fundername: NIGMS NIH HHS grantid: GM59486 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 186 18M 1VV 29J 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 79B 85S 8WZ 9M8 A6W ABPPZ ABTAH ACGFO ACGOD ACNCT ACPRK ADBBV AENEX AFFDN AFFNX AFRAH AGCDD AGVNZ AI. AIDAL AJUXI ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CGR CJ0 CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F20 F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 L7B MVM NHB NPM O9- OHT OK1 P-S P2P PQQKQ QZG RHF RHI RNS RPM RSF RXW TAE TR2 UCJ UHB UKR UPT VH1 VQA W8F WH7 WHG WOQ X7M Y6R YQT YR2 YZZ ZCA ZCG ZGI ZXP ZY4 ~02 ~KM 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c256t-3010f44c80eb86ce20af5bf1e3e75c8779413221711dd98057ee9cd0834c85483 |
IEDL.DBID | RPM |
ISSN | 0021-9193 |
IngestDate | Tue Sep 17 21:00:46 EDT 2024 Fri Oct 25 08:55:02 EDT 2024 Thu Oct 10 17:40:02 EDT 2024 Sat Sep 28 07:36:10 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c256t-3010f44c80eb86ce20af5bf1e3e75c8779413221711dd98057ee9cd0834c85483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Armed Services Medical School, Washington, D.C. Corresponding author. Mailing address: Department of Biology, University of Utah, Salt Lake City, UT 84112. Phone: (801) 581-3412. Fax: (801) 585-6207. E-mail: Roth@Bioscience.utah.edu. |
PMID | 11274105 |
PQID | 227073889 |
PQPubID | 40724 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_95162 proquest_miscellaneous_77010841 proquest_journals_227073889 pubmed_primary_11274105 |
PublicationCentury | 2000 |
PublicationDate | 20010401 |
PublicationDateYYYYMMDD | 2001-04-01 |
PublicationDate_xml | – month: 4 year: 2001 text: 20010401 day: 1 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Journal of bacteriology |
PublicationTitleAlternate | J Bacteriol |
PublicationYear | 2001 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | 8437517 - Mol Microbiol. 1993 Jan;7(1):151-7 10464203 - J Bacteriol. 1999 Sep;181(17):5317-29 2687248 - J Bacteriol. 1989 Dec;171(12):6726-33 9555887 - J Bacteriol. 1998 Apr;180(8):2063-71 1704886 - J Bacteriol. 1991 Feb;173(4):1544-53 10027966 - Mol Microbiol. 1999 Jan;31(2):489-98 9325432 - Arch Microbiol. 1997 Nov;168(5):428-36 10829079 - Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 271968 - Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7 8412692 - Mol Microbiol. 1993 Aug;9(3):425-34 8770581 - Genetics. 1996 Jan;142(1):11-24 9006051 - J Bacteriol. 1997 Feb;179(3):928-40 3039301 - Mol Gen Genet. 1987 May;207(2-3):435-40 6376471 - J Bacteriol. 1984 Jul;159(1):206-13 10811905 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):5978-83 3108233 - J Bacteriol. 1987 Jun;169(6):2391-7 2163396 - J Bacteriol. 1990 Jul;172(7):4100-2 7592411 - J Bacteriol. 1995 Nov;177(22):6371-80 8501034 - J Bacteriol. 1993 Jun;175(11):3303-16 3045078 - J Bacteriol. 1988 Sep;170(9):3855-63 3813523 - Antonie Van Leeuwenhoek. 1986;52(6):507-18 9294441 - J Bacteriol. 1997 Sep;179(18):5827-34 2166132 - J Gen Microbiol. 1990 May;136(5):887-96 7559322 - J Bacteriol. 1995 Oct;177(19):5401-10 8905078 - Annu Rev Microbiol. 1996;50:137-81 9023178 - J Bacteriol. 1997 Feb;179(4):1013-22 7751291 - J Bacteriol. 1995 May;177(10):2813-20 1312999 - J Bacteriol. 1992 Apr;174(7):2253-66 9324256 - J Bacteriol. 1997 Oct;179(19):6084-91 10231485 - Mol Microbiol. 1999 Apr;32(2):275-87 9352910 - J Bacteriol. 1997 Nov;179(21):6633-9 10648108 - Arch Microbiol. 2000 Jan;173(1):76-7 4932889 - Mol Gen Genet. 1971;110(4):378-81 9851993 - J Bacteriol. 1998 Dec;180(24):6511-8 4564718 - Mol Gen Genet. 1972;119(1):71-4 3093439 - J Appl Bacteriol. 1986 Jul;61(1):19-24 2310184 - Appl Environ Microbiol. 1990 Jan;56(1):301-3 2123394 - FEMS Microbiol Rev. 1990 Aug;6(4):351-81 3299028 - Microbiol Rev. 1987 Jun;51(2):192-205 7982894 - J Biochem. 1994 Jun;115(6):1135-40 10482501 - J Bacteriol. 1999 Sep;181(18):5615-23 1482126 - Annu Rev Genet. 1992;26:71-112 1313000 - J Bacteriol. 1992 Apr;174(7):2267-72 4884795 - Can J Microbiol. 1969 Feb;15(2):238-40 8226666 - J Bacteriol. 1993 Nov;175(22):7200-8 6231768 - Virology. 1984 Apr 15;134(1):161-7 10498708 - J Bacteriol. 1999 Oct;181(19):5967-75 2656637 - J Bacteriol. 1989 Jun;171(6):3008-15 |
References_xml | |
SSID | ssj0014452 |
Score | 2.1462984 |
Snippet | Synthesis of cobalamin de novo by Salmonella enterica serovar Typhimurium strain LT2 and the absence of this ability in Escherichia coli present several... Synthesis of cobalamin de novo by Salmenella enterica serovar Typhimurium strain LT2 and the absence of this ability in Escherichia coli present several... Synthesis of cobalamin de novo by Salmonella enterica serovar Typhimurium strain LT2 and the absence of this ability in Escherichia coli present several... |
SourceID | pubmedcentral proquest pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 2463 |
SubjectTerms | Anaerobiosis Bacterial Proteins - genetics Bacteriology Culture Media Ethanolamine - metabolism Fermentation Gene Expression Regulation, Bacterial Genes Metabolism Molecular Sequence Data Mutation Operon Oxidation-Reduction Oxygen Consumption Physiology and Metabolism Propylene Glycol - metabolism Salmonella Salmonella typhimurium - genetics Salmonella typhimurium - growth & development Salmonella typhimurium - metabolism Sulfur - metabolism Tetrathionic Acid - metabolism Vitamin B 12 - metabolism |
Title | The alternative electron acceptor tetrathionate supports B12-dependent anaerobic growth of Salmonella enterica serovar typhimurium on ethanolamine or 1,2-propanediol |
URI | https://www.ncbi.nlm.nih.gov/pubmed/11274105 https://www.proquest.com/docview/227073889 https://search.proquest.com/docview/77010841 https://pubmed.ncbi.nlm.nih.gov/PMC95162 |
Volume | 183 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEF2aQKGX0qRfTpp0Dz12Ze1qJa2OTuo0BFICTSA3Ia1W2GDJxpYD-UH9n30jrUNTeupZ1mrwzI7em32aYexLlQCFZIURFd5-VK1yotAmESqzoc1AEFxJ9Y7rH8nlnb66j-_9d9wbL6tsbTkP2kUTtPNZr61cNXa804mNb67PgQoSNd5je2kU7Qi6PzjQOvYNwiX2cRZ5SRey8PjqLED8BiZQOomE0mlM9LAfFSOpiUsY_wtl_i2W_OPtc_GGvfawkU8G8w7YC9cespfDIMnHt-wXvM0nC1_ce3B86qfb8Ikl3cpyzW8d9aGdUeWvc5yGedJZAT-TSnzzg3A7PmkLR42ZLP8Oet7N-LLmP4sFQpVEUpz6d1Le5Mgwy4cCiz6uZvNmu55vG46HTakOD67cALpyPFN-VeJmDVqOXA5T37G7i-nt-aXwAxiEBRLqBDZ_WGttTehKQ6PDwqKOy1q6yKWxNSn2MpFZmUpZVZkB9HMusxVQHe4BFYres_0WFn5kXLu452amqlOsiIVUUVn4r0ysDk05Yse7vz73u2iTK5UiAxmTjdjnp6sIfzrTgOXL7SZPU9hotByxD4Ob8tXQpSPfOXXE4mcOfPoBNdZ-fgXx1jfY7uPr6D_vO2avBp0aqXs-sf1uvXUnAC5dedqH6m8v8-85 |
link.rule.ids | 230,315,733,786,790,891,27946,27947,53816,53818 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgCMHL-DkoA-YHHnEaO3biPHajo4x1mkQn7S1KHEetaNKqTSZt_w__J3eJM7GJF3h241xl3_m785fvCPmUh4BC4lSzHE4_rFZZlkodMhEb38SQINgM6x3Ts3ByIU8u1aX7jnvraJWVyRZetSy9ajFvuZXr0gx7ntjwfHoEqCAUw4fkkcJrrz5Fd1cHUionEc7Bk-PAkbogDg9PDj3YwZ72hAwDJmSkMEFsm8VwlHHx1d9w5n265B_nz_EzMust72gnP72mzjxzc0_U8R__2nOy6_AoHXWDL8gDW70kj7sOldevyC_YRnS0dFXDK0vHrm0OHRkkxKw2dGZR4HaOJcXaUuwSipcQ9JAL9sV12K3pqEotKj4Z-hXy_npOVwX9kS7BB5B9RVEYFAMyhdC1ukph0uv1fFE2m0VTUnjZGAv8kISXgIkpvJN_Fux8A_k-HBJg6mtycTyeHU2Y6-zADECsmkFU8QspjfZtprEnmZ8WKiu4DWykjI4gSGCWzCPO8zzWgCmtjU0OcBGegRwr2CM7FVj4llBpVZv06byIYEaYSKS5iYIgC430dTYg-_2KJs49t4kQEYQ2reMBObgdBb_CyxKwfNVskygCG7XkA_KmW_1k3cl_JP1eGRB1Z1_c_gAVu--OwGq3yt3t6r77z-cOyJPJbHqanH47-75PnnZkOKQQvSc79aaxHwAd1dnH1ht-A51dENM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZaqla9QF-0W2jxocfmYcdOnOMCu6W0oJUK0t6ixHG0q26yq90ECf5P_ycziYMA9cQ5fkzkmfE3408zhHzLQ0AhcaqcHG4_zFYZJxUqdHisfR1DgGAyzHecnYcnl-J0Kqc2dbGxtMpKZ3O3WpRuNZ-13MpVqb2eJ-ZNzo4AFYTcW-WF95y8kHjn9GG6fT4QQtoy4QysOQ4ssQt8sXd66IIWu8rlIgwcLiKJQWLbMIZhKRdf_g9rPqZM3ruDxjtk2kvfUU_-uk2dufrmUWHHJ_zeG7JtcSkddgPekmemekdedp0qr9-Tf6BOdLiw2cMrQ0e2fQ4daiTGLNf0wmCh2xmmFmtDsVsoPkbQQ8adY9tpt6bDKjVY-UnTHxD_1zO6LOifdAG2gCwsigVC0TFTcGHLqxQWvV7N5mWznjclhc1GmOiHYLwEbExhT_adO5M1xP1wWYCoH8jleHRxdOLYDg-OBqhVO-Bd_EIIrXyTKexN5qeFzApmAhNJrSJwFhgts4ixPI8VYEtjYp0DbIQ5EGsFu2SrAgk_ESqMbIM_lRcRrAgL8TTXURBkoRa-ygZkrz_VxJrpJuE8AhenVDwgB3dfwb7w0QQkXzabJIpARiXYgHzsNCBZdWVAkl5fBkQ-0I27AVi5--EXOPG2gnd7wp-fOO-AvJocj5PfP89_7ZHXHScOmUT7ZKteN-YLgKQ6-9oaxC0TfRNT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Alternative+Electron+Acceptor+Tetrathionate+Supports+B12-Dependent+Anaerobic+Growth+of+Salmonella+enterica+Serovar+Typhimurium+on+Ethanolamine+or+1%2C2-Propanediol&rft.jtitle=Journal+of+bacteriology&rft.au=Price-Carter%2C+Marian&rft.au=Tingey%2C+Justin&rft.au=Bobik%2C+Thomas+A.&rft.au=Roth%2C+John+R.&rft.date=2001-04-01&rft.pub=American+Society+for+Microbiology&rft.issn=0021-9193&rft.eissn=1098-5530&rft.volume=183&rft.issue=8&rft.spage=2463&rft.epage=2475&rft_id=info:doi/10.1128%2FJB.183.8.2463-2475.2001&rft_id=info%3Apmid%2F11274105&rft.externalDBID=PMC95162 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon |