The alternative electron acceptor tetrathionate supports B12-dependent anaerobic growth of Salmonella enterica serovar typhimurium on ethanolamine or 1,2-propanediol

Synthesis of cobalamin de novo by Salmonella enterica serovar Typhimurium strain LT2 and the absence of this ability in Escherichia coli present several problems. This large synthetic pathway is shared by virtually all salmonellae and must be maintained by selection, yet no conditions are known unde...

Full description

Saved in:
Bibliographic Details
Published inJournal of bacteriology Vol. 183; no. 8; pp. 2463 - 2475
Main Authors Price-Carter, M, Tingey, J, Bobik, T A, Roth, J R
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.04.2001
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Synthesis of cobalamin de novo by Salmonella enterica serovar Typhimurium strain LT2 and the absence of this ability in Escherichia coli present several problems. This large synthetic pathway is shared by virtually all salmonellae and must be maintained by selection, yet no conditions are known under which growth depends on endogenous B12. The cofactor is required for degradation of 1,2-propanediol and ethanolamine. However, cofactor synthesis occurs only anaerobically, and neither of these carbon sources supports anaerobic growth with any of the alternative electron acceptors tested thus far. This paradox is resolved by the electron acceptor tetrathionate, which allows Salmonella to grow anaerobically on ethanolamine or 1,2-propanediol by using endogenously synthesized B12. Tetrathionate provides the only known conditions under which simple cob mutants (unable to make B12) show a growth defect. Genes involved in this metabolism include the ttr operon, which encodes tetrathionate reductase. This operon is globally regulated by OxrA (Fnr) and induced anaerobically by a two-component system in response to tetrathionate. Salmonella reduces tetrathionate to thiosulfate, which it can further reduce to H2S, by using enzymes encoded by the genes phs and asr. The genes for 1,2-propanediol degradation (pdu) and B12 synthesis (cob), along with the genes for sulfur reduction (ttr, phs, and asr), constitute more than 1% of the Salmonella genome and are all absent from E. coli. In diverging from E. coli, Salmonella acquired some of these genes unilaterally and maintained others that are ancestral but have been lost from the E. coli lineage.
AbstractList Synthesis of cobalamin de novo by Salmonella enterica serovar Typhimurium strain LT2 and the absence of this ability in Escherichia coli present several problems. This large synthetic pathway is shared by virtually all salmonellae and must be maintained by selection, yet no conditions are known under which growth depends on endogenous B12. The cofactor is required for degradation of 1,2-propanediol and ethanolamine. However, cofactor synthesis occurs only anaerobically, and neither of these carbon sources supports anaerobic growth with any of the alternative electron acceptors tested thus far. This paradox is resolved by the electron acceptor tetrathionate, which allows Salmonella to grow anaerobically on ethanolamine or 1,2-propanediol by using endogenously synthesized B12. Tetrathionate provides the only known conditions under which simple cob mutants (unable to make B12) show a growth defect. Genes involved in this metabolism include the ttr operon, which encodes tetrathionate reductase. This operon is globally regulated by OxrA (Fnr) and induced anaerobically by a two-component system in response to tetrathionate. Salmonella reduces tetrathionate to thiosulfate, which it can further reduce to H2S, by using enzymes encoded by the genes phs and asr. The genes for 1,2-propanediol degradation (pdu) and B12 synthesis (cob), along with the genes for sulfur reduction (ttr, phs, and asr), constitute more than 1% of the Salmonella genome and are all absent from E. coli. In diverging from E. coli, Salmonella acquired some of these genes unilaterally and maintained others that are ancestral but have been lost from the E. coli lineage.
Synthesis of cobalamin de novo by Salmenella enterica serovar Typhimurium strain LT2 and the absence of this ability in Escherichia coli present several problems. This large synthetic pathway is shared by virtually all salmonellae and must be maintained by selection, yet no conditions are known under which growth depends on endogenous B12.
Synthesis of cobalamin de novo by Salmonella enterica serovar Typhimurium strain LT2 and the absence of this ability in Escherichia coli present several problems. This large synthetic pathway is shared by virtually all salmonellae and must be maintained by selection, yet no conditions are known under which growth depends on endogenous B 12 . The cofactor is required for degradation of 1,2-propanediol and ethanolamine. However, cofactor synthesis occurs only anaerobically, and neither of these carbon sources supports anaerobic growth with any of the alternative electron acceptors tested thus far. This paradox is resolved by the electron acceptor tetrathionate, which allows Salmonella to grow anaerobically on ethanolamine or 1,2-propanediol by using endogenously synthesized B 12 . Tetrathionate provides the only known conditions under which simple cob mutants (unable to make B 12 ) show a growth defect. Genes involved in this metabolism include the ttr operon, which encodes tetrathionate reductase. This operon is globally regulated by OxrA (Fnr) and induced anaerobically by a two-component system in response to tetrathionate. Salmonella reduces tetrathionate to thiosulfate, which it can further reduce to H 2 S, by using enzymes encoded by the genes phs and asr . The genes for 1,2-propanediol degradation ( pdu ) and B 12 synthesis ( cob ), along with the genes for sulfur reduction ( ttr , phs, and asr ), constitute more than 1% of the Salmonella genome and are all absent from E. coli . In diverging from E. coli , Salmonella acquired some of these genes unilaterally and maintained others that are ancestral but have been lost from the E. coli lineage.
Author Price-Carter, M
Tingey, J
Roth, J R
Bobik, T A
AuthorAffiliation Department of Biology, University of Utah, Salt Lake City, Utah 84112, 1 and Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611 2
AuthorAffiliation_xml – name: Department of Biology, University of Utah, Salt Lake City, Utah 84112, 1 and Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611 2
Author_xml – sequence: 1
  givenname: M
  surname: Price-Carter
  fullname: Price-Carter, M
  organization: Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
– sequence: 2
  givenname: J
  surname: Tingey
  fullname: Tingey, J
– sequence: 3
  givenname: T A
  surname: Bobik
  fullname: Bobik, T A
– sequence: 4
  givenname: J R
  surname: Roth
  fullname: Roth, J R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11274105$$D View this record in MEDLINE/PubMed
BookMark eNpdkctu1DAUhi3Uik4HXgEsFqxI6ks8diQ2bcWlVSUWlHXkcU4aV45tbGdQH4j3xIiCgJUX_v7_fDrnFB354AGhl5S0lDJ1dn3RUsVb1bJuxxvWSdEyQugTtKGkV40QnByhDSGMNj3t-Qk6zfm-Al0n2FN0UjtkR4nYoO-3M2DtCiSviz0ABgempOCxNgZiCQkXKEmX2YZKAM5rjCGVjC8oa0aI4EfwBWuvIYW9NfguhW9lxmHCn7VbqrZzGlcEkjUa50oddC19iLNd1mTXBddhUGbtg9OL9YDrTPqGNTGFqD2MNrhn6HjSLsPzx3eLvrx_d3v5sbn59OHq8vymMUzsSsMJJVPXGUVgr3YGGNGT2E8UOEhhlJR9RzljVFI6jr0iQgL0ZiSK14zoFN-it79647pfYDRVO2k3xGQXnR6GoO3w74-383AXDkMv6I7V-OvHeApfV8hlWGw2PxfgIax5kLIKquqwRa_-A-_DWi_g8sCYJJIr1Vfoxd8yfyx-H4__AJgWo6g
CODEN JOBAAY
CitedBy_id crossref_primary_10_1021_acssynbio_3c00445
crossref_primary_10_3389_fmicb_2020_00006
ContentType Journal Article
Copyright Copyright American Society for Microbiology Apr 2001
Copyright © 2001, American Society for Microbiology 2001
Copyright_xml – notice: Copyright American Society for Microbiology Apr 2001
– notice: Copyright © 2001, American Society for Microbiology 2001
DBID CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1128/JB.183.8.2463-2475.2001
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Genetics Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5530
EndPage 2475
ExternalDocumentID 72779646
11274105
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM34804
– fundername: NIGMS NIH HHS
  grantid: R01 GM034804
– fundername: NIGMS NIH HHS
  grantid: GM59486
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
186
18M
1VV
29J
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
79B
85S
8WZ
9M8
A6W
ABPPZ
ABTAH
ACGFO
ACGOD
ACNCT
ACPRK
ADBBV
AENEX
AFFDN
AFFNX
AFRAH
AGCDD
AGVNZ
AI.
AIDAL
AJUXI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CGR
CJ0
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F20
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
L7B
MVM
NHB
NPM
O9-
OHT
OK1
P-S
P2P
PQQKQ
QZG
RHF
RHI
RNS
RPM
RSF
RXW
TAE
TR2
UCJ
UHB
UKR
UPT
VH1
VQA
W8F
WH7
WHG
WOQ
X7M
Y6R
YQT
YR2
YZZ
ZCA
ZCG
ZGI
ZXP
ZY4
~02
~KM
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c256t-3010f44c80eb86ce20af5bf1e3e75c8779413221711dd98057ee9cd0834c85483
IEDL.DBID RPM
ISSN 0021-9193
IngestDate Tue Sep 17 21:00:46 EDT 2024
Fri Oct 25 08:55:02 EDT 2024
Thu Oct 10 17:40:02 EDT 2024
Sat Sep 28 07:36:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c256t-3010f44c80eb86ce20af5bf1e3e75c8779413221711dd98057ee9cd0834c85483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Armed Services Medical School, Washington, D.C.
Corresponding author. Mailing address: Department of Biology, University of Utah, Salt Lake City, UT 84112. Phone: (801) 581-3412. Fax: (801) 585-6207. E-mail: Roth@Bioscience.utah.edu.
PMID 11274105
PQID 227073889
PQPubID 40724
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_95162
proquest_miscellaneous_77010841
proquest_journals_227073889
pubmed_primary_11274105
PublicationCentury 2000
PublicationDate 20010401
PublicationDateYYYYMMDD 2001-04-01
PublicationDate_xml – month: 4
  year: 2001
  text: 20010401
  day: 1
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of bacteriology
PublicationTitleAlternate J Bacteriol
PublicationYear 2001
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References 8437517 - Mol Microbiol. 1993 Jan;7(1):151-7
10464203 - J Bacteriol. 1999 Sep;181(17):5317-29
2687248 - J Bacteriol. 1989 Dec;171(12):6726-33
9555887 - J Bacteriol. 1998 Apr;180(8):2063-71
1704886 - J Bacteriol. 1991 Feb;173(4):1544-53
10027966 - Mol Microbiol. 1999 Jan;31(2):489-98
9325432 - Arch Microbiol. 1997 Nov;168(5):428-36
10829079 - Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5
271968 - Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7
8412692 - Mol Microbiol. 1993 Aug;9(3):425-34
8770581 - Genetics. 1996 Jan;142(1):11-24
9006051 - J Bacteriol. 1997 Feb;179(3):928-40
3039301 - Mol Gen Genet. 1987 May;207(2-3):435-40
6376471 - J Bacteriol. 1984 Jul;159(1):206-13
10811905 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):5978-83
3108233 - J Bacteriol. 1987 Jun;169(6):2391-7
2163396 - J Bacteriol. 1990 Jul;172(7):4100-2
7592411 - J Bacteriol. 1995 Nov;177(22):6371-80
8501034 - J Bacteriol. 1993 Jun;175(11):3303-16
3045078 - J Bacteriol. 1988 Sep;170(9):3855-63
3813523 - Antonie Van Leeuwenhoek. 1986;52(6):507-18
9294441 - J Bacteriol. 1997 Sep;179(18):5827-34
2166132 - J Gen Microbiol. 1990 May;136(5):887-96
7559322 - J Bacteriol. 1995 Oct;177(19):5401-10
8905078 - Annu Rev Microbiol. 1996;50:137-81
9023178 - J Bacteriol. 1997 Feb;179(4):1013-22
7751291 - J Bacteriol. 1995 May;177(10):2813-20
1312999 - J Bacteriol. 1992 Apr;174(7):2253-66
9324256 - J Bacteriol. 1997 Oct;179(19):6084-91
10231485 - Mol Microbiol. 1999 Apr;32(2):275-87
9352910 - J Bacteriol. 1997 Nov;179(21):6633-9
10648108 - Arch Microbiol. 2000 Jan;173(1):76-7
4932889 - Mol Gen Genet. 1971;110(4):378-81
9851993 - J Bacteriol. 1998 Dec;180(24):6511-8
4564718 - Mol Gen Genet. 1972;119(1):71-4
3093439 - J Appl Bacteriol. 1986 Jul;61(1):19-24
2310184 - Appl Environ Microbiol. 1990 Jan;56(1):301-3
2123394 - FEMS Microbiol Rev. 1990 Aug;6(4):351-81
3299028 - Microbiol Rev. 1987 Jun;51(2):192-205
7982894 - J Biochem. 1994 Jun;115(6):1135-40
10482501 - J Bacteriol. 1999 Sep;181(18):5615-23
1482126 - Annu Rev Genet. 1992;26:71-112
1313000 - J Bacteriol. 1992 Apr;174(7):2267-72
4884795 - Can J Microbiol. 1969 Feb;15(2):238-40
8226666 - J Bacteriol. 1993 Nov;175(22):7200-8
6231768 - Virology. 1984 Apr 15;134(1):161-7
10498708 - J Bacteriol. 1999 Oct;181(19):5967-75
2656637 - J Bacteriol. 1989 Jun;171(6):3008-15
References_xml
SSID ssj0014452
Score 2.1462984
Snippet Synthesis of cobalamin de novo by Salmonella enterica serovar Typhimurium strain LT2 and the absence of this ability in Escherichia coli present several...
Synthesis of cobalamin de novo by Salmenella enterica serovar Typhimurium strain LT2 and the absence of this ability in Escherichia coli present several...
Synthesis of cobalamin de novo by Salmonella enterica serovar Typhimurium strain LT2 and the absence of this ability in Escherichia coli present several...
SourceID pubmedcentral
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 2463
SubjectTerms Anaerobiosis
Bacterial Proteins - genetics
Bacteriology
Culture Media
Ethanolamine - metabolism
Fermentation
Gene Expression Regulation, Bacterial
Genes
Metabolism
Molecular Sequence Data
Mutation
Operon
Oxidation-Reduction
Oxygen Consumption
Physiology and Metabolism
Propylene Glycol - metabolism
Salmonella
Salmonella typhimurium - genetics
Salmonella typhimurium - growth & development
Salmonella typhimurium - metabolism
Sulfur - metabolism
Tetrathionic Acid - metabolism
Vitamin B 12 - metabolism
Title The alternative electron acceptor tetrathionate supports B12-dependent anaerobic growth of Salmonella enterica serovar typhimurium on ethanolamine or 1,2-propanediol
URI https://www.ncbi.nlm.nih.gov/pubmed/11274105
https://www.proquest.com/docview/227073889
https://search.proquest.com/docview/77010841
https://pubmed.ncbi.nlm.nih.gov/PMC95162
Volume 183
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEF2aQKGX0qRfTpp0Dz12Ze1qJa2OTuo0BFICTSA3Ia1W2GDJxpYD-UH9n30jrUNTeupZ1mrwzI7em32aYexLlQCFZIURFd5-VK1yotAmESqzoc1AEFxJ9Y7rH8nlnb66j-_9d9wbL6tsbTkP2kUTtPNZr61cNXa804mNb67PgQoSNd5je2kU7Qi6PzjQOvYNwiX2cRZ5SRey8PjqLED8BiZQOomE0mlM9LAfFSOpiUsY_wtl_i2W_OPtc_GGvfawkU8G8w7YC9cespfDIMnHt-wXvM0nC1_ce3B86qfb8Ikl3cpyzW8d9aGdUeWvc5yGedJZAT-TSnzzg3A7PmkLR42ZLP8Oet7N-LLmP4sFQpVEUpz6d1Le5Mgwy4cCiz6uZvNmu55vG46HTakOD67cALpyPFN-VeJmDVqOXA5T37G7i-nt-aXwAxiEBRLqBDZ_WGttTehKQ6PDwqKOy1q6yKWxNSn2MpFZmUpZVZkB9HMusxVQHe4BFYres_0WFn5kXLu452amqlOsiIVUUVn4r0ysDk05Yse7vz73u2iTK5UiAxmTjdjnp6sIfzrTgOXL7SZPU9hotByxD4Ob8tXQpSPfOXXE4mcOfPoBNdZ-fgXx1jfY7uPr6D_vO2avBp0aqXs-sf1uvXUnAC5dedqH6m8v8-85
link.rule.ids 230,315,733,786,790,891,27946,27947,53816,53818
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgCMHL-DkoA-YHHnEaO3biPHajo4x1mkQn7S1KHEetaNKqTSZt_w__J3eJM7GJF3h241xl3_m785fvCPmUh4BC4lSzHE4_rFZZlkodMhEb38SQINgM6x3Ts3ByIU8u1aX7jnvraJWVyRZetSy9ajFvuZXr0gx7ntjwfHoEqCAUw4fkkcJrrz5Fd1cHUionEc7Bk-PAkbogDg9PDj3YwZ72hAwDJmSkMEFsm8VwlHHx1d9w5n265B_nz_EzMust72gnP72mzjxzc0_U8R__2nOy6_AoHXWDL8gDW70kj7sOldevyC_YRnS0dFXDK0vHrm0OHRkkxKw2dGZR4HaOJcXaUuwSipcQ9JAL9sV12K3pqEotKj4Z-hXy_npOVwX9kS7BB5B9RVEYFAMyhdC1ukph0uv1fFE2m0VTUnjZGAv8kISXgIkpvJN_Fux8A_k-HBJg6mtycTyeHU2Y6-zADECsmkFU8QspjfZtprEnmZ8WKiu4DWykjI4gSGCWzCPO8zzWgCmtjU0OcBGegRwr2CM7FVj4llBpVZv06byIYEaYSKS5iYIgC430dTYg-_2KJs49t4kQEYQ2reMBObgdBb_CyxKwfNVskygCG7XkA_KmW_1k3cl_JP1eGRB1Z1_c_gAVu--OwGq3yt3t6r77z-cOyJPJbHqanH47-75PnnZkOKQQvSc79aaxHwAd1dnH1ht-A51dENM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZaqla9QF-0W2jxocfmYcdOnOMCu6W0oJUK0t6ixHG0q26yq90ECf5P_ycziYMA9cQ5fkzkmfE3408zhHzLQ0AhcaqcHG4_zFYZJxUqdHisfR1DgGAyzHecnYcnl-J0Kqc2dbGxtMpKZ3O3WpRuNZ-13MpVqb2eJ-ZNzo4AFYTcW-WF95y8kHjn9GG6fT4QQtoy4QysOQ4ssQt8sXd66IIWu8rlIgwcLiKJQWLbMIZhKRdf_g9rPqZM3ruDxjtk2kvfUU_-uk2dufrmUWHHJ_zeG7JtcSkddgPekmemekdedp0qr9-Tf6BOdLiw2cMrQ0e2fQ4daiTGLNf0wmCh2xmmFmtDsVsoPkbQQ8adY9tpt6bDKjVY-UnTHxD_1zO6LOifdAG2gCwsigVC0TFTcGHLqxQWvV7N5mWznjclhc1GmOiHYLwEbExhT_adO5M1xP1wWYCoH8jleHRxdOLYDg-OBqhVO-Bd_EIIrXyTKexN5qeFzApmAhNJrSJwFhgts4ixPI8VYEtjYp0DbIQ5EGsFu2SrAgk_ESqMbIM_lRcRrAgL8TTXURBkoRa-ygZkrz_VxJrpJuE8AhenVDwgB3dfwb7w0QQkXzabJIpARiXYgHzsNCBZdWVAkl5fBkQ-0I27AVi5--EXOPG2gnd7wp-fOO-AvJocj5PfP89_7ZHXHScOmUT7ZKteN-YLgKQ6-9oaxC0TfRNT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Alternative+Electron+Acceptor+Tetrathionate+Supports+B12-Dependent+Anaerobic+Growth+of+Salmonella+enterica+Serovar+Typhimurium+on+Ethanolamine+or+1%2C2-Propanediol&rft.jtitle=Journal+of+bacteriology&rft.au=Price-Carter%2C+Marian&rft.au=Tingey%2C+Justin&rft.au=Bobik%2C+Thomas+A.&rft.au=Roth%2C+John+R.&rft.date=2001-04-01&rft.pub=American+Society+for+Microbiology&rft.issn=0021-9193&rft.eissn=1098-5530&rft.volume=183&rft.issue=8&rft.spage=2463&rft.epage=2475&rft_id=info:doi/10.1128%2FJB.183.8.2463-2475.2001&rft_id=info%3Apmid%2F11274105&rft.externalDBID=PMC95162
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon