Statistical thermodynamics of molecular organization in mixed micelles and bilayers
The conformational and thermodynamic characteristics of molecular organization in mixed amphiphilic aggregates of different compositions and geometries are analyzed theoretically. Our mean-field theory of chain conformational statistics in micelles and bilayer membranes is extended from pure to mixe...
Saved in:
Published in | The Journal of chemical physics Vol. 86; no. 12; pp. 7094 - 7109 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Woodbury, NY
American Institute of Physics
15.06.1987
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The conformational and thermodynamic characteristics of molecular organization in mixed amphiphilic aggregates of different compositions and geometries are analyzed theoretically. Our mean-field theory of chain conformational statistics in micelles and bilayer membranes is extended from pure to mixed aggregates, without invoking any additional assumptions or adjustable parameters. We consider specifically binary aggregates comprised of long-chain and short-chain surfactants, packed in spherical micelles, cylindrical rods, and planar bilayers. Numerical results are presented for mixtures of 11- and 5-carbon chain amphiphiles. The probability distribution functions (pdfs) of the (different types of) chains are determined by minimizing the conformational free energy, subject to packing constraints which reflect the segment density distribution within the hydrophobic core. In order to analyze the relative thermodynamic stabilities of mixed aggregates of different compositions (long/short chain ratios) and different geometries, the aggregate’s free energy is expressed as a sum of conformational, surface, and mixing contributions. The conformational free energy is determined by the pdfs of the chains and the surface term is modeled in terms of the ‘‘opposing forces’’ operative at the hydrocarbon–water interface. An interesting coupling between these terms arises from the special geometric (surface/volume) limitations associated with packing short and long chains in a given ratio within a given aggregate. In particular, it is found that the minimal area per surfactant head group in a mixed spherical micelle is significantly lower than that in a pure micelle (similarly, though less drastically so, for cylindrical micelles). The most important qualitative conclusion of our thermodynamic analysis is that the preferred aggregation geometry may vary with composition. For example, we find that under certain conditions (areas per head group, chain lengths) the preferred micellar geometry of pure long or short-chain aggregates is that of a planar bilayer, whereas at intermediate compositions spherical micelles are more stable. Our analysis of chain conformational properties provides quantitative
information on the extent of long (or short) chain distortion attendant upon chain mixing. For example, the results for bond order parameter profiles and segment density distributions reveal enhanced stretching of the long chain towards the central regions of the hydrophophic core as the fraction of short chains is increased. |
---|---|
AbstractList | The conformational and thermodynamic characteristics of molecular organization in mixed amphiphilic aggregates of different compositions and geometries are analyzed theoretically. Our mean-field theory of chain conformational statistics in micelles and bilayer membranes is extended from pure to mixed aggregates, without invoking any additional assumptions or adjustable parameters. We consider specifically binary aggregates comprised of long-chain and short-chain surfactants, packed in spherical micelles, cylindrical rods, and planar bilayers. Numerical results are presented for mixtures of 11- and 5-carbon chain amphiphiles. The probability distribution functions (pdfs) of the (different types of) chains are determined by minimizing the conformational free energy, subject to packing constraints which reflect the segment density distribution within the hydrophobic core. In order to analyze the relative thermodynamic stabilities of mixed aggregates of different compositions (long/short chain ratios) and different geometries, the aggregate’s free energy is expressed as a sum of conformational, surface, and mixing contributions. The conformational free energy is determined by the pdfs of the chains and the surface term is modeled in terms of the ‘‘opposing forces’’ operative at the hydrocarbon–water interface. An interesting coupling between these terms arises from the special geometric (surface/volume) limitations associated with packing short and long chains in a given ratio within a given aggregate. In particular, it is found that the minimal area per surfactant head group in a mixed spherical micelle is significantly lower than that in a pure micelle (similarly, though less drastically so, for cylindrical micelles). The most important qualitative conclusion of our thermodynamic analysis is that the preferred aggregation geometry may vary with composition. For example, we find that under certain conditions (areas per head group, chain lengths) the preferred micellar geometry of pure long or short-chain aggregates is that of a planar bilayer, whereas at intermediate compositions spherical micelles are more stable. Our analysis of chain conformational properties provides quantitative
information on the extent of long (or short) chain distortion attendant upon chain mixing. For example, the results for bond order parameter profiles and segment density distributions reveal enhanced stretching of the long chain towards the central regions of the hydrophophic core as the fraction of short chains is increased. |
Author | Ben-Shaul, A. Gelbart, W. M. Szleifer, I. |
Author_xml | – sequence: 1 givenname: I. surname: Szleifer fullname: Szleifer, I. – sequence: 2 givenname: A. surname: Ben-Shaul fullname: Ben-Shaul, A. – sequence: 3 givenname: W. M. surname: Gelbart fullname: Gelbart, W. M. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7581120$$DView record in Pascal Francis |
BookMark | eNpl0E1PwzAMBuAIgcQ2kPgJOXDg0mFnTdoc0cSXNInD4Fy5WQpBaTolQWL8egpDHOBiXx5bfj1lh2EIlrEzhDmCWlzivJRiIfUBmyDUuqiUhkM2ARBYaAXqmE1TegUArEQ5Yet1puxSdoY8zy829sNmF6h3JvGh4_3grXnzFPkQnym4jxEPgbvAe_duN2M11nubOIUNb52nnY3phB115JM9_ekz9nRz_bi8K1YPt_fLq1VhhFS5EAqMUGWtQRhta2W1lFARWgVtJQVakihr1QqiUraaVDnmQ0mdNqUSBhczdr7fu6U0nt9FCsalZhtdT3HXVLJGFDCyiz0zcUgp2u5XIDRfP2uw2f9spPM_1Lj8HTlHcv7_wCdg5W74 |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1063_1_470062 crossref_primary_10_1103_PhysRevLett_60_1966 crossref_primary_10_1021_ma0359741 crossref_primary_10_1016_j_fluid_2014_06_003 crossref_primary_10_1016_0005_2736_90_90217_C crossref_primary_10_3390_ijms24032078 crossref_primary_10_1016_j_jcis_2013_05_029 crossref_primary_10_1021_jp4047209 crossref_primary_10_1016_0001_8686_96_00295_3 crossref_primary_10_1016_j_cis_2018_05_006 crossref_primary_10_1021_jp970295b crossref_primary_10_1063_1_456627 crossref_primary_10_1063_1_3530791 crossref_primary_10_1063_1_3456263 crossref_primary_10_1088_1367_2630_6_1_133 crossref_primary_10_1016_j_jct_2017_01_020 crossref_primary_10_1016_S0167_7322_00_00137_9 crossref_primary_10_1063_1_458267 crossref_primary_10_1021_la970388k crossref_primary_10_1021_la050699s crossref_primary_10_1007_s11426_012_4752_1 crossref_primary_10_1063_1_463561 crossref_primary_10_1021_la052896x crossref_primary_10_1007_s00702_011_0726_2 crossref_primary_10_1063_1_452916 crossref_primary_10_1088_0953_8984_6_23A_009 crossref_primary_10_1021_la040057p crossref_primary_10_1016_S0001_8686_00_00053_1 crossref_primary_10_1007_s12195_010_0115_1 crossref_primary_10_1021_la9600513 crossref_primary_10_1063_1_464954 crossref_primary_10_1021_la971151r crossref_primary_10_1529_biophysj_106_102764 crossref_primary_10_1209_0295_5075_25_3_013 crossref_primary_10_1016_0001_8686_92_80005_I crossref_primary_10_1021_acs_langmuir_7b03825 crossref_primary_10_1016_0927_7757_93_80249_E crossref_primary_10_1063_1_1739215 crossref_primary_10_1103_PhysRevE_52_3915 crossref_primary_10_1016_0009_3084_91_90073_K crossref_primary_10_1063_1_3628452 crossref_primary_10_1021_jp065696i crossref_primary_10_1016_j_jcis_2019_05_017 crossref_primary_10_1021_la960107t crossref_primary_10_1139_p98_049 crossref_primary_10_1006_jcis_1999_6234 crossref_primary_10_1021_jp074310g crossref_primary_10_1016_0304_4157_95_00008_9 crossref_primary_10_1016_S0022_2860_99_00110_6 crossref_primary_10_1016_j_jcis_2019_03_105 crossref_primary_10_1021_la961090h crossref_primary_10_1063_1_474192 crossref_primary_10_1016_j_molliq_2022_120678 crossref_primary_10_1021_la030069v crossref_primary_10_1063_1_457393 crossref_primary_10_1016_j_bpj_2009_02_043 crossref_primary_10_1007_s11743_016_1910_z crossref_primary_10_1021_jp065699v crossref_primary_10_1021_acsnano_1c10430 crossref_primary_10_1021_la960321h crossref_primary_10_1021_jp982131g crossref_primary_10_1016_0378_4371_95_00117_P crossref_primary_10_1021_la0630817 crossref_primary_10_1063_1_476805 |
Cites_doi | 10.1007/BFb0048488 10.1016/0021-9797(83)90382-X 10.1021/j100210a056 10.1172/JCI109025 10.1063/1.449167 10.1080/00268947808070302 10.1016/B978-0-12-025001-1.50007-X 10.1063/1.451122 10.1146/annurev.pc.36.100185.001143 10.1021/j100446a021 10.1073/pnas.81.14.4601 10.1080/00268978300100281 10.1063/1.451679 10.1021/bi00705a005 10.1016/S0021-9797(78)80013-7 10.1039/f29817700601 10.1080/00268978300101131 10.1063/1.449166 10.1021/j100228a036 10.1021/j150652a043 10.1021/j100247a033 10.1021/j100412a076 10.1021/j100400a028 10.1051/jphys:0198500460120216100 10.1021/j100252a031 10.1039/f29767201525 10.1021/j100247a032 10.1016/0005-2736(85)90052-5 |
ContentType | Journal Article |
Copyright | 1988 INIST-CNRS |
Copyright_xml | – notice: 1988 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1063/1.452359 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
EndPage | 7109 |
ExternalDocumentID | 7581120 10_1063_1_452359 |
GroupedDBID | --- -DZ -ET -~X .GJ 0ZJ 123 186 1UP 2-P 29K 3O- 4.4 53G 5VS 85S 9M8 AABDS AAGWI AAPUP AAYIH AAYXX ABDPE ABJGX ABPPZ ABZEH ACBRY ACNCT ADMLS ADXHL AEJMO AENEX AFFNX AFHCQ AGKCL AGLKD AGMXG AHSDT AI. ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE BPZLN CITATION CS3 D-I DU5 EBS EJD F5P FDOHQ H~9 M6X M71 M73 MVM N9A NEUPN NHB NPSNA P2P RDFOP RIP RNS RQS T9H TN5 TWZ UPT UQL VH1 VOH WH7 XJT XOL YQT YZZ ZCG ZGI ZXP ~02 2WC 41~ 6TJ AAAAW AAYJJ ABRJW ACBNA ACLYJ ACZLF ADCTM AETEA AFATG AGTJO AJJCW AJQPL ALEPV AWQPM BDMKI FFFMQ HAM IQODW O-B OHT P0- QZG ROL UBC X7L |
ID | FETCH-LOGICAL-c256t-260c2648902c9e86e95507a1e60b7521ea51586b2aa45b9a6406315af9c462c13 |
ISSN | 0021-9606 |
IngestDate | Mon Jul 21 09:17:01 EDT 2025 Tue Jul 01 01:01:25 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Aggregation Statistical method Micellar critical concentration Stability Theoretical study Mixed micelle Models Surfactant Thermodynamic properties Amphiphilic compound Bilayer |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c256t-260c2648902c9e86e95507a1e60b7521ea51586b2aa45b9a6406315af9c462c13 |
PageCount | 16 |
ParticipantIDs | pascalfrancis_primary_7581120 crossref_primary_10_1063_1_452359 crossref_citationtrail_10_1063_1_452359 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1987-06-15 |
PublicationDateYYYYMMDD | 1987-06-15 |
PublicationDate_xml | – month: 06 year: 1987 text: 1987-06-15 day: 15 |
PublicationDecade | 1980 |
PublicationPlace | Woodbury, NY |
PublicationPlace_xml | – name: Woodbury, NY |
PublicationTitle | The Journal of chemical physics |
PublicationYear | 1987 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | (2024021004495623300_r29) 1985; 46 (2024021004495623300_r11a) 1985; 83 (2024021004495623300_r28) 1985; 70 (2024021004495623300_r18) 1986; 90 (2024021004495623300_r14) 1974; 13 (2024021004495623300_r12) 1986; 85 (2024021004495623300_r16a) 1983; 48 (2024021004495623300_r5) 1975; 1 2024021004495623300_r20 (2024021004495623300_r10) 1983; 93 2024021004495623300_r23 (2024021004495623300_r27) 1986; 90 (2024021004495623300_r10a) 1983; 87 2024021004495623300_r4 2024021004495623300_r3 (2024021004495623300_r13) 1985; 36 2024021004495623300_r2 2024021004495623300_r1 (2024021004495623300_r6) 1980; 52 2024021004495623300_r11d (2024021004495623300_r17) 1986; 85 (2024021004495623300_r25a) 1985; 89 2024021004495623300_r11c (2024021004495623300_r16) 1983; 49 (2024021004495623300_r25) 1985; 89 (2024021004495623300_r21) 1978; 63 (2024021004495623300_r6a) 1980; 87 (2024021004495623300_r19b) 1981; 77 2024021004495623300_r30 (2024021004495623300_r26) 1980; 84 (2024021004495623300_r11b) 1984; 81 (2024021004495623300_r11) 1985; 83 (2024021004495623300_r24) 1978; 41 2024021004495623300_r31 (2024021004495623300_r8) 1978; 61 2024021004495623300_r19a 2024021004495623300_r32 (2024021004495623300_r7) 1985; 89 2024021004495623300_r3a (2024021004495623300_r15) 1984; 88 (2024021004495623300_r19) 1976; 72 2024021004495623300_r3b (2024021004495623300_r9) 1985; 821 (2024021004495623300_r22) 1982; 86 |
References_xml | – volume: 87 start-page: 1 year: 1980 ident: 2024021004495623300_r6a publication-title: Top. Curr. Chem. doi: 10.1007/BFb0048488 – ident: 2024021004495623300_r23 – volume: 93 start-page: 43 year: 1983 ident: 2024021004495623300_r10 publication-title: J. Colloid. Interface Sci. doi: 10.1016/0021-9797(83)90382-X – volume: 86 start-page: 2523 year: 1982 ident: 2024021004495623300_r22 publication-title: J. Phys. Chem. doi: 10.1021/j100210a056 – volume: 61 start-page: 998 year: 1978 ident: 2024021004495623300_r8 publication-title: Man. J. Clin. Inves. doi: 10.1172/JCI109025 – ident: 2024021004495623300_r2 – ident: 2024021004495623300_r4 – volume: 83 start-page: 3612 year: 1985 ident: 2024021004495623300_r11a publication-title: J. Chem. Phys. doi: 10.1063/1.449167 – ident: 2024021004495623300_r19a – volume: 41 start-page: 209 year: 1978 ident: 2024021004495623300_r24 publication-title: Mol. Cryst. Liq. Cryst. doi: 10.1080/00268947808070302 – volume: 1 start-page: 1 year: 1975 ident: 2024021004495623300_r5 publication-title: Adv. Liq. Cryst. doi: 10.1016/B978-0-12-025001-1.50007-X – volume: 85 start-page: 2259 year: 1986 ident: 2024021004495623300_r17 publication-title: J. Chem. Phys. doi: 10.1063/1.451122 – volume: 36 start-page: 179 year: 1985 ident: 2024021004495623300_r13 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.36.100185.001143 – volume: 84 start-page: 1044 year: 1980 ident: 2024021004495623300_r26 publication-title: J. Phys. Chem. doi: 10.1021/j100446a021 – volume: 81 start-page: 4601 year: 1984 ident: 2024021004495623300_r11b publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.81.14.4601 – volume: 48 start-page: 379 year: 1983 ident: 2024021004495623300_r16a publication-title: Mol. Phys. doi: 10.1080/00268978300100281 – ident: 2024021004495623300_r3a – ident: 2024021004495623300_r11c – volume: 85 start-page: 5345 year: 1986 ident: 2024021004495623300_r12 publication-title: J. Chem. Phys. doi: 10.1063/1.451679 – volume: 13 start-page: 1585 year: 1974 ident: 2024021004495623300_r14 publication-title: Biochemistry doi: 10.1021/bi00705a005 – volume: 63 start-page: 538 year: 1978 ident: 2024021004495623300_r21 publication-title: J. Colloid Interface Sci. doi: 10.1016/S0021-9797(78)80013-7 – ident: 2024021004495623300_r32 – ident: 2024021004495623300_r30 – volume: 77 start-page: 601 year: 1981 ident: 2024021004495623300_r19b publication-title: J. Chem. Soc. Faraday Trans. 2 doi: 10.1039/f29817700601 – volume: 49 start-page: 233 year: 1983 ident: 2024021004495623300_r16 publication-title: Mol. Phys. doi: 10.1080/00268978300101131 – volume: 83 start-page: 3597 year: 1985 ident: 2024021004495623300_r11 publication-title: J. Chem. Phys. doi: 10.1063/1.449166 – ident: 2024021004495623300_r1 – volume: 87 start-page: 876 year: 1983 ident: 2024021004495623300_r10a publication-title: J. Phys. Chem. doi: 10.1021/j100228a036 – volume: 88 start-page: 1655 year: 1984 ident: 2024021004495623300_r15 publication-title: J. Phys. Chem. doi: 10.1021/j150652a043 – ident: 2024021004495623300_r3 – ident: 2024021004495623300_r20 – volume: 89 start-page: 153 year: 1985 ident: 2024021004495623300_r25a publication-title: J. Phys. Chem. doi: 10.1021/j100247a033 – volume: 90 start-page: 5277 year: 1986 ident: 2024021004495623300_r27 publication-title: J. Phys. Chem. doi: 10.1021/j100412a076 – ident: 2024021004495623300_r3b – ident: 2024021004495623300_r11d – volume: 90 start-page: 1875 year: 1986 ident: 2024021004495623300_r18 publication-title: J. Phys. Chem. doi: 10.1021/j100400a028 – volume: 46 start-page: 2161 year: 1985 ident: 2024021004495623300_r29 publication-title: J. Phys. doi: 10.1051/jphys:0198500460120216100 – volume: 89 start-page: 1042 year: 1985 ident: 2024021004495623300_r7 publication-title: J. Phys. Chem. doi: 10.1021/j100252a031 – volume: 72 start-page: 1525 year: 1976 ident: 2024021004495623300_r19 publication-title: J. Chem. Soc. Faraday Trans. 2 doi: 10.1039/f29767201525 – volume: 89 start-page: 146 year: 1985 ident: 2024021004495623300_r25 publication-title: J. Phys. Chem. doi: 10.1021/j100247a032 – volume: 52 start-page: 1 year: 1980 ident: 2024021004495623300_r6 publication-title: Phys. Rep. – ident: 2024021004495623300_r31 – volume: 70 start-page: 6 year: 1985 ident: 2024021004495623300_r28 publication-title: Prog. Polym. Sci. – volume: 821 start-page: 470 year: 1985 ident: 2024021004495623300_r9 publication-title: Biochem. Biophys. Acta doi: 10.1016/0005-2736(85)90052-5 |
SSID | ssj0001724 |
Score | 1.5395725 |
Snippet | The conformational and thermodynamic characteristics of molecular organization in mixed amphiphilic aggregates of different compositions and geometries are... |
SourceID | pascalfrancis crossref |
SourceType | Index Database Enrichment Source |
StartPage | 7094 |
SubjectTerms | Chemistry Colloidal state and disperse state Exact sciences and technology General and physical chemistry Micelles. Thin films |
Title | Statistical thermodynamics of molecular organization in mixed micelles and bilayers |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEF48EAURT7xZQfApNdlNNs1j1WqVKkItiC9ls0mg0KaiFdRf7-yVJlLwgBJKuiRl5svut5NvZhA6jsKMisgDD7AscXwah06cZMwhoUiA0MFH9Yy8vWOtrn_zGDxO3uiq7JJxXBOfU_NK_uNVOAd-lVmyf_BscVE4Ad_Bv3AED8PxVz6WTFEVWpaKcTD-cJToBvNKnzG0nW9N6yadcCkDHMP-O_BM2Yh-MEh1kea4P-AfRg1vyeokbUwRVmFrC-hoSEHGO0_t5vWlVlQUMdizJkzVrUa3XYmXXjXbZ8CglbCvZgKxic7Bqyt9nE66LKn8eV7VM9yX7m0TBTxHbpDKk62pe21ARUpTZ-jqbsdmGZYa0alTPHAqGW2o-bCFNsXEK1W0v61uheYQNkbALd1ZNE9gRwFT4nzj4rbdKZZtYHKmZLf-17ZSMaOn9mYV7rL8zF_B5pnuf1IiJQ-raMU4Bzc0NNbQTJqvo8Vz28RvHS0Ye22gTgksuAoWPMpwARZcBgvu51iBBVuwYAALtmDZRN3L5sN5yzEdNRwB1HYMD6QrpKQxcomI0jpLI1nOjnspc-MQiFzKgd7WWUw494M44gzoHvUCnkXCZ0R4dAvN5aM83UaYsETIhD2XCupnWVBPaCIiIlwCO_owCHbQibVVT5hy87LryaCnZA-M9ryetuoOOipGPusSK1PGHFTMXQw0Xt394fc9tDQB8j6aG7-8pQfAJsfxocHBF03ydgE |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+thermodynamics+of+molecular+organization+in+mixed+micelles+and+bilayers&rft.jtitle=The+Journal+of+chemical+physics&rft.au=SZLEIFER%2C+I&rft.au=BEN-SHAUL%2C+A&rft.au=GELBART%2C+W.+M&rft.date=1987-06-15&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.volume=86&rft.issue=12&rft.spage=7094&rft.epage=7109&rft_id=info:doi/10.1063%2F1.452359&rft.externalDBID=n%2Fa&rft.externalDocID=7581120 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |