Simulation‐based sequential design
We review some simulation‐based methods to implement optimal decisions in sequential design problems as they naturally arise in clinical trial design. As a motivating example we use a stylized version of a dose‐ranging design in the ASTIN trial. The approach can be characterized as constrained backw...
Saved in:
Published in | Pharmaceutical statistics : the journal of the pharmaceutical industry Vol. 21; no. 4; pp. 729 - 739 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Inc
01.07.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We review some simulation‐based methods to implement optimal decisions in sequential design problems as they naturally arise in clinical trial design. As a motivating example we use a stylized version of a dose‐ranging design in the ASTIN trial. The approach can be characterized as constrained backward induction. The nature of the constraint is a restriction of the decisions to a set of actions that are functions of the current history only implicitly through a low‐dimensional summary statistic. In addition, the action set is restricted to time‐invariant policies. Time‐dependence is only introduced indirectly through the change of the chosen summary statistic over time. This restriction allows computationally efficient solutions to the sequential decision problem. A further simplification is achieved by restricting optimal actions to be described by decision boundaries on the space of such summary statistics. |
---|---|
AbstractList | Abstract
We review some simulation‐based methods to implement optimal decisions in sequential design problems as they naturally arise in clinical trial design. As a motivating example we use a stylized version of a dose‐ranging design in the ASTIN trial. The approach can be characterized as constrained backward induction. The nature of the constraint is a restriction of the decisions to a set of actions that are functions of the current history only implicitly through a low‐dimensional summary statistic. In addition, the action set is restricted to time‐invariant policies. Time‐dependence is only introduced indirectly through the change of the chosen summary statistic over time. This restriction allows computationally efficient solutions to the sequential decision problem. A further simplification is achieved by restricting optimal actions to be described by decision boundaries on the space of such summary statistics. We review some simulation‐based methods to implement optimal decisions in sequential design problems as they naturally arise in clinical trial design. As a motivating example we use a stylized version of a dose‐ranging design in the ASTIN trial. The approach can be characterized as constrained backward induction. The nature of the constraint is a restriction of the decisions to a set of actions that are functions of the current history only implicitly through a low‐dimensional summary statistic. In addition, the action set is restricted to time‐invariant policies. Time‐dependence is only introduced indirectly through the change of the chosen summary statistic over time. This restriction allows computationally efficient solutions to the sequential decision problem. A further simplification is achieved by restricting optimal actions to be described by decision boundaries on the space of such summary statistics. |
Author | Duan, Yunshan Müller, Peter Garcia Tec, Mauricio |
Author_xml | – sequence: 1 givenname: Peter orcidid: 0000-0002-2948-1229 surname: Müller fullname: Müller, Peter email: pmueller@math.utexas.edu organization: University of Texas at Austin – sequence: 2 givenname: Yunshan surname: Duan fullname: Duan, Yunshan organization: University of Texas at Austin – sequence: 3 givenname: Mauricio surname: Garcia Tec fullname: Garcia Tec, Mauricio organization: University of Texas at Austin |
BookMark | eNp10N9KwzAUBvAgE9ym4CMM9MKbzpy0TdpLGf6DgcLmdYhNIhlpUpsW2Z2P4DP6JKabKAhenXPx45yPb4JGzjuF0CngOWBMLpvQzQkBeoDGkKdlAhTI6GfH2RGahLDBGFhR5mN0vjJ1b0VnvPt8_3gWQclZUK-9cp0RdiZVMC_uGB1qYYM6-Z5T9HRzvV7cJcuH2_vF1TKpSE5pInJaYqYVUTIVTEoGIAHLuFABmmaEMUaApTpOWgwgi-mEkMCkhqxMp-hif7dpfYwQOl6bUClrhVO-D5zQoog_CgyRnv2hG9-3LqbbKUxKkrPfg1XrQ2iV5k1ratFuOWA-1MVjXXyoK9JkT9-MVdt_HX9crXf-CwE8a-4 |
CitedBy_id | crossref_primary_10_1214_23_STS865B |
Cites_doi | 10.1002/0471729000 10.1002/sim.6052 10.2307/2983527 10.1080/01621459.1995.10476636 10.1007/978-1-4757-4286-2 10.1080/10543400701643855 10.2307/2533849 10.1111/j.0006-341X.1999.00971.x 10.1146/annurev-statistics-031219-041220 10.1198/1061860032274 10.1111/j.1541-0420.2005.00344.x 10.1093/biostatistics/kxl031 10.1287/deca.1060.0079 10.1093/biostatistics/kxs026 10.1016/j.jspi.2006.05.021 10.1080/10543400701643848 10.1191/1740774505cn094oa 10.1161/01.STR.0000092527.33910.89 10.1198/sbr.2010.09045 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION K9. 7X8 |
DOI | 10.1002/pst.2216 |
DatabaseName | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1539-1612 |
EndPage | 739 |
ExternalDocumentID | 10_1002_pst_2216 PST2216 |
Genre | article |
GrantInformation_xml | – fundername: Division of Mathematical Sciences funderid: NSF/DMS 1952679 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ SV3 UB1 W8V W99 WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX CITATION K9. 7X8 |
ID | FETCH-LOGICAL-c2566-a56907fe2ed3a7dd711d10ddd76a1f6427772173f777687dd74161aad17df1493 |
IEDL.DBID | DR2 |
ISSN | 1539-1604 |
IngestDate | Thu Aug 15 22:46:09 EDT 2024 Thu Oct 10 19:44:44 EDT 2024 Fri Aug 23 00:45:50 EDT 2024 Sat Aug 24 01:22:01 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2566-a56907fe2ed3a7dd711d10ddd76a1f6427772173f777687dd74161aad17df1493 |
Notes | Funding information Division of Mathematical Sciences, Grant/Award Number: NSF/DMS 1952679 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0002-2948-1229 |
PQID | 2688029257 |
PQPubID | 1036354 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2688569801 proquest_journals_2688029257 crossref_primary_10_1002_pst_2216 wiley_primary_10_1002_pst_2216_PST2216 |
PublicationCentury | 2000 |
PublicationDate | July/August 2022 2022-07-00 20220701 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July/August 2022 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Macclesfield |
PublicationTitle | Pharmaceutical statistics : the journal of the pharmaceutical industry |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2007; 17 1994; 157 2020; 7 2013; 14 1995; 90 2001; V 2007; 8 1999; 55 1985 2006; 3 2004 2003 2005; 61 2005; 2 2006; 137 2010; 2 1998; 54 2014; 33 2003; 12 2003; 34 e_1_2_9_20_1 e_1_2_9_11_1 e_1_2_9_22_1 e_1_2_9_10_1 e_1_2_9_21_1 e_1_2_9_13_1 e_1_2_9_12_1 Bellman R (e_1_2_9_17_1) 2003 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 Berry DA (e_1_2_9_2_1) 2001 e_1_2_9_9_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 |
References_xml | – year: 1985 – volume: V year: 2001 – volume: 17 start-page: 997 year: 2007 end-page: 1004 article-title: Discussion of the “white paper of the PhRMA working group on adaptive dose‐ranging designs publication-title: J Biopharm Stat – volume: 14 start-page: 75 year: 2013 end-page: 86 article-title: Sequential stopping for high‐throughput hypothesis testing experiments publication-title: Biostatistics – volume: 2 start-page: 487 issue: 4 year: 2010 end-page: 512 article-title: A simulation study to compare new adaptive dose–ranging designs publication-title: Stat Biopharm Res – volume: 90 start-page: 1322 issue: 432 year: 1995 end-page: 1330 article-title: Optimal design via curve fitting of Monte Carlo experiments publication-title: J Am Stat Assoc – volume: 55 start-page: 971 issue: 3 year: 1999 end-page: 977 article-title: Decision theoretic designs for phase II clinical trials with multiple outcomes publication-title: Biometrics – volume: 137 start-page: 3140 year: 2006 end-page: 3150 article-title: Simulation‐based sequential Bayesian design publication-title: J Stat Plan Inference – volume: 17 start-page: 965 issue: 6 year: 2007 end-page: 995 article-title: Innovative approaches for designing and analyzing adaptive dose‐ranging trials publication-title: J Biopharm Stat – volume: 54 start-page: 964 year: 1998 end-page: 975 article-title: Approaches for optimal sequential decision analysis in clinical trials publication-title: Biometrics – volume: 34 start-page: 2543 year: 2003 end-page: 2548 article-title: Acute stroke therapy by inhibition of neutrophils (ASTIN): an adaptive dose‐response study of UK‐279,276 in acute ischemic stroke publication-title: Stroke – volume: 8 start-page: 595 year: 2007 end-page: 608 article-title: Screening designs for drug development publication-title: Biostatistics – year: 2004 – year: 2003 – volume: 12 start-page: 566 year: 2003 end-page: 584 article-title: A gridding method for Bayesian sequential decision problems publication-title: J Comput Graph Stat – volume: 157 start-page: 357 year: 1994 end-page: 387 article-title: Bayesian approaches to randomized trials publication-title: J R Stat Soc, Ser A, Gen – volume: 33 start-page: 1646 issue: 10 year: 2014 end-page: 1661 article-title: Model‐based dose finding under model uncertainty using general parametric models publication-title: Stat Med – volume: 3 start-page: 197 year: 2006 end-page: 207 article-title: A Bayesian decision‐theoretic dose finding trial publication-title: Decis Anal – volume: 2 start-page: 340 issue: 4 year: 2005 end-page: 351 article-title: ASTIN: a Bayesian adaptive dose–response trial in acute stroke publication-title: Clin Trials – volume: 61 start-page: 738 issue: 3 year: 2005 end-page: 748 article-title: Combining multiple comparisons and modeling techniques in dose‐response studies publication-title: Biometrics – volume: 7 start-page: 279 issue: 1 year: 2020 end-page: 301 article-title: Q‐learning: theory and applications publication-title: Annu Rev Stat Appl – ident: e_1_2_9_3_1 doi: 10.1002/0471729000 – ident: e_1_2_9_15_1 doi: 10.1002/sim.6052 – ident: e_1_2_9_5_1 doi: 10.2307/2983527 – volume-title: Dynamic Programming year: 2003 ident: e_1_2_9_17_1 contributor: fullname: Bellman R – ident: e_1_2_9_22_1 doi: 10.1080/01621459.1995.10476636 – ident: e_1_2_9_23_1 doi: 10.1007/978-1-4757-4286-2 – ident: e_1_2_9_16_1 doi: 10.1080/10543400701643855 – ident: e_1_2_9_4_1 doi: 10.2307/2533849 – ident: e_1_2_9_6_1 doi: 10.1111/j.0006-341X.1999.00971.x – ident: e_1_2_9_7_1 – ident: e_1_2_9_8_1 doi: 10.1146/annurev-statistics-031219-041220 – ident: e_1_2_9_9_1 doi: 10.1198/1061860032274 – ident: e_1_2_9_14_1 doi: 10.1111/j.1541-0420.2005.00344.x – ident: e_1_2_9_20_1 doi: 10.1093/biostatistics/kxl031 – ident: e_1_2_9_10_1 doi: 10.1287/deca.1060.0079 – ident: e_1_2_9_21_1 doi: 10.1093/biostatistics/kxs026 – volume-title: Case Studies in Bayesian Statistics year: 2001 ident: e_1_2_9_2_1 contributor: fullname: Berry DA – ident: e_1_2_9_11_1 doi: 10.1016/j.jspi.2006.05.021 – ident: e_1_2_9_12_1 doi: 10.1080/10543400701643848 – ident: e_1_2_9_19_1 doi: 10.1191/1740774505cn094oa – ident: e_1_2_9_18_1 doi: 10.1161/01.STR.0000092527.33910.89 – ident: e_1_2_9_13_1 doi: 10.1198/sbr.2010.09045 |
SSID | ssj0017895 |
Score | 2.3160672 |
SecondaryResourceType | review_article |
Snippet | We review some simulation‐based methods to implement optimal decisions in sequential design problems as they naturally arise in clinical trial design. As a... Abstract We review some simulation‐based methods to implement optimal decisions in sequential design problems as they naturally arise in clinical trial design.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 729 |
SubjectTerms | backward induction decision problem reinforcement learning sequential design |
Title | Simulation‐based sequential design |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpst.2216 https://www.proquest.com/docview/2688029257 https://search.proquest.com/docview/2688569801 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEB6kJy_-i9UqEUpPTdtN0t30KGopHqTYFgoewqa7AVHTYtJDPfkIPqNP4kw2aVQQxNMGMtlkJzt_ycw3AHVfUamrh4JEjcI84Wk79KgKBEMNrqVPeDGUbXHLBxPvZtqd5lmVVAtj8CHWH9xIMjJ9TQIuw6RdgoYukrTl4EyofpkrKJvr6m6NHMWEnzVcQXnu2Yx3vAJ3tuO0iwu_W6LSvfzqpGZWpr8N98XzmeSSx9YyDVuz1x_Qjf9bwA5s5c6ndWF2yy5s6HgPGkODXr1qWuOyGCtpWg1rWOJar_ahPnp4zpt9fby9k_lTlsnERi3xZKksF-QAJv3r8eXAzpss2DP0drgtuxQfR9rRypVCKcGYYh2FB1yyCKMTgf43E26EI_eJgEIiKRUTKsLwyj2ESjyP9RFYMmIzFuqIUB8xyhSSoXgLxaUUoYuUVTgvGB4sDJZGYFCTnQCZERAzqlAr3kSQS1MSOBy1jNND7YJTrE-jHNDPDRnr-dLQ4FLQ4FahkbH913sEw9GYxuO_Ep7ApkNVD1mWbg0q6ctSn6IvkoZn2a77BGlv2lc |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTsJAEJ4gHvTivxFFrQnhRIFtSxfiyagEFQkRSDiYNFt2mxgViJQDnnwEn9EncabbgpqYGE9t0um2O9352858A5CrSip1dVCQqFGYwx1l-g5VgWCo4SpRJbwYyrZouY2ec92v9FNwmtTCaHyI-YYbSUakr0nAaUO6tEANHU_CooVDLcEySrtNfRsu7ubYUYxXo5YrKNE1k7llJ0GeLVul5M7vtmjhYH51UyM7U1-H--QNdXrJY3Ea-sXB6w_wxn9OYQPWYv_TONMLZhNSargF-bYGsJ4VjO6iHmtSMPJGewFtPduGXOfhOe739fH2ThZQGjoZGxXFkyGjdJAd6NUvu-cNM-6zYA7Q4XFNUaEQOVCWkrbgUnLGJCtLPHEFCzBA4eiCM24HeHSrREBRkRCScRlghGXvQno4Gqo9METABsxXAQE_YqDJBUMJ59IVgvs2UmbgJOG4N9ZwGp4GTrY8ZIZHzMhANvkUXixQE89yUdFYNVQwOMT8MooC_d8QQzWaahqcCtrcDOQjvv_6DK_d6dJx_6-Ex7DS6N42veZV6-YAVi0qgoiSdrOQDl-m6hBdk9A_ipbgJwq83m8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60gnjxLVarRig9NW03SXfbo6ilPijFtlDwEDbdDYjaFpse6smf4G_0lziTTVoVBPG0gUw22cnOK5n5BiBfU1Tq6qEgUaMwT3jaDjyqAsFQg2tZI7wYyrZo8WbPu-5X-0lWJdXCGHyI-Qc3koxYX5OAj1VYXoCGjidRycGZlmHF4-j4kkN0N4eOYqIWd1xBga7bjFe8FHi24pTTK7-booV_-dVLjc1MYwPu0wc02SWPpWkUlAavP7Ab_7eCTVhPvE_rzGyXLVjSw20otA189axodRfVWJOiVbDaC2Dr2Q7kOw_PSbevj7d3sn_KMqnYqCaeLBUng-xCr3HZPW_aSZcFe4DuDrdllQLkUDtauVIoJRhTrKLwgEsWYngi0AFnwg1x5DUioJhISsWECjG-cvcgMxwN9T5YMmQDFuiQYB8xzBSSoXwLxaUUgYuUWThNGe6PDZiGb2CTHR-Z4RMzspBL34SfiNPEdziqGaeO6gWnmJ9GQaC_G3KoR1NDg0tBi5uFQsz2X-_htztdGg_-SngCq-2Lhn971bo5hDWHKiDijN0cZKKXqT5CvyQKjuMN-AmTB90e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation-based+sequential+design&rft.jtitle=Pharmaceutical+statistics+%3A+the+journal+of+the+pharmaceutical+industry&rft.au=M%C3%BCller%2C+Peter&rft.au=Duan%2C+Yunshan&rft.au=Garcia+Tec%2C+Mauricio&rft.date=2022-07-01&rft.eissn=1539-1612&rft.volume=21&rft.issue=4&rft.spage=729&rft.epage=739&rft_id=info:doi/10.1002%2Fpst.2216&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-1604&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-1604&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-1604&client=summon |