Simulation‐based sequential design

We review some simulation‐based methods to implement optimal decisions in sequential design problems as they naturally arise in clinical trial design. As a motivating example we use a stylized version of a dose‐ranging design in the ASTIN trial. The approach can be characterized as constrained backw...

Full description

Saved in:
Bibliographic Details
Published inPharmaceutical statistics : the journal of the pharmaceutical industry Vol. 21; no. 4; pp. 729 - 739
Main Authors Müller, Peter, Duan, Yunshan, Garcia Tec, Mauricio
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Inc 01.07.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We review some simulation‐based methods to implement optimal decisions in sequential design problems as they naturally arise in clinical trial design. As a motivating example we use a stylized version of a dose‐ranging design in the ASTIN trial. The approach can be characterized as constrained backward induction. The nature of the constraint is a restriction of the decisions to a set of actions that are functions of the current history only implicitly through a low‐dimensional summary statistic. In addition, the action set is restricted to time‐invariant policies. Time‐dependence is only introduced indirectly through the change of the chosen summary statistic over time. This restriction allows computationally efficient solutions to the sequential decision problem. A further simplification is achieved by restricting optimal actions to be described by decision boundaries on the space of such summary statistics.
AbstractList Abstract We review some simulation‐based methods to implement optimal decisions in sequential design problems as they naturally arise in clinical trial design. As a motivating example we use a stylized version of a dose‐ranging design in the ASTIN trial. The approach can be characterized as constrained backward induction. The nature of the constraint is a restriction of the decisions to a set of actions that are functions of the current history only implicitly through a low‐dimensional summary statistic. In addition, the action set is restricted to time‐invariant policies. Time‐dependence is only introduced indirectly through the change of the chosen summary statistic over time. This restriction allows computationally efficient solutions to the sequential decision problem. A further simplification is achieved by restricting optimal actions to be described by decision boundaries on the space of such summary statistics.
We review some simulation‐based methods to implement optimal decisions in sequential design problems as they naturally arise in clinical trial design. As a motivating example we use a stylized version of a dose‐ranging design in the ASTIN trial. The approach can be characterized as constrained backward induction. The nature of the constraint is a restriction of the decisions to a set of actions that are functions of the current history only implicitly through a low‐dimensional summary statistic. In addition, the action set is restricted to time‐invariant policies. Time‐dependence is only introduced indirectly through the change of the chosen summary statistic over time. This restriction allows computationally efficient solutions to the sequential decision problem. A further simplification is achieved by restricting optimal actions to be described by decision boundaries on the space of such summary statistics.
Author Duan, Yunshan
Müller, Peter
Garcia Tec, Mauricio
Author_xml – sequence: 1
  givenname: Peter
  orcidid: 0000-0002-2948-1229
  surname: Müller
  fullname: Müller, Peter
  email: pmueller@math.utexas.edu
  organization: University of Texas at Austin
– sequence: 2
  givenname: Yunshan
  surname: Duan
  fullname: Duan, Yunshan
  organization: University of Texas at Austin
– sequence: 3
  givenname: Mauricio
  surname: Garcia Tec
  fullname: Garcia Tec, Mauricio
  organization: University of Texas at Austin
BookMark eNp10N9KwzAUBvAgE9ym4CMM9MKbzpy0TdpLGf6DgcLmdYhNIhlpUpsW2Z2P4DP6JKabKAhenXPx45yPb4JGzjuF0CngOWBMLpvQzQkBeoDGkKdlAhTI6GfH2RGahLDBGFhR5mN0vjJ1b0VnvPt8_3gWQclZUK-9cp0RdiZVMC_uGB1qYYM6-Z5T9HRzvV7cJcuH2_vF1TKpSE5pInJaYqYVUTIVTEoGIAHLuFABmmaEMUaApTpOWgwgi-mEkMCkhqxMp-hif7dpfYwQOl6bUClrhVO-D5zQoog_CgyRnv2hG9-3LqbbKUxKkrPfg1XrQ2iV5k1ratFuOWA-1MVjXXyoK9JkT9-MVdt_HX9crXf-CwE8a-4
CitedBy_id crossref_primary_10_1214_23_STS865B
Cites_doi 10.1002/0471729000
10.1002/sim.6052
10.2307/2983527
10.1080/01621459.1995.10476636
10.1007/978-1-4757-4286-2
10.1080/10543400701643855
10.2307/2533849
10.1111/j.0006-341X.1999.00971.x
10.1146/annurev-statistics-031219-041220
10.1198/1061860032274
10.1111/j.1541-0420.2005.00344.x
10.1093/biostatistics/kxl031
10.1287/deca.1060.0079
10.1093/biostatistics/kxs026
10.1016/j.jspi.2006.05.021
10.1080/10543400701643848
10.1191/1740774505cn094oa
10.1161/01.STR.0000092527.33910.89
10.1198/sbr.2010.09045
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
K9.
7X8
DOI 10.1002/pst.2216
DatabaseName CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)

DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1539-1612
EndPage 739
ExternalDocumentID 10_1002_pst_2216
PST2216
Genre article
GrantInformation_xml – fundername: Division of Mathematical Sciences
  funderid: NSF/DMS 1952679
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
SV3
UB1
W8V
W99
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
K9.
7X8
ID FETCH-LOGICAL-c2566-a56907fe2ed3a7dd711d10ddd76a1f6427772173f777687dd74161aad17df1493
IEDL.DBID DR2
ISSN 1539-1604
IngestDate Thu Aug 15 22:46:09 EDT 2024
Thu Oct 10 19:44:44 EDT 2024
Fri Aug 23 00:45:50 EDT 2024
Sat Aug 24 01:22:01 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2566-a56907fe2ed3a7dd711d10ddd76a1f6427772173f777687dd74161aad17df1493
Notes Funding information
Division of Mathematical Sciences, Grant/Award Number: NSF/DMS 1952679
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0002-2948-1229
PQID 2688029257
PQPubID 1036354
PageCount 11
ParticipantIDs proquest_miscellaneous_2688569801
proquest_journals_2688029257
crossref_primary_10_1002_pst_2216
wiley_primary_10_1002_pst_2216_PST2216
PublicationCentury 2000
PublicationDate July/August 2022
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July/August 2022
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Macclesfield
PublicationTitle Pharmaceutical statistics : the journal of the pharmaceutical industry
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2007; 17
1994; 157
2020; 7
2013; 14
1995; 90
2001; V
2007; 8
1999; 55
1985
2006; 3
2004
2003
2005; 61
2005; 2
2006; 137
2010; 2
1998; 54
2014; 33
2003; 12
2003; 34
e_1_2_9_20_1
e_1_2_9_11_1
e_1_2_9_22_1
e_1_2_9_10_1
e_1_2_9_21_1
e_1_2_9_13_1
e_1_2_9_12_1
Bellman R (e_1_2_9_17_1) 2003
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
Berry DA (e_1_2_9_2_1) 2001
e_1_2_9_9_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
References_xml – year: 1985
– volume: V
  year: 2001
– volume: 17
  start-page: 997
  year: 2007
  end-page: 1004
  article-title: Discussion of the “white paper of the PhRMA working group on adaptive dose‐ranging designs
  publication-title: J Biopharm Stat
– volume: 14
  start-page: 75
  year: 2013
  end-page: 86
  article-title: Sequential stopping for high‐throughput hypothesis testing experiments
  publication-title: Biostatistics
– volume: 2
  start-page: 487
  issue: 4
  year: 2010
  end-page: 512
  article-title: A simulation study to compare new adaptive dose–ranging designs
  publication-title: Stat Biopharm Res
– volume: 90
  start-page: 1322
  issue: 432
  year: 1995
  end-page: 1330
  article-title: Optimal design via curve fitting of Monte Carlo experiments
  publication-title: J Am Stat Assoc
– volume: 55
  start-page: 971
  issue: 3
  year: 1999
  end-page: 977
  article-title: Decision theoretic designs for phase II clinical trials with multiple outcomes
  publication-title: Biometrics
– volume: 137
  start-page: 3140
  year: 2006
  end-page: 3150
  article-title: Simulation‐based sequential Bayesian design
  publication-title: J Stat Plan Inference
– volume: 17
  start-page: 965
  issue: 6
  year: 2007
  end-page: 995
  article-title: Innovative approaches for designing and analyzing adaptive dose‐ranging trials
  publication-title: J Biopharm Stat
– volume: 54
  start-page: 964
  year: 1998
  end-page: 975
  article-title: Approaches for optimal sequential decision analysis in clinical trials
  publication-title: Biometrics
– volume: 34
  start-page: 2543
  year: 2003
  end-page: 2548
  article-title: Acute stroke therapy by inhibition of neutrophils (ASTIN): an adaptive dose‐response study of UK‐279,276 in acute ischemic stroke
  publication-title: Stroke
– volume: 8
  start-page: 595
  year: 2007
  end-page: 608
  article-title: Screening designs for drug development
  publication-title: Biostatistics
– year: 2004
– year: 2003
– volume: 12
  start-page: 566
  year: 2003
  end-page: 584
  article-title: A gridding method for Bayesian sequential decision problems
  publication-title: J Comput Graph Stat
– volume: 157
  start-page: 357
  year: 1994
  end-page: 387
  article-title: Bayesian approaches to randomized trials
  publication-title: J R Stat Soc, Ser A, Gen
– volume: 33
  start-page: 1646
  issue: 10
  year: 2014
  end-page: 1661
  article-title: Model‐based dose finding under model uncertainty using general parametric models
  publication-title: Stat Med
– volume: 3
  start-page: 197
  year: 2006
  end-page: 207
  article-title: A Bayesian decision‐theoretic dose finding trial
  publication-title: Decis Anal
– volume: 2
  start-page: 340
  issue: 4
  year: 2005
  end-page: 351
  article-title: ASTIN: a Bayesian adaptive dose–response trial in acute stroke
  publication-title: Clin Trials
– volume: 61
  start-page: 738
  issue: 3
  year: 2005
  end-page: 748
  article-title: Combining multiple comparisons and modeling techniques in dose‐response studies
  publication-title: Biometrics
– volume: 7
  start-page: 279
  issue: 1
  year: 2020
  end-page: 301
  article-title: Q‐learning: theory and applications
  publication-title: Annu Rev Stat Appl
– ident: e_1_2_9_3_1
  doi: 10.1002/0471729000
– ident: e_1_2_9_15_1
  doi: 10.1002/sim.6052
– ident: e_1_2_9_5_1
  doi: 10.2307/2983527
– volume-title: Dynamic Programming
  year: 2003
  ident: e_1_2_9_17_1
  contributor:
    fullname: Bellman R
– ident: e_1_2_9_22_1
  doi: 10.1080/01621459.1995.10476636
– ident: e_1_2_9_23_1
  doi: 10.1007/978-1-4757-4286-2
– ident: e_1_2_9_16_1
  doi: 10.1080/10543400701643855
– ident: e_1_2_9_4_1
  doi: 10.2307/2533849
– ident: e_1_2_9_6_1
  doi: 10.1111/j.0006-341X.1999.00971.x
– ident: e_1_2_9_7_1
– ident: e_1_2_9_8_1
  doi: 10.1146/annurev-statistics-031219-041220
– ident: e_1_2_9_9_1
  doi: 10.1198/1061860032274
– ident: e_1_2_9_14_1
  doi: 10.1111/j.1541-0420.2005.00344.x
– ident: e_1_2_9_20_1
  doi: 10.1093/biostatistics/kxl031
– ident: e_1_2_9_10_1
  doi: 10.1287/deca.1060.0079
– ident: e_1_2_9_21_1
  doi: 10.1093/biostatistics/kxs026
– volume-title: Case Studies in Bayesian Statistics
  year: 2001
  ident: e_1_2_9_2_1
  contributor:
    fullname: Berry DA
– ident: e_1_2_9_11_1
  doi: 10.1016/j.jspi.2006.05.021
– ident: e_1_2_9_12_1
  doi: 10.1080/10543400701643848
– ident: e_1_2_9_19_1
  doi: 10.1191/1740774505cn094oa
– ident: e_1_2_9_18_1
  doi: 10.1161/01.STR.0000092527.33910.89
– ident: e_1_2_9_13_1
  doi: 10.1198/sbr.2010.09045
SSID ssj0017895
Score 2.3160672
SecondaryResourceType review_article
Snippet We review some simulation‐based methods to implement optimal decisions in sequential design problems as they naturally arise in clinical trial design. As a...
Abstract We review some simulation‐based methods to implement optimal decisions in sequential design problems as they naturally arise in clinical trial design....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 729
SubjectTerms backward induction
decision problem
reinforcement learning
sequential design
Title Simulation‐based sequential design
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpst.2216
https://www.proquest.com/docview/2688029257
https://search.proquest.com/docview/2688569801
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEB6kJy_-i9UqEUpPTdtN0t30KGopHqTYFgoewqa7AVHTYtJDPfkIPqNP4kw2aVQQxNMGMtlkJzt_ycw3AHVfUamrh4JEjcI84Wk79KgKBEMNrqVPeDGUbXHLBxPvZtqd5lmVVAtj8CHWH9xIMjJ9TQIuw6RdgoYukrTl4EyofpkrKJvr6m6NHMWEnzVcQXnu2Yx3vAJ3tuO0iwu_W6LSvfzqpGZWpr8N98XzmeSSx9YyDVuz1x_Qjf9bwA5s5c6ndWF2yy5s6HgPGkODXr1qWuOyGCtpWg1rWOJar_ahPnp4zpt9fby9k_lTlsnERi3xZKksF-QAJv3r8eXAzpss2DP0drgtuxQfR9rRypVCKcGYYh2FB1yyCKMTgf43E26EI_eJgEIiKRUTKsLwyj2ESjyP9RFYMmIzFuqIUB8xyhSSoXgLxaUUoYuUVTgvGB4sDJZGYFCTnQCZERAzqlAr3kSQS1MSOBy1jNND7YJTrE-jHNDPDRnr-dLQ4FLQ4FahkbH913sEw9GYxuO_Ep7ApkNVD1mWbg0q6ctSn6IvkoZn2a77BGlv2lc
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTsJAEJ4gHvTivxFFrQnhRIFtSxfiyagEFQkRSDiYNFt2mxgViJQDnnwEn9EncabbgpqYGE9t0um2O9352858A5CrSip1dVCQqFGYwx1l-g5VgWCo4SpRJbwYyrZouY2ec92v9FNwmtTCaHyI-YYbSUakr0nAaUO6tEANHU_CooVDLcEySrtNfRsu7ubYUYxXo5YrKNE1k7llJ0GeLVul5M7vtmjhYH51UyM7U1-H--QNdXrJY3Ea-sXB6w_wxn9OYQPWYv_TONMLZhNSargF-bYGsJ4VjO6iHmtSMPJGewFtPduGXOfhOe739fH2ThZQGjoZGxXFkyGjdJAd6NUvu-cNM-6zYA7Q4XFNUaEQOVCWkrbgUnLGJCtLPHEFCzBA4eiCM24HeHSrREBRkRCScRlghGXvQno4Gqo9METABsxXAQE_YqDJBUMJ59IVgvs2UmbgJOG4N9ZwGp4GTrY8ZIZHzMhANvkUXixQE89yUdFYNVQwOMT8MooC_d8QQzWaahqcCtrcDOQjvv_6DK_d6dJx_6-Ex7DS6N42veZV6-YAVi0qgoiSdrOQDl-m6hBdk9A_ipbgJwq83m8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60gnjxLVarRig9NW03SXfbo6ilPijFtlDwEDbdDYjaFpse6smf4G_0lziTTVoVBPG0gUw22cnOK5n5BiBfU1Tq6qEgUaMwT3jaDjyqAsFQg2tZI7wYyrZo8WbPu-5X-0lWJdXCGHyI-Qc3koxYX5OAj1VYXoCGjidRycGZlmHF4-j4kkN0N4eOYqIWd1xBga7bjFe8FHi24pTTK7-booV_-dVLjc1MYwPu0wc02SWPpWkUlAavP7Ab_7eCTVhPvE_rzGyXLVjSw20otA189axodRfVWJOiVbDaC2Dr2Q7kOw_PSbevj7d3sn_KMqnYqCaeLBUng-xCr3HZPW_aSZcFe4DuDrdllQLkUDtauVIoJRhTrKLwgEsWYngi0AFnwg1x5DUioJhISsWECjG-cvcgMxwN9T5YMmQDFuiQYB8xzBSSoXwLxaUUgYuUWThNGe6PDZiGb2CTHR-Z4RMzspBL34SfiNPEdziqGaeO6gWnmJ9GQaC_G3KoR1NDg0tBi5uFQsz2X-_htztdGg_-SngCq-2Lhn971bo5hDWHKiDijN0cZKKXqT5CvyQKjuMN-AmTB90e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation-based+sequential+design&rft.jtitle=Pharmaceutical+statistics+%3A+the+journal+of+the+pharmaceutical+industry&rft.au=M%C3%BCller%2C+Peter&rft.au=Duan%2C+Yunshan&rft.au=Garcia+Tec%2C+Mauricio&rft.date=2022-07-01&rft.eissn=1539-1612&rft.volume=21&rft.issue=4&rft.spage=729&rft.epage=739&rft_id=info:doi/10.1002%2Fpst.2216&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-1604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-1604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-1604&client=summon