Using fractal voids to understand Mode I compressive fracture in brittle materials – A two-dimensional analysis
•A comprehensive idealization of a void as a fractal surface is presented.•The “small flaw assumption” is defined and used to analyze fractal voids.•Fractal void analysis is shown capable of satisfying the stress and energy criteria.•Via fractal void analysis KI is computed for voids in compression...
Saved in:
Published in | Theoretical and applied fracture mechanics Vol. 133; p. 104648 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A comprehensive idealization of a void as a fractal surface is presented.•The “small flaw assumption” is defined and used to analyze fractal voids.•Fractal void analysis is shown capable of satisfying the stress and energy criteria.•Via fractal void analysis KI is computed for voids in compression without iteration.•Fractal void analysis predicts shape and size effects in 2D compressive fracture.
Unlike cases of direct or indirect tensile loading, analysis of Mode I fracture in cases of compressive loading must necessarily consider two-dimensional flaw geometries. The consequent analytical complications have resulted in little theoretical evolution towards understanding Mode I fracture in compressive loading. Researchers have recently observed that the linear elastic (LE) stress fields surrounding two-dimensional flaws in compression appear to have indicative value regarding Mode I fracture, but no rational framework has yet been proposed for their interpretation. Herein it is demonstrated that by idealizing void surfaces as fractal, and using what will be called the “small flaw assumption,” LE stress fields can be interpreted to obtain significant insight regarding brittle Mode I compressive fracture. Using fractal voids, a rational and consistent explanation for the satisfaction of the stress and energy criteria at the surface of two-dimensional flaws is presented. The discussion resolves many typical theoretical issues in the literature in a manner consistent with fundamental Griffith theory, and accounts for size and shape effects. The framework further enables the computationally efficient prediction of peak KI values associated with the propagation of line cracks from two-dimensional flaws from a brittle medium subject to macroscopic uniaxial compression via LE stress fields. |
---|---|
AbstractList | •A comprehensive idealization of a void as a fractal surface is presented.•The “small flaw assumption” is defined and used to analyze fractal voids.•Fractal void analysis is shown capable of satisfying the stress and energy criteria.•Via fractal void analysis KI is computed for voids in compression without iteration.•Fractal void analysis predicts shape and size effects in 2D compressive fracture.
Unlike cases of direct or indirect tensile loading, analysis of Mode I fracture in cases of compressive loading must necessarily consider two-dimensional flaw geometries. The consequent analytical complications have resulted in little theoretical evolution towards understanding Mode I fracture in compressive loading. Researchers have recently observed that the linear elastic (LE) stress fields surrounding two-dimensional flaws in compression appear to have indicative value regarding Mode I fracture, but no rational framework has yet been proposed for their interpretation. Herein it is demonstrated that by idealizing void surfaces as fractal, and using what will be called the “small flaw assumption,” LE stress fields can be interpreted to obtain significant insight regarding brittle Mode I compressive fracture. Using fractal voids, a rational and consistent explanation for the satisfaction of the stress and energy criteria at the surface of two-dimensional flaws is presented. The discussion resolves many typical theoretical issues in the literature in a manner consistent with fundamental Griffith theory, and accounts for size and shape effects. The framework further enables the computationally efficient prediction of peak KI values associated with the propagation of line cracks from two-dimensional flaws from a brittle medium subject to macroscopic uniaxial compression via LE stress fields. |
ArticleNumber | 104648 |
Author | Shrive, N.G. Ahmed, A. |
Author_xml | – sequence: 1 givenname: A. orcidid: 0000-0002-0290-6928 surname: Ahmed fullname: Ahmed, A. email: ahmed.ahmed1@ucalgary.ca – sequence: 2 givenname: N.G. surname: Shrive fullname: Shrive, N.G. email: ngshrive@ucalgary.ca |
BookMark | eNp9kM9OAjEQxnvAREDfwENfYLEt3d3uxYQQ_5BgvMi56bazpoRtsS0Ybr6Db-iTULKevcxMZr75MvOboJHzDhC6o2RGCa3ut7Okuh70jBHGc4tXXIzQOI_qQnDOrtEkxi0htKbNfIw-N9G6D9wFpZPa4aO3JuLk8cEZCDEpZ_CrN4BXWPt-HyBGe4RBfgiArcNtsCntAPcqQbBqF_Hv9w9e4PTlC2N7cNF6l61VDqdo4w266rIKbv_yFG2eHt-XL8X67Xm1XKwLzcoyFR203EDFWA11Llh-QLUVJxQaAZpQzYTQ89KUWjHdUmEqUXZt10DDVCUMm08RH3x18DEG6OQ-2F6Fk6REXlDJrRxQyQsqOaDKaw_DGuTbjhaCjNqC02BsAJ2k8fZ_gzNKSHtQ |
Cites_doi | 10.1126/science.156.3775.636 10.1016/j.ijsolstr.2023.112181 10.1016/j.ijrmms.2014.07.019 10.1061/JMCEA3.0000430 10.1093/qjmam/20.3.277 10.3390/ma12091384 10.1016/j.cma.2014.10.043 10.1201/9781315370293-4 10.1016/j.tafmec.2020.102742 10.1016/j.engfracmech.2021.107882 10.1016/j.tafmec.2023.104044 10.1023/B:FRAC.0000045714.80342.a3 10.1016/j.tafmec.2018.08.014 10.1016/j.tafmec.2019.102241 10.1002/9780470172674.ch1 10.1016/j.conbuildmat.2009.10.014 10.1016/S0020-7683(98)00189-9 10.1016/0008-8846(85)90148-6 10.1016/j.engfracmech.2016.03.044 10.1016/j.jsg.2017.07.013 10.1016/j.ijrmms.2023.105395 10.1016/j.conbuildmat.2021.123217 10.1016/j.ceramint.2015.12.086 10.1111/ffe.14284 10.1016/0148-9062(93)90039-G 10.1016/j.tafmec.2020.102529 10.1016/S0008-8846(02)00942-0 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.tafmec.2024.104648 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_tafmec_2024_104648 S0167844224003987 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABJNI ABMAC ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UHS WUQ XPP ZMT ~02 ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c255t-feb4de6227e74de2016ab6401e98ec01c288c35d5ca2cb18d685fbf9e92a68d23 |
IEDL.DBID | .~1 |
ISSN | 0167-8442 |
IngestDate | Tue Jul 01 03:24:28 EDT 2025 Sat Sep 14 18:09:28 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Shape effect Fractal void Stress intensity factor Compressive fracture Size effect |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-feb4de6227e74de2016ab6401e98ec01c288c35d5ca2cb18d685fbf9e92a68d23 |
ORCID | 0000-0002-0290-6928 |
ParticipantIDs | crossref_primary_10_1016_j_tafmec_2024_104648 elsevier_sciencedirect_doi_10_1016_j_tafmec_2024_104648 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2024 2024-10-00 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
PublicationDecade | 2020 |
PublicationTitle | Theoretical and applied fracture mechanics |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Huo, Wang, Chen, He (b0040) 2019; 12 Falconer (b0105) 2003 New York, Wiley, 1997, pp. 1-58. T. Anderson, “Linear Elastic Fracture Mechanics,” in Rezanezhad, Lajevardi, Karimpouli (b0050) 2021; 253 Ahmed, Shrive (b0020) 2024; 36 Winslow (b0115) 1985; 15 Kirsch (b0125) 1898; 42 Iskander, Shrive (b0025) 2018; 97 Boukais, Dahou, Matallah (b0160) 2023; 269 Wang, Shrive (b0175) 1999; 36 Boca Raton, Taylor & Francis, 2005, pp. 25-102. W. Pilkey, “Definitions and Design Relations,” in Liu, Zhu, Zhou, Liu (b0030) 2024; 47 Mandelbrot (b0110) 1967; 156 Anderson (b0145) 2005 Haddon (b0080) 1967; 20 Akbardoost, Ayatollahi, Aliha, Pavier, Smith (b0010) 2014; 71 Kumar, Bhattacharjee (b0035) 2003; 33 Ahmed, Iskander, Shrive (b0075) 2022 Muralidhara, Raghu Prasad, Eskandari, Karihaloo (b0150) 2010; 24 Hsu, Slate, Sturman, Winter (b0140) 1963; 60 Davis, Healy, Bubeck, Walker (b0180) 2017; 102 Glucklich (b0170) 1963; 89 Zhu, Shi, Zhu, Liu, Hu (b0015) 2023; 127 Chen, Wang, Jin, Pan, Jin (b0055) 2016; 42 Roth, Leger, Soulaimani (b0070) 2015; 283 Ye, Li, Zeng, Tang (b0065) 2023; 167 Inglis (b0060) 1913 Luo, Xu, Gong, Qu, Li, Wang, Li (b0005) 2022; 81 Saliba, Matallah, Loukili, Regoin, Gregoire, Verdon, Pijaudier-Cabot (b0155) 2016; 167 Rezanezhad, Lajevardi, Karimpouli (b0095) 2020; 107 Iskander, Shrive (b0185) 2021; 290 Iskander, Shrive (b0085) 2020; 109 Hammouda, Fayed, Sallam (b0165) 2004; 129 Yuan, Lajtai, Ayari (b0045) 1993; 30 Rezanezhad, Lajevardi, Karimpouli (b0090) 2019; 103 Griffith (b0130) 1921; 221 Boresi, Schmidt (b0100) 2003 Mandelbrot (10.1016/j.tafmec.2024.104648_b0110) 1967; 156 Zhu (10.1016/j.tafmec.2024.104648_b0015) 2023; 127 Chen (10.1016/j.tafmec.2024.104648_b0055) 2016; 42 Ahmed (10.1016/j.tafmec.2024.104648_b0075) 2022 Rezanezhad (10.1016/j.tafmec.2024.104648_b0095) 2020; 107 Luo (10.1016/j.tafmec.2024.104648_b0005) 2022; 81 Haddon (10.1016/j.tafmec.2024.104648_b0080) 1967; 20 10.1016/j.tafmec.2024.104648_b0135 Wang (10.1016/j.tafmec.2024.104648_b0175) 1999; 36 Hammouda (10.1016/j.tafmec.2024.104648_b0165) 2004; 129 Iskander (10.1016/j.tafmec.2024.104648_b0085) 2020; 109 Roth (10.1016/j.tafmec.2024.104648_b0070) 2015; 283 Yuan (10.1016/j.tafmec.2024.104648_b0045) 1993; 30 Boresi (10.1016/j.tafmec.2024.104648_b0100) 2003 Griffith (10.1016/j.tafmec.2024.104648_b0130) 1921; 221 Muralidhara (10.1016/j.tafmec.2024.104648_b0150) 2010; 24 Falconer (10.1016/j.tafmec.2024.104648_b0105) 2003 Inglis (10.1016/j.tafmec.2024.104648_b0060) 1913 Ye (10.1016/j.tafmec.2024.104648_b0065) 2023; 167 Akbardoost (10.1016/j.tafmec.2024.104648_b0010) 2014; 71 Huo (10.1016/j.tafmec.2024.104648_b0040) 2019; 12 Davis (10.1016/j.tafmec.2024.104648_b0180) 2017; 102 Kumar (10.1016/j.tafmec.2024.104648_b0035) 2003; 33 Rezanezhad (10.1016/j.tafmec.2024.104648_b0050) 2021; 253 Winslow (10.1016/j.tafmec.2024.104648_b0115) 1985; 15 Iskander (10.1016/j.tafmec.2024.104648_b0025) 2018; 97 10.1016/j.tafmec.2024.104648_b0120 Liu (10.1016/j.tafmec.2024.104648_b0030) 2024; 47 Iskander (10.1016/j.tafmec.2024.104648_b0185) 2021; 290 Boukais (10.1016/j.tafmec.2024.104648_b0160) 2023; 269 Hsu (10.1016/j.tafmec.2024.104648_b0140) 1963; 60 Rezanezhad (10.1016/j.tafmec.2024.104648_b0090) 2019; 103 Anderson (10.1016/j.tafmec.2024.104648_b0145) 2005 Glucklich (10.1016/j.tafmec.2024.104648_b0170) 1963; 89 Kirsch (10.1016/j.tafmec.2024.104648_b0125) 1898; 42 Ahmed (10.1016/j.tafmec.2024.104648_b0020) 2024; 36 Saliba (10.1016/j.tafmec.2024.104648_b0155) 2016; 167 |
References_xml | – year: 1913 ident: b0060 article-title: Stresses in a plate due to the presence of cracks and sharp corners publication-title: In – volume: 167 start-page: 123 year: 2016 end-page: 137 ident: b0155 article-title: Experimental and numerical analysis of crack evolution in concrete through acoustic emission technique and mesoscale modelling publication-title: Eng. Fract. Mech. – volume: 30 start-page: 873 year: 1993 end-page: 876 ident: b0045 article-title: Fracture nucleation form a compression-parallel, finite-width elliptical flaw publication-title: Int. J. Rock Mech. Min. Sci. – volume: 36 start-page: 4089 year: 1999 end-page: 4109 ident: b0175 article-title: A 3-D ellipsoidal flaw model for brittle fracture in compression publication-title: Int. J. Solids Struct. – volume: 221 start-page: 163 year: 1921 end-page: 198 ident: b0130 article-title: “The phenomena of rupture and flow in solids,” publication-title: Series A, Containing Papers of a Mathematical or Physical Character – volume: 127 year: 2023 ident: b0015 article-title: A logarithmic model for predicting fracture trajectory of pre-cracked rock specimen under compression publication-title: Theor. Appl. Fract. Mech. – reference: , Boca Raton, Taylor & Francis, 2005, pp. 25-102. – volume: 12 year: 2019 ident: b0040 article-title: Impacts of low atmospheric pressure on properties of cement concrete in plateau areas: a literature review publication-title: Materials – volume: 129 start-page: 141 year: 2004 end-page: 148 ident: b0165 article-title: Stress intensity factors of a central slant crack with frictional surfaces in plates with biaxial loading publication-title: Int. J. Fract. – volume: 102 start-page: 193 year: 2017 end-page: 207 ident: b0180 article-title: Stress concentrations around voids in three dimensions: the roots of failure publication-title: J. Struct. Geol. – volume: 167 year: 2023 ident: b0065 article-title: 3D DEM simulations of the variability of rock mechanical behaviour based on random rock microcracks publication-title: Int. J. Rock Mech. Min. Sci. – volume: 107 year: 2020 ident: b0095 article-title: Effects of pore(s)-crack locations and arrangements on crack growth modeling in porous media publication-title: Theor. Appl. Fract. Mech. – volume: 71 start-page: 369 year: 2014 end-page: 380 ident: b0010 article-title: Size-dependent fracture behavior of Guiting limestone under mixed mode loading publication-title: Int. J. Rock Mech. Min. Sci. – reference: W. Pilkey, “Definitions and Design Relations,” in – reference: , New York, Wiley, 1997, pp. 1-58. – volume: 24 start-page: 479 year: 2010 end-page: 486 ident: b0150 article-title: Fracture process zone size and true fracture energy of concrete using acoustic emission publication-title: Constr. Build. Mater. – start-page: 104 year: 2003 end-page: 147 ident: b0100 article-title: “Inelastic Material Behavior,” in – year: 2003 ident: b0105 article-title: Fractal Geometry - Mathematical Foundations and Applications – year: 2022 ident: b0075 article-title: On a universal failure criterion for brittle materials publication-title: In – volume: 156 start-page: 636 year: 1967 end-page: 638 ident: b0110 article-title: How long is the coast of Britain? Statistical self-similarity and fractional dimension publication-title: Science – volume: 283 start-page: 923 year: 2015 end-page: 955 ident: b0070 article-title: A combined XFEM-damage mechanics approach for concrete crack propagation publication-title: Comput. Methods Appl. Mech. Eng. – volume: 20 start-page: 277 year: 1967 end-page: 291 ident: b0080 article-title: Stresses in an infinite plate with two unequal circular holes publication-title: Quart. J. Mech. Appl. Math. – volume: 60 start-page: 209 year: 1963 end-page: 224 ident: b0140 article-title: Microcracking of plain concrete and the shape of the stress-strain curve publication-title: ACI Mater. J. – volume: 47 start-page: 1914 year: 2024 end-page: 1926 ident: b0030 article-title: An improved maximum tangential stress criterion for an inclined crack in uniaxial compression considering T-stress and crack parameter publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 290 year: 2021 ident: b0185 article-title: On the fracture of brittle and quasi-brittle materials subject to uniaxial compression and the interaction of voids on cracking publication-title: Constr. Build. Mater. – volume: 97 start-page: 250 year: 2018 end-page: 257 ident: b0025 article-title: Fracture of brittle and quasi-brittle materials in compression; a review of the current state of knowledge and a different approach publication-title: Theor. Appl. Fract. Mech. – start-page: 257 year: 2005 end-page: 296 ident: b0145 article-title: “Fracture Mechanisms in Nonmetals,” in – volume: 253 year: 2021 ident: b0050 article-title: Application of equivalent circle and ellipse for pore shape modeling in crack growth problem: anumerical investigation in microscale publication-title: Eng. Fract. Mech. – volume: 33 start-page: 155 year: 2003 end-page: 164 ident: b0035 article-title: Porosity, pore size distribution and in situ strength of concrete publication-title: Cem. Concr. Res. – volume: 103 year: 2019 ident: b0090 article-title: Effects of pore-crack relative location on crack propagation in porous media using XFEM method publication-title: Theor. Appl. Fract. Mech. – volume: 269 year: 2023 ident: b0160 article-title: Maximum aggregate size effects on the evolution of the FPZ and crack extensions in concrete - experimental and numerical investigation publication-title: Int. J. Solids Struct. – volume: 81 year: 2022 ident: b0005 article-title: Experimental research on the mechanical properties and energy transfer of fractured granite under triaxial loading publication-title: Bull. Eng. Geol. Environ. – volume: 109 year: 2020 ident: b0085 article-title: The effect of the shape and size of initial flaws on crack propagation in uniaxially compressed linear brittle materials publication-title: Theor. Appl. Fract. Mech. – volume: 42 start-page: 797 year: 1898 end-page: 807 ident: b0125 article-title: Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre publication-title: Zeitschrift Des Vereines Deutscher Ingenieure – volume: 15 start-page: 817 year: 1985 end-page: 824 ident: b0115 article-title: The fractal nature of the surface of cement paste publication-title: Cem. Concr. Res. – reference: T. Anderson, “Linear Elastic Fracture Mechanics,” in – volume: 42 start-page: 5642 year: 2016 end-page: 5649 ident: b0055 article-title: Effect of pores on crack propagation behavior for porous Si3N4 ceramics publication-title: Ceramics International – volume: 89 start-page: 127 year: 1963 end-page: 138 ident: b0170 article-title: Fracture of plain concrete publication-title: J .Eng. Mech. Div. – volume: 36 year: 2024 ident: b0020 article-title: Understanding masonry compressive fracture via fractal voids publication-title: Masonry International – volume: 156 start-page: 636 year: 1967 ident: 10.1016/j.tafmec.2024.104648_b0110 article-title: How long is the coast of Britain? Statistical self-similarity and fractional dimension publication-title: Science doi: 10.1126/science.156.3775.636 – volume: 60 start-page: 209 issue: 14 year: 1963 ident: 10.1016/j.tafmec.2024.104648_b0140 article-title: Microcracking of plain concrete and the shape of the stress-strain curve publication-title: ACI Mater. J. – volume: 269 year: 2023 ident: 10.1016/j.tafmec.2024.104648_b0160 article-title: Maximum aggregate size effects on the evolution of the FPZ and crack extensions in concrete - experimental and numerical investigation publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2023.112181 – year: 1913 ident: 10.1016/j.tafmec.2024.104648_b0060 article-title: Stresses in a plate due to the presence of cracks and sharp corners – volume: 71 start-page: 369 year: 2014 ident: 10.1016/j.tafmec.2024.104648_b0010 article-title: Size-dependent fracture behavior of Guiting limestone under mixed mode loading publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2014.07.019 – year: 2003 ident: 10.1016/j.tafmec.2024.104648_b0105 – volume: 89 start-page: 127 issue: EM6 year: 1963 ident: 10.1016/j.tafmec.2024.104648_b0170 article-title: Fracture of plain concrete publication-title: J .Eng. Mech. Div. doi: 10.1061/JMCEA3.0000430 – volume: 20 start-page: 277 issue: 3 year: 1967 ident: 10.1016/j.tafmec.2024.104648_b0080 article-title: Stresses in an infinite plate with two unequal circular holes publication-title: Quart. J. Mech. Appl. Math. doi: 10.1093/qjmam/20.3.277 – volume: 12 issue: 9 year: 2019 ident: 10.1016/j.tafmec.2024.104648_b0040 article-title: Impacts of low atmospheric pressure on properties of cement concrete in plateau areas: a literature review publication-title: Materials doi: 10.3390/ma12091384 – volume: 283 start-page: 923 issue: 1 year: 2015 ident: 10.1016/j.tafmec.2024.104648_b0070 article-title: A combined XFEM-damage mechanics approach for concrete crack propagation publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.10.043 – ident: 10.1016/j.tafmec.2024.104648_b0135 doi: 10.1201/9781315370293-4 – volume: 109 year: 2020 ident: 10.1016/j.tafmec.2024.104648_b0085 article-title: The effect of the shape and size of initial flaws on crack propagation in uniaxially compressed linear brittle materials publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2020.102742 – volume: 253 year: 2021 ident: 10.1016/j.tafmec.2024.104648_b0050 article-title: Application of equivalent circle and ellipse for pore shape modeling in crack growth problem: anumerical investigation in microscale publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2021.107882 – start-page: 104 year: 2003 ident: 10.1016/j.tafmec.2024.104648_b0100 – volume: 127 year: 2023 ident: 10.1016/j.tafmec.2024.104648_b0015 article-title: A logarithmic model for predicting fracture trajectory of pre-cracked rock specimen under compression publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2023.104044 – volume: 36 issue: 2 year: 2024 ident: 10.1016/j.tafmec.2024.104648_b0020 article-title: Understanding masonry compressive fracture via fractal voids publication-title: Masonry International – volume: 129 start-page: 141 year: 2004 ident: 10.1016/j.tafmec.2024.104648_b0165 article-title: Stress intensity factors of a central slant crack with frictional surfaces in plates with biaxial loading publication-title: Int. J. Fract. doi: 10.1023/B:FRAC.0000045714.80342.a3 – start-page: 257 year: 2005 ident: 10.1016/j.tafmec.2024.104648_b0145 – volume: 221 start-page: 163 year: 1921 ident: 10.1016/j.tafmec.2024.104648_b0130 article-title: “The phenomena of rupture and flow in solids,” Philosophical Transactions of the Royal Society of London publication-title: Series A, Containing Papers of a Mathematical or Physical Character – volume: 97 start-page: 250 year: 2018 ident: 10.1016/j.tafmec.2024.104648_b0025 article-title: Fracture of brittle and quasi-brittle materials in compression; a review of the current state of knowledge and a different approach publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2018.08.014 – volume: 103 year: 2019 ident: 10.1016/j.tafmec.2024.104648_b0090 article-title: Effects of pore-crack relative location on crack propagation in porous media using XFEM method publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2019.102241 – volume: 42 start-page: 797 year: 1898 ident: 10.1016/j.tafmec.2024.104648_b0125 article-title: Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre publication-title: Zeitschrift Des Vereines Deutscher Ingenieure – ident: 10.1016/j.tafmec.2024.104648_b0120 doi: 10.1002/9780470172674.ch1 – volume: 24 start-page: 479 year: 2010 ident: 10.1016/j.tafmec.2024.104648_b0150 article-title: Fracture process zone size and true fracture energy of concrete using acoustic emission publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2009.10.014 – volume: 36 start-page: 4089 year: 1999 ident: 10.1016/j.tafmec.2024.104648_b0175 article-title: A 3-D ellipsoidal flaw model for brittle fracture in compression publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(98)00189-9 – volume: 15 start-page: 817 year: 1985 ident: 10.1016/j.tafmec.2024.104648_b0115 article-title: The fractal nature of the surface of cement paste publication-title: Cem. Concr. Res. doi: 10.1016/0008-8846(85)90148-6 – volume: 167 start-page: 123 year: 2016 ident: 10.1016/j.tafmec.2024.104648_b0155 article-title: Experimental and numerical analysis of crack evolution in concrete through acoustic emission technique and mesoscale modelling publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2016.03.044 – volume: 102 start-page: 193 year: 2017 ident: 10.1016/j.tafmec.2024.104648_b0180 article-title: Stress concentrations around voids in three dimensions: the roots of failure publication-title: J. Struct. Geol. doi: 10.1016/j.jsg.2017.07.013 – volume: 81 issue: 167 year: 2022 ident: 10.1016/j.tafmec.2024.104648_b0005 article-title: Experimental research on the mechanical properties and energy transfer of fractured granite under triaxial loading publication-title: Bull. Eng. Geol. Environ. – year: 2022 ident: 10.1016/j.tafmec.2024.104648_b0075 article-title: On a universal failure criterion for brittle materials – volume: 167 year: 2023 ident: 10.1016/j.tafmec.2024.104648_b0065 article-title: 3D DEM simulations of the variability of rock mechanical behaviour based on random rock microcracks publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2023.105395 – volume: 290 year: 2021 ident: 10.1016/j.tafmec.2024.104648_b0185 article-title: On the fracture of brittle and quasi-brittle materials subject to uniaxial compression and the interaction of voids on cracking publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.123217 – volume: 42 start-page: 5642 year: 2016 ident: 10.1016/j.tafmec.2024.104648_b0055 article-title: Effect of pores on crack propagation behavior for porous Si3N4 ceramics publication-title: Ceramics International doi: 10.1016/j.ceramint.2015.12.086 – volume: 47 start-page: 1914 year: 2024 ident: 10.1016/j.tafmec.2024.104648_b0030 article-title: An improved maximum tangential stress criterion for an inclined crack in uniaxial compression considering T-stress and crack parameter publication-title: Fatigue Fract. Eng. Mater. Struct. doi: 10.1111/ffe.14284 – volume: 30 start-page: 873 issue: 7 year: 1993 ident: 10.1016/j.tafmec.2024.104648_b0045 article-title: Fracture nucleation form a compression-parallel, finite-width elliptical flaw publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/0148-9062(93)90039-G – volume: 107 year: 2020 ident: 10.1016/j.tafmec.2024.104648_b0095 article-title: Effects of pore(s)-crack locations and arrangements on crack growth modeling in porous media publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2020.102529 – volume: 33 start-page: 155 issue: 1 year: 2003 ident: 10.1016/j.tafmec.2024.104648_b0035 article-title: Porosity, pore size distribution and in situ strength of concrete publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(02)00942-0 |
SSID | ssj0017193 |
Score | 2.3613505 |
Snippet | •A comprehensive idealization of a void as a fractal surface is presented.•The “small flaw assumption” is defined and used to analyze fractal voids.•Fractal... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 104648 |
SubjectTerms | Compressive fracture Fractal void Shape effect Size effect Stress intensity factor |
Title | Using fractal voids to understand Mode I compressive fracture in brittle materials – A two-dimensional analysis |
URI | https://dx.doi.org/10.1016/j.tafmec.2024.104648 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14XZt3NsdSLK3FHtRibyG7O4EIprWm9Sb-B_-hv8SdbFIqiAdPSZZZCLPDPNhvviHk0hegfVxoMUdyl3mJUExYvmI69Qa9HPluOabzdhwMJt7N1J82SK_uhUFYZeX7jU8vvXW10qm02ZlnWeceAfTc80oUpKtLZ-xg90K08qv3NczDDm1DvIv83ihdt8-VGK8iSZ8BiQwdr7zsxClAv4WnjZDT3yO7Va5Iu-Z39kkD8gOys8EgeEheyit_mmKvkxZdzTL1SosZXa57VihOO6NDitjxEvO6AiO-XADNcioWGdIYU525GmOkXx-ftEuLtxlTSP1vaDtoUrGXHJFJ__qhN2DVFAUmdblQsBSEpyBwnBBC_aIDfpCIQJdVEHGQli0dzqXrK18mjhQ2VwH3U5FGEDlJwJXjHpNmPsvhhFAfuCcU1hxYRrrI680tgDQEpaSbRC3CauXFc0OWEdcosqfYKDtGZcdG2S0S1hqOfxx6rP35nztP_73zjGzjl8HjnZNmsVjChc4rCtEuDadNtrrD0WCMz9Hd4-gb-pPRCQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSD-MT63IPXpWmSTTbHIpbWai9a8Bay2QlEMK011av_wX_oL3Enm0gF8eAtbHYgfFnmwX7zDcCFUGh8XOhwN5Ue9xOluXKE5ib1RrMcCa8a03k7DgYT__pBPKzAZdMLQ7TK2vdbn15563qlU6PZmeV5544I9NL3KxakZ0rnVVgjdSrRgrXecDQYf18mhF2rvUsS32TQdNBVNK8yyZ6QtAxdv7rvpEFAv0WopajT34atOl1kPftFO7CCxS5sLokI7sFzdevPMmp3Mltfp7l-YeWULb7bVhgNPGNDRvTxivb6inb7Yo4sL5ia56RkzEzyas8j-3z_YD1Wvk25JvV_q9zBklrAZB8m_av7ywGvBynw1FQMJc9Q-RoD1w0xNA8m5geJCkxlhZHE1OmmrpSpJ7RIEzdVXakDKTKVRRi5SSC16x1Aq5gWeAhMoPSVprKDKkmPpL2lg5iFqHXqJVEbeANePLN6GXFDJHuMLdgxgR1bsNsQNgjHP_57bFz6n5ZH_7Y8h_XB_e1NfDMcj45hg95Yet4JtMr5Ak9NmlGqs_oYfQGe0tIX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+fractal+voids+to+understand+Mode+I+compressive+fracture+in+brittle+materials+%E2%80%93+A+two-dimensional+analysis&rft.jtitle=Theoretical+and+applied+fracture+mechanics&rft.au=Ahmed%2C+A.&rft.au=Shrive%2C+N.G.&rft.date=2024-10-01&rft.issn=0167-8442&rft.volume=133&rft.spage=104648&rft_id=info:doi/10.1016%2Fj.tafmec.2024.104648&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tafmec_2024_104648 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8442&client=summon |