Using fractal voids to understand Mode I compressive fracture in brittle materials – A two-dimensional analysis

•A comprehensive idealization of a void as a fractal surface is presented.•The “small flaw assumption” is defined and used to analyze fractal voids.•Fractal void analysis is shown capable of satisfying the stress and energy criteria.•Via fractal void analysis KI is computed for voids in compression...

Full description

Saved in:
Bibliographic Details
Published inTheoretical and applied fracture mechanics Vol. 133; p. 104648
Main Authors Ahmed, A., Shrive, N.G.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A comprehensive idealization of a void as a fractal surface is presented.•The “small flaw assumption” is defined and used to analyze fractal voids.•Fractal void analysis is shown capable of satisfying the stress and energy criteria.•Via fractal void analysis KI is computed for voids in compression without iteration.•Fractal void analysis predicts shape and size effects in 2D compressive fracture. Unlike cases of direct or indirect tensile loading, analysis of Mode I fracture in cases of compressive loading must necessarily consider two-dimensional flaw geometries. The consequent analytical complications have resulted in little theoretical evolution towards understanding Mode I fracture in compressive loading. Researchers have recently observed that the linear elastic (LE) stress fields surrounding two-dimensional flaws in compression appear to have indicative value regarding Mode I fracture, but no rational framework has yet been proposed for their interpretation. Herein it is demonstrated that by idealizing void surfaces as fractal, and using what will be called the “small flaw assumption,” LE stress fields can be interpreted to obtain significant insight regarding brittle Mode I compressive fracture. Using fractal voids, a rational and consistent explanation for the satisfaction of the stress and energy criteria at the surface of two-dimensional flaws is presented. The discussion resolves many typical theoretical issues in the literature in a manner consistent with fundamental Griffith theory, and accounts for size and shape effects. The framework further enables the computationally efficient prediction of peak KI values associated with the propagation of line cracks from two-dimensional flaws from a brittle medium subject to macroscopic uniaxial compression via LE stress fields.
AbstractList •A comprehensive idealization of a void as a fractal surface is presented.•The “small flaw assumption” is defined and used to analyze fractal voids.•Fractal void analysis is shown capable of satisfying the stress and energy criteria.•Via fractal void analysis KI is computed for voids in compression without iteration.•Fractal void analysis predicts shape and size effects in 2D compressive fracture. Unlike cases of direct or indirect tensile loading, analysis of Mode I fracture in cases of compressive loading must necessarily consider two-dimensional flaw geometries. The consequent analytical complications have resulted in little theoretical evolution towards understanding Mode I fracture in compressive loading. Researchers have recently observed that the linear elastic (LE) stress fields surrounding two-dimensional flaws in compression appear to have indicative value regarding Mode I fracture, but no rational framework has yet been proposed for their interpretation. Herein it is demonstrated that by idealizing void surfaces as fractal, and using what will be called the “small flaw assumption,” LE stress fields can be interpreted to obtain significant insight regarding brittle Mode I compressive fracture. Using fractal voids, a rational and consistent explanation for the satisfaction of the stress and energy criteria at the surface of two-dimensional flaws is presented. The discussion resolves many typical theoretical issues in the literature in a manner consistent with fundamental Griffith theory, and accounts for size and shape effects. The framework further enables the computationally efficient prediction of peak KI values associated with the propagation of line cracks from two-dimensional flaws from a brittle medium subject to macroscopic uniaxial compression via LE stress fields.
ArticleNumber 104648
Author Shrive, N.G.
Ahmed, A.
Author_xml – sequence: 1
  givenname: A.
  orcidid: 0000-0002-0290-6928
  surname: Ahmed
  fullname: Ahmed, A.
  email: ahmed.ahmed1@ucalgary.ca
– sequence: 2
  givenname: N.G.
  surname: Shrive
  fullname: Shrive, N.G.
  email: ngshrive@ucalgary.ca
BookMark eNp9kM9OAjEQxnvAREDfwENfYLEt3d3uxYQQ_5BgvMi56bazpoRtsS0Ybr6Db-iTULKevcxMZr75MvOboJHzDhC6o2RGCa3ut7Okuh70jBHGc4tXXIzQOI_qQnDOrtEkxi0htKbNfIw-N9G6D9wFpZPa4aO3JuLk8cEZCDEpZ_CrN4BXWPt-HyBGe4RBfgiArcNtsCntAPcqQbBqF_Hv9w9e4PTlC2N7cNF6l61VDqdo4w266rIKbv_yFG2eHt-XL8X67Xm1XKwLzcoyFR203EDFWA11Llh-QLUVJxQaAZpQzYTQ89KUWjHdUmEqUXZt10DDVCUMm08RH3x18DEG6OQ-2F6Fk6REXlDJrRxQyQsqOaDKaw_DGuTbjhaCjNqC02BsAJ2k8fZ_gzNKSHtQ
Cites_doi 10.1126/science.156.3775.636
10.1016/j.ijsolstr.2023.112181
10.1016/j.ijrmms.2014.07.019
10.1061/JMCEA3.0000430
10.1093/qjmam/20.3.277
10.3390/ma12091384
10.1016/j.cma.2014.10.043
10.1201/9781315370293-4
10.1016/j.tafmec.2020.102742
10.1016/j.engfracmech.2021.107882
10.1016/j.tafmec.2023.104044
10.1023/B:FRAC.0000045714.80342.a3
10.1016/j.tafmec.2018.08.014
10.1016/j.tafmec.2019.102241
10.1002/9780470172674.ch1
10.1016/j.conbuildmat.2009.10.014
10.1016/S0020-7683(98)00189-9
10.1016/0008-8846(85)90148-6
10.1016/j.engfracmech.2016.03.044
10.1016/j.jsg.2017.07.013
10.1016/j.ijrmms.2023.105395
10.1016/j.conbuildmat.2021.123217
10.1016/j.ceramint.2015.12.086
10.1111/ffe.14284
10.1016/0148-9062(93)90039-G
10.1016/j.tafmec.2020.102529
10.1016/S0008-8846(02)00942-0
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.tafmec.2024.104648
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_tafmec_2024_104648
S0167844224003987
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UHS
WUQ
XPP
ZMT
~02
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c255t-feb4de6227e74de2016ab6401e98ec01c288c35d5ca2cb18d685fbf9e92a68d23
IEDL.DBID .~1
ISSN 0167-8442
IngestDate Tue Jul 01 03:24:28 EDT 2025
Sat Sep 14 18:09:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Shape effect
Fractal void
Stress intensity factor
Compressive fracture
Size effect
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-feb4de6227e74de2016ab6401e98ec01c288c35d5ca2cb18d685fbf9e92a68d23
ORCID 0000-0002-0290-6928
ParticipantIDs crossref_primary_10_1016_j_tafmec_2024_104648
elsevier_sciencedirect_doi_10_1016_j_tafmec_2024_104648
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Theoretical and applied fracture mechanics
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Huo, Wang, Chen, He (b0040) 2019; 12
Falconer (b0105) 2003
New York, Wiley, 1997, pp. 1-58.
T. Anderson, “Linear Elastic Fracture Mechanics,” in
Rezanezhad, Lajevardi, Karimpouli (b0050) 2021; 253
Ahmed, Shrive (b0020) 2024; 36
Winslow (b0115) 1985; 15
Kirsch (b0125) 1898; 42
Iskander, Shrive (b0025) 2018; 97
Boukais, Dahou, Matallah (b0160) 2023; 269
Wang, Shrive (b0175) 1999; 36
Boca Raton, Taylor & Francis, 2005, pp. 25-102.
W. Pilkey, “Definitions and Design Relations,” in
Liu, Zhu, Zhou, Liu (b0030) 2024; 47
Mandelbrot (b0110) 1967; 156
Anderson (b0145) 2005
Haddon (b0080) 1967; 20
Akbardoost, Ayatollahi, Aliha, Pavier, Smith (b0010) 2014; 71
Kumar, Bhattacharjee (b0035) 2003; 33
Ahmed, Iskander, Shrive (b0075) 2022
Muralidhara, Raghu Prasad, Eskandari, Karihaloo (b0150) 2010; 24
Hsu, Slate, Sturman, Winter (b0140) 1963; 60
Davis, Healy, Bubeck, Walker (b0180) 2017; 102
Glucklich (b0170) 1963; 89
Zhu, Shi, Zhu, Liu, Hu (b0015) 2023; 127
Chen, Wang, Jin, Pan, Jin (b0055) 2016; 42
Roth, Leger, Soulaimani (b0070) 2015; 283
Ye, Li, Zeng, Tang (b0065) 2023; 167
Inglis (b0060) 1913
Luo, Xu, Gong, Qu, Li, Wang, Li (b0005) 2022; 81
Saliba, Matallah, Loukili, Regoin, Gregoire, Verdon, Pijaudier-Cabot (b0155) 2016; 167
Rezanezhad, Lajevardi, Karimpouli (b0095) 2020; 107
Iskander, Shrive (b0185) 2021; 290
Iskander, Shrive (b0085) 2020; 109
Hammouda, Fayed, Sallam (b0165) 2004; 129
Yuan, Lajtai, Ayari (b0045) 1993; 30
Rezanezhad, Lajevardi, Karimpouli (b0090) 2019; 103
Griffith (b0130) 1921; 221
Boresi, Schmidt (b0100) 2003
Mandelbrot (10.1016/j.tafmec.2024.104648_b0110) 1967; 156
Zhu (10.1016/j.tafmec.2024.104648_b0015) 2023; 127
Chen (10.1016/j.tafmec.2024.104648_b0055) 2016; 42
Ahmed (10.1016/j.tafmec.2024.104648_b0075) 2022
Rezanezhad (10.1016/j.tafmec.2024.104648_b0095) 2020; 107
Luo (10.1016/j.tafmec.2024.104648_b0005) 2022; 81
Haddon (10.1016/j.tafmec.2024.104648_b0080) 1967; 20
10.1016/j.tafmec.2024.104648_b0135
Wang (10.1016/j.tafmec.2024.104648_b0175) 1999; 36
Hammouda (10.1016/j.tafmec.2024.104648_b0165) 2004; 129
Iskander (10.1016/j.tafmec.2024.104648_b0085) 2020; 109
Roth (10.1016/j.tafmec.2024.104648_b0070) 2015; 283
Yuan (10.1016/j.tafmec.2024.104648_b0045) 1993; 30
Boresi (10.1016/j.tafmec.2024.104648_b0100) 2003
Griffith (10.1016/j.tafmec.2024.104648_b0130) 1921; 221
Muralidhara (10.1016/j.tafmec.2024.104648_b0150) 2010; 24
Falconer (10.1016/j.tafmec.2024.104648_b0105) 2003
Inglis (10.1016/j.tafmec.2024.104648_b0060) 1913
Ye (10.1016/j.tafmec.2024.104648_b0065) 2023; 167
Akbardoost (10.1016/j.tafmec.2024.104648_b0010) 2014; 71
Huo (10.1016/j.tafmec.2024.104648_b0040) 2019; 12
Davis (10.1016/j.tafmec.2024.104648_b0180) 2017; 102
Kumar (10.1016/j.tafmec.2024.104648_b0035) 2003; 33
Rezanezhad (10.1016/j.tafmec.2024.104648_b0050) 2021; 253
Winslow (10.1016/j.tafmec.2024.104648_b0115) 1985; 15
Iskander (10.1016/j.tafmec.2024.104648_b0025) 2018; 97
10.1016/j.tafmec.2024.104648_b0120
Liu (10.1016/j.tafmec.2024.104648_b0030) 2024; 47
Iskander (10.1016/j.tafmec.2024.104648_b0185) 2021; 290
Boukais (10.1016/j.tafmec.2024.104648_b0160) 2023; 269
Hsu (10.1016/j.tafmec.2024.104648_b0140) 1963; 60
Rezanezhad (10.1016/j.tafmec.2024.104648_b0090) 2019; 103
Anderson (10.1016/j.tafmec.2024.104648_b0145) 2005
Glucklich (10.1016/j.tafmec.2024.104648_b0170) 1963; 89
Kirsch (10.1016/j.tafmec.2024.104648_b0125) 1898; 42
Ahmed (10.1016/j.tafmec.2024.104648_b0020) 2024; 36
Saliba (10.1016/j.tafmec.2024.104648_b0155) 2016; 167
References_xml – year: 1913
  ident: b0060
  article-title: Stresses in a plate due to the presence of cracks and sharp corners
  publication-title: In
– volume: 167
  start-page: 123
  year: 2016
  end-page: 137
  ident: b0155
  article-title: Experimental and numerical analysis of crack evolution in concrete through acoustic emission technique and mesoscale modelling
  publication-title: Eng. Fract. Mech.
– volume: 30
  start-page: 873
  year: 1993
  end-page: 876
  ident: b0045
  article-title: Fracture nucleation form a compression-parallel, finite-width elliptical flaw
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 36
  start-page: 4089
  year: 1999
  end-page: 4109
  ident: b0175
  article-title: A 3-D ellipsoidal flaw model for brittle fracture in compression
  publication-title: Int. J. Solids Struct.
– volume: 221
  start-page: 163
  year: 1921
  end-page: 198
  ident: b0130
  article-title: “The phenomena of rupture and flow in solids,”
  publication-title: Series A, Containing Papers of a Mathematical or Physical Character
– volume: 127
  year: 2023
  ident: b0015
  article-title: A logarithmic model for predicting fracture trajectory of pre-cracked rock specimen under compression
  publication-title: Theor. Appl. Fract. Mech.
– reference: , Boca Raton, Taylor & Francis, 2005, pp. 25-102.
– volume: 12
  year: 2019
  ident: b0040
  article-title: Impacts of low atmospheric pressure on properties of cement concrete in plateau areas: a literature review
  publication-title: Materials
– volume: 129
  start-page: 141
  year: 2004
  end-page: 148
  ident: b0165
  article-title: Stress intensity factors of a central slant crack with frictional surfaces in plates with biaxial loading
  publication-title: Int. J. Fract.
– volume: 102
  start-page: 193
  year: 2017
  end-page: 207
  ident: b0180
  article-title: Stress concentrations around voids in three dimensions: the roots of failure
  publication-title: J. Struct. Geol.
– volume: 167
  year: 2023
  ident: b0065
  article-title: 3D DEM simulations of the variability of rock mechanical behaviour based on random rock microcracks
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 107
  year: 2020
  ident: b0095
  article-title: Effects of pore(s)-crack locations and arrangements on crack growth modeling in porous media
  publication-title: Theor. Appl. Fract. Mech.
– volume: 71
  start-page: 369
  year: 2014
  end-page: 380
  ident: b0010
  article-title: Size-dependent fracture behavior of Guiting limestone under mixed mode loading
  publication-title: Int. J. Rock Mech. Min. Sci.
– reference: W. Pilkey, “Definitions and Design Relations,” in
– reference: , New York, Wiley, 1997, pp. 1-58.
– volume: 24
  start-page: 479
  year: 2010
  end-page: 486
  ident: b0150
  article-title: Fracture process zone size and true fracture energy of concrete using acoustic emission
  publication-title: Constr. Build. Mater.
– start-page: 104
  year: 2003
  end-page: 147
  ident: b0100
  article-title: “Inelastic Material Behavior,” in
– year: 2003
  ident: b0105
  article-title: Fractal Geometry - Mathematical Foundations and Applications
– year: 2022
  ident: b0075
  article-title: On a universal failure criterion for brittle materials
  publication-title: In
– volume: 156
  start-page: 636
  year: 1967
  end-page: 638
  ident: b0110
  article-title: How long is the coast of Britain? Statistical self-similarity and fractional dimension
  publication-title: Science
– volume: 283
  start-page: 923
  year: 2015
  end-page: 955
  ident: b0070
  article-title: A combined XFEM-damage mechanics approach for concrete crack propagation
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 20
  start-page: 277
  year: 1967
  end-page: 291
  ident: b0080
  article-title: Stresses in an infinite plate with two unequal circular holes
  publication-title: Quart. J. Mech. Appl. Math.
– volume: 60
  start-page: 209
  year: 1963
  end-page: 224
  ident: b0140
  article-title: Microcracking of plain concrete and the shape of the stress-strain curve
  publication-title: ACI Mater. J.
– volume: 47
  start-page: 1914
  year: 2024
  end-page: 1926
  ident: b0030
  article-title: An improved maximum tangential stress criterion for an inclined crack in uniaxial compression considering T-stress and crack parameter
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 290
  year: 2021
  ident: b0185
  article-title: On the fracture of brittle and quasi-brittle materials subject to uniaxial compression and the interaction of voids on cracking
  publication-title: Constr. Build. Mater.
– volume: 97
  start-page: 250
  year: 2018
  end-page: 257
  ident: b0025
  article-title: Fracture of brittle and quasi-brittle materials in compression; a review of the current state of knowledge and a different approach
  publication-title: Theor. Appl. Fract. Mech.
– start-page: 257
  year: 2005
  end-page: 296
  ident: b0145
  article-title: “Fracture Mechanisms in Nonmetals,” in
– volume: 253
  year: 2021
  ident: b0050
  article-title: Application of equivalent circle and ellipse for pore shape modeling in crack growth problem: anumerical investigation in microscale
  publication-title: Eng. Fract. Mech.
– volume: 33
  start-page: 155
  year: 2003
  end-page: 164
  ident: b0035
  article-title: Porosity, pore size distribution and in situ strength of concrete
  publication-title: Cem. Concr. Res.
– volume: 103
  year: 2019
  ident: b0090
  article-title: Effects of pore-crack relative location on crack propagation in porous media using XFEM method
  publication-title: Theor. Appl. Fract. Mech.
– volume: 269
  year: 2023
  ident: b0160
  article-title: Maximum aggregate size effects on the evolution of the FPZ and crack extensions in concrete - experimental and numerical investigation
  publication-title: Int. J. Solids Struct.
– volume: 81
  year: 2022
  ident: b0005
  article-title: Experimental research on the mechanical properties and energy transfer of fractured granite under triaxial loading
  publication-title: Bull. Eng. Geol. Environ.
– volume: 109
  year: 2020
  ident: b0085
  article-title: The effect of the shape and size of initial flaws on crack propagation in uniaxially compressed linear brittle materials
  publication-title: Theor. Appl. Fract. Mech.
– volume: 42
  start-page: 797
  year: 1898
  end-page: 807
  ident: b0125
  article-title: Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre
  publication-title: Zeitschrift Des Vereines Deutscher Ingenieure
– volume: 15
  start-page: 817
  year: 1985
  end-page: 824
  ident: b0115
  article-title: The fractal nature of the surface of cement paste
  publication-title: Cem. Concr. Res.
– reference: T. Anderson, “Linear Elastic Fracture Mechanics,” in
– volume: 42
  start-page: 5642
  year: 2016
  end-page: 5649
  ident: b0055
  article-title: Effect of pores on crack propagation behavior for porous Si3N4 ceramics
  publication-title: Ceramics International
– volume: 89
  start-page: 127
  year: 1963
  end-page: 138
  ident: b0170
  article-title: Fracture of plain concrete
  publication-title: J .Eng. Mech. Div.
– volume: 36
  year: 2024
  ident: b0020
  article-title: Understanding masonry compressive fracture via fractal voids
  publication-title: Masonry International
– volume: 156
  start-page: 636
  year: 1967
  ident: 10.1016/j.tafmec.2024.104648_b0110
  article-title: How long is the coast of Britain? Statistical self-similarity and fractional dimension
  publication-title: Science
  doi: 10.1126/science.156.3775.636
– volume: 60
  start-page: 209
  issue: 14
  year: 1963
  ident: 10.1016/j.tafmec.2024.104648_b0140
  article-title: Microcracking of plain concrete and the shape of the stress-strain curve
  publication-title: ACI Mater. J.
– volume: 269
  year: 2023
  ident: 10.1016/j.tafmec.2024.104648_b0160
  article-title: Maximum aggregate size effects on the evolution of the FPZ and crack extensions in concrete - experimental and numerical investigation
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2023.112181
– year: 1913
  ident: 10.1016/j.tafmec.2024.104648_b0060
  article-title: Stresses in a plate due to the presence of cracks and sharp corners
– volume: 71
  start-page: 369
  year: 2014
  ident: 10.1016/j.tafmec.2024.104648_b0010
  article-title: Size-dependent fracture behavior of Guiting limestone under mixed mode loading
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2014.07.019
– year: 2003
  ident: 10.1016/j.tafmec.2024.104648_b0105
– volume: 89
  start-page: 127
  issue: EM6
  year: 1963
  ident: 10.1016/j.tafmec.2024.104648_b0170
  article-title: Fracture of plain concrete
  publication-title: J .Eng. Mech. Div.
  doi: 10.1061/JMCEA3.0000430
– volume: 20
  start-page: 277
  issue: 3
  year: 1967
  ident: 10.1016/j.tafmec.2024.104648_b0080
  article-title: Stresses in an infinite plate with two unequal circular holes
  publication-title: Quart. J. Mech. Appl. Math.
  doi: 10.1093/qjmam/20.3.277
– volume: 12
  issue: 9
  year: 2019
  ident: 10.1016/j.tafmec.2024.104648_b0040
  article-title: Impacts of low atmospheric pressure on properties of cement concrete in plateau areas: a literature review
  publication-title: Materials
  doi: 10.3390/ma12091384
– volume: 283
  start-page: 923
  issue: 1
  year: 2015
  ident: 10.1016/j.tafmec.2024.104648_b0070
  article-title: A combined XFEM-damage mechanics approach for concrete crack propagation
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.10.043
– ident: 10.1016/j.tafmec.2024.104648_b0135
  doi: 10.1201/9781315370293-4
– volume: 109
  year: 2020
  ident: 10.1016/j.tafmec.2024.104648_b0085
  article-title: The effect of the shape and size of initial flaws on crack propagation in uniaxially compressed linear brittle materials
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2020.102742
– volume: 253
  year: 2021
  ident: 10.1016/j.tafmec.2024.104648_b0050
  article-title: Application of equivalent circle and ellipse for pore shape modeling in crack growth problem: anumerical investigation in microscale
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2021.107882
– start-page: 104
  year: 2003
  ident: 10.1016/j.tafmec.2024.104648_b0100
– volume: 127
  year: 2023
  ident: 10.1016/j.tafmec.2024.104648_b0015
  article-title: A logarithmic model for predicting fracture trajectory of pre-cracked rock specimen under compression
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2023.104044
– volume: 36
  issue: 2
  year: 2024
  ident: 10.1016/j.tafmec.2024.104648_b0020
  article-title: Understanding masonry compressive fracture via fractal voids
  publication-title: Masonry International
– volume: 129
  start-page: 141
  year: 2004
  ident: 10.1016/j.tafmec.2024.104648_b0165
  article-title: Stress intensity factors of a central slant crack with frictional surfaces in plates with biaxial loading
  publication-title: Int. J. Fract.
  doi: 10.1023/B:FRAC.0000045714.80342.a3
– start-page: 257
  year: 2005
  ident: 10.1016/j.tafmec.2024.104648_b0145
– volume: 221
  start-page: 163
  year: 1921
  ident: 10.1016/j.tafmec.2024.104648_b0130
  article-title: “The phenomena of rupture and flow in solids,” Philosophical Transactions of the Royal Society of London
  publication-title: Series A, Containing Papers of a Mathematical or Physical Character
– volume: 97
  start-page: 250
  year: 2018
  ident: 10.1016/j.tafmec.2024.104648_b0025
  article-title: Fracture of brittle and quasi-brittle materials in compression; a review of the current state of knowledge and a different approach
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2018.08.014
– volume: 103
  year: 2019
  ident: 10.1016/j.tafmec.2024.104648_b0090
  article-title: Effects of pore-crack relative location on crack propagation in porous media using XFEM method
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2019.102241
– volume: 42
  start-page: 797
  year: 1898
  ident: 10.1016/j.tafmec.2024.104648_b0125
  article-title: Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre
  publication-title: Zeitschrift Des Vereines Deutscher Ingenieure
– ident: 10.1016/j.tafmec.2024.104648_b0120
  doi: 10.1002/9780470172674.ch1
– volume: 24
  start-page: 479
  year: 2010
  ident: 10.1016/j.tafmec.2024.104648_b0150
  article-title: Fracture process zone size and true fracture energy of concrete using acoustic emission
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2009.10.014
– volume: 36
  start-page: 4089
  year: 1999
  ident: 10.1016/j.tafmec.2024.104648_b0175
  article-title: A 3-D ellipsoidal flaw model for brittle fracture in compression
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(98)00189-9
– volume: 15
  start-page: 817
  year: 1985
  ident: 10.1016/j.tafmec.2024.104648_b0115
  article-title: The fractal nature of the surface of cement paste
  publication-title: Cem. Concr. Res.
  doi: 10.1016/0008-8846(85)90148-6
– volume: 167
  start-page: 123
  year: 2016
  ident: 10.1016/j.tafmec.2024.104648_b0155
  article-title: Experimental and numerical analysis of crack evolution in concrete through acoustic emission technique and mesoscale modelling
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2016.03.044
– volume: 102
  start-page: 193
  year: 2017
  ident: 10.1016/j.tafmec.2024.104648_b0180
  article-title: Stress concentrations around voids in three dimensions: the roots of failure
  publication-title: J. Struct. Geol.
  doi: 10.1016/j.jsg.2017.07.013
– volume: 81
  issue: 167
  year: 2022
  ident: 10.1016/j.tafmec.2024.104648_b0005
  article-title: Experimental research on the mechanical properties and energy transfer of fractured granite under triaxial loading
  publication-title: Bull. Eng. Geol. Environ.
– year: 2022
  ident: 10.1016/j.tafmec.2024.104648_b0075
  article-title: On a universal failure criterion for brittle materials
– volume: 167
  year: 2023
  ident: 10.1016/j.tafmec.2024.104648_b0065
  article-title: 3D DEM simulations of the variability of rock mechanical behaviour based on random rock microcracks
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2023.105395
– volume: 290
  year: 2021
  ident: 10.1016/j.tafmec.2024.104648_b0185
  article-title: On the fracture of brittle and quasi-brittle materials subject to uniaxial compression and the interaction of voids on cracking
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.123217
– volume: 42
  start-page: 5642
  year: 2016
  ident: 10.1016/j.tafmec.2024.104648_b0055
  article-title: Effect of pores on crack propagation behavior for porous Si3N4 ceramics
  publication-title: Ceramics International
  doi: 10.1016/j.ceramint.2015.12.086
– volume: 47
  start-page: 1914
  year: 2024
  ident: 10.1016/j.tafmec.2024.104648_b0030
  article-title: An improved maximum tangential stress criterion for an inclined crack in uniaxial compression considering T-stress and crack parameter
  publication-title: Fatigue Fract. Eng. Mater. Struct.
  doi: 10.1111/ffe.14284
– volume: 30
  start-page: 873
  issue: 7
  year: 1993
  ident: 10.1016/j.tafmec.2024.104648_b0045
  article-title: Fracture nucleation form a compression-parallel, finite-width elliptical flaw
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/0148-9062(93)90039-G
– volume: 107
  year: 2020
  ident: 10.1016/j.tafmec.2024.104648_b0095
  article-title: Effects of pore(s)-crack locations and arrangements on crack growth modeling in porous media
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2020.102529
– volume: 33
  start-page: 155
  issue: 1
  year: 2003
  ident: 10.1016/j.tafmec.2024.104648_b0035
  article-title: Porosity, pore size distribution and in situ strength of concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(02)00942-0
SSID ssj0017193
Score 2.3613505
Snippet •A comprehensive idealization of a void as a fractal surface is presented.•The “small flaw assumption” is defined and used to analyze fractal voids.•Fractal...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 104648
SubjectTerms Compressive fracture
Fractal void
Shape effect
Size effect
Stress intensity factor
Title Using fractal voids to understand Mode I compressive fracture in brittle materials – A two-dimensional analysis
URI https://dx.doi.org/10.1016/j.tafmec.2024.104648
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14XZt3NsdSLK3FHtRibyG7O4EIprWm9Sb-B_-hv8SdbFIqiAdPSZZZCLPDPNhvviHk0hegfVxoMUdyl3mJUExYvmI69Qa9HPluOabzdhwMJt7N1J82SK_uhUFYZeX7jU8vvXW10qm02ZlnWeceAfTc80oUpKtLZ-xg90K08qv3NczDDm1DvIv83ihdt8-VGK8iSZ8BiQwdr7zsxClAv4WnjZDT3yO7Va5Iu-Z39kkD8gOys8EgeEheyit_mmKvkxZdzTL1SosZXa57VihOO6NDitjxEvO6AiO-XADNcioWGdIYU525GmOkXx-ftEuLtxlTSP1vaDtoUrGXHJFJ__qhN2DVFAUmdblQsBSEpyBwnBBC_aIDfpCIQJdVEHGQli0dzqXrK18mjhQ2VwH3U5FGEDlJwJXjHpNmPsvhhFAfuCcU1hxYRrrI680tgDQEpaSbRC3CauXFc0OWEdcosqfYKDtGZcdG2S0S1hqOfxx6rP35nztP_73zjGzjl8HjnZNmsVjChc4rCtEuDadNtrrD0WCMz9Hd4-gb-pPRCQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSD-MT63IPXpWmSTTbHIpbWai9a8Bay2QlEMK011av_wX_oL3Enm0gF8eAtbHYgfFnmwX7zDcCFUGh8XOhwN5Ue9xOluXKE5ib1RrMcCa8a03k7DgYT__pBPKzAZdMLQ7TK2vdbn15563qlU6PZmeV5544I9NL3KxakZ0rnVVgjdSrRgrXecDQYf18mhF2rvUsS32TQdNBVNK8yyZ6QtAxdv7rvpEFAv0WopajT34atOl1kPftFO7CCxS5sLokI7sFzdevPMmp3Mltfp7l-YeWULb7bVhgNPGNDRvTxivb6inb7Yo4sL5ia56RkzEzyas8j-3z_YD1Wvk25JvV_q9zBklrAZB8m_av7ywGvBynw1FQMJc9Q-RoD1w0xNA8m5geJCkxlhZHE1OmmrpSpJ7RIEzdVXakDKTKVRRi5SSC16x1Aq5gWeAhMoPSVprKDKkmPpL2lg5iFqHXqJVEbeANePLN6GXFDJHuMLdgxgR1bsNsQNgjHP_57bFz6n5ZH_7Y8h_XB_e1NfDMcj45hg95Yet4JtMr5Ak9NmlGqs_oYfQGe0tIX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+fractal+voids+to+understand+Mode+I+compressive+fracture+in+brittle+materials+%E2%80%93+A+two-dimensional+analysis&rft.jtitle=Theoretical+and+applied+fracture+mechanics&rft.au=Ahmed%2C+A.&rft.au=Shrive%2C+N.G.&rft.date=2024-10-01&rft.issn=0167-8442&rft.volume=133&rft.spage=104648&rft_id=info:doi/10.1016%2Fj.tafmec.2024.104648&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tafmec_2024_104648
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8442&client=summon