A data-driven speech enhancement method based on A longest segment searching technique

This paper proposed a data-driven speech enhancement method based on the modeled long-range temporal dynamics (LRTDs). First, by extracting the Mel-Frequency Cepstral coefficient (MFCC) features from speech and noise corpora, the Gaussian Mixture Models (GMMs) of the speech and noise were trained re...

Full description

Saved in:
Bibliographic Details
Published inSpeech communication Vol. 92; pp. 142 - 151
Main Authors Hao, Yue, Bao, Feng, Bao, Changchun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2017
Subjects
Online AccessGet full text
ISSN0167-6393
1872-7182
DOI10.1016/j.specom.2017.06.004

Cover

Abstract This paper proposed a data-driven speech enhancement method based on the modeled long-range temporal dynamics (LRTDs). First, by extracting the Mel-Frequency Cepstral coefficient (MFCC) features from speech and noise corpora, the Gaussian Mixture Models (GMMs) of the speech and noise were trained respectively based on the expectation-maximization (EM) algorithm. Then, the LRTDs were obtained from the GMM models. Next, based on the LRTDs, a modified maximum a posterior (MAP) based adaptive longest matching segment searching (ALMSS) method derived from A* search technique was combined with the Vector Taylor Series (VTS) approximation algorithm in order to search the longest matching speech and noise segments (LMSNS) from speech and noise corpora. Finally, using the obtained LMSNS, the estimation of speech spectrum was achieved. Furthermore, a modified Wiener filter was constructed to further eliminate residual noise. The objective and subjective test results show that the proposed method outperforms the reference methods.
AbstractList This paper proposed a data-driven speech enhancement method based on the modeled long-range temporal dynamics (LRTDs). First, by extracting the Mel-Frequency Cepstral coefficient (MFCC) features from speech and noise corpora, the Gaussian Mixture Models (GMMs) of the speech and noise were trained respectively based on the expectation-maximization (EM) algorithm. Then, the LRTDs were obtained from the GMM models. Next, based on the LRTDs, a modified maximum a posterior (MAP) based adaptive longest matching segment searching (ALMSS) method derived from A* search technique was combined with the Vector Taylor Series (VTS) approximation algorithm in order to search the longest matching speech and noise segments (LMSNS) from speech and noise corpora. Finally, using the obtained LMSNS, the estimation of speech spectrum was achieved. Furthermore, a modified Wiener filter was constructed to further eliminate residual noise. The objective and subjective test results show that the proposed method outperforms the reference methods.
Author Hao, Yue
Bao, Changchun
Bao, Feng
Author_xml – sequence: 1
  givenname: Yue
  surname: Hao
  fullname: Hao, Yue
  organization: Speech and Audio Signal Processing Lab, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
– sequence: 2
  givenname: Feng
  surname: Bao
  fullname: Bao, Feng
  organization: Department of Electrical and Computer Engineering, The University of Auckland, Auckland 1010, New Zealand
– sequence: 3
  givenname: Changchun
  surname: Bao
  fullname: Bao, Changchun
  email: baochch@bjut.edu.cn
  organization: Speech and Audio Signal Processing Lab, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
BookMark eNp9kM1KAzEUhYNUsK2-gYu8wIzJ_CQzG6EU_6DgRt2GTHLTSekkNYkF397UunZ14XC-wz1ngWbOO0DolpKSEsrudmU8gPJTWRHKS8JKQpoLNKcdrwpOu2qG5tnGC1b39RVaxLgj2dF11Rx9rLCWSRY62CM4nHNAjRjcKJ2CCVzCE6TRazzICBp7h1d4790WYsIRtr-OCDKo0botThl29vMLrtGlkfsIN393id4fH97Wz8Xm9ellvdoUqmrbVJiBypryllJDaA8N4Y1sa6W46aBrGEjaq3ZQhrIBiG6kMZIr1pOKkSyqql6i5pyrgo8xgBGHYCcZvgUl4rSN2InzNuK0jSBM5OYZuz9jkH87WggiKgu5sbYBVBLa2_8DfgC9L3JS
Cites_doi 10.1109/TASLP.2016.2636445
10.1109/TASSP.1979.1163209
10.1038/44565
10.1109/TSA.2005.851929
10.1111/j.2517-6161.1977.tb01600.x
10.1109/TASL.2010.2064312
10.1109/TASL.2006.885256
10.1109/PROC.1979.11540
10.1109/TASLP.2015.2458585
10.1109/TASSP.1980.1163420
10.1109/TASSP.1984.1164453
10.1109/TASL.2009.2031793
10.1109/TASL.2013.2250959
10.1016/0167-6393(93)90095-3
10.1109/97.988717
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.specom.2017.06.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Social Welfare & Social Work
Psychology
EISSN 1872-7182
EndPage 151
ExternalDocumentID 10_1016_j_specom_2017_06_004
S0167639316302540
GroupedDBID --K
--M
-~X
.DC
.~1
07C
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
9JO
AACTN
AADFP
AAEDT
AAEDW
AAFJI
AAGJA
AAGJQ
AAGUQ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABIVO
ABJNI
ABMAC
ABMMH
ABOYX
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACXNI
ACZNC
ADBBV
ADEZE
ADIYS
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFYLN
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OKEIE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSO
SST
SSV
SSY
SSZ
T5K
WUQ
XFK
XJE
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c255t-fb1a317511f019e4074a53cc7f8e846ea19c5bcf16be0d4affa7c690260cf1c23
IEDL.DBID AIKHN
ISSN 0167-6393
IngestDate Thu Jul 03 08:30:31 EDT 2025
Fri Feb 23 02:28:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords A search technique
VTS
ALMSS
GMM
Modified Wiener filter
Speech enhancement
LRTDs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-fb1a317511f019e4074a53cc7f8e846ea19c5bcf16be0d4affa7c690260cf1c23
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_specom_2017_06_004
elsevier_sciencedirect_doi_10_1016_j_specom_2017_06_004
PublicationCentury 2000
PublicationDate September 2017
2017-09-00
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: September 2017
PublicationDecade 2010
PublicationTitle Speech communication
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ming (bib0010) 2009
Acero, Deng, Kristjansson, Zhang (bib0015) 2000; 3
Gao, Bao, Bao, Jia (bib0008) 2014
Cohen (bib0021) 2002; 9
Gopalakrishnan, Bahl, Mercer (bib0019) 1995
Davis, Mermelstein (bib0013) 1980
Hao, Bao, Bao, Deng (bib0012) 2015
Xiao, Nickel (bib0009) 2010; 18
Ming, Srinivasan, Crookes, Jafari (bib0020) 2013; 27
Srinivasan, Samuelsson, Klejin (bib0005) 2007; 15
Loizou (bib0004) 2005; 13
Bao, Jing, Jia, Bao (bib0017) 2014
Lim, Oppenheim (bib0001) 1979; 67
Varga, Steeneken (bib0100) 1993; 12
He, Bao, Bao (bib0027) 2017; 25
Zhao, Kleijn (bib0007) 2007; 15
Abramson, Cohen (bib0023) 2007; 15
Dempster, Laird, Rubin (bib0014) 1977; 39
Ming, Crookes (bib0011) 2011; 19
Paul (bib0018) 1995
Quackenbush, Barnwell, Clements (bib0022) 1988
Ephraim, Malah (bib0003) 1984; 32
Deng, Bao, Kleijin (bib0026) 2015; 23
Lee, Seung (bib0006) 1999
Ogawa, Kinoshita, Hori, Nakatani (bib0016) 2014
Boll (bib0002) 1979; 27
Vincent (bib0025) 2005
Cohen (10.1016/j.specom.2017.06.004_bib0021) 2002; 9
Bao (10.1016/j.specom.2017.06.004_bib0017) 2014
Gao (10.1016/j.specom.2017.06.004_bib0008) 2014
Abramson (10.1016/j.specom.2017.06.004_bib0023) 2007; 15
Quackenbush (10.1016/j.specom.2017.06.004_bib0022) 1988
Boll (10.1016/j.specom.2017.06.004_bib0002) 1979; 27
Dempster (10.1016/j.specom.2017.06.004_bib0014) 1977; 39
Ming (10.1016/j.specom.2017.06.004_bib0011) 2011; 19
Gopalakrishnan (10.1016/j.specom.2017.06.004_bib0019) 1995
Zhao (10.1016/j.specom.2017.06.004_bib0007) 2007; 15
Ming (10.1016/j.specom.2017.06.004_bib0010) 2009
Varga (10.1016/j.specom.2017.06.004_bib0100) 1993; 12
Davis (10.1016/j.specom.2017.06.004_bib0013) 1980
Loizou (10.1016/j.specom.2017.06.004_bib0004) 2005; 13
Ephraim (10.1016/j.specom.2017.06.004_bib0003) 1984; 32
Paul (10.1016/j.specom.2017.06.004_bib0018) 1995
Deng (10.1016/j.specom.2017.06.004_bib0026) 2015; 23
Srinivasan (10.1016/j.specom.2017.06.004_bib0005) 2007; 15
Ming (10.1016/j.specom.2017.06.004_bib0020) 2013; 27
He (10.1016/j.specom.2017.06.004_bib0027) 2017; 25
Lee (10.1016/j.specom.2017.06.004_bib0006) 1999
Vincent (10.1016/j.specom.2017.06.004_bib0025)
Acero (10.1016/j.specom.2017.06.004_bib0015) 2000; 3
Hao (10.1016/j.specom.2017.06.004_bib0012) 2015
Ogawa (10.1016/j.specom.2017.06.004_bib0016) 2014
Lim (10.1016/j.specom.2017.06.004_bib0001) 1979; 67
Xiao (10.1016/j.specom.2017.06.004_bib0009) 2010; 18
References_xml – start-page: 572
  year: 1995
  end-page: 575
  ident: bib0019
  article-title: A tree search strategy for large-vocabulary continuous speech recognition
  publication-title: Proc. ICASSP
– year: 1988
  ident: bib0022
  article-title: Objective Measures of Speech Quality
– volume: 23
  start-page: 1973
  year: 2015
  end-page: 1987
  ident: bib0026
  article-title: Sparse hidden Markov models for speech enhancement in non-stationary noise environments
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
– volume: 9
  start-page: 12
  year: 2002
  end-page: 15
  ident: bib0021
  article-title: Noise estimation by minima controlled recursive averaging for robust speech enhancement
  publication-title: IEEE Signal Process. Lett.
– start-page: 1557
  year: 2014
  end-page: 1561
  ident: bib0016
  article-title: Fast segment search for corpus-based speech enhancement based on speech recognition technology
  publication-title: Proc. ICASSP
– start-page: 733
  year: 2014
  end-page: 737
  ident: bib0008
  article-title: HMM-based speech enhancement using vector Taylor series and parallel modeling in mel-frequency domain
  publication-title: IEEE International Conference on Signal Processing, Communications & Computing (ICSPCC)
– volume: 15
  start-page: 441
  year: 2007
  end-page: 451
  ident: bib0005
  article-title: Codebook-based Bayesian speech enhancement for nonstationary environments
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– volume: 3
  start-page: 229
  year: 2000
  end-page: 232
  ident: bib0015
  article-title: HMM adaptation using vector Taylor series for noisy speech recognition
  publication-title: ICSLP
– volume: 32
  start-page: 1109
  year: 1984
  end-page: 1121
  ident: bib0003
  article-title: Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– volume: 67
  start-page: 1586
  year: 1979
  end-page: 1604
  ident: bib0001
  article-title: Enhancement and bandwidth compression of noisy speech
  publication-title: Proc. IEEE.
– volume: 15
  start-page: 882
  year: 2007
  end-page: 892
  ident: bib0007
  article-title: HMM-based gain modeling for enhancement of speech in noise
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– volume: 25
  start-page: 457
  year: 2017
  end-page: 468
  ident: bib0027
  article-title: Multiplicative update of auto-regressive gains for codebook-based speech enhancement
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
– start-page: 90
  year: 2014
  end-page: 94
  ident: bib0017
  article-title: Speech enhancement based on a few shapes of speech spectrum
  publication-title: IEEE CHINASIP
– volume: 13
  start-page: 857
  year: 2005
  end-page: 869
  ident: bib0004
  article-title: Speech enhancement based on perceptually motivated Bayesian estimators of the magnitude spectrum
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– volume: 18
  start-page: 1254
  year: 2010
  end-page: 1257
  ident: bib0009
  article-title: Speech enhancement with inventory style speech resynthesis
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– start-page: 45
  year: 1995
  end-page: 48
  ident: bib0018
  article-title: New developments in the Lincoln stack-decoder based large-vocabulary CSR system
  publication-title: Proc. ICASSP
– volume: 27
  start-page: 113
  year: 1979
  end-page: 120
  ident: bib0002
  article-title: Suppression of acoustic noise in speech using spectral subtraction
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– year: 1999
  ident: bib0006
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– volume: 15
  start-page: 2348
  year: 2007
  end-page: 2359
  ident: bib0023
  article-title: Simultaneous detection and estimation approach for speech enhancement
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– start-page: 357
  year: 1980
  end-page: 365
  ident: bib0013
  article-title: Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: bib0014
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B.
– start-page: 1790
  year: 2015
  end-page: 1794
  ident: bib0012
  article-title: A data-driven speech enhancement method based on long-range temporal dynamics
  publication-title: Interspeech
– start-page: 3849
  year: 2009
  end-page: 3852
  ident: bib0010
  article-title: Maximizing the continuity in segmentation-a new approach to model, segment and recognize speech
  publication-title: Proc. ICASSP.
– volume: 12
  start-page: 247
  year: 1993
  end-page: 251
  ident: bib0100
  article-title: Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to study the effect of additive noise on speech recognition systems
  publication-title: Speech Commun.
– year: 2005
  ident: bib0025
  article-title: MUSHRAM: A MATLAB interface for MUSHRA listening tests
– volume: 27
  start-page: 1355
  year: 2013
  end-page: 1368
  ident: bib0020
  article-title: CLOSE-a data-driven approach to speech separation
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– volume: 19
  start-page: 822
  year: 2011
  end-page: 836
  ident: bib0011
  article-title: A corpus-based approach to speech enhancement from nonstationary noise
  publication-title: IEEE Trans. Speech Audio Process.
– volume: 25
  start-page: 457
  issue: 3
  year: 2017
  ident: 10.1016/j.specom.2017.06.004_bib0027
  article-title: Multiplicative update of auto-regressive gains for codebook-based speech enhancement
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2016.2636445
– volume: 27
  start-page: 113
  issue: 2
  year: 1979
  ident: 10.1016/j.specom.2017.06.004_bib0002
  article-title: Suppression of acoustic noise in speech using spectral subtraction
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1979.1163209
– year: 1999
  ident: 10.1016/j.specom.2017.06.004_bib0006
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 13
  start-page: 857
  issue: 5
  year: 2005
  ident: 10.1016/j.specom.2017.06.004_bib0004
  article-title: Speech enhancement based on perceptually motivated Bayesian estimators of the magnitude spectrum
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TSA.2005.851929
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.specom.2017.06.004_bib0014
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– start-page: 733
  year: 2014
  ident: 10.1016/j.specom.2017.06.004_bib0008
  article-title: HMM-based speech enhancement using vector Taylor series and parallel modeling in mel-frequency domain
– volume: 19
  start-page: 822
  issue: 4
  year: 2011
  ident: 10.1016/j.specom.2017.06.004_bib0011
  article-title: A corpus-based approach to speech enhancement from nonstationary noise
  publication-title: IEEE Trans. Speech Audio Process.
  doi: 10.1109/TASL.2010.2064312
– volume: 15
  start-page: 2348
  issue: 8
  year: 2007
  ident: 10.1016/j.specom.2017.06.004_bib0023
  article-title: Simultaneous detection and estimation approach for speech enhancement
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– start-page: 1557
  year: 2014
  ident: 10.1016/j.specom.2017.06.004_bib0016
  article-title: Fast segment search for corpus-based speech enhancement based on speech recognition technology
– volume: 15
  start-page: 441
  issue: 2
  year: 2007
  ident: 10.1016/j.specom.2017.06.004_bib0005
  article-title: Codebook-based Bayesian speech enhancement for nonstationary environments
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– volume: 15
  start-page: 882
  issue: 3
  year: 2007
  ident: 10.1016/j.specom.2017.06.004_bib0007
  article-title: HMM-based gain modeling for enhancement of speech in noise
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2006.885256
– volume: 67
  start-page: 1586
  issue: 12
  year: 1979
  ident: 10.1016/j.specom.2017.06.004_bib0001
  article-title: Enhancement and bandwidth compression of noisy speech
  publication-title: Proc. IEEE.
  doi: 10.1109/PROC.1979.11540
– volume: 23
  start-page: 1973
  issue: 11
  year: 2015
  ident: 10.1016/j.specom.2017.06.004_bib0026
  article-title: Sparse hidden Markov models for speech enhancement in non-stationary noise environments
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2015.2458585
– start-page: 357
  year: 1980
  ident: 10.1016/j.specom.2017.06.004_bib0013
  article-title: Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1980.1163420
– volume: 32
  start-page: 1109
  issue: 6
  year: 1984
  ident: 10.1016/j.specom.2017.06.004_bib0003
  article-title: Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1984.1164453
– volume: 18
  start-page: 1254
  issue: 6
  year: 2010
  ident: 10.1016/j.specom.2017.06.004_bib0009
  article-title: Speech enhancement with inventory style speech resynthesis
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2009.2031793
– ident: 10.1016/j.specom.2017.06.004_bib0025
– volume: 27
  start-page: 1355
  year: 2013
  ident: 10.1016/j.specom.2017.06.004_bib0020
  article-title: CLOSE-a data-driven approach to speech separation
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2013.2250959
– volume: 12
  start-page: 247
  issue: 3
  year: 1993
  ident: 10.1016/j.specom.2017.06.004_bib0100
  article-title: Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to study the effect of additive noise on speech recognition systems
  publication-title: Speech Commun.
  doi: 10.1016/0167-6393(93)90095-3
– start-page: 572
  year: 1995
  ident: 10.1016/j.specom.2017.06.004_bib0019
  article-title: A tree search strategy for large-vocabulary continuous speech recognition
– start-page: 3849
  year: 2009
  ident: 10.1016/j.specom.2017.06.004_bib0010
  article-title: Maximizing the continuity in segmentation-a new approach to model, segment and recognize speech
– volume: 9
  start-page: 12
  issue: 1
  year: 2002
  ident: 10.1016/j.specom.2017.06.004_bib0021
  article-title: Noise estimation by minima controlled recursive averaging for robust speech enhancement
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/97.988717
– volume: 3
  start-page: 229
  year: 2000
  ident: 10.1016/j.specom.2017.06.004_bib0015
  article-title: HMM adaptation using vector Taylor series for noisy speech recognition
  publication-title: ICSLP
– start-page: 90
  year: 2014
  ident: 10.1016/j.specom.2017.06.004_bib0017
  article-title: Speech enhancement based on a few shapes of speech spectrum
– start-page: 1790
  year: 2015
  ident: 10.1016/j.specom.2017.06.004_bib0012
  article-title: A data-driven speech enhancement method based on long-range temporal dynamics
– year: 1988
  ident: 10.1016/j.specom.2017.06.004_bib0022
– start-page: 45
  year: 1995
  ident: 10.1016/j.specom.2017.06.004_bib0018
  article-title: New developments in the Lincoln stack-decoder based large-vocabulary CSR system
SSID ssj0004882
Score 2.166075
Snippet This paper proposed a data-driven speech enhancement method based on the modeled long-range temporal dynamics (LRTDs). First, by extracting the Mel-Frequency...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 142
SubjectTerms A search technique
ALMSS
GMM
LRTDs
Modified Wiener filter
Speech enhancement
VTS
Title A data-driven speech enhancement method based on A longest segment searching technique
URI https://dx.doi.org/10.1016/j.specom.2017.06.004
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdmFBUF6FgjwgtlAc59GOVUVVoLDw3KLEPkOhSqq0DCz8dnyJU0BIDIw52ZF1tu5hf98dwFESSqEFBg5XriRKjna6iaccJZSHvtDcLerMXl0Hozvv4tF_rMGg4sIQrNLa_tKmF9baSjpWm53ZZNK5IQC98a_CRBRE6TZ5e8MVvcCvQ6N_fjm6_qJHdoueUUWJb5pQMegKmBcRGjOipPOwKORpO7b98lDfvM5wHdZsuMj65Yo2oIZpE3bG9pJxzo7ZeFkXed6E1aU9e29Cu6Tesgec6jhHM7YSZPnrJtz3GcFDHZWTwWNmhSifGabPdA7ozpCV3aUZOTrFspT12TRL6T2KzfGpGGEfItIntqwFuwV3w7PbwcixXRYcadKJhaMTHlMQwbk24R6aBM-LfSFlqLtoghOMeU_6idQ8SPBUebHWcShNTm0SISOUrtiGepqluAssDEw6ZH7BeRh4vKvo0TZJtELOUeCpaIFTaTaalcU0ogpl9hKVOxHRTkQF2M5rQVipP_pxKCJj7_-cuffvmfuwSl8ljKwN9UX-hgcm7lgkh7By8sEP7en6BJWT1_4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VMMCCoLyfHhBbaF3nUcaqoirQdqFAtyixz7SAEtSWgYXfzl0eBYTEwOrYkXU-3cP3fWeA0zjQyir0HWkamik51mnGrnGMMi56yspG1me2P_C7d-71yBtVoF1yYRhWWdj-3KZn1roYqRXSrL1OJrVbBtCTf1UUUTClm_L2ZddTAeP6zj--cB6koY2ywTdPL_lzGciL6YwpE9JlkLXxLN5r--WfvvmczjqsFcGiaOX72YAKJlXY6RVXjDNxJnqLrsizKqwurNl7FQ5z4q14wBcbTZHmlgPp9HkT7luCwaGOmbK5E7RD1GOByZi1gG8MRf62tGA3Z0SaiJZ4SROuRokZPmYzijJE8igWnWC34K5zOWx3neKNBUdTMjF3bCwjDiGktBTsIaV3buQprQPbRApNMJIX2ou1lX6MdeNG1kaBpoya0iAa1A21DUtJmuAuiMCnZIh-IWXgu7JpuGQbx9aglKiwrvbAKSUbvuatNMISY_YU5icR8kmEGdTO3YOgFH_4QyVCsvZ_rtz_98oTWOkO-72wdzW4OYBV_pIDyg5haT59wyOKQObxcaZhn2YC2Mk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+speech+enhancement+method+based+on+A+longest+segment+searching+technique&rft.jtitle=Speech+communication&rft.au=Hao%2C+Yue&rft.au=Bao%2C+Feng&rft.au=Bao%2C+Changchun&rft.date=2017-09-01&rft.pub=Elsevier+B.V&rft.issn=0167-6393&rft.eissn=1872-7182&rft.volume=92&rft.spage=142&rft.epage=151&rft_id=info:doi/10.1016%2Fj.specom.2017.06.004&rft.externalDocID=S0167639316302540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6393&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6393&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6393&client=summon