Updated review of advances in microRNAs and complex diseases: taxonomy, trends and challenges of computational models

Abstract Since the problem proposed in late 2000s, microRNA–disease association (MDA) predictions have been implemented based on the data fusion paradigm. Integrating diverse data sources gains a more comprehensive research perspective, and brings a challenge to algorithm design for generating accur...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 23; no. 5
Main Authors Huang, Li, Zhang, Li, Chen, Xing
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 20.09.2022
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Since the problem proposed in late 2000s, microRNA–disease association (MDA) predictions have been implemented based on the data fusion paradigm. Integrating diverse data sources gains a more comprehensive research perspective, and brings a challenge to algorithm design for generating accurate, concise and consistent representations of the fused data. After more than a decade of research progress, a relatively simple algorithm like the score function or a single computation layer may no longer be sufficient for further improving predictive performance. Advanced model design has become more frequent in recent years, particularly in the form of reasonably combing multiple algorithms, a process known as model fusion. In the current review, we present 29 state-of-the-art models and introduce the taxonomy of computational models for MDA prediction based on model fusion and non-fusion. The new taxonomy exhibits notable changes in the algorithmic architecture of models, compared with that of earlier ones in the 2017 review by Chen et al. Moreover, we discuss the progresses that have been made towards overcoming the obstacles to effective MDA prediction since 2017 and elaborated on how future models can be designed according to a set of new schemas. Lastly, we analysed the strengths and weaknesses of each model category in the proposed taxonomy and proposed future research directions from diverse perspectives for enhancing model performance.
AbstractList Since the problem proposed in late 2000s, microRNA–disease association (MDA) predictions have been implemented based on the data fusion paradigm. Integrating diverse data sources gains a more comprehensive research perspective, and brings a challenge to algorithm design for generating accurate, concise and consistent representations of the fused data. After more than a decade of research progress, a relatively simple algorithm like the score function or a single computation layer may no longer be sufficient for further improving predictive performance. Advanced model design has become more frequent in recent years, particularly in the form of reasonably combing multiple algorithms, a process known as model fusion. In the current review, we present 29 state-of-the-art models and introduce the taxonomy of computational models for MDA prediction based on model fusion and non-fusion. The new taxonomy exhibits notable changes in the algorithmic architecture of models, compared with that of earlier ones in the 2017 review by Chen et al. Moreover, we discuss the progresses that have been made towards overcoming the obstacles to effective MDA prediction since 2017 and elaborated on how future models can be designed according to a set of new schemas. Lastly, we analysed the strengths and weaknesses of each model category in the proposed taxonomy and proposed future research directions from diverse perspectives for enhancing model performance.
Since the problem proposed in late 2000s, microRNA-disease association (MDA) predictions have been implemented based on the data fusion paradigm. Integrating diverse data sources gains a more comprehensive research perspective, and brings a challenge to algorithm design for generating accurate, concise and consistent representations of the fused data. After more than a decade of research progress, a relatively simple algorithm like the score function or a single computation layer may no longer be sufficient for further improving predictive performance. Advanced model design has become more frequent in recent years, particularly in the form of reasonably combing multiple algorithms, a process known as model fusion. In the current review, we present 29 state-of-the-art models and introduce the taxonomy of computational models for MDA prediction based on model fusion and non-fusion. The new taxonomy exhibits notable changes in the algorithmic architecture of models, compared with that of earlier ones in the 2017 review by Chen et al. Moreover, we discuss the progresses that have been made towards overcoming the obstacles to effective MDA prediction since 2017 and elaborated on how future models can be designed according to a set of new schemas. Lastly, we analysed the strengths and weaknesses of each model category in the proposed taxonomy and proposed future research directions from diverse perspectives for enhancing model performance.Since the problem proposed in late 2000s, microRNA-disease association (MDA) predictions have been implemented based on the data fusion paradigm. Integrating diverse data sources gains a more comprehensive research perspective, and brings a challenge to algorithm design for generating accurate, concise and consistent representations of the fused data. After more than a decade of research progress, a relatively simple algorithm like the score function or a single computation layer may no longer be sufficient for further improving predictive performance. Advanced model design has become more frequent in recent years, particularly in the form of reasonably combing multiple algorithms, a process known as model fusion. In the current review, we present 29 state-of-the-art models and introduce the taxonomy of computational models for MDA prediction based on model fusion and non-fusion. The new taxonomy exhibits notable changes in the algorithmic architecture of models, compared with that of earlier ones in the 2017 review by Chen et al. Moreover, we discuss the progresses that have been made towards overcoming the obstacles to effective MDA prediction since 2017 and elaborated on how future models can be designed according to a set of new schemas. Lastly, we analysed the strengths and weaknesses of each model category in the proposed taxonomy and proposed future research directions from diverse perspectives for enhancing model performance.
Abstract Since the problem proposed in late 2000s, microRNA–disease association (MDA) predictions have been implemented based on the data fusion paradigm. Integrating diverse data sources gains a more comprehensive research perspective, and brings a challenge to algorithm design for generating accurate, concise and consistent representations of the fused data. After more than a decade of research progress, a relatively simple algorithm like the score function or a single computation layer may no longer be sufficient for further improving predictive performance. Advanced model design has become more frequent in recent years, particularly in the form of reasonably combing multiple algorithms, a process known as model fusion. In the current review, we present 29 state-of-the-art models and introduce the taxonomy of computational models for MDA prediction based on model fusion and non-fusion. The new taxonomy exhibits notable changes in the algorithmic architecture of models, compared with that of earlier ones in the 2017 review by Chen et al. Moreover, we discuss the progresses that have been made towards overcoming the obstacles to effective MDA prediction since 2017 and elaborated on how future models can be designed according to a set of new schemas. Lastly, we analysed the strengths and weaknesses of each model category in the proposed taxonomy and proposed future research directions from diverse perspectives for enhancing model performance.
Author Huang, Li
Zhang, Li
Chen, Xing
Author_xml – sequence: 1
  givenname: Li
  surname: Huang
  fullname: Huang, Li
  email: li-huang19@mails.tsinghua.edu.cn
– sequence: 2
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
  email: TB20060015B4@cumt.edu.cn
– sequence: 3
  givenname: Xing
  orcidid: 0000-0001-9297-7174
  surname: Chen
  fullname: Chen, Xing
  email: xingchen@amss.ac.cn
BookMark eNp9kU9r3DAQxUXZQDfbnvoFBIESaNxI1sqSc1tCmxZCAqE5G1kaNVpkyZXs_Pn21bJ7CiSnmcPvPWbeO0aLEAMg9IWS75S07Lx3_XnfK824_ICWdC1EtSZ8vdjtjaj4umEf0XHOW0JqIiRdovl-NGoCgxM8OnjC0WJlHlXQkLELeHA6xbubTcYqGKzjMHp4xsZlUBnyBZ7UcwxxeDnDU4JgDtiD8h7C32JR7HaieVKTi0F5PEQDPn9CR1b5DJ8Pc4Xuf_74c_mrur69-n25ua50zflU2ZZL06tGWlpr21BCZcM0ZaRVojwgCeO6p7YF0VhR1wY0cCGZpbLIbMvYCp3ufccU_82Qp25wWYP3KkCcc1cL0gompeAFPXmFbuOcysk7igrWiKYlhfq2p0osOSew3ZjcoNJLR0m3q6ArFXSHCgpNX9Ha7ZOYknL-Dc3XvSbO47vm_wFP6Zsh
CitedBy_id crossref_primary_10_1093_bib_bbae167
crossref_primary_10_1109_TCBB_2024_3351752
crossref_primary_10_1111_jcmm_70171
crossref_primary_10_1007_s11704_023_3610_y
crossref_primary_10_1089_cmb_2024_0587
crossref_primary_10_1615_CritRevEukaryotGeneExpr_2023046830
crossref_primary_10_1038_s41598_023_27435_4
crossref_primary_10_1016_j_knosys_2025_112957
crossref_primary_10_1093_bib_bbad234
crossref_primary_10_1111_jcmm_70376
crossref_primary_10_3390_pharmaceutics15071833
crossref_primary_10_1097_MD_0000000000037549
crossref_primary_10_1093_bib_bbad111
crossref_primary_10_1111_jcmm_18475
crossref_primary_10_1093_bib_bbae481
crossref_primary_10_1111_jcmm_18511
crossref_primary_10_1111_jcmm_18557
crossref_primary_10_1109_ACCESS_2024_3401005
crossref_primary_10_1038_s41598_024_80026_9
crossref_primary_10_1038_s41598_023_29719_1
crossref_primary_10_1016_j_ab_2024_115554
crossref_primary_10_3389_fmicb_2022_1093615
crossref_primary_10_3389_fimmu_2024_1363834
crossref_primary_10_1093_bioinformatics_btae004
crossref_primary_10_1111_jcmm_70046
crossref_primary_10_1111_jcmm_18463
crossref_primary_10_1111_jcmm_70367
crossref_primary_10_1111_jcmm_70443
crossref_primary_10_2174_0115748936285690240101041704
crossref_primary_10_1111_jcmm_70126
crossref_primary_10_1186_s12864_023_09258_9
crossref_primary_10_2174_1566523223666230330091241
crossref_primary_10_1186_s12864_025_11254_0
crossref_primary_10_1016_j_compbiolchem_2023_107992
crossref_primary_10_1186_s12859_023_05625_1
crossref_primary_10_1093_bib_bbad259
crossref_primary_10_1093_bib_bbae546
crossref_primary_10_2174_1574893618666230227105703
crossref_primary_10_2174_1574893618666230411104945
crossref_primary_10_1016_j_knosys_2023_110295
crossref_primary_10_1093_bib_bbad292
crossref_primary_10_1111_jcmm_70150
crossref_primary_10_1155_2023_7121514
crossref_primary_10_1089_cmb_2024_0720
crossref_primary_10_1111_jcmm_18571
crossref_primary_10_1093_bib_bbad097
crossref_primary_10_1111_jcmm_70227
crossref_primary_10_1007_s12539_024_00619_w
crossref_primary_10_1186_s12859_023_05365_2
crossref_primary_10_1038_s41598_024_81213_4
crossref_primary_10_1109_TCBB_2024_3421924
crossref_primary_10_1038_s41598_024_66287_4
crossref_primary_10_1186_s12864_024_11078_4
crossref_primary_10_2174_0115665232261931231006103234
crossref_primary_10_1109_TCBB_2024_3402248
crossref_primary_10_1038_s41598_024_68423_6
crossref_primary_10_1016_j_ymeth_2023_06_006
crossref_primary_10_1093_bib_bbae573
crossref_primary_10_1038_s41598_023_36054_y
crossref_primary_10_1016_j_compbiomed_2024_108177
crossref_primary_10_1186_s12859_024_05777_8
crossref_primary_10_2147_BCTT_S497975
crossref_primary_10_1038_s41598_024_83800_x
crossref_primary_10_1111_jcmm_18282
crossref_primary_10_1093_bib_bbad445
crossref_primary_10_1186_s12967_024_05726_2
crossref_primary_10_1111_jcmm_17889
crossref_primary_10_1111_jcmm_18483
crossref_primary_10_1093_bib_bbac595
crossref_primary_10_1089_cmb_2023_0266
crossref_primary_10_1016_j_csbj_2024_12_023
crossref_primary_10_1038_s41598_024_64627_y
crossref_primary_10_1155_2022_1544648
crossref_primary_10_1615_CritRevEukaryotGeneExpr_v34_i4_20
crossref_primary_10_1007_s12672_024_01139_1
crossref_primary_10_1093_bib_bbac623
crossref_primary_10_1002_cnm_3809
crossref_primary_10_1016_j_compeleceng_2025_110242
crossref_primary_10_1038_s41598_022_25730_0
crossref_primary_10_1155_2022_4433627
crossref_primary_10_3389_fgene_2022_1029300
crossref_primary_10_1038_s42003_024_06734_0
crossref_primary_10_1002_jbt_70153
Cites_doi 10.1038/nmeth.1938
10.3389/fphys.2020.01088
10.1109/TIP.2014.2303638
10.1093/bib/bbab302
10.3390/molecules23092208
10.1038/nature14539
10.1016/j.critrevonc.2019.102818
10.1093/bioinformatics/btr500
10.1080/15476286.2018.1517010
10.1016/j.jnca.2020.102716
10.1038/nmeth.2832
10.1016/j.physa.2020.124289
10.1093/nar/gkw943
10.1109/TPAMI.2012.240
10.1561/2200000016
10.1126/science.1127647
10.1093/nar/gkt1266
10.1007/BF02289026
10.1093/bioinformatics/btu269
10.1016/j.neucom.2018.04.036
10.1093/bib/bbaa028
10.1093/bib/bbaa186
10.1098/rsif.2017.0387
10.1039/c2mb25180a
10.1186/s13321-018-0284-9
10.1371/journal.pone.0028324
10.1145/2939672.2939785
10.1093/bioinformatics/btx546
10.1080/15476286.2015.1128065
10.1093/nar/gkr1161
10.1162/neco.1994.6.6.1289
10.1613/jair.614
10.1093/nar/gkw945
10.1021/acs.jcim.9b00667
10.1007/s00530-010-0182-0
10.1016/j.patcog.2004.12.013
10.1038/s41598-017-08079-7
10.1093/bib/bbx130
10.1214/aos/1016218223
10.1016/j.imavis.2015.06.006
10.1093/bib/bbab174
10.1093/bib/bbaa158
10.1016/j.omtn.2018.10.005
10.1201/b12207
10.1007/s10107-013-0637-0
10.1016/j.isci.2021.103217
10.1093/bioinformatics/btv039
10.1093/nar/gkt1023
10.1093/bioinformatics/btaa670
10.1007/978-3-319-93034-3_28
10.15252/msb.20156651
10.1007/s10462-009-9124-7
10.1038/srep10888
10.1038/s41419-017-0003-x
10.1038/nrc3932
10.1002/asi.20591
10.1093/nar/gkv1258
10.1145/3012704
10.1371/journal.pcbi.1006418
10.1093/bib/bbaa133
10.1371/journal.pcbi.1007209
10.1093/bioinformatics/btx614
10.6028/jres.049.044
10.1371/journal.pone.0108125
10.1186/1471-2105-15-15
10.1109/TIP.2011.2105496
10.1007/978-1-4419-8462-3_9
10.1145/1553374.1553434
10.1371/journal.pcbi.1005912
10.1038/srep13877
10.1093/bioinformatics/btz297
10.1002/sam.11184
10.1016/j.physa.2010.11.027
10.1016/0022-2836(70)90057-4
10.1093/bib/bbab431
10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
10.1016/j.knosys.2020.106718
10.1080/15592294.2016.1273308
10.21105/joss.01957
10.1137/07070111X
10.1371/journal.pone.0003420
10.1093/bioinformatics/btw770
10.1109/TPAMI.2008.277
10.1093/bioinformatics/btm087
10.1093/bib/bbab328
10.1038/nmeth.3485
10.1093/bib/bbz159
10.1093/nar/gkab825
10.1145/3442381.3450060
10.1093/nar/gkaa921
10.1093/bioinformatics/btx545
10.1162/neco.1989.1.4.541
10.1186/s13104-017-2851-y
10.1111/j.1469-8137.1912.tb05611.x
10.1093/bib/bbaa140
10.1002/hon.2956
10.1016/j.sbi.2017.02.005
10.1016/j.knosys.2015.06.010
10.3389/fgene.2019.00626
10.1093/bib/bbab438
10.1093/bioinformatics/btz254
10.1093/bioinformatics/btab565
10.1061/(ASCE)ST.1943-541X.0001643
10.1093/bib/bbaa240
10.1093/bioinformatics/btt014
10.3390/ijms21051723
10.1007/978-3-642-35289-8_32
10.3389/fendo.2018.00402
10.3390/ijms20071611
10.1186/1752-0509-4-S1-S2
10.1093/nar/gky1126
10.1093/bib/bbv066
10.1093/bib/bbab286
10.1145/1553374.1553485
10.1093/bib/bbab165
10.1093/nar/gky1010
10.1038/s41580-018-0059-1
10.3389/fgene.2019.00169
10.1016/j.knosys.2019.104963
10.1093/bioinformatics/btz965
10.12688/f1000research.10788.1
10.1093/bib/bbab500
10.1093/bioinformatics/bty503
10.1023/A:1022859003006
10.1016/S0031-3203(99)00223-X
10.1007/978-981-15-1967-3_8
10.1093/bioinformatics/bty333
10.1038/cddis.2014.141
10.1093/nar/gkn892
10.1016/j.future.2019.05.055
10.1137/140990309
10.1186/s40649-019-0069-y
10.1016/j.molonc.2012.07.007
10.1080/01621459.1963.10500845
10.1093/bib/bbab074
10.1093/bioinformatics/btq241
10.1093/bib/bbz057
10.1093/nar/gkv151
10.1007/s13105-010-0050-6
10.1093/bib/bbs082
10.1111/jgh.15657
10.1016/j.patrec.2021.07.005
10.1093/bioinformatics/btq064
10.1038/323533a0
10.1186/s13059-016-1112-z
10.1080/15476286.2019.1568820
10.1155/2015/731479
10.1371/journal.pcbi.1006865
10.1371/journal.pone.0013735
10.1093/nar/gkn851
10.1093/nar/gkt1181
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbac358
DatabaseName CrossRef
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE - Academic
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 10_1093_bib_bbac358
10.1093/bib/bbac358
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABEJV
ABGNP
ABPQP
ABXZS
ACUHS
ACUXJ
AHGBF
AHQJS
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c255t-f958dba68f12cf6101863c1309a70208035cb1f9e76f722dece5783f188dbf933
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Fri Jul 11 16:37:55 EDT 2025
Mon Jun 30 11:08:23 EDT 2025
Tue Jul 01 03:39:42 EDT 2025
Thu Apr 24 22:50:31 EDT 2025
Wed Aug 28 03:18:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords computational model
microRNA
model fusion
microRNA–disease association prediction
machine learning
complex diseases
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-f958dba68f12cf6101863c1309a70208035cb1f9e76f722dece5783f188dbf933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9297-7174
PQID 2717367690
PQPubID 26846
ParticipantIDs proquest_miscellaneous_2709738875
proquest_journals_2717367690
crossref_primary_10_1093_bib_bbac358
crossref_citationtrail_10_1093_bib_bbac358
oup_primary_10_1093_bib_bbac358
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-20
PublicationDateYYYYMMDD 2022-09-20
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-20
  day: 20
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationYear 2022
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Wang (2022092013240867100_ref148) 2021; 13
Dudekula (2022092013240867100_ref159) 2016; 13
Chen (2022092013240867100_ref75) 2018; 34
Ouyang (2022092013240867100_ref119) 2013
Peng (2022092013240867100_ref39) 2019; 35
Angermueller (2022092013240867100_ref157) 2016; 12
Chen (2022092013240867100_ref28) 2018; 14
Qiu (2022092013240867100_ref58) 2019; 100
Xu (2022092013240867100_ref66) 2015; 43
Wang (2022092013240867100_ref166) 2021
Zhou (2022092013240867100_ref18) 2021
Chou (2022092013240867100_ref103) 2016; 44
Li (2022092013240867100_ref127) 2021; 22
Suzuki (2022092013240867100_ref173) 2012; 6
Chen (2022092013240867100_ref169) 2017; 10
Guo (2022092013240867100_ref34) 2021; 214
Al Hasan (2022092013240867100_ref2) 2011
Atrey (2022092013240867100_ref20) 2010; 16
Zhao (2022092013240867100_ref13) 2021; 22
Zhou (2022092013240867100_ref16) 2012
Li (2022092013240867100_ref29) 2014; 42
Chen (2022092013240867100_ref71) 2017; 13
Cao (2022092013240867100_ref172) 2022; 23
Liu (2022092013240867100_ref57) 2014; 23
Chen (2022092013240867100_ref80) 2018; 15
Kozomara (2022092013240867100_ref52) 2014; 42
Chen (2022092013240867100_ref63) 2019; 15
Zhu (2022092013240867100_ref112) 2021; 22
Chen (2022092013240867100_ref61) 2018; 9
Cao (2022092013240867100_ref145) 2022; 40
Wang (2022092013240867100_ref179) 2019; 59
Van Laarhoven (2022092013240867100_ref33) 2011; 27
Cai (2022092013240867100_ref56) 2010; 33
Belevych (2022092013240867100_ref134) 2011; 6
Sweeney (2022092013240867100_ref160) 2021; 49
De'ath (2022092013240867100_ref64) 2000; 81
Theodoridis (2022092013240867100_ref19) 2006
LeCun (2022092013240867100_ref43) 1989; 1
Boyd (2022092013240867100_ref117) 2011; 3
Chen (2022092013240867100_ref121) 2021; 22
Wang (2022092013240867100_ref165) 2021; 37
Khurana (2022092013240867100_ref164) 2014; 15
Rokach (2022092013240867100_ref149) 2010; 33
Jaccard (2022092013240867100_ref78) 1912; 11
Qu (2022092013240867100_ref85) 2019; 186
Chen (2022092013240867100_ref25) 2021; 150
Ward (2022092013240867100_ref76) 1963; 58
Shi (2022092013240867100_ref72) 2015; 41
Chen (2022092013240867100_ref168) 2016; 17
Chen (2022092013240867100_ref9) 2016; 17
Huang (2022092013240867100_ref59) 2019; 47
Cui (2022092013240867100_ref142) 2019; 10
Chen (2022092013240867100_ref36) 2021; 22
Wang (2022092013240867100_ref14) 2021; 22
Jain (2022092013240867100_ref126) 2013
Keshava Prasad (2022092013240867100_ref40) 2009; 37
Jiang (2022092013240867100_ref143) 2010; 4
Kuncheva (2022092013240867100_ref151) 2003; 51
Opap (2022092013240867100_ref170) 2017; 6
Liben-Nowell (2022092013240867100_ref3) 2007; 58
Ning (2022092013240867100_ref60) 2017; 45
Kingma (2022092013240867100_ref89)
Opitz (2022092013240867100_ref150) 1999; 11
Rokach (2022092013240867100_ref21) 2010
Qu (2022092013240867100_ref138) 2011; 12
Chen (2022092013240867100_ref175) 2020; 21
Hsu (2022092013240867100_ref53) 2014; 42
Kuncheva (2022092013240867100_ref27) 2001; 34
Tan (2022092013240867100_ref111) 2012; 35
Wang (2022092013240867100_ref92) 2021; 22
Xiao (2022092013240867100_ref51) 2021; 22
Drucker (2022092013240867100_ref153) 1994; 6
Chen (2022092013240867100_ref62) 2016
Wang (2022092013240867100_ref47) 2019; 16
Wang (2022092013240867100_ref7) 2015; 58
Xie (2022092013240867100_ref163) 2013; 29
Qu (2022092013240867100_ref180) 2018; 10
Buza (2022092013240867100_ref84) 2015; 86
Ji (2022092013240867100_ref90) 2021; 37
Santos (2022092013240867100_ref23) 2017; 143
Wang (2022092013240867100_ref174) 2017; 12
Zhao (2022092013240867100_ref70) 2019; 35
Hestenes (2022092013240867100_ref118) 1952; 49
Chen (2022092013240867100_ref125) 2018; 34
Radovanovic (2022092013240867100_ref82) 2010; 11
Feldbauer (2022092013240867100_ref83)
Rendle (2022092013240867100_ref113)
Xiao (2022092013240867100_ref105) 2009; 37
Katz (2022092013240867100_ref79) 1953; 18
Zhang (2022092013240867100_ref139) 2020; 11
Wei (2022092013240867100_ref35) 2020; 21
Nepusz (2022092013240867100_ref107) 2012; 9
Zhong (2022092013240867100_ref109) 2018; 34
LeCun (2022092013240867100_ref87) 2015; 521
Nguyen (2022092013240867100_ref114) 2013; 6
Guo (2022092013240867100_ref24) 2008
Wang (2022092013240867100_ref115) 2007; 23
Chen (2022092013240867100_ref167) 2015; 5
Chen (2022092013240867100_ref77) 2018; 15
Mikolov (2022092013240867100_ref101) 2013
Vilalta (2022092013240867100_ref65) 1997
Lü (2022092013240867100_ref1) 2011; 390
Chen (2022092013240867100_ref10) 2018; 23
Ritchie (2022092013240867100_ref68) 2014; 11
Meng (2022092013240867100_ref30) 2014; 9
Vergoulis (2022092013240867100_ref104) 2012; 40
Chen (2022092013240867100_ref176) 2021; 22
Hwang (2022092013240867100_ref97) 2019; 47
Peng (2022092013240867100_ref50) 2017; 7
Ding (2022092013240867100_ref74) 2008; 32
Cui (2022092013240867100_ref161) 2022; 50
Pan (2022092013240867100_ref100) 2018; 305
Hoehndorf (2022092013240867100_ref110) 2015; 5
Zhang (2022092013240867100_ref46) 2019; 6
Murakami (2022092013240867100_ref12) 2017; 44
Tiberio (2022092013240867100_ref137) 2015; 2015
Rukov (2022092013240867100_ref162) 2014; 15
Liu (2022092013240867100_ref48)
Wang (2022092013240867100_ref99) 2019; 15
Wu (2022092013240867100_ref131) 2019; 20
Radovanović (2022092013240867100_ref81) 2009
Chen (2022092013240867100_ref144) 2012; 8
Sun (2022092013240867100_ref22) 2005; 38
Hong (2022092013240867100_ref120) 2016; 26
Huang (2022092013240867100_ref17) 2021; 22
Wang (2022092013240867100_ref31) 2010; 26
Kolda (2022092013240867100_ref116) 2009; 51
Huang (2022092013240867100_ref171) 2021; 12
Xiao (2022092013240867100_ref55) 2018; 34
Huang (2022092013240867100_ref93) 2021; 22
Wang (2022092013240867100_ref178) 2022; 23
Guan (2022092013240867100_ref106) 2011; 20
Chu (2022092013240867100_ref44) 2021; 22
Li (2022092013240867100_ref86) 2020; 36
Facchinei (2022092013240867100_ref108) 2014; 144
Lanes (2022092013240867100_ref152) 2017
Xuan (2022092013240867100_ref156) 2015; 31
Taherzadeh (2022092013240867100_ref67) 2018; 34
Moreno-Seco (2022092013240867100_ref26) 2006
Dweep (2022092013240867100_ref41) 2015; 12
Li (2022092013240867100_ref49)
Chen (2022092013240867100_ref15) 2019; 20
Piñero (2022092013240867100_ref42) 2017; 45
Liang (2022092013240867100_ref73) 2017; 33
Ali Syeda (2022092013240867100_ref132) 2020; 21
Ji (2022092013240867100_ref124) 2009
Wang (2022092013240867100_ref177) 2022; 23
Liu (2022092013240867100_ref135) 2014; 5
Martínez (2022092013240867100_ref6) 2016; 49
Uhl (2022092013240867100_ref154) 2009
Natarajan (2022092013240867100_ref88) 2014; 30
Lu (2022092013240867100_ref123) 2008; 3
Huang (2022092013240867100_ref96) 2020; 48
Filipów (2022092013240867100_ref141) 2019; 10
Chen (2022092013240867100_ref32) 2016; 6
O'Brien (2022092013240867100_ref130) 2018; 9
Ye (2022092013240867100_ref146) 2022; 37
Ponti (2022092013240867100_ref155) 2011
Ting (2022092013240867100_ref147) 2019; 144
Zhao (2022092013240867100_ref140) 2010; 5
Hinton (2022092013240867100_ref38) 2012
Huang (2022092013240867100_ref133) 2011; 67
Friedman (2022092013240867100_ref102) 2000; 28
Treiber (2022092013240867100_ref129) 2019; 20
Daud (2022092013240867100_ref8) 2020; 166
Needleman (2022092013240867100_ref95) 1970; 48
Lin (2022092013240867100_ref136) 2015; 15
Kipf (2022092013240867100_ref45)
Yu (2022092013240867100_ref54) 2010; 26
Ching (2022092013240867100_ref158) 2018; 15
Chen (2022092013240867100_ref11) 2017; 18
Rumelhart (2022092013240867100_ref128) 1986; 323
Hu (2022092013240867100_ref98) 2018
Zhou (2022092013240867100_ref5)
Hinton (2022092013240867100_ref37) 2006; 313
Rifai (2022092013240867100_ref91)
Tang (2022092013240867100_ref94) 2021; 22
Chen (2022092013240867100_ref69) 2018; 13
Kumar (2022092013240867100_ref4) 2020; 553
Fan (2022092013240867100_ref122) 2018
References_xml – volume: 9
  start-page: 471
  year: 2012
  ident: 2022092013240867100_ref107
  article-title: Detecting overlapping protein complexes in protein-protein interaction networks
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1938
– volume: 11
  start-page: 1088
  year: 2020
  ident: 2022092013240867100_ref139
  article-title: Circulating MicroRNAs: biogenesis and clinical significance in acute myocardial infarction
  publication-title: Front Physiol
  doi: 10.3389/fphys.2020.01088
– volume-title: International Conference on Learning Representations
  ident: 2022092013240867100_ref89
  article-title: Adam: a method for stochastic optimization
– start-page: 950
  volume-title: International Conference on Biometrics
  year: 2009
  ident: 2022092013240867100_ref154
– volume: 23
  start-page: 1491
  year: 2014
  ident: 2022092013240867100_ref57
  article-title: Progressive image denoising through hybrid graph Laplacian regularization: a unified framework
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2014.2303638
– volume: 22
  start-page: bbab302
  year: 2021
  ident: 2022092013240867100_ref112
  article-title: Identification of miRNA–disease associations via multiple information integration with Bayesian ranking
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab302
– volume: 23
  start-page: 2208
  year: 2018
  ident: 2022092013240867100_ref10
  article-title: Machine learning for drug-target interaction prediction
  publication-title: Molecules
  doi: 10.3390/molecules23092208
– volume: 521
  start-page: 436
  year: 2015
  ident: 2022092013240867100_ref87
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 144
  start-page: 102818
  year: 2019
  ident: 2022092013240867100_ref147
  article-title: Clinical significance of aberrant microRNAs expression in predicting disease relapse/refractoriness to treatment in diffuse large B-cell lymphoma: a meta-analysis
  publication-title: Crit Rev Oncol Hematol
  doi: 10.1016/j.critrevonc.2019.102818
– volume: 27
  start-page: 3036
  year: 2011
  ident: 2022092013240867100_ref33
  article-title: Gaussian interaction profile kernels for predicting drug–target interaction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr500
– volume: 15
  start-page: 1192
  year: 2018
  ident: 2022092013240867100_ref80
  article-title: Predicting microRNA-disease associations using bipartite local models and hubness-aware regression
  publication-title: RNA Biol
  doi: 10.1080/15476286.2018.1517010
– volume: 58
  start-page: 1
  year: 2015
  ident: 2022092013240867100_ref7
  article-title: Link prediction in social networks: the state-of-the-art
  publication-title: Science China Information Sciences
– volume: 11
  start-page: 2487
  year: 2010
  ident: 2022092013240867100_ref82
  article-title: Hubs in space: popular nearest neighbors in high-dimensional data
  publication-title: J Mach Learn Res
– volume: 166
  start-page: 102716
  year: 2020
  ident: 2022092013240867100_ref8
  article-title: Applications of link prediction in social networks: a review
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2020.102716
– volume: 11
  start-page: 294
  year: 2014
  ident: 2022092013240867100_ref68
  article-title: Functional annotation of noncoding sequence variants
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2832
– volume: 553
  start-page: 124289
  year: 2020
  ident: 2022092013240867100_ref4
  article-title: Link prediction techniques, applications, and performance: a survey
  publication-title: Physica A
  doi: 10.1016/j.physa.2020.124289
– volume: 45
  start-page: D833
  year: 2017
  ident: 2022092013240867100_ref42
  article-title: DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw943
– volume: 35
  start-page: 1592
  year: 2012
  ident: 2022092013240867100_ref111
  article-title: Automatic relevance determination in nonnegative matrix factorization with the/spl beta/−divergence
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.240
– volume: 3
  start-page: 1
  year: 2011
  ident: 2022092013240867100_ref117
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found Trends Machine learning
  doi: 10.1561/2200000016
– volume: 313
  start-page: 504
  year: 2006
  ident: 2022092013240867100_ref37
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 42
  start-page: D78
  year: 2014
  ident: 2022092013240867100_ref53
  article-title: miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1266
– volume: 18
  start-page: 39
  year: 1953
  ident: 2022092013240867100_ref79
  article-title: A new status index derived from sociometric analysis
  publication-title: Psychometrika
  doi: 10.1007/BF02289026
– volume: 30
  start-page: i60
  year: 2014
  ident: 2022092013240867100_ref88
  article-title: Inductive matrix completion for predicting gene–disease associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu269
– volume: 305
  start-page: 51
  year: 2018
  ident: 2022092013240867100_ref100
  article-title: Learning distributed representations of RNA sequences and its application for predicting RNA-protein binding sites with a convolutional neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.036
– volume: 22
  start-page: 2043
  year: 2021
  ident: 2022092013240867100_ref51
  article-title: Adaptive multi-source multi-view latent feature learning for inferring potential disease-associated miRNAs
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa028
– start-page: 312
  volume-title: European Conference on Machine Learning
  year: 1997
  ident: 2022092013240867100_ref65
– volume: 22
  start-page: bbaa186
  year: 2021
  ident: 2022092013240867100_ref36
  article-title: Deep-belief network for predicting potential miRNA-disease associations
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa186
– volume: 15
  start-page: 20170387
  year: 2018
  ident: 2022092013240867100_ref158
  article-title: Opportunities and obstacles for deep learning in biology and medicine
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2017.0387
– volume: 8
  start-page: 2792
  year: 2012
  ident: 2022092013240867100_ref144
  article-title: RWRMDA: predicting novel human microRNA–disease associations
  publication-title: Mol Biosyst
  doi: 10.1039/c2mb25180a
– volume: 10
  start-page: 30
  year: 2018
  ident: 2022092013240867100_ref180
  article-title: Inferring potential small molecule–miRNA association based on triple layer heterogeneous network
  publication-title: J Chem
  doi: 10.1186/s13321-018-0284-9
– volume-title: Pattern Recognition
  year: 2006
  ident: 2022092013240867100_ref19
– start-page: 705
  volume-title: Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR)
  year: 2006
  ident: 2022092013240867100_ref26
– volume: 48
  start-page: D148
  year: 2020
  ident: 2022092013240867100_ref96
  article-title: miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database
  publication-title: Nucleic Acids Res
– volume: 6
  start-page: e28324
  year: 2011
  ident: 2022092013240867100_ref134
  article-title: MicroRNA-1 and-133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0028324
– start-page: 785
  volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2016
  ident: 2022092013240867100_ref62
  doi: 10.1145/2939672.2939785
– volume: 34
  start-page: 267
  year: 2018
  ident: 2022092013240867100_ref109
  article-title: A non-negative matrix factorization based method for predicting disease-associated miRNAs in miRNA-disease bilayer network
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx546
– year: 2013
  ident: 2022092013240867100_ref126
  article-title: Provable inductive matrix completion
– volume: 13
  start-page: 34
  year: 2016
  ident: 2022092013240867100_ref159
  article-title: CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs
  publication-title: RNA Biol
  doi: 10.1080/15476286.2015.1128065
– volume: 40
  start-page: D222
  year: 2012
  ident: 2022092013240867100_ref104
  article-title: TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr1161
– volume: 6
  start-page: 1289
  year: 1994
  ident: 2022092013240867100_ref153
  article-title: Boosting and other ensemble methods
  publication-title: Neural Comput
  doi: 10.1162/neco.1994.6.6.1289
– volume: 11
  start-page: 169
  year: 1999
  ident: 2022092013240867100_ref150
  article-title: Popular ensemble methods: an empirical study
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.614
– volume: 45
  start-page: D74
  year: 2017
  ident: 2022092013240867100_ref60
  article-title: LincSNP 2.0: an updated database for linking disease-associated SNPs to human long non-coding RNAs and their TFBSs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw945
– volume: 59
  start-page: 5281
  year: 2019
  ident: 2022092013240867100_ref179
  article-title: A unified framework for the prediction of small molecule–MicroRNA association based on cross-layer dependency inference on multilayered networks
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b00667
– volume: 16
  start-page: 345
  year: 2010
  ident: 2022092013240867100_ref20
  article-title: Multimodal fusion for multimedia analysis: a survey
  publication-title: Multimedia Syst
  doi: 10.1007/s00530-010-0182-0
– volume: 38
  start-page: 2437
  year: 2005
  ident: 2022092013240867100_ref22
  article-title: A new method of feature fusion and its application in image recognition
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2004.12.013
– volume: 7
  start-page: 8087
  year: 2017
  ident: 2022092013240867100_ref50
  article-title: Screening drug-target interactions with positive-unlabeled learning
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-08079-7
– volume: 20
  start-page: 515
  year: 2019
  ident: 2022092013240867100_ref15
  article-title: MicroRNAs and complex diseases: from experimental results to computational models
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx130
– volume: 28
  start-page: 337
  year: 2000
  ident: 2022092013240867100_ref102
  article-title: Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors)
  publication-title: Ann Stat
  doi: 10.1214/aos/1016218223
– volume: 41
  start-page: 1
  year: 2015
  ident: 2022092013240867100_ref72
  article-title: Semi-supervised sparse feature selection based on multi-view Laplacian regularization
  publication-title: Image Vision Comput
  doi: 10.1016/j.imavis.2015.06.006
– volume: 22
  start-page: bbab174
  year: 2021
  ident: 2022092013240867100_ref94
  article-title: Multi-view multichannel attention graph convolutional network for miRNA–disease association prediction
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab174
– start-page: 1
  volume-title: 2011 24th SIBGRAPI Conference on Graphics, Patterns, and Images Tutorials
  year: 2011
  ident: 2022092013240867100_ref155
– volume: 22
  start-page: bbaa158
  year: 2021
  ident: 2022092013240867100_ref13
  article-title: Microbes and complex diseases: from experimental results to computational models
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa158
– volume: 13
  start-page: 568
  year: 2018
  ident: 2022092013240867100_ref69
  article-title: Novel human miRNA-disease association inference based on random forest
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2018.10.005
– volume-title: Ensemble Methods: Foundations and Algorithms
  year: 2012
  ident: 2022092013240867100_ref16
  doi: 10.1201/b12207
– volume: 144
  start-page: 369
  year: 2014
  ident: 2022092013240867100_ref108
  article-title: Solving quasi-variational inequalities via their KKT conditions
  publication-title: Math Program
  doi: 10.1007/s10107-013-0637-0
– volume-title: Iscience
  ident: 2022092013240867100_ref5
  article-title: Progresses and challenges in link prediction
  doi: 10.1016/j.isci.2021.103217
– volume: 31
  start-page: 1805
  year: 2015
  ident: 2022092013240867100_ref156
  article-title: Prediction of potential disease-associated microRNAs based on random walk
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv039
– volume: 42
  start-page: D1070
  year: 2014
  ident: 2022092013240867100_ref29
  article-title: HMDD v2.0: a database for experimentally supported human microRNA and disease associations
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1023
– volume: 37
  start-page: 66
  year: 2021
  ident: 2022092013240867100_ref90
  article-title: AEMDA: inferring miRNA-disease associations based on deep autoencoder
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa670
– start-page: 348
  volume-title: Pacific-Asia Conference on Knowledge Discovery and Data Mining
  year: 2018
  ident: 2022092013240867100_ref122
  doi: 10.1007/978-3-319-93034-3_28
– volume: 12
  start-page: 878
  year: 2016
  ident: 2022092013240867100_ref157
  article-title: Deep learning for computational biology
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20156651
– volume: 13
  start-page: 4152
  year: 2021
  ident: 2022092013240867100_ref148
  article-title: KIF22 promotes progress of esophageal squamous cell carcinoma cells and is negatively regulated by miR-122
  publication-title: Am J Transl Res
– volume: 33
  start-page: 1
  year: 2010
  ident: 2022092013240867100_ref149
  article-title: Ensemble-based classifiers
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-009-9124-7
– volume: 18
  start-page: 558
  year: 2017
  ident: 2022092013240867100_ref11
  article-title: Long non-coding RNAs and complex diseases: from experimental results to computational models
  publication-title: Brief Bioinform
– volume: 5
  start-page: 1
  year: 2015
  ident: 2022092013240867100_ref110
  article-title: Analysis of the human diseasome using phenotype similarity between common, genetic and infectious diseases
  publication-title: Sci Rep
  doi: 10.1038/srep10888
– volume: 9
  start-page: 3
  year: 2018
  ident: 2022092013240867100_ref61
  article-title: EGBMMDA: extreme gradient boosting machine for miRNA-disease association prediction
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-017-0003-x
– volume: 15
  start-page: 321
  year: 2015
  ident: 2022092013240867100_ref136
  article-title: MicroRNA biogenesis pathways in cancer
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3932
– volume: 58
  start-page: 1019
  year: 2007
  ident: 2022092013240867100_ref3
  article-title: The link-prediction problem for social networks
  publication-title: J Am Soc Inform Sci Technol
  doi: 10.1002/asi.20591
– volume-title: Pattern Classification Using Ensemble Methods
  year: 2010
  ident: 2022092013240867100_ref21
– volume: 44
  start-page: D239
  year: 2016
  ident: 2022092013240867100_ref103
  article-title: miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1258
– volume: 49
  start-page: 1
  year: 2016
  ident: 2022092013240867100_ref6
  article-title: A survey of link prediction in complex networks
  publication-title: ACM Comput Surv
  doi: 10.1145/3012704
– volume: 14
  start-page: e1006418
  year: 2018
  ident: 2022092013240867100_ref28
  article-title: MDHGI: matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006418
– volume: 22
  start-page: bbaa133
  year: 2021
  ident: 2022092013240867100_ref17
  article-title: Predicting microRNA–disease associations from lncRNA–microRNA interactions via multiview multitask learning
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa133
– volume: 15
  start-page: e1007209
  year: 2019
  ident: 2022092013240867100_ref63
  article-title: Ensemble of decision tree reveals potential miRNA-disease associations
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007209
– volume: 34
  start-page: 477
  year: 2018
  ident: 2022092013240867100_ref67
  article-title: Structure-based prediction of protein–peptide binding regions using random forest
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx614
– volume: 49
  start-page: 409
  year: 1952
  ident: 2022092013240867100_ref118
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: J Res Nat Bur Stand
  doi: 10.6028/jres.049.044
– volume-title: the Nineteenth International Conference on Machine Learning
  ident: 2022092013240867100_ref48
– volume: 9
  start-page: e108125
  year: 2014
  ident: 2022092013240867100_ref30
  article-title: The augmented Lagrange multipliers method for matrix completion from corrupted samplings with application to mixed Gaussian-impulse noise removal
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0108125
– volume: 15
  start-page: 1
  year: 2014
  ident: 2022092013240867100_ref164
  article-title: OncomiRdbB: a comprehensive database of microRNAs and their targets in breast cancer
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-15-15
– volume: 20
  start-page: 2030
  year: 2011
  ident: 2022092013240867100_ref106
  article-title: Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2011.2105496
– start-page: 243
  volume-title: Social Network Data Analytics
  year: 2011
  ident: 2022092013240867100_ref2
  doi: 10.1007/978-1-4419-8462-3_9
– start-page: 457
  volume-title: Proceedings of the 26th Annual International Conference on Machine Learning
  year: 2009
  ident: 2022092013240867100_ref124
  doi: 10.1145/1553374.1553434
– volume: 15
  start-page: 807
  year: 2018
  ident: 2022092013240867100_ref77
  article-title: ELLPMDA: ensemble learning and link prediction for miRNA-disease association prediction
  publication-title: RNA Biol
– volume: 13
  start-page: e1005912
  year: 2017
  ident: 2022092013240867100_ref71
  article-title: LRSSLMDA: Laplacian regularized sparse subspace learning for miRNA-disease association prediction
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005912
– volume: 5
  start-page: 13877
  year: 2015
  ident: 2022092013240867100_ref167
  article-title: RBMMMDA: predicting multiple types of disease-microRNA associations
  publication-title: Sci Rep
  doi: 10.1038/srep13877
– volume: 35
  start-page: 4730
  year: 2019
  ident: 2022092013240867100_ref70
  article-title: Adaptive boosting-based computational model for predicting potential miRNA-disease associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz297
– volume: 6
  start-page: 286
  year: 2013
  ident: 2022092013240867100_ref114
  article-title: Content-boosted matrix factorization techniques for recommender systems
  publication-title: Stat Anal Data Min
  doi: 10.1002/sam.11184
– volume: 390
  start-page: 1150
  year: 2011
  ident: 2022092013240867100_ref1
  article-title: Link prediction in complex networks: a survey
  publication-title: Physica A
  doi: 10.1016/j.physa.2010.11.027
– volume: 48
  start-page: 443
  year: 1970
  ident: 2022092013240867100_ref95
  article-title: A general method applicable to the search for similarities in the amino acid sequence of two proteins
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(70)90057-4
– volume-title: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence
  ident: 2022092013240867100_ref113
  article-title: BPR: Bayesian personalized ranking from implicit feedback
– volume: 23
  start-page: bbab431
  year: 2022
  ident: 2022092013240867100_ref177
  article-title: Ensemble of kernel ridge regression-based small molecule–miRNA association prediction in human disease
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab431
– volume: 81
  start-page: 3178
  year: 2000
  ident: 2022092013240867100_ref64
  article-title: Classification and regression trees: a powerful yet simple technique for ecological data analysis
  publication-title: Ecology
  doi: 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
– volume: 214
  start-page: 106718
  year: 2021
  ident: 2022092013240867100_ref34
  article-title: MLPMDA: multi-layer linear projection for predicting miRNA-disease association
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.106718
– volume: 12
  start-page: 187
  year: 2017
  ident: 2022092013240867100_ref174
  article-title: Mutual regulation of microRNAs and DNA methylation in human cancers
  publication-title: Epigenetics
  doi: 10.1080/15592294.2016.1273308
– volume-title: The Journal of Open Source Software
  ident: 2022092013240867100_ref83
  article-title: Scikit-hubness: Hubness reduction and approximate neighbor search
  doi: 10.21105/joss.01957
– volume: 51
  start-page: 455
  year: 2009
  ident: 2022092013240867100_ref116
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev
  doi: 10.1137/07070111X
– volume: 3
  start-page: e3420
  year: 2008
  ident: 2022092013240867100_ref123
  article-title: An analysis of human microRNA and disease associations
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003420
– volume: 33
  start-page: 1187
  year: 2017
  ident: 2022092013240867100_ref73
  article-title: LRSSL: predict and interpret drug-disease associations based on data integration using sparse subspace learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw770
– volume: 32
  start-page: 45
  year: 2008
  ident: 2022092013240867100_ref74
  article-title: Convex and semi-nonnegative matrix factorizations
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.277
– volume: 23
  start-page: 1274
  year: 2007
  ident: 2022092013240867100_ref115
  article-title: A new method to measure the semantic similarity of GO terms
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm087
– volume: 22
  start-page: bbab328
  year: 2021
  ident: 2022092013240867100_ref176
  article-title: Predicting potential small molecule–miRNA associations based on bounded nuclear norm regularization
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab328
– volume: 12
  start-page: 697
  year: 2015
  ident: 2022092013240867100_ref41
  article-title: miRWalk2.0: a comprehensive atlas of microRNA-target interactions
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3485
– volume: 12
  start-page: 1117
  year: 2011
  ident: 2022092013240867100_ref138
  article-title: Circulating miRNAs: promising biomarkers of human cancer
  publication-title: Asian Pac J Cancer Prev
– volume: 22
  start-page: 485
  year: 2021
  ident: 2022092013240867100_ref121
  article-title: NCMCMDA: miRNA-disease association prediction through neighborhood constraint matrix completion
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz159
– volume: 50
  start-page: D333
  year: 2022
  ident: 2022092013240867100_ref161
  article-title: RNALocate v2. 0: an updated resource for RNA subcellular localization with increased coverage and annotation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab825
– start-page: 2946
  volume-title: Proceedings of the Web Conference 2021
  year: 2021
  ident: 2022092013240867100_ref166
  doi: 10.1145/3442381.3450060
– volume: 49
  start-page: D212
  year: 2021
  ident: 2022092013240867100_ref160
  article-title: RNAcentral 2021: secondary structure integration, improved sequence search and new member databases
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa921
– start-page: 233
  volume-title: the Nineteenth International Conference on Enterprise Information Systems
  year: 2017
  ident: 2022092013240867100_ref152
– volume: 34
  start-page: 239
  year: 2018
  ident: 2022092013240867100_ref55
  article-title: A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx545
– volume: 1
  start-page: 541
  year: 1989
  ident: 2022092013240867100_ref43
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput
  doi: 10.1162/neco.1989.1.4.541
– volume-title: Proceedings of the 28th International Conference on Machine Learning
  ident: 2022092013240867100_ref91
– volume: 10
  start-page: 1
  year: 2017
  ident: 2022092013240867100_ref169
  article-title: Using DIVAN to assess disease/trait-associated single nucleotide variants in genome-wide scale
  publication-title: BMC Res Notes
  doi: 10.1186/s13104-017-2851-y
– volume: 11
  start-page: 37
  year: 1912
  ident: 2022092013240867100_ref78
  article-title: The distribution of the flora in the alpine zone. 1
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1912.tb05611.x
– volume: 22
  start-page: bbaa140
  year: 2021
  ident: 2022092013240867100_ref93
  article-title: Tensor decomposition with relational constraints for predicting multiple types of microRNA-disease associations
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa140
– volume: 40
  start-page: 172
  year: 2022
  ident: 2022092013240867100_ref145
  article-title: Circulating exosomal microRNAs as diagnostic and prognostic biomarkers in patients with diffuse large B-cell lymphoma
  publication-title: Hematol Oncol
  doi: 10.1002/hon.2956
– volume: 44
  start-page: 134
  year: 2017
  ident: 2022092013240867100_ref12
  article-title: Network analysis and in silico prediction of protein–protein interactions with applications in drug discovery
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2017.02.005
– volume: 21
  start-page: 47
  year: 2020
  ident: 2022092013240867100_ref175
  article-title: MicroRNA-small molecule association identification: from experimental results to computational models
  publication-title: Brief Bioinform
– volume: 86
  start-page: 250
  year: 2015
  ident: 2022092013240867100_ref84
  article-title: Nearest neighbor regression in the presence of bad hubs
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.06.010
– volume: 10
  start-page: 626
  year: 2019
  ident: 2022092013240867100_ref142
  article-title: Circulating microRNAs in cancer: potential and challenge
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00626
– volume: 23
  start-page: bbab438
  year: 2022
  ident: 2022092013240867100_ref172
  article-title: Disease category-specific annotation of variants using an ensemble learning framework
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab438
– volume: 35
  start-page: 4364
  year: 2019
  ident: 2022092013240867100_ref39
  article-title: A learning-based framework for miRNA-disease association identification using neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz254
– volume: 37
  start-page: 4793
  year: 2021
  ident: 2022092013240867100_ref165
  article-title: BioERP: biomedical heterogeneous network-based self-supervised representation learning approach for entity relationship predictions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab565
– volume: 143
  start-page: 04016162
  year: 2017
  ident: 2022092013240867100_ref23
  article-title: Early damage detection based on pattern recognition and data fusion
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0001643
– volume: 22
  start-page: bbaa240
  year: 2021
  ident: 2022092013240867100_ref127
  article-title: A graph auto-encoder model for miRNA-disease associations prediction
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa240
– volume: 29
  start-page: 638
  year: 2013
  ident: 2022092013240867100_ref163
  article-title: miRCancer: a microRNA–cancer association database constructed by text mining on literature
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt014
– volume: 21
  start-page: 1723
  year: 2020
  ident: 2022092013240867100_ref132
  article-title: Regulatory mechanism of microRNA expression in cancer
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21051723
– start-page: 599
  volume-title: Neural networks: Tricks of the Trade
  year: 2012
  ident: 2022092013240867100_ref38
  doi: 10.1007/978-3-642-35289-8_32
– volume: 9
  start-page: 402
  year: 2018
  ident: 2022092013240867100_ref130
  article-title: Overview of microRNA biogenesis, mechanisms of actions, and circulation
  publication-title: Front Endocrinol
  doi: 10.3389/fendo.2018.00402
– volume: 20
  start-page: 1611
  year: 2019
  ident: 2022092013240867100_ref131
  article-title: The roles of MicroRNA in lung cancer
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20071611
– volume: 4
  start-page: 1
  year: 2010
  ident: 2022092013240867100_ref143
  article-title: Prioritization of disease microRNAs through a human phenome-microRNAome network
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-4-S1-S2
– volume: 6
  start-page: 1
  year: 2016
  ident: 2022092013240867100_ref32
  article-title: WBSMDA: within and between score for MiRNA-disease association prediction
  publication-title: Sci Rep
– volume: 47
  start-page: D573
  year: 2019
  ident: 2022092013240867100_ref97
  article-title: HumanNet v2: human gene networks for disease research
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1126
– volume: 12
  start-page: 1
  year: 2021
  ident: 2022092013240867100_ref171
  article-title: A machine learning approach to brain epigenetic analysis reveals kinases associated with Alzheimer’s disease
  publication-title: Nat Commun
– volume: 17
  start-page: 696
  year: 2016
  ident: 2022092013240867100_ref9
  article-title: Drug–target interaction prediction: databases, web servers and computational models
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbv066
– volume: 22
  start-page: bbab286
  year: 2021
  ident: 2022092013240867100_ref14
  article-title: Circular RNAs and complex diseases: from experimental results to computational models
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab286
– start-page: 865
  volume-title: Proceedings of the 26th Annual International Conference on Machine Learning
  year: 2009
  ident: 2022092013240867100_ref81
  doi: 10.1145/1553374.1553485
– volume: 22
  start-page: bbab165
  year: 2021
  ident: 2022092013240867100_ref44
  article-title: MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab165
– volume: 47
  start-page: D1013
  year: 2019
  ident: 2022092013240867100_ref59
  article-title: HMDD v3.0: a database for experimentally supported human microRNA-disease associations
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1010
– volume: 20
  start-page: 5
  year: 2019
  ident: 2022092013240867100_ref129
  article-title: Regulation of microRNA biogenesis and its crosstalk with other cellular pathways
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/s41580-018-0059-1
– volume: 10
  start-page: 169
  year: 2019
  ident: 2022092013240867100_ref141
  article-title: Blood circulating miRNAs as cancer biomarkers for diagnosis and surgical treatment response
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00169
– start-page: 1
  volume-title: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
  year: 2008
  ident: 2022092013240867100_ref24
– volume: 186
  start-page: 104963
  year: 2019
  ident: 2022092013240867100_ref85
  article-title: Prediction of potential miRNA-disease associations using matrix decomposition and label propagation
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.104963
– volume: 36
  start-page: 2538
  year: 2020
  ident: 2022092013240867100_ref86
  article-title: Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz965
– volume: 6
  start-page: 578
  year: 2017
  ident: 2022092013240867100_ref170
  article-title: Recent advances in predicting gene–disease associations
  publication-title: F1000Research
  doi: 10.12688/f1000research.10788.1
– volume: 23
  start-page: bbab500
  year: 2022
  ident: 2022092013240867100_ref178
  article-title: Dual-network collaborative matrix factorization for predicting small molecule-miRNA associations
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab500
– volume: 34
  start-page: 4256
  year: 2018
  ident: 2022092013240867100_ref125
  article-title: Predicting miRNA-disease association based on inductive matrix completion
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty503
– start-page: 80
  volume-title: International Conference on Machine Learning
  year: 2013
  ident: 2022092013240867100_ref119
– volume: 51
  start-page: 181
  year: 2003
  ident: 2022092013240867100_ref151
  article-title: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
  publication-title: Mach Learn
  doi: 10.1023/A:1022859003006
– volume: 34
  start-page: 299
  year: 2001
  ident: 2022092013240867100_ref27
  article-title: Decision templates for multiple classifier fusion: an experimental comparison
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(99)00223-X
– start-page: 181
  volume-title: Machine Learning
  year: 2021
  ident: 2022092013240867100_ref18
  doi: 10.1007/978-981-15-1967-3_8
– volume: 34
  start-page: 3178
  year: 2018
  ident: 2022092013240867100_ref75
  article-title: BNPMDA: bipartite network projection for miRNA-disease association prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty333
– volume: 5
  start-page: e1171
  year: 2014
  ident: 2022092013240867100_ref135
  article-title: Cardiac hypertrophy is negatively regulated by miR-541
  publication-title: Cell Death Dis
  doi: 10.1038/cddis.2014.141
– volume: 37
  start-page: D767
  year: 2009
  ident: 2022092013240867100_ref40
  article-title: Human protein reference database—2009 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn892
– volume: 100
  start-page: 523
  year: 2019
  ident: 2022092013240867100_ref58
  article-title: Unsupervised multi-view non-negative for law data feature learning with dual graph-regularization in smart Internet of Things
  publication-title: Future Gener Comp Sy
  doi: 10.1016/j.future.2019.05.055
– volume: 26
  start-page: 337
  year: 2016
  ident: 2022092013240867100_ref120
  article-title: Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems
  publication-title: SIAM J Optimiz
  doi: 10.1137/140990309
– volume: 6
  start-page: 1
  year: 2019
  ident: 2022092013240867100_ref46
  article-title: Graph convolutional networks: a comprehensive review
  publication-title: Comput Soc Netw
  doi: 10.1186/s40649-019-0069-y
– volume: 6
  start-page: 567
  year: 2012
  ident: 2022092013240867100_ref173
  article-title: DNA methylation and microRNA dysregulation in cancer
  publication-title: Mol Oncol
  doi: 10.1016/j.molonc.2012.07.007
– volume: 58
  start-page: 236
  year: 1963
  ident: 2022092013240867100_ref76
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1963.10500845
– volume: 22
  start-page: bbab074
  year: 2021
  ident: 2022092013240867100_ref92
  article-title: NMCMDA: neural multicategory MiRNA–disease association prediction
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab074
– volume: 33
  start-page: 1548
  year: 2010
  ident: 2022092013240867100_ref56
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 26
  start-page: 1644
  year: 2010
  ident: 2022092013240867100_ref31
  article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq241
– volume: 21
  start-page: 1356
  year: 2020
  ident: 2022092013240867100_ref35
  article-title: iCircDA-MF: identification of circRNA-disease associations based on matrix factorization
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz057
– start-page: 7132
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2018
  ident: 2022092013240867100_ref98
– volume: 43
  start-page: 2757
  year: 2015
  ident: 2022092013240867100_ref66
  article-title: Base-resolution methylation patterns accurately predict transcription factor bindings in vivo
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv151
– volume: 67
  start-page: 129
  year: 2011
  ident: 2022092013240867100_ref133
  article-title: Biological functions of microRNAs: a review
  publication-title: J Physiol Biochem
  doi: 10.1007/s13105-010-0050-6
– volume: 15
  start-page: 648
  year: 2014
  ident: 2022092013240867100_ref162
  article-title: Pharmaco-miR: linking microRNAs and drug effects
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbs082
– volume-title: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence
  ident: 2022092013240867100_ref49
– year: 2013
  ident: 2022092013240867100_ref101
  article-title: Efficient estimation of word representations in vector space
– volume-title: International Conference on Learning Representations
  ident: 2022092013240867100_ref45
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 37
  start-page: 144
  year: 2022
  ident: 2022092013240867100_ref146
  article-title: Long non-coding RNA TMPO-AS1 facilitates the progression of colorectal cancer cells via sponging miR-98-5p to upregulate BCAT1 expression
  publication-title: J Gastroenterol Hepatol
  doi: 10.1111/jgh.15657
– volume: 150
  start-page: 115
  year: 2021
  ident: 2022092013240867100_ref25
  article-title: Sequential fusion of facial appearance and dynamics for depression recognition
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2021.07.005
– volume: 26
  start-page: 976
  year: 2010
  ident: 2022092013240867100_ref54
  article-title: GOSemSim: an R package for measuring semantic similarity among GO terms and gene products
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq064
– volume: 323
  start-page: 533
  year: 1986
  ident: 2022092013240867100_ref128
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 17
  start-page: 1
  year: 2016
  ident: 2022092013240867100_ref168
  article-title: DIVAN: accurate identification of non-coding disease-specific risk variants using multi-omics profiles
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-1112-z
– volume: 16
  start-page: 257
  year: 2019
  ident: 2022092013240867100_ref47
  article-title: An integrated framework for the identification of potential miRNA-disease association based on novel negative samples extraction strategy
  publication-title: RNA Biol
  doi: 10.1080/15476286.2019.1568820
– volume: 2015
  start-page: 1
  year: 2015
  ident: 2022092013240867100_ref137
  article-title: Challenges in using circulating miRNAs as cancer biomarkers
  publication-title: Biomed Res Int
  doi: 10.1155/2015/731479
– volume: 15
  start-page: e1006865
  year: 2019
  ident: 2022092013240867100_ref99
  article-title: LMTRDA: using logistic model tree to predict miRNA-disease associations by fusing multi-source information of sequences and similarities
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006865
– volume: 5
  start-page: e13735
  year: 2010
  ident: 2022092013240867100_ref140
  article-title: A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0013735
– volume: 37
  start-page: D105
  year: 2009
  ident: 2022092013240867100_ref105
  article-title: miRecords: an integrated resource for microRNA–target interactions
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn851
– volume: 42
  start-page: D68
  year: 2014
  ident: 2022092013240867100_ref52
  article-title: miRBase: annotating high confidence microRNAs using deep sequencing data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1181
SSID ssj0020781
Score 2.5934741
SecondaryResourceType review_article
Snippet Abstract Since the problem proposed in late 2000s, microRNA–disease association (MDA) predictions have been implemented based on the data fusion paradigm....
Since the problem proposed in late 2000s, microRNA–disease association (MDA) predictions have been implemented based on the data fusion paradigm. Integrating...
Since the problem proposed in late 2000s, microRNA-disease association (MDA) predictions have been implemented based on the data fusion paradigm. Integrating...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Computer applications
Data integration
Mathematical models
MicroRNAs
miRNA
Performance prediction
Predictions
Ribonucleic acid
RNA
State-of-the-art reviews
Taxonomy
Title Updated review of advances in microRNAs and complex diseases: taxonomy, trends and challenges of computational models
URI https://www.proquest.com/docview/2717367690
https://www.proquest.com/docview/2709738875
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bS8MwFA4yEHwRrzidGmFPYlnTXNr6NsQxBCfIBnsrzQ0G2g3bwfz35rTZYDL0uScpJD05OT3n-z6Eui7fMsZdlQNBdRgwEuWB5JEKhLJWUa1EUvMUvI7EcMJepnzqG2TLHSX8lPbkTPakzBXlgOl14Rco8sdv001eBXw1DYgoDoDd3cPwfo3dCjxbYLb16VuHlMEROvR3QdxvNu8Y7ZniBO036pDfp2g5WUA6rnEDL8Fzi33FvsSzAn9CK937qF_ivNC4bg03K-wLLuUjrvJVDVh4wFXd99qYrbVTSphO1ZIO_ncgrkVxyjM0GTyPn4aBV0kIlEsHqsCmPNEyF4klkbICGLgEVS40pXkMCpwh5UoSm5pY2DiKtFHGeSm1JHHDbErpOWoV88JcIExMyJhJrZuAMa2J5Fa4_Ik5O64II210v17CTHkKcVCy-MiaUjbN3Hpnfr3bqLsxXjTMGbvNbt1e_G3RWe9T5h2szCLoHoD23LCN7jaPnWtAvSMvzHwJNsBF5E5RfvnvS67QQQTABqg3hR3Uqr6W5tpdNyp5U39sP4vL0-A
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Updated+review+of+advances+in+microRNAs+and+complex+diseases%3A+taxonomy%2C+trends+and+challenges+of+computational+models&rft.jtitle=Briefings+in+bioinformatics&rft.au=Huang%2C+Li&rft.au=Zhang%2C+Li&rft.au=Chen%2C+Xing&rft.date=2022-09-20&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=5&rft_id=info:doi/10.1093%2Fbib%2Fbbac358&rft.externalDocID=10.1093%2Fbib%2Fbbac358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon