Updated review of advances in microRNAs and complex diseases: taxonomy, trends and challenges of computational models
Abstract Since the problem proposed in late 2000s, microRNA–disease association (MDA) predictions have been implemented based on the data fusion paradigm. Integrating diverse data sources gains a more comprehensive research perspective, and brings a challenge to algorithm design for generating accur...
Saved in:
Published in | Briefings in bioinformatics Vol. 23; no. 5 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
20.09.2022
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Since the problem proposed in late 2000s, microRNA–disease association (MDA) predictions have been implemented based on the data fusion paradigm. Integrating diverse data sources gains a more comprehensive research perspective, and brings a challenge to algorithm design for generating accurate, concise and consistent representations of the fused data. After more than a decade of research progress, a relatively simple algorithm like the score function or a single computation layer may no longer be sufficient for further improving predictive performance. Advanced model design has become more frequent in recent years, particularly in the form of reasonably combing multiple algorithms, a process known as model fusion. In the current review, we present 29 state-of-the-art models and introduce the taxonomy of computational models for MDA prediction based on model fusion and non-fusion. The new taxonomy exhibits notable changes in the algorithmic architecture of models, compared with that of earlier ones in the 2017 review by Chen et al. Moreover, we discuss the progresses that have been made towards overcoming the obstacles to effective MDA prediction since 2017 and elaborated on how future models can be designed according to a set of new schemas. Lastly, we analysed the strengths and weaknesses of each model category in the proposed taxonomy and proposed future research directions from diverse perspectives for enhancing model performance. |
---|---|
AbstractList | Since the problem proposed in late 2000s, microRNA–disease association (MDA) predictions have been implemented based on the data fusion paradigm. Integrating diverse data sources gains a more comprehensive research perspective, and brings a challenge to algorithm design for generating accurate, concise and consistent representations of the fused data. After more than a decade of research progress, a relatively simple algorithm like the score function or a single computation layer may no longer be sufficient for further improving predictive performance. Advanced model design has become more frequent in recent years, particularly in the form of reasonably combing multiple algorithms, a process known as model fusion. In the current review, we present 29 state-of-the-art models and introduce the taxonomy of computational models for MDA prediction based on model fusion and non-fusion. The new taxonomy exhibits notable changes in the algorithmic architecture of models, compared with that of earlier ones in the 2017 review by Chen et al. Moreover, we discuss the progresses that have been made towards overcoming the obstacles to effective MDA prediction since 2017 and elaborated on how future models can be designed according to a set of new schemas. Lastly, we analysed the strengths and weaknesses of each model category in the proposed taxonomy and proposed future research directions from diverse perspectives for enhancing model performance. Since the problem proposed in late 2000s, microRNA-disease association (MDA) predictions have been implemented based on the data fusion paradigm. Integrating diverse data sources gains a more comprehensive research perspective, and brings a challenge to algorithm design for generating accurate, concise and consistent representations of the fused data. After more than a decade of research progress, a relatively simple algorithm like the score function or a single computation layer may no longer be sufficient for further improving predictive performance. Advanced model design has become more frequent in recent years, particularly in the form of reasonably combing multiple algorithms, a process known as model fusion. In the current review, we present 29 state-of-the-art models and introduce the taxonomy of computational models for MDA prediction based on model fusion and non-fusion. The new taxonomy exhibits notable changes in the algorithmic architecture of models, compared with that of earlier ones in the 2017 review by Chen et al. Moreover, we discuss the progresses that have been made towards overcoming the obstacles to effective MDA prediction since 2017 and elaborated on how future models can be designed according to a set of new schemas. Lastly, we analysed the strengths and weaknesses of each model category in the proposed taxonomy and proposed future research directions from diverse perspectives for enhancing model performance.Since the problem proposed in late 2000s, microRNA-disease association (MDA) predictions have been implemented based on the data fusion paradigm. Integrating diverse data sources gains a more comprehensive research perspective, and brings a challenge to algorithm design for generating accurate, concise and consistent representations of the fused data. After more than a decade of research progress, a relatively simple algorithm like the score function or a single computation layer may no longer be sufficient for further improving predictive performance. Advanced model design has become more frequent in recent years, particularly in the form of reasonably combing multiple algorithms, a process known as model fusion. In the current review, we present 29 state-of-the-art models and introduce the taxonomy of computational models for MDA prediction based on model fusion and non-fusion. The new taxonomy exhibits notable changes in the algorithmic architecture of models, compared with that of earlier ones in the 2017 review by Chen et al. Moreover, we discuss the progresses that have been made towards overcoming the obstacles to effective MDA prediction since 2017 and elaborated on how future models can be designed according to a set of new schemas. Lastly, we analysed the strengths and weaknesses of each model category in the proposed taxonomy and proposed future research directions from diverse perspectives for enhancing model performance. Abstract Since the problem proposed in late 2000s, microRNA–disease association (MDA) predictions have been implemented based on the data fusion paradigm. Integrating diverse data sources gains a more comprehensive research perspective, and brings a challenge to algorithm design for generating accurate, concise and consistent representations of the fused data. After more than a decade of research progress, a relatively simple algorithm like the score function or a single computation layer may no longer be sufficient for further improving predictive performance. Advanced model design has become more frequent in recent years, particularly in the form of reasonably combing multiple algorithms, a process known as model fusion. In the current review, we present 29 state-of-the-art models and introduce the taxonomy of computational models for MDA prediction based on model fusion and non-fusion. The new taxonomy exhibits notable changes in the algorithmic architecture of models, compared with that of earlier ones in the 2017 review by Chen et al. Moreover, we discuss the progresses that have been made towards overcoming the obstacles to effective MDA prediction since 2017 and elaborated on how future models can be designed according to a set of new schemas. Lastly, we analysed the strengths and weaknesses of each model category in the proposed taxonomy and proposed future research directions from diverse perspectives for enhancing model performance. |
Author | Huang, Li Zhang, Li Chen, Xing |
Author_xml | – sequence: 1 givenname: Li surname: Huang fullname: Huang, Li email: li-huang19@mails.tsinghua.edu.cn – sequence: 2 givenname: Li surname: Zhang fullname: Zhang, Li email: TB20060015B4@cumt.edu.cn – sequence: 3 givenname: Xing orcidid: 0000-0001-9297-7174 surname: Chen fullname: Chen, Xing email: xingchen@amss.ac.cn |
BookMark | eNp9kU9r3DAQxUXZQDfbnvoFBIESaNxI1sqSc1tCmxZCAqE5G1kaNVpkyZXs_Pn21bJ7CiSnmcPvPWbeO0aLEAMg9IWS75S07Lx3_XnfK824_ICWdC1EtSZ8vdjtjaj4umEf0XHOW0JqIiRdovl-NGoCgxM8OnjC0WJlHlXQkLELeHA6xbubTcYqGKzjMHp4xsZlUBnyBZ7UcwxxeDnDU4JgDtiD8h7C32JR7HaieVKTi0F5PEQDPn9CR1b5DJ8Pc4Xuf_74c_mrur69-n25ua50zflU2ZZL06tGWlpr21BCZcM0ZaRVojwgCeO6p7YF0VhR1wY0cCGZpbLIbMvYCp3ufccU_82Qp25wWYP3KkCcc1cL0gompeAFPXmFbuOcysk7igrWiKYlhfq2p0osOSew3ZjcoNJLR0m3q6ArFXSHCgpNX9Ha7ZOYknL-Dc3XvSbO47vm_wFP6Zsh |
CitedBy_id | crossref_primary_10_1093_bib_bbae167 crossref_primary_10_1109_TCBB_2024_3351752 crossref_primary_10_1111_jcmm_70171 crossref_primary_10_1007_s11704_023_3610_y crossref_primary_10_1089_cmb_2024_0587 crossref_primary_10_1615_CritRevEukaryotGeneExpr_2023046830 crossref_primary_10_1038_s41598_023_27435_4 crossref_primary_10_1016_j_knosys_2025_112957 crossref_primary_10_1093_bib_bbad234 crossref_primary_10_1111_jcmm_70376 crossref_primary_10_3390_pharmaceutics15071833 crossref_primary_10_1097_MD_0000000000037549 crossref_primary_10_1093_bib_bbad111 crossref_primary_10_1111_jcmm_18475 crossref_primary_10_1093_bib_bbae481 crossref_primary_10_1111_jcmm_18511 crossref_primary_10_1111_jcmm_18557 crossref_primary_10_1109_ACCESS_2024_3401005 crossref_primary_10_1038_s41598_024_80026_9 crossref_primary_10_1038_s41598_023_29719_1 crossref_primary_10_1016_j_ab_2024_115554 crossref_primary_10_3389_fmicb_2022_1093615 crossref_primary_10_3389_fimmu_2024_1363834 crossref_primary_10_1093_bioinformatics_btae004 crossref_primary_10_1111_jcmm_70046 crossref_primary_10_1111_jcmm_18463 crossref_primary_10_1111_jcmm_70367 crossref_primary_10_1111_jcmm_70443 crossref_primary_10_2174_0115748936285690240101041704 crossref_primary_10_1111_jcmm_70126 crossref_primary_10_1186_s12864_023_09258_9 crossref_primary_10_2174_1566523223666230330091241 crossref_primary_10_1186_s12864_025_11254_0 crossref_primary_10_1016_j_compbiolchem_2023_107992 crossref_primary_10_1186_s12859_023_05625_1 crossref_primary_10_1093_bib_bbad259 crossref_primary_10_1093_bib_bbae546 crossref_primary_10_2174_1574893618666230227105703 crossref_primary_10_2174_1574893618666230411104945 crossref_primary_10_1016_j_knosys_2023_110295 crossref_primary_10_1093_bib_bbad292 crossref_primary_10_1111_jcmm_70150 crossref_primary_10_1155_2023_7121514 crossref_primary_10_1089_cmb_2024_0720 crossref_primary_10_1111_jcmm_18571 crossref_primary_10_1093_bib_bbad097 crossref_primary_10_1111_jcmm_70227 crossref_primary_10_1007_s12539_024_00619_w crossref_primary_10_1186_s12859_023_05365_2 crossref_primary_10_1038_s41598_024_81213_4 crossref_primary_10_1109_TCBB_2024_3421924 crossref_primary_10_1038_s41598_024_66287_4 crossref_primary_10_1186_s12864_024_11078_4 crossref_primary_10_2174_0115665232261931231006103234 crossref_primary_10_1109_TCBB_2024_3402248 crossref_primary_10_1038_s41598_024_68423_6 crossref_primary_10_1016_j_ymeth_2023_06_006 crossref_primary_10_1093_bib_bbae573 crossref_primary_10_1038_s41598_023_36054_y crossref_primary_10_1016_j_compbiomed_2024_108177 crossref_primary_10_1186_s12859_024_05777_8 crossref_primary_10_2147_BCTT_S497975 crossref_primary_10_1038_s41598_024_83800_x crossref_primary_10_1111_jcmm_18282 crossref_primary_10_1093_bib_bbad445 crossref_primary_10_1186_s12967_024_05726_2 crossref_primary_10_1111_jcmm_17889 crossref_primary_10_1111_jcmm_18483 crossref_primary_10_1093_bib_bbac595 crossref_primary_10_1089_cmb_2023_0266 crossref_primary_10_1016_j_csbj_2024_12_023 crossref_primary_10_1038_s41598_024_64627_y crossref_primary_10_1155_2022_1544648 crossref_primary_10_1615_CritRevEukaryotGeneExpr_v34_i4_20 crossref_primary_10_1007_s12672_024_01139_1 crossref_primary_10_1093_bib_bbac623 crossref_primary_10_1002_cnm_3809 crossref_primary_10_1016_j_compeleceng_2025_110242 crossref_primary_10_1038_s41598_022_25730_0 crossref_primary_10_1155_2022_4433627 crossref_primary_10_3389_fgene_2022_1029300 crossref_primary_10_1038_s42003_024_06734_0 crossref_primary_10_1002_jbt_70153 |
Cites_doi | 10.1038/nmeth.1938 10.3389/fphys.2020.01088 10.1109/TIP.2014.2303638 10.1093/bib/bbab302 10.3390/molecules23092208 10.1038/nature14539 10.1016/j.critrevonc.2019.102818 10.1093/bioinformatics/btr500 10.1080/15476286.2018.1517010 10.1016/j.jnca.2020.102716 10.1038/nmeth.2832 10.1016/j.physa.2020.124289 10.1093/nar/gkw943 10.1109/TPAMI.2012.240 10.1561/2200000016 10.1126/science.1127647 10.1093/nar/gkt1266 10.1007/BF02289026 10.1093/bioinformatics/btu269 10.1016/j.neucom.2018.04.036 10.1093/bib/bbaa028 10.1093/bib/bbaa186 10.1098/rsif.2017.0387 10.1039/c2mb25180a 10.1186/s13321-018-0284-9 10.1371/journal.pone.0028324 10.1145/2939672.2939785 10.1093/bioinformatics/btx546 10.1080/15476286.2015.1128065 10.1093/nar/gkr1161 10.1162/neco.1994.6.6.1289 10.1613/jair.614 10.1093/nar/gkw945 10.1021/acs.jcim.9b00667 10.1007/s00530-010-0182-0 10.1016/j.patcog.2004.12.013 10.1038/s41598-017-08079-7 10.1093/bib/bbx130 10.1214/aos/1016218223 10.1016/j.imavis.2015.06.006 10.1093/bib/bbab174 10.1093/bib/bbaa158 10.1016/j.omtn.2018.10.005 10.1201/b12207 10.1007/s10107-013-0637-0 10.1016/j.isci.2021.103217 10.1093/bioinformatics/btv039 10.1093/nar/gkt1023 10.1093/bioinformatics/btaa670 10.1007/978-3-319-93034-3_28 10.15252/msb.20156651 10.1007/s10462-009-9124-7 10.1038/srep10888 10.1038/s41419-017-0003-x 10.1038/nrc3932 10.1002/asi.20591 10.1093/nar/gkv1258 10.1145/3012704 10.1371/journal.pcbi.1006418 10.1093/bib/bbaa133 10.1371/journal.pcbi.1007209 10.1093/bioinformatics/btx614 10.6028/jres.049.044 10.1371/journal.pone.0108125 10.1186/1471-2105-15-15 10.1109/TIP.2011.2105496 10.1007/978-1-4419-8462-3_9 10.1145/1553374.1553434 10.1371/journal.pcbi.1005912 10.1038/srep13877 10.1093/bioinformatics/btz297 10.1002/sam.11184 10.1016/j.physa.2010.11.027 10.1016/0022-2836(70)90057-4 10.1093/bib/bbab431 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2 10.1016/j.knosys.2020.106718 10.1080/15592294.2016.1273308 10.21105/joss.01957 10.1137/07070111X 10.1371/journal.pone.0003420 10.1093/bioinformatics/btw770 10.1109/TPAMI.2008.277 10.1093/bioinformatics/btm087 10.1093/bib/bbab328 10.1038/nmeth.3485 10.1093/bib/bbz159 10.1093/nar/gkab825 10.1145/3442381.3450060 10.1093/nar/gkaa921 10.1093/bioinformatics/btx545 10.1162/neco.1989.1.4.541 10.1186/s13104-017-2851-y 10.1111/j.1469-8137.1912.tb05611.x 10.1093/bib/bbaa140 10.1002/hon.2956 10.1016/j.sbi.2017.02.005 10.1016/j.knosys.2015.06.010 10.3389/fgene.2019.00626 10.1093/bib/bbab438 10.1093/bioinformatics/btz254 10.1093/bioinformatics/btab565 10.1061/(ASCE)ST.1943-541X.0001643 10.1093/bib/bbaa240 10.1093/bioinformatics/btt014 10.3390/ijms21051723 10.1007/978-3-642-35289-8_32 10.3389/fendo.2018.00402 10.3390/ijms20071611 10.1186/1752-0509-4-S1-S2 10.1093/nar/gky1126 10.1093/bib/bbv066 10.1093/bib/bbab286 10.1145/1553374.1553485 10.1093/bib/bbab165 10.1093/nar/gky1010 10.1038/s41580-018-0059-1 10.3389/fgene.2019.00169 10.1016/j.knosys.2019.104963 10.1093/bioinformatics/btz965 10.12688/f1000research.10788.1 10.1093/bib/bbab500 10.1093/bioinformatics/bty503 10.1023/A:1022859003006 10.1016/S0031-3203(99)00223-X 10.1007/978-981-15-1967-3_8 10.1093/bioinformatics/bty333 10.1038/cddis.2014.141 10.1093/nar/gkn892 10.1016/j.future.2019.05.055 10.1137/140990309 10.1186/s40649-019-0069-y 10.1016/j.molonc.2012.07.007 10.1080/01621459.1963.10500845 10.1093/bib/bbab074 10.1093/bioinformatics/btq241 10.1093/bib/bbz057 10.1093/nar/gkv151 10.1007/s13105-010-0050-6 10.1093/bib/bbs082 10.1111/jgh.15657 10.1016/j.patrec.2021.07.005 10.1093/bioinformatics/btq064 10.1038/323533a0 10.1186/s13059-016-1112-z 10.1080/15476286.2019.1568820 10.1155/2015/731479 10.1371/journal.pcbi.1006865 10.1371/journal.pone.0013735 10.1093/nar/gkn851 10.1093/nar/gkt1181 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022 The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022 – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbac358 |
DatabaseName | CrossRef Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | 10_1093_bib_bbac358 10.1093/bib/bbac358 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP AAVLN ABDBF ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABEJV ABGNP ABPQP ABXZS ACUHS ACUXJ AHGBF AHQJS ALXQX AMNDL ANAKG CITATION JXSIZ 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c255t-f958dba68f12cf6101863c1309a70208035cb1f9e76f722dece5783f188dbf933 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Fri Jul 11 16:37:55 EDT 2025 Mon Jun 30 11:08:23 EDT 2025 Tue Jul 01 03:39:42 EDT 2025 Thu Apr 24 22:50:31 EDT 2025 Wed Aug 28 03:18:18 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | computational model microRNA model fusion microRNA–disease association prediction machine learning complex diseases |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-f958dba68f12cf6101863c1309a70208035cb1f9e76f722dece5783f188dbf933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9297-7174 |
PQID | 2717367690 |
PQPubID | 26846 |
ParticipantIDs | proquest_miscellaneous_2709738875 proquest_journals_2717367690 crossref_primary_10_1093_bib_bbac358 crossref_citationtrail_10_1093_bib_bbac358 oup_primary_10_1093_bib_bbac358 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-20 |
PublicationDateYYYYMMDD | 2022-09-20 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationYear | 2022 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Wang (2022092013240867100_ref148) 2021; 13 Dudekula (2022092013240867100_ref159) 2016; 13 Chen (2022092013240867100_ref75) 2018; 34 Ouyang (2022092013240867100_ref119) 2013 Peng (2022092013240867100_ref39) 2019; 35 Angermueller (2022092013240867100_ref157) 2016; 12 Chen (2022092013240867100_ref28) 2018; 14 Qiu (2022092013240867100_ref58) 2019; 100 Xu (2022092013240867100_ref66) 2015; 43 Wang (2022092013240867100_ref166) 2021 Zhou (2022092013240867100_ref18) 2021 Chou (2022092013240867100_ref103) 2016; 44 Li (2022092013240867100_ref127) 2021; 22 Suzuki (2022092013240867100_ref173) 2012; 6 Chen (2022092013240867100_ref169) 2017; 10 Guo (2022092013240867100_ref34) 2021; 214 Al Hasan (2022092013240867100_ref2) 2011 Atrey (2022092013240867100_ref20) 2010; 16 Zhao (2022092013240867100_ref13) 2021; 22 Zhou (2022092013240867100_ref16) 2012 Li (2022092013240867100_ref29) 2014; 42 Chen (2022092013240867100_ref71) 2017; 13 Cao (2022092013240867100_ref172) 2022; 23 Liu (2022092013240867100_ref57) 2014; 23 Chen (2022092013240867100_ref80) 2018; 15 Kozomara (2022092013240867100_ref52) 2014; 42 Chen (2022092013240867100_ref63) 2019; 15 Zhu (2022092013240867100_ref112) 2021; 22 Chen (2022092013240867100_ref61) 2018; 9 Cao (2022092013240867100_ref145) 2022; 40 Wang (2022092013240867100_ref179) 2019; 59 Van Laarhoven (2022092013240867100_ref33) 2011; 27 Cai (2022092013240867100_ref56) 2010; 33 Belevych (2022092013240867100_ref134) 2011; 6 Sweeney (2022092013240867100_ref160) 2021; 49 De'ath (2022092013240867100_ref64) 2000; 81 Theodoridis (2022092013240867100_ref19) 2006 LeCun (2022092013240867100_ref43) 1989; 1 Boyd (2022092013240867100_ref117) 2011; 3 Chen (2022092013240867100_ref121) 2021; 22 Wang (2022092013240867100_ref165) 2021; 37 Khurana (2022092013240867100_ref164) 2014; 15 Rokach (2022092013240867100_ref149) 2010; 33 Jaccard (2022092013240867100_ref78) 1912; 11 Qu (2022092013240867100_ref85) 2019; 186 Chen (2022092013240867100_ref25) 2021; 150 Ward (2022092013240867100_ref76) 1963; 58 Shi (2022092013240867100_ref72) 2015; 41 Chen (2022092013240867100_ref168) 2016; 17 Chen (2022092013240867100_ref9) 2016; 17 Huang (2022092013240867100_ref59) 2019; 47 Cui (2022092013240867100_ref142) 2019; 10 Chen (2022092013240867100_ref36) 2021; 22 Wang (2022092013240867100_ref14) 2021; 22 Jain (2022092013240867100_ref126) 2013 Keshava Prasad (2022092013240867100_ref40) 2009; 37 Jiang (2022092013240867100_ref143) 2010; 4 Kuncheva (2022092013240867100_ref151) 2003; 51 Opap (2022092013240867100_ref170) 2017; 6 Liben-Nowell (2022092013240867100_ref3) 2007; 58 Ning (2022092013240867100_ref60) 2017; 45 Kingma (2022092013240867100_ref89) Opitz (2022092013240867100_ref150) 1999; 11 Rokach (2022092013240867100_ref21) 2010 Qu (2022092013240867100_ref138) 2011; 12 Chen (2022092013240867100_ref175) 2020; 21 Hsu (2022092013240867100_ref53) 2014; 42 Kuncheva (2022092013240867100_ref27) 2001; 34 Tan (2022092013240867100_ref111) 2012; 35 Wang (2022092013240867100_ref92) 2021; 22 Xiao (2022092013240867100_ref51) 2021; 22 Drucker (2022092013240867100_ref153) 1994; 6 Chen (2022092013240867100_ref62) 2016 Wang (2022092013240867100_ref47) 2019; 16 Wang (2022092013240867100_ref7) 2015; 58 Xie (2022092013240867100_ref163) 2013; 29 Qu (2022092013240867100_ref180) 2018; 10 Buza (2022092013240867100_ref84) 2015; 86 Ji (2022092013240867100_ref90) 2021; 37 Santos (2022092013240867100_ref23) 2017; 143 Wang (2022092013240867100_ref174) 2017; 12 Zhao (2022092013240867100_ref70) 2019; 35 Hestenes (2022092013240867100_ref118) 1952; 49 Chen (2022092013240867100_ref125) 2018; 34 Radovanovic (2022092013240867100_ref82) 2010; 11 Feldbauer (2022092013240867100_ref83) Rendle (2022092013240867100_ref113) Xiao (2022092013240867100_ref105) 2009; 37 Katz (2022092013240867100_ref79) 1953; 18 Zhang (2022092013240867100_ref139) 2020; 11 Wei (2022092013240867100_ref35) 2020; 21 Nepusz (2022092013240867100_ref107) 2012; 9 Zhong (2022092013240867100_ref109) 2018; 34 LeCun (2022092013240867100_ref87) 2015; 521 Nguyen (2022092013240867100_ref114) 2013; 6 Guo (2022092013240867100_ref24) 2008 Wang (2022092013240867100_ref115) 2007; 23 Chen (2022092013240867100_ref167) 2015; 5 Chen (2022092013240867100_ref77) 2018; 15 Mikolov (2022092013240867100_ref101) 2013 Vilalta (2022092013240867100_ref65) 1997 Lü (2022092013240867100_ref1) 2011; 390 Chen (2022092013240867100_ref10) 2018; 23 Ritchie (2022092013240867100_ref68) 2014; 11 Meng (2022092013240867100_ref30) 2014; 9 Vergoulis (2022092013240867100_ref104) 2012; 40 Chen (2022092013240867100_ref176) 2021; 22 Hwang (2022092013240867100_ref97) 2019; 47 Peng (2022092013240867100_ref50) 2017; 7 Ding (2022092013240867100_ref74) 2008; 32 Cui (2022092013240867100_ref161) 2022; 50 Pan (2022092013240867100_ref100) 2018; 305 Hoehndorf (2022092013240867100_ref110) 2015; 5 Zhang (2022092013240867100_ref46) 2019; 6 Murakami (2022092013240867100_ref12) 2017; 44 Tiberio (2022092013240867100_ref137) 2015; 2015 Rukov (2022092013240867100_ref162) 2014; 15 Liu (2022092013240867100_ref48) Wang (2022092013240867100_ref99) 2019; 15 Wu (2022092013240867100_ref131) 2019; 20 Radovanović (2022092013240867100_ref81) 2009 Chen (2022092013240867100_ref144) 2012; 8 Sun (2022092013240867100_ref22) 2005; 38 Hong (2022092013240867100_ref120) 2016; 26 Huang (2022092013240867100_ref17) 2021; 22 Wang (2022092013240867100_ref31) 2010; 26 Kolda (2022092013240867100_ref116) 2009; 51 Huang (2022092013240867100_ref171) 2021; 12 Xiao (2022092013240867100_ref55) 2018; 34 Huang (2022092013240867100_ref93) 2021; 22 Wang (2022092013240867100_ref178) 2022; 23 Guan (2022092013240867100_ref106) 2011; 20 Chu (2022092013240867100_ref44) 2021; 22 Li (2022092013240867100_ref86) 2020; 36 Facchinei (2022092013240867100_ref108) 2014; 144 Lanes (2022092013240867100_ref152) 2017 Xuan (2022092013240867100_ref156) 2015; 31 Taherzadeh (2022092013240867100_ref67) 2018; 34 Moreno-Seco (2022092013240867100_ref26) 2006 Dweep (2022092013240867100_ref41) 2015; 12 Li (2022092013240867100_ref49) Chen (2022092013240867100_ref15) 2019; 20 Piñero (2022092013240867100_ref42) 2017; 45 Liang (2022092013240867100_ref73) 2017; 33 Ali Syeda (2022092013240867100_ref132) 2020; 21 Ji (2022092013240867100_ref124) 2009 Wang (2022092013240867100_ref177) 2022; 23 Liu (2022092013240867100_ref135) 2014; 5 Martínez (2022092013240867100_ref6) 2016; 49 Uhl (2022092013240867100_ref154) 2009 Natarajan (2022092013240867100_ref88) 2014; 30 Lu (2022092013240867100_ref123) 2008; 3 Huang (2022092013240867100_ref96) 2020; 48 Filipów (2022092013240867100_ref141) 2019; 10 Chen (2022092013240867100_ref32) 2016; 6 O'Brien (2022092013240867100_ref130) 2018; 9 Ye (2022092013240867100_ref146) 2022; 37 Ponti (2022092013240867100_ref155) 2011 Ting (2022092013240867100_ref147) 2019; 144 Zhao (2022092013240867100_ref140) 2010; 5 Hinton (2022092013240867100_ref38) 2012 Huang (2022092013240867100_ref133) 2011; 67 Friedman (2022092013240867100_ref102) 2000; 28 Treiber (2022092013240867100_ref129) 2019; 20 Daud (2022092013240867100_ref8) 2020; 166 Needleman (2022092013240867100_ref95) 1970; 48 Lin (2022092013240867100_ref136) 2015; 15 Kipf (2022092013240867100_ref45) Yu (2022092013240867100_ref54) 2010; 26 Ching (2022092013240867100_ref158) 2018; 15 Chen (2022092013240867100_ref11) 2017; 18 Rumelhart (2022092013240867100_ref128) 1986; 323 Hu (2022092013240867100_ref98) 2018 Zhou (2022092013240867100_ref5) Hinton (2022092013240867100_ref37) 2006; 313 Rifai (2022092013240867100_ref91) Tang (2022092013240867100_ref94) 2021; 22 Chen (2022092013240867100_ref69) 2018; 13 Kumar (2022092013240867100_ref4) 2020; 553 Fan (2022092013240867100_ref122) 2018 |
References_xml | – volume: 9 start-page: 471 year: 2012 ident: 2022092013240867100_ref107 article-title: Detecting overlapping protein complexes in protein-protein interaction networks publication-title: Nat Methods doi: 10.1038/nmeth.1938 – volume: 11 start-page: 1088 year: 2020 ident: 2022092013240867100_ref139 article-title: Circulating MicroRNAs: biogenesis and clinical significance in acute myocardial infarction publication-title: Front Physiol doi: 10.3389/fphys.2020.01088 – volume-title: International Conference on Learning Representations ident: 2022092013240867100_ref89 article-title: Adam: a method for stochastic optimization – start-page: 950 volume-title: International Conference on Biometrics year: 2009 ident: 2022092013240867100_ref154 – volume: 23 start-page: 1491 year: 2014 ident: 2022092013240867100_ref57 article-title: Progressive image denoising through hybrid graph Laplacian regularization: a unified framework publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2014.2303638 – volume: 22 start-page: bbab302 year: 2021 ident: 2022092013240867100_ref112 article-title: Identification of miRNA–disease associations via multiple information integration with Bayesian ranking publication-title: Brief Bioinform doi: 10.1093/bib/bbab302 – volume: 23 start-page: 2208 year: 2018 ident: 2022092013240867100_ref10 article-title: Machine learning for drug-target interaction prediction publication-title: Molecules doi: 10.3390/molecules23092208 – volume: 521 start-page: 436 year: 2015 ident: 2022092013240867100_ref87 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 144 start-page: 102818 year: 2019 ident: 2022092013240867100_ref147 article-title: Clinical significance of aberrant microRNAs expression in predicting disease relapse/refractoriness to treatment in diffuse large B-cell lymphoma: a meta-analysis publication-title: Crit Rev Oncol Hematol doi: 10.1016/j.critrevonc.2019.102818 – volume: 27 start-page: 3036 year: 2011 ident: 2022092013240867100_ref33 article-title: Gaussian interaction profile kernels for predicting drug–target interaction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr500 – volume: 15 start-page: 1192 year: 2018 ident: 2022092013240867100_ref80 article-title: Predicting microRNA-disease associations using bipartite local models and hubness-aware regression publication-title: RNA Biol doi: 10.1080/15476286.2018.1517010 – volume: 58 start-page: 1 year: 2015 ident: 2022092013240867100_ref7 article-title: Link prediction in social networks: the state-of-the-art publication-title: Science China Information Sciences – volume: 11 start-page: 2487 year: 2010 ident: 2022092013240867100_ref82 article-title: Hubs in space: popular nearest neighbors in high-dimensional data publication-title: J Mach Learn Res – volume: 166 start-page: 102716 year: 2020 ident: 2022092013240867100_ref8 article-title: Applications of link prediction in social networks: a review publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2020.102716 – volume: 11 start-page: 294 year: 2014 ident: 2022092013240867100_ref68 article-title: Functional annotation of noncoding sequence variants publication-title: Nat Methods doi: 10.1038/nmeth.2832 – volume: 553 start-page: 124289 year: 2020 ident: 2022092013240867100_ref4 article-title: Link prediction techniques, applications, and performance: a survey publication-title: Physica A doi: 10.1016/j.physa.2020.124289 – volume: 45 start-page: D833 year: 2017 ident: 2022092013240867100_ref42 article-title: DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw943 – volume: 35 start-page: 1592 year: 2012 ident: 2022092013240867100_ref111 article-title: Automatic relevance determination in nonnegative matrix factorization with the/spl beta/−divergence publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.240 – volume: 3 start-page: 1 year: 2011 ident: 2022092013240867100_ref117 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Found Trends Machine learning doi: 10.1561/2200000016 – volume: 313 start-page: 504 year: 2006 ident: 2022092013240867100_ref37 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 42 start-page: D78 year: 2014 ident: 2022092013240867100_ref53 article-title: miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1266 – volume: 18 start-page: 39 year: 1953 ident: 2022092013240867100_ref79 article-title: A new status index derived from sociometric analysis publication-title: Psychometrika doi: 10.1007/BF02289026 – volume: 30 start-page: i60 year: 2014 ident: 2022092013240867100_ref88 article-title: Inductive matrix completion for predicting gene–disease associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu269 – volume: 305 start-page: 51 year: 2018 ident: 2022092013240867100_ref100 article-title: Learning distributed representations of RNA sequences and its application for predicting RNA-protein binding sites with a convolutional neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.04.036 – volume: 22 start-page: 2043 year: 2021 ident: 2022092013240867100_ref51 article-title: Adaptive multi-source multi-view latent feature learning for inferring potential disease-associated miRNAs publication-title: Brief Bioinform doi: 10.1093/bib/bbaa028 – start-page: 312 volume-title: European Conference on Machine Learning year: 1997 ident: 2022092013240867100_ref65 – volume: 22 start-page: bbaa186 year: 2021 ident: 2022092013240867100_ref36 article-title: Deep-belief network for predicting potential miRNA-disease associations publication-title: Brief Bioinform doi: 10.1093/bib/bbaa186 – volume: 15 start-page: 20170387 year: 2018 ident: 2022092013240867100_ref158 article-title: Opportunities and obstacles for deep learning in biology and medicine publication-title: J R Soc Interface doi: 10.1098/rsif.2017.0387 – volume: 8 start-page: 2792 year: 2012 ident: 2022092013240867100_ref144 article-title: RWRMDA: predicting novel human microRNA–disease associations publication-title: Mol Biosyst doi: 10.1039/c2mb25180a – volume: 10 start-page: 30 year: 2018 ident: 2022092013240867100_ref180 article-title: Inferring potential small molecule–miRNA association based on triple layer heterogeneous network publication-title: J Chem doi: 10.1186/s13321-018-0284-9 – volume-title: Pattern Recognition year: 2006 ident: 2022092013240867100_ref19 – start-page: 705 volume-title: Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR) year: 2006 ident: 2022092013240867100_ref26 – volume: 48 start-page: D148 year: 2020 ident: 2022092013240867100_ref96 article-title: miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database publication-title: Nucleic Acids Res – volume: 6 start-page: e28324 year: 2011 ident: 2022092013240867100_ref134 article-title: MicroRNA-1 and-133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex publication-title: PLoS One doi: 10.1371/journal.pone.0028324 – start-page: 785 volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2016 ident: 2022092013240867100_ref62 doi: 10.1145/2939672.2939785 – volume: 34 start-page: 267 year: 2018 ident: 2022092013240867100_ref109 article-title: A non-negative matrix factorization based method for predicting disease-associated miRNAs in miRNA-disease bilayer network publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx546 – year: 2013 ident: 2022092013240867100_ref126 article-title: Provable inductive matrix completion – volume: 13 start-page: 34 year: 2016 ident: 2022092013240867100_ref159 article-title: CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs publication-title: RNA Biol doi: 10.1080/15476286.2015.1128065 – volume: 40 start-page: D222 year: 2012 ident: 2022092013240867100_ref104 article-title: TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr1161 – volume: 6 start-page: 1289 year: 1994 ident: 2022092013240867100_ref153 article-title: Boosting and other ensemble methods publication-title: Neural Comput doi: 10.1162/neco.1994.6.6.1289 – volume: 11 start-page: 169 year: 1999 ident: 2022092013240867100_ref150 article-title: Popular ensemble methods: an empirical study publication-title: J Artif Intell Res doi: 10.1613/jair.614 – volume: 45 start-page: D74 year: 2017 ident: 2022092013240867100_ref60 article-title: LincSNP 2.0: an updated database for linking disease-associated SNPs to human long non-coding RNAs and their TFBSs publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw945 – volume: 59 start-page: 5281 year: 2019 ident: 2022092013240867100_ref179 article-title: A unified framework for the prediction of small molecule–MicroRNA association based on cross-layer dependency inference on multilayered networks publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.9b00667 – volume: 16 start-page: 345 year: 2010 ident: 2022092013240867100_ref20 article-title: Multimodal fusion for multimedia analysis: a survey publication-title: Multimedia Syst doi: 10.1007/s00530-010-0182-0 – volume: 38 start-page: 2437 year: 2005 ident: 2022092013240867100_ref22 article-title: A new method of feature fusion and its application in image recognition publication-title: Pattern Recogn doi: 10.1016/j.patcog.2004.12.013 – volume: 7 start-page: 8087 year: 2017 ident: 2022092013240867100_ref50 article-title: Screening drug-target interactions with positive-unlabeled learning publication-title: Sci Rep doi: 10.1038/s41598-017-08079-7 – volume: 20 start-page: 515 year: 2019 ident: 2022092013240867100_ref15 article-title: MicroRNAs and complex diseases: from experimental results to computational models publication-title: Brief Bioinform doi: 10.1093/bib/bbx130 – volume: 28 start-page: 337 year: 2000 ident: 2022092013240867100_ref102 article-title: Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors) publication-title: Ann Stat doi: 10.1214/aos/1016218223 – volume: 41 start-page: 1 year: 2015 ident: 2022092013240867100_ref72 article-title: Semi-supervised sparse feature selection based on multi-view Laplacian regularization publication-title: Image Vision Comput doi: 10.1016/j.imavis.2015.06.006 – volume: 22 start-page: bbab174 year: 2021 ident: 2022092013240867100_ref94 article-title: Multi-view multichannel attention graph convolutional network for miRNA–disease association prediction publication-title: Brief Bioinform doi: 10.1093/bib/bbab174 – start-page: 1 volume-title: 2011 24th SIBGRAPI Conference on Graphics, Patterns, and Images Tutorials year: 2011 ident: 2022092013240867100_ref155 – volume: 22 start-page: bbaa158 year: 2021 ident: 2022092013240867100_ref13 article-title: Microbes and complex diseases: from experimental results to computational models publication-title: Brief Bioinform doi: 10.1093/bib/bbaa158 – volume: 13 start-page: 568 year: 2018 ident: 2022092013240867100_ref69 article-title: Novel human miRNA-disease association inference based on random forest publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2018.10.005 – volume-title: Ensemble Methods: Foundations and Algorithms year: 2012 ident: 2022092013240867100_ref16 doi: 10.1201/b12207 – volume: 144 start-page: 369 year: 2014 ident: 2022092013240867100_ref108 article-title: Solving quasi-variational inequalities via their KKT conditions publication-title: Math Program doi: 10.1007/s10107-013-0637-0 – volume-title: Iscience ident: 2022092013240867100_ref5 article-title: Progresses and challenges in link prediction doi: 10.1016/j.isci.2021.103217 – volume: 31 start-page: 1805 year: 2015 ident: 2022092013240867100_ref156 article-title: Prediction of potential disease-associated microRNAs based on random walk publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv039 – volume: 42 start-page: D1070 year: 2014 ident: 2022092013240867100_ref29 article-title: HMDD v2.0: a database for experimentally supported human microRNA and disease associations publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1023 – volume: 37 start-page: 66 year: 2021 ident: 2022092013240867100_ref90 article-title: AEMDA: inferring miRNA-disease associations based on deep autoencoder publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa670 – start-page: 348 volume-title: Pacific-Asia Conference on Knowledge Discovery and Data Mining year: 2018 ident: 2022092013240867100_ref122 doi: 10.1007/978-3-319-93034-3_28 – volume: 12 start-page: 878 year: 2016 ident: 2022092013240867100_ref157 article-title: Deep learning for computational biology publication-title: Mol Syst Biol doi: 10.15252/msb.20156651 – volume: 13 start-page: 4152 year: 2021 ident: 2022092013240867100_ref148 article-title: KIF22 promotes progress of esophageal squamous cell carcinoma cells and is negatively regulated by miR-122 publication-title: Am J Transl Res – volume: 33 start-page: 1 year: 2010 ident: 2022092013240867100_ref149 article-title: Ensemble-based classifiers publication-title: Artif Intell Rev doi: 10.1007/s10462-009-9124-7 – volume: 18 start-page: 558 year: 2017 ident: 2022092013240867100_ref11 article-title: Long non-coding RNAs and complex diseases: from experimental results to computational models publication-title: Brief Bioinform – volume: 5 start-page: 1 year: 2015 ident: 2022092013240867100_ref110 article-title: Analysis of the human diseasome using phenotype similarity between common, genetic and infectious diseases publication-title: Sci Rep doi: 10.1038/srep10888 – volume: 9 start-page: 3 year: 2018 ident: 2022092013240867100_ref61 article-title: EGBMMDA: extreme gradient boosting machine for miRNA-disease association prediction publication-title: Cell Death Dis doi: 10.1038/s41419-017-0003-x – volume: 15 start-page: 321 year: 2015 ident: 2022092013240867100_ref136 article-title: MicroRNA biogenesis pathways in cancer publication-title: Nat Rev Cancer doi: 10.1038/nrc3932 – volume: 58 start-page: 1019 year: 2007 ident: 2022092013240867100_ref3 article-title: The link-prediction problem for social networks publication-title: J Am Soc Inform Sci Technol doi: 10.1002/asi.20591 – volume-title: Pattern Classification Using Ensemble Methods year: 2010 ident: 2022092013240867100_ref21 – volume: 44 start-page: D239 year: 2016 ident: 2022092013240867100_ref103 article-title: miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1258 – volume: 49 start-page: 1 year: 2016 ident: 2022092013240867100_ref6 article-title: A survey of link prediction in complex networks publication-title: ACM Comput Surv doi: 10.1145/3012704 – volume: 14 start-page: e1006418 year: 2018 ident: 2022092013240867100_ref28 article-title: MDHGI: matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006418 – volume: 22 start-page: bbaa133 year: 2021 ident: 2022092013240867100_ref17 article-title: Predicting microRNA–disease associations from lncRNA–microRNA interactions via multiview multitask learning publication-title: Brief Bioinform doi: 10.1093/bib/bbaa133 – volume: 15 start-page: e1007209 year: 2019 ident: 2022092013240867100_ref63 article-title: Ensemble of decision tree reveals potential miRNA-disease associations publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1007209 – volume: 34 start-page: 477 year: 2018 ident: 2022092013240867100_ref67 article-title: Structure-based prediction of protein–peptide binding regions using random forest publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx614 – volume: 49 start-page: 409 year: 1952 ident: 2022092013240867100_ref118 article-title: Methods of conjugate gradients for solving linear systems publication-title: J Res Nat Bur Stand doi: 10.6028/jres.049.044 – volume-title: the Nineteenth International Conference on Machine Learning ident: 2022092013240867100_ref48 – volume: 9 start-page: e108125 year: 2014 ident: 2022092013240867100_ref30 article-title: The augmented Lagrange multipliers method for matrix completion from corrupted samplings with application to mixed Gaussian-impulse noise removal publication-title: PLoS One doi: 10.1371/journal.pone.0108125 – volume: 15 start-page: 1 year: 2014 ident: 2022092013240867100_ref164 article-title: OncomiRdbB: a comprehensive database of microRNAs and their targets in breast cancer publication-title: BMC Bioinform doi: 10.1186/1471-2105-15-15 – volume: 20 start-page: 2030 year: 2011 ident: 2022092013240867100_ref106 article-title: Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2011.2105496 – start-page: 243 volume-title: Social Network Data Analytics year: 2011 ident: 2022092013240867100_ref2 doi: 10.1007/978-1-4419-8462-3_9 – start-page: 457 volume-title: Proceedings of the 26th Annual International Conference on Machine Learning year: 2009 ident: 2022092013240867100_ref124 doi: 10.1145/1553374.1553434 – volume: 15 start-page: 807 year: 2018 ident: 2022092013240867100_ref77 article-title: ELLPMDA: ensemble learning and link prediction for miRNA-disease association prediction publication-title: RNA Biol – volume: 13 start-page: e1005912 year: 2017 ident: 2022092013240867100_ref71 article-title: LRSSLMDA: Laplacian regularized sparse subspace learning for miRNA-disease association prediction publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005912 – volume: 5 start-page: 13877 year: 2015 ident: 2022092013240867100_ref167 article-title: RBMMMDA: predicting multiple types of disease-microRNA associations publication-title: Sci Rep doi: 10.1038/srep13877 – volume: 35 start-page: 4730 year: 2019 ident: 2022092013240867100_ref70 article-title: Adaptive boosting-based computational model for predicting potential miRNA-disease associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz297 – volume: 6 start-page: 286 year: 2013 ident: 2022092013240867100_ref114 article-title: Content-boosted matrix factorization techniques for recommender systems publication-title: Stat Anal Data Min doi: 10.1002/sam.11184 – volume: 390 start-page: 1150 year: 2011 ident: 2022092013240867100_ref1 article-title: Link prediction in complex networks: a survey publication-title: Physica A doi: 10.1016/j.physa.2010.11.027 – volume: 48 start-page: 443 year: 1970 ident: 2022092013240867100_ref95 article-title: A general method applicable to the search for similarities in the amino acid sequence of two proteins publication-title: J Mol Biol doi: 10.1016/0022-2836(70)90057-4 – volume-title: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence ident: 2022092013240867100_ref113 article-title: BPR: Bayesian personalized ranking from implicit feedback – volume: 23 start-page: bbab431 year: 2022 ident: 2022092013240867100_ref177 article-title: Ensemble of kernel ridge regression-based small molecule–miRNA association prediction in human disease publication-title: Brief Bioinform doi: 10.1093/bib/bbab431 – volume: 81 start-page: 3178 year: 2000 ident: 2022092013240867100_ref64 article-title: Classification and regression trees: a powerful yet simple technique for ecological data analysis publication-title: Ecology doi: 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2 – volume: 214 start-page: 106718 year: 2021 ident: 2022092013240867100_ref34 article-title: MLPMDA: multi-layer linear projection for predicting miRNA-disease association publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2020.106718 – volume: 12 start-page: 187 year: 2017 ident: 2022092013240867100_ref174 article-title: Mutual regulation of microRNAs and DNA methylation in human cancers publication-title: Epigenetics doi: 10.1080/15592294.2016.1273308 – volume-title: The Journal of Open Source Software ident: 2022092013240867100_ref83 article-title: Scikit-hubness: Hubness reduction and approximate neighbor search doi: 10.21105/joss.01957 – volume: 51 start-page: 455 year: 2009 ident: 2022092013240867100_ref116 article-title: Tensor decompositions and applications publication-title: SIAM Rev doi: 10.1137/07070111X – volume: 3 start-page: e3420 year: 2008 ident: 2022092013240867100_ref123 article-title: An analysis of human microRNA and disease associations publication-title: PLoS One doi: 10.1371/journal.pone.0003420 – volume: 33 start-page: 1187 year: 2017 ident: 2022092013240867100_ref73 article-title: LRSSL: predict and interpret drug-disease associations based on data integration using sparse subspace learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw770 – volume: 32 start-page: 45 year: 2008 ident: 2022092013240867100_ref74 article-title: Convex and semi-nonnegative matrix factorizations publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.277 – volume: 23 start-page: 1274 year: 2007 ident: 2022092013240867100_ref115 article-title: A new method to measure the semantic similarity of GO terms publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm087 – volume: 22 start-page: bbab328 year: 2021 ident: 2022092013240867100_ref176 article-title: Predicting potential small molecule–miRNA associations based on bounded nuclear norm regularization publication-title: Brief Bioinform doi: 10.1093/bib/bbab328 – volume: 12 start-page: 697 year: 2015 ident: 2022092013240867100_ref41 article-title: miRWalk2.0: a comprehensive atlas of microRNA-target interactions publication-title: Nat Methods doi: 10.1038/nmeth.3485 – volume: 12 start-page: 1117 year: 2011 ident: 2022092013240867100_ref138 article-title: Circulating miRNAs: promising biomarkers of human cancer publication-title: Asian Pac J Cancer Prev – volume: 22 start-page: 485 year: 2021 ident: 2022092013240867100_ref121 article-title: NCMCMDA: miRNA-disease association prediction through neighborhood constraint matrix completion publication-title: Brief Bioinform doi: 10.1093/bib/bbz159 – volume: 50 start-page: D333 year: 2022 ident: 2022092013240867100_ref161 article-title: RNALocate v2. 0: an updated resource for RNA subcellular localization with increased coverage and annotation publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab825 – start-page: 2946 volume-title: Proceedings of the Web Conference 2021 year: 2021 ident: 2022092013240867100_ref166 doi: 10.1145/3442381.3450060 – volume: 49 start-page: D212 year: 2021 ident: 2022092013240867100_ref160 article-title: RNAcentral 2021: secondary structure integration, improved sequence search and new member databases publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa921 – start-page: 233 volume-title: the Nineteenth International Conference on Enterprise Information Systems year: 2017 ident: 2022092013240867100_ref152 – volume: 34 start-page: 239 year: 2018 ident: 2022092013240867100_ref55 article-title: A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx545 – volume: 1 start-page: 541 year: 1989 ident: 2022092013240867100_ref43 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput doi: 10.1162/neco.1989.1.4.541 – volume-title: Proceedings of the 28th International Conference on Machine Learning ident: 2022092013240867100_ref91 – volume: 10 start-page: 1 year: 2017 ident: 2022092013240867100_ref169 article-title: Using DIVAN to assess disease/trait-associated single nucleotide variants in genome-wide scale publication-title: BMC Res Notes doi: 10.1186/s13104-017-2851-y – volume: 11 start-page: 37 year: 1912 ident: 2022092013240867100_ref78 article-title: The distribution of the flora in the alpine zone. 1 publication-title: New Phytol doi: 10.1111/j.1469-8137.1912.tb05611.x – volume: 22 start-page: bbaa140 year: 2021 ident: 2022092013240867100_ref93 article-title: Tensor decomposition with relational constraints for predicting multiple types of microRNA-disease associations publication-title: Brief Bioinform doi: 10.1093/bib/bbaa140 – volume: 40 start-page: 172 year: 2022 ident: 2022092013240867100_ref145 article-title: Circulating exosomal microRNAs as diagnostic and prognostic biomarkers in patients with diffuse large B-cell lymphoma publication-title: Hematol Oncol doi: 10.1002/hon.2956 – volume: 44 start-page: 134 year: 2017 ident: 2022092013240867100_ref12 article-title: Network analysis and in silico prediction of protein–protein interactions with applications in drug discovery publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2017.02.005 – volume: 21 start-page: 47 year: 2020 ident: 2022092013240867100_ref175 article-title: MicroRNA-small molecule association identification: from experimental results to computational models publication-title: Brief Bioinform – volume: 86 start-page: 250 year: 2015 ident: 2022092013240867100_ref84 article-title: Nearest neighbor regression in the presence of bad hubs publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.06.010 – volume: 10 start-page: 626 year: 2019 ident: 2022092013240867100_ref142 article-title: Circulating microRNAs in cancer: potential and challenge publication-title: Front Genet doi: 10.3389/fgene.2019.00626 – volume: 23 start-page: bbab438 year: 2022 ident: 2022092013240867100_ref172 article-title: Disease category-specific annotation of variants using an ensemble learning framework publication-title: Brief Bioinform doi: 10.1093/bib/bbab438 – volume: 35 start-page: 4364 year: 2019 ident: 2022092013240867100_ref39 article-title: A learning-based framework for miRNA-disease association identification using neural networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz254 – volume: 37 start-page: 4793 year: 2021 ident: 2022092013240867100_ref165 article-title: BioERP: biomedical heterogeneous network-based self-supervised representation learning approach for entity relationship predictions publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab565 – volume: 143 start-page: 04016162 year: 2017 ident: 2022092013240867100_ref23 article-title: Early damage detection based on pattern recognition and data fusion publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0001643 – volume: 22 start-page: bbaa240 year: 2021 ident: 2022092013240867100_ref127 article-title: A graph auto-encoder model for miRNA-disease associations prediction publication-title: Brief Bioinform doi: 10.1093/bib/bbaa240 – volume: 29 start-page: 638 year: 2013 ident: 2022092013240867100_ref163 article-title: miRCancer: a microRNA–cancer association database constructed by text mining on literature publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt014 – volume: 21 start-page: 1723 year: 2020 ident: 2022092013240867100_ref132 article-title: Regulatory mechanism of microRNA expression in cancer publication-title: Int J Mol Sci doi: 10.3390/ijms21051723 – start-page: 599 volume-title: Neural networks: Tricks of the Trade year: 2012 ident: 2022092013240867100_ref38 doi: 10.1007/978-3-642-35289-8_32 – volume: 9 start-page: 402 year: 2018 ident: 2022092013240867100_ref130 article-title: Overview of microRNA biogenesis, mechanisms of actions, and circulation publication-title: Front Endocrinol doi: 10.3389/fendo.2018.00402 – volume: 20 start-page: 1611 year: 2019 ident: 2022092013240867100_ref131 article-title: The roles of MicroRNA in lung cancer publication-title: Int J Mol Sci doi: 10.3390/ijms20071611 – volume: 4 start-page: 1 year: 2010 ident: 2022092013240867100_ref143 article-title: Prioritization of disease microRNAs through a human phenome-microRNAome network publication-title: BMC Syst Biol doi: 10.1186/1752-0509-4-S1-S2 – volume: 6 start-page: 1 year: 2016 ident: 2022092013240867100_ref32 article-title: WBSMDA: within and between score for MiRNA-disease association prediction publication-title: Sci Rep – volume: 47 start-page: D573 year: 2019 ident: 2022092013240867100_ref97 article-title: HumanNet v2: human gene networks for disease research publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1126 – volume: 12 start-page: 1 year: 2021 ident: 2022092013240867100_ref171 article-title: A machine learning approach to brain epigenetic analysis reveals kinases associated with Alzheimer’s disease publication-title: Nat Commun – volume: 17 start-page: 696 year: 2016 ident: 2022092013240867100_ref9 article-title: Drug–target interaction prediction: databases, web servers and computational models publication-title: Brief Bioinform doi: 10.1093/bib/bbv066 – volume: 22 start-page: bbab286 year: 2021 ident: 2022092013240867100_ref14 article-title: Circular RNAs and complex diseases: from experimental results to computational models publication-title: Brief Bioinform doi: 10.1093/bib/bbab286 – start-page: 865 volume-title: Proceedings of the 26th Annual International Conference on Machine Learning year: 2009 ident: 2022092013240867100_ref81 doi: 10.1145/1553374.1553485 – volume: 22 start-page: bbab165 year: 2021 ident: 2022092013240867100_ref44 article-title: MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph publication-title: Brief Bioinform doi: 10.1093/bib/bbab165 – volume: 47 start-page: D1013 year: 2019 ident: 2022092013240867100_ref59 article-title: HMDD v3.0: a database for experimentally supported human microRNA-disease associations publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1010 – volume: 20 start-page: 5 year: 2019 ident: 2022092013240867100_ref129 article-title: Regulation of microRNA biogenesis and its crosstalk with other cellular pathways publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-018-0059-1 – volume: 10 start-page: 169 year: 2019 ident: 2022092013240867100_ref141 article-title: Blood circulating miRNAs as cancer biomarkers for diagnosis and surgical treatment response publication-title: Front Genet doi: 10.3389/fgene.2019.00169 – start-page: 1 volume-title: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops year: 2008 ident: 2022092013240867100_ref24 – volume: 186 start-page: 104963 year: 2019 ident: 2022092013240867100_ref85 article-title: Prediction of potential miRNA-disease associations using matrix decomposition and label propagation publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.104963 – volume: 36 start-page: 2538 year: 2020 ident: 2022092013240867100_ref86 article-title: Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz965 – volume: 6 start-page: 578 year: 2017 ident: 2022092013240867100_ref170 article-title: Recent advances in predicting gene–disease associations publication-title: F1000Research doi: 10.12688/f1000research.10788.1 – volume: 23 start-page: bbab500 year: 2022 ident: 2022092013240867100_ref178 article-title: Dual-network collaborative matrix factorization for predicting small molecule-miRNA associations publication-title: Brief Bioinform doi: 10.1093/bib/bbab500 – volume: 34 start-page: 4256 year: 2018 ident: 2022092013240867100_ref125 article-title: Predicting miRNA-disease association based on inductive matrix completion publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty503 – start-page: 80 volume-title: International Conference on Machine Learning year: 2013 ident: 2022092013240867100_ref119 – volume: 51 start-page: 181 year: 2003 ident: 2022092013240867100_ref151 article-title: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy publication-title: Mach Learn doi: 10.1023/A:1022859003006 – volume: 34 start-page: 299 year: 2001 ident: 2022092013240867100_ref27 article-title: Decision templates for multiple classifier fusion: an experimental comparison publication-title: Pattern Recogn doi: 10.1016/S0031-3203(99)00223-X – start-page: 181 volume-title: Machine Learning year: 2021 ident: 2022092013240867100_ref18 doi: 10.1007/978-981-15-1967-3_8 – volume: 34 start-page: 3178 year: 2018 ident: 2022092013240867100_ref75 article-title: BNPMDA: bipartite network projection for miRNA-disease association prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty333 – volume: 5 start-page: e1171 year: 2014 ident: 2022092013240867100_ref135 article-title: Cardiac hypertrophy is negatively regulated by miR-541 publication-title: Cell Death Dis doi: 10.1038/cddis.2014.141 – volume: 37 start-page: D767 year: 2009 ident: 2022092013240867100_ref40 article-title: Human protein reference database—2009 update publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn892 – volume: 100 start-page: 523 year: 2019 ident: 2022092013240867100_ref58 article-title: Unsupervised multi-view non-negative for law data feature learning with dual graph-regularization in smart Internet of Things publication-title: Future Gener Comp Sy doi: 10.1016/j.future.2019.05.055 – volume: 26 start-page: 337 year: 2016 ident: 2022092013240867100_ref120 article-title: Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems publication-title: SIAM J Optimiz doi: 10.1137/140990309 – volume: 6 start-page: 1 year: 2019 ident: 2022092013240867100_ref46 article-title: Graph convolutional networks: a comprehensive review publication-title: Comput Soc Netw doi: 10.1186/s40649-019-0069-y – volume: 6 start-page: 567 year: 2012 ident: 2022092013240867100_ref173 article-title: DNA methylation and microRNA dysregulation in cancer publication-title: Mol Oncol doi: 10.1016/j.molonc.2012.07.007 – volume: 58 start-page: 236 year: 1963 ident: 2022092013240867100_ref76 article-title: Hierarchical grouping to optimize an objective function publication-title: J Am Stat Assoc doi: 10.1080/01621459.1963.10500845 – volume: 22 start-page: bbab074 year: 2021 ident: 2022092013240867100_ref92 article-title: NMCMDA: neural multicategory MiRNA–disease association prediction publication-title: Brief Bioinform doi: 10.1093/bib/bbab074 – volume: 33 start-page: 1548 year: 2010 ident: 2022092013240867100_ref56 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 26 start-page: 1644 year: 2010 ident: 2022092013240867100_ref31 article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq241 – volume: 21 start-page: 1356 year: 2020 ident: 2022092013240867100_ref35 article-title: iCircDA-MF: identification of circRNA-disease associations based on matrix factorization publication-title: Brief Bioinform doi: 10.1093/bib/bbz057 – start-page: 7132 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2018 ident: 2022092013240867100_ref98 – volume: 43 start-page: 2757 year: 2015 ident: 2022092013240867100_ref66 article-title: Base-resolution methylation patterns accurately predict transcription factor bindings in vivo publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv151 – volume: 67 start-page: 129 year: 2011 ident: 2022092013240867100_ref133 article-title: Biological functions of microRNAs: a review publication-title: J Physiol Biochem doi: 10.1007/s13105-010-0050-6 – volume: 15 start-page: 648 year: 2014 ident: 2022092013240867100_ref162 article-title: Pharmaco-miR: linking microRNAs and drug effects publication-title: Brief Bioinform doi: 10.1093/bib/bbs082 – volume-title: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence ident: 2022092013240867100_ref49 – year: 2013 ident: 2022092013240867100_ref101 article-title: Efficient estimation of word representations in vector space – volume-title: International Conference on Learning Representations ident: 2022092013240867100_ref45 article-title: Semi-supervised classification with graph convolutional networks – volume: 37 start-page: 144 year: 2022 ident: 2022092013240867100_ref146 article-title: Long non-coding RNA TMPO-AS1 facilitates the progression of colorectal cancer cells via sponging miR-98-5p to upregulate BCAT1 expression publication-title: J Gastroenterol Hepatol doi: 10.1111/jgh.15657 – volume: 150 start-page: 115 year: 2021 ident: 2022092013240867100_ref25 article-title: Sequential fusion of facial appearance and dynamics for depression recognition publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2021.07.005 – volume: 26 start-page: 976 year: 2010 ident: 2022092013240867100_ref54 article-title: GOSemSim: an R package for measuring semantic similarity among GO terms and gene products publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq064 – volume: 323 start-page: 533 year: 1986 ident: 2022092013240867100_ref128 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 17 start-page: 1 year: 2016 ident: 2022092013240867100_ref168 article-title: DIVAN: accurate identification of non-coding disease-specific risk variants using multi-omics profiles publication-title: Genome Biol doi: 10.1186/s13059-016-1112-z – volume: 16 start-page: 257 year: 2019 ident: 2022092013240867100_ref47 article-title: An integrated framework for the identification of potential miRNA-disease association based on novel negative samples extraction strategy publication-title: RNA Biol doi: 10.1080/15476286.2019.1568820 – volume: 2015 start-page: 1 year: 2015 ident: 2022092013240867100_ref137 article-title: Challenges in using circulating miRNAs as cancer biomarkers publication-title: Biomed Res Int doi: 10.1155/2015/731479 – volume: 15 start-page: e1006865 year: 2019 ident: 2022092013240867100_ref99 article-title: LMTRDA: using logistic model tree to predict miRNA-disease associations by fusing multi-source information of sequences and similarities publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006865 – volume: 5 start-page: e13735 year: 2010 ident: 2022092013240867100_ref140 article-title: A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer publication-title: PLoS One doi: 10.1371/journal.pone.0013735 – volume: 37 start-page: D105 year: 2009 ident: 2022092013240867100_ref105 article-title: miRecords: an integrated resource for microRNA–target interactions publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn851 – volume: 42 start-page: D68 year: 2014 ident: 2022092013240867100_ref52 article-title: miRBase: annotating high confidence microRNAs using deep sequencing data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1181 |
SSID | ssj0020781 |
Score | 2.5934741 |
SecondaryResourceType | review_article |
Snippet | Abstract
Since the problem proposed in late 2000s, microRNA–disease association (MDA) predictions have been implemented based on the data fusion paradigm.... Since the problem proposed in late 2000s, microRNA–disease association (MDA) predictions have been implemented based on the data fusion paradigm. Integrating... Since the problem proposed in late 2000s, microRNA-disease association (MDA) predictions have been implemented based on the data fusion paradigm. Integrating... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Computer applications Data integration Mathematical models MicroRNAs miRNA Performance prediction Predictions Ribonucleic acid RNA State-of-the-art reviews Taxonomy |
Title | Updated review of advances in microRNAs and complex diseases: taxonomy, trends and challenges of computational models |
URI | https://www.proquest.com/docview/2717367690 https://www.proquest.com/docview/2709738875 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bS8MwFA4yEHwRrzidGmFPYlnTXNr6NsQxBCfIBnsrzQ0G2g3bwfz35rTZYDL0uScpJD05OT3n-z6Eui7fMsZdlQNBdRgwEuWB5JEKhLJWUa1EUvMUvI7EcMJepnzqG2TLHSX8lPbkTPakzBXlgOl14Rco8sdv001eBXw1DYgoDoDd3cPwfo3dCjxbYLb16VuHlMEROvR3QdxvNu8Y7ZniBO036pDfp2g5WUA6rnEDL8Fzi33FvsSzAn9CK937qF_ivNC4bg03K-wLLuUjrvJVDVh4wFXd99qYrbVTSphO1ZIO_ncgrkVxyjM0GTyPn4aBV0kIlEsHqsCmPNEyF4klkbICGLgEVS40pXkMCpwh5UoSm5pY2DiKtFHGeSm1JHHDbErpOWoV88JcIExMyJhJrZuAMa2J5Fa4_Ik5O64II210v17CTHkKcVCy-MiaUjbN3Hpnfr3bqLsxXjTMGbvNbt1e_G3RWe9T5h2szCLoHoD23LCN7jaPnWtAvSMvzHwJNsBF5E5RfvnvS67QQQTABqg3hR3Uqr6W5tpdNyp5U39sP4vL0-A |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Updated+review+of+advances+in+microRNAs+and+complex+diseases%3A+taxonomy%2C+trends+and+challenges+of+computational+models&rft.jtitle=Briefings+in+bioinformatics&rft.au=Huang%2C+Li&rft.au=Zhang%2C+Li&rft.au=Chen%2C+Xing&rft.date=2022-09-20&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=5&rft_id=info:doi/10.1093%2Fbib%2Fbbac358&rft.externalDocID=10.1093%2Fbib%2Fbbac358 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |