Anisotropic flows of Forchheimer-type in porous media and their steady states

We study the anisotropic Forchheimer-typed flows for compressible fluids in porous media. The first half of the paper is devoted to understanding the nonlinear structure of the anisotropic momentum equations. Unlike the isotropic flows, the important monotonicity properties are not automatically sat...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis: real world applications Vol. 84; p. 104269
Main Authors Hoang, Luan, Kieu, Thinh
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2025
Subjects
Online AccessGet full text
ISSN1468-1218
DOI10.1016/j.nonrwa.2024.104269

Cover

Loading…
Abstract We study the anisotropic Forchheimer-typed flows for compressible fluids in porous media. The first half of the paper is devoted to understanding the nonlinear structure of the anisotropic momentum equations. Unlike the isotropic flows, the important monotonicity properties are not automatically satisfied in this case. Therefore, various sufficient conditions for them are derived and applied to the experimental data. In the second half of the paper, we prove the existence and uniqueness of the steady state flows subject to a nonhomogeneous Dirichlet boundary condition. It is also established that these steady states, in appropriate functional spaces, have local Hölder continuous dependence on the forcing function and the boundary data.
AbstractList We study the anisotropic Forchheimer-typed flows for compressible fluids in porous media. The first half of the paper is devoted to understanding the nonlinear structure of the anisotropic momentum equations. Unlike the isotropic flows, the important monotonicity properties are not automatically satisfied in this case. Therefore, various sufficient conditions for them are derived and applied to the experimental data. In the second half of the paper, we prove the existence and uniqueness of the steady state flows subject to a nonhomogeneous Dirichlet boundary condition. It is also established that these steady states, in appropriate functional spaces, have local Hölder continuous dependence on the forcing function and the boundary data.
ArticleNumber 104269
Author Hoang, Luan
Kieu, Thinh
Author_xml – sequence: 1
  givenname: Luan
  orcidid: 0000-0002-8008-4915
  surname: Hoang
  fullname: Hoang, Luan
  email: luan.hoang@ttu.edu
  organization: Department of Mathematics and Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409–1042, USA
– sequence: 2
  givenname: Thinh
  surname: Kieu
  fullname: Kieu, Thinh
  email: thinh.kieu@ung.edu
  organization: Department of Mathematics, University of North Georgia, Gainesville Campus, 3820 Mundy Mill Rd., Oakwood, GA 30566, USA
BookMark eNp9kM1KAzEUhbOoYFt9Axd5galJZpKZ2QilWBUqbnQd8nNDU9rJkERL396Uce3dHDjcc7j3W6DZEAZA6IGSFSVUPB5WxYhntWKENcVqmOhnaE4b0VWU0e4WLVI6EEJbWtM5el8PPoUcw-gNdsdwTjg4vA3R7PfgTxCrfBkB-wGPIYbvhE9gvcJqsDiXhYhTBmUvRVSGdIdunDomuP_TJfraPn9uXqvdx8vbZr2rDOM8V65TxEItNOfKsl4YYp0BprVr-1YIBYYLbkzrWBmue1f3na6V7hlvuVG6XqJm6jUxpBTByTH6k4oXSYm8YpAHOWGQVwxywlBiT1MMym0_HqJMxsNgyksRTJY2-P8LfgFQ-m3m
Cites_doi 10.1023/A:1011543412675
10.1007/s10958-015-2576-1
10.1016/j.jde.2016.10.043
10.1016/0362-546X(89)90093-X
10.1007/PL00001527
10.1007/s11854-018-0064-5
10.1023/A:1010749114251
10.1007/BF00141261
10.1088/0951-7715/29/3/1124
10.1007/BF01385609
10.1137/S0036141095290562
10.1007/BF00192152
10.1051/m2an/1993270201311
10.1016/0309-1708(81)90025-7
10.1098/rspa.2003.1169
10.1063/1.4976195
10.55730/1300-0098.3405
10.1111/1467-9590.00142
10.1063/1.3204977
10.1007/BF01396320
10.1007/BF01036526
10.1111/1467-9590.00116
10.1029/TR039i004p00702
10.1007/s10958-014-2045-2
10.1088/1361-6544/aabf05
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nonrwa.2024.104269
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_nonrwa_2024_104269
S1468121824002086
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABAOU
ABEFU
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADGUI
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J9A
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
XPP
YQT
ZMT
~G-
AATTM
AAYWO
AAYXX
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c255t-f8a0de36b55ad296c0dfce2bbf79766aec565cc7f22225b9f398b3ab92575cab3
IEDL.DBID .~1
ISSN 1468-1218
IngestDate Tue Jul 01 05:23:39 EDT 2025
Sat Mar 15 15:41:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Porous media
Nonlinear partial differential equations
Forchheimer
Anisotropic
First-order system
Fluid flows
Monotonicity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-f8a0de36b55ad296c0dfce2bbf79766aec565cc7f22225b9f398b3ab92575cab3
ORCID 0000-0002-8008-4915
ParticipantIDs crossref_primary_10_1016_j_nonrwa_2024_104269
elsevier_sciencedirect_doi_10_1016_j_nonrwa_2024_104269
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2025
2025-08-00
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationTitle Nonlinear analysis: real world applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Celik, Hoang, Kieu (b36) 2023; 47
Forchheimer (b2) 1901; 45
Celik, Hoang (b35) 2017; 262
Scheidegger (b7) 1974
Celik, Hoang (b37) 2016; 29
Hoang, Ibragimov (b30) 2012; 17
Baranger, Najib (b40) 1990; 58
Irmay (b8) 1965; 29
Hoang, Kieu (b31) 2019; 137
Celik, Hoang, Kieu (b34) 2018; 31
Ergun (b6) 1952; 48
Irmay (b11) 1958; 39
Franchi, Straughan (b22) 2003; 459
Chow (b39) 1989; 54
Bear (b10) 1988
Hassanizadeh, Gray (b19) 1987; 2
Vázquez (b20) 2007
Chadam, Qin (b27) 1997; 28
Glowinski, Marroco (b38) 1975; 9
Payne, Straughan (b24) 1999; 102
Zeidler (b44) 1990
Muskat (b5) 1937
Forchheimer (b3) 1930
Chen, Lyons, Qin (b12) 2001; 44
Ewing, Lazarov, Lyons, Papavassiliou, Pasciak, Qin (b13) 1999; 3
Bachmat (b16) 1965; 1
Payne, Straughan (b25) 2000; 105
Cvetković (b18) 1986; 1
Fabrie (b21) 1989; 13
Ahmed (b9) 1967
Payne, Song (b26) 2000; 51
Hoang, Ibragimov, Kieu, Sobol (b33) 2015; 210
Ward (b4) 1964; 90(HY5)
Barak, Bear (b17) 1981; 4
Payne, Straughan (b23) 1996; 75
Celik, Hoang, Ibragimov, Kieu (b43) 2017; 58
Nield, Bejan (b15) 2013
Straughan (b28) 2008; vol. 165
Hoang, Kieu, Phan (b32) 2014; 202
Whitaker (b14) 1996; 25
Sandri (b41) 1993; 27
Aulisa, Bloshanskaya, Hoang, Ibragimov (b29) 2009; 50
Dupuit (b1) 1857; 45
Knabner, Summ (b42) 2016
Chen (10.1016/j.nonrwa.2024.104269_b12) 2001; 44
Cvetković (10.1016/j.nonrwa.2024.104269_b18) 1986; 1
Bear (10.1016/j.nonrwa.2024.104269_b10) 1988
Scheidegger (10.1016/j.nonrwa.2024.104269_b7) 1974
Payne (10.1016/j.nonrwa.2024.104269_b23) 1996; 75
Glowinski (10.1016/j.nonrwa.2024.104269_b38) 1975; 9
Nield (10.1016/j.nonrwa.2024.104269_b15) 2013
Ergun (10.1016/j.nonrwa.2024.104269_b6) 1952; 48
Hoang (10.1016/j.nonrwa.2024.104269_b30) 2012; 17
Sandri (10.1016/j.nonrwa.2024.104269_b41) 1993; 27
Hassanizadeh (10.1016/j.nonrwa.2024.104269_b19) 1987; 2
Payne (10.1016/j.nonrwa.2024.104269_b25) 2000; 105
Hoang (10.1016/j.nonrwa.2024.104269_b31) 2019; 137
Irmay (10.1016/j.nonrwa.2024.104269_b8) 1965; 29
Celik (10.1016/j.nonrwa.2024.104269_b43) 2017; 58
Barak (10.1016/j.nonrwa.2024.104269_b17) 1981; 4
Aulisa (10.1016/j.nonrwa.2024.104269_b29) 2009; 50
Franchi (10.1016/j.nonrwa.2024.104269_b22) 2003; 459
Chow (10.1016/j.nonrwa.2024.104269_b39) 1989; 54
Ewing (10.1016/j.nonrwa.2024.104269_b13) 1999; 3
Ahmed (10.1016/j.nonrwa.2024.104269_b9) 1967
Chadam (10.1016/j.nonrwa.2024.104269_b27) 1997; 28
Forchheimer (10.1016/j.nonrwa.2024.104269_b2) 1901; 45
Irmay (10.1016/j.nonrwa.2024.104269_b11) 1958; 39
Vázquez (10.1016/j.nonrwa.2024.104269_b20) 2007
Bachmat (10.1016/j.nonrwa.2024.104269_b16) 1965; 1
Fabrie (10.1016/j.nonrwa.2024.104269_b21) 1989; 13
Hoang (10.1016/j.nonrwa.2024.104269_b32) 2014; 202
Ward (10.1016/j.nonrwa.2024.104269_b4) 1964; 90(HY5)
Baranger (10.1016/j.nonrwa.2024.104269_b40) 1990; 58
Payne (10.1016/j.nonrwa.2024.104269_b24) 1999; 102
Hoang (10.1016/j.nonrwa.2024.104269_b33) 2015; 210
Forchheimer (10.1016/j.nonrwa.2024.104269_b3) 1930
Celik (10.1016/j.nonrwa.2024.104269_b35) 2017; 262
Dupuit (10.1016/j.nonrwa.2024.104269_b1) 1857; 45
Knabner (10.1016/j.nonrwa.2024.104269_b42) 2016
Straughan (10.1016/j.nonrwa.2024.104269_b28) 2008; vol. 165
Celik (10.1016/j.nonrwa.2024.104269_b36) 2023; 47
Zeidler (10.1016/j.nonrwa.2024.104269_b44) 1990
Payne (10.1016/j.nonrwa.2024.104269_b26) 2000; 51
Muskat (10.1016/j.nonrwa.2024.104269_b5) 1937
Whitaker (10.1016/j.nonrwa.2024.104269_b14) 1996; 25
Celik (10.1016/j.nonrwa.2024.104269_b34) 2018; 31
Celik (10.1016/j.nonrwa.2024.104269_b37) 2016; 29
References_xml – volume: 90(HY5)
  start-page: 1
  year: 1964
  end-page: 12
  ident: b4
  article-title: Turbulent flow in porous media
  publication-title: J. Hydraulics Div. Proc. Am. Soc. Civ. Eng.
– volume: 9
  start-page: 41
  year: 1975
  end-page: 76
  ident: b38
  article-title: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires
  publication-title: Rev. française d’automat. informat. rech. opérationnelle. Anal. numér.
– volume: 44
  start-page: 325
  year: 2001
  end-page: 335
  ident: b12
  article-title: Derivation of the Forchheimer law via homogenization
  publication-title: Transp. Porous Media
– start-page: xxii+624
  year: 2007
  ident: b20
  article-title: The porous medium equation
  publication-title: Oxford Mathematical Monographs
– volume: 31
  start-page: 3617
  year: 2018
  end-page: 3650
  ident: b34
  article-title: Doubly nonlinear parabolic equations for a general class of Forchheimer gas flows in porous media
  publication-title: Nonlinearity
– year: 1990
  ident: b44
  article-title: Nonlinear functional analysis and its applications. II/b
– volume: 1
  start-page: 63
  year: 1965
  end-page: 75
  ident: b16
  article-title: Basic transport coefficients as aquifer characteristics
  publication-title: I.A.S.H. Proceedings of the Dubrovnik symposium on hydrology of fractured rocks
– volume: 1
  start-page: 63
  year: 1986
  end-page: 97
  ident: b18
  article-title: A continuum approach to high velocity flow in a porous medium
  publication-title: Transp. Porous Media
– volume: 27
  start-page: 131
  year: 1993
  end-page: 155
  ident: b41
  article-title: Sur lápproximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de carreau
  publication-title: ESAIM: M2AN
– volume: 17
  start-page: 511
  year: 2012
  end-page: 556
  ident: b30
  article-title: Qualitative study of generalized Forchheimer flows with the flux boundary condition
  publication-title: Adv. Differential Equations
– volume: 202
  start-page: 259
  year: 2014
  end-page: 332
  ident: b32
  article-title: Properties of generalized Forchheimer flows in porous media
  publication-title: J. Math. Sci.
– year: 1967
  ident: b9
  article-title: Physical properties of porous medium affecting laminar and turbulent flow of water
– volume: 13
  start-page: 1025
  year: 1989
  end-page: 1049
  ident: b21
  article-title: Regularity of the solution of Darcy-Forchheimer’s equation
  publication-title: Nonlinear Anal.
– volume: 210
  start-page: 476
  year: 2015
  end-page: 544
  ident: b33
  article-title: Stability of solutions to generalized Forchheimer equations of any degree
  publication-title: J. Math. Sci. (N. Y.)
– volume: 2
  start-page: 521
  year: 1987
  end-page: 531
  ident: b19
  article-title: High velocity flow in porous media
  publication-title: Transp. Porous Media
– volume: 45
  start-page: 92
  year: 1857
  end-page: 96
  ident: b1
  article-title: Mouvement de l’eau a travers le terrains permeables
  publication-title: C. R. Hebd. Seances Acad. Sci.
– volume: 102
  start-page: 419
  year: 1999
  end-page: 439
  ident: b24
  article-title: Convergence and continuous dependence for the Brinkman-Forchheimer equations
  publication-title: Stud. Appl. Math.
– volume: 51
  start-page: 867
  year: 2000
  end-page: 889
  ident: b26
  article-title: Spatial decay for a model of double diffusive convection in Darcy and Brinkman flows
  publication-title: Z. Angew. Math. Phys.
– volume: 262
  start-page: 2158
  year: 2017
  end-page: 2195
  ident: b35
  article-title: Maximum estimates for generalized Forchheimer flows in heterogeneous porous media
  publication-title: J. Differential Equations
– volume: 48
  start-page: 89
  year: 1952
  end-page: 94
  ident: b6
  article-title: Fluid flow through packed columns
  publication-title: Chem. Eng. Prog.
– volume: 58
  start-page: 35
  year: 1990
  end-page: 49
  ident: b40
  article-title: Numerical analysis of quasi-Newtonian flow obeying the power low or the carreau flow
  publication-title: Numer. Math.
– volume: 39
  start-page: 702
  year: 1958
  end-page: 707
  ident: b11
  article-title: On the theoretical derivation of Darcy and Forchheimer formulas
  publication-title: EOS Trans. Am. Geophys. Union
– volume: 25
  start-page: 27
  year: 1996
  end-page: 61
  ident: b14
  article-title: The Forchheimer equation: A theoretical development
  publication-title: Transp. Porous Media
– start-page: 1
  year: 2016
  end-page: 26
  ident: b42
  article-title: Solvability of the mixed formulation for Darcy-Forchheimer flow in porous media
– year: 1988
  ident: b10
  article-title: Dynamics of Fluids in Porous Media
– volume: 137
  start-page: 1
  year: 2019
  end-page: 55
  ident: b31
  article-title: Global estimates for generalized Forchheimer flows of slightly compressible fluids
  publication-title: J. Anal. Math.
– volume: 54
  start-page: 373
  year: 1989
  end-page: 393
  ident: b39
  article-title: Finite element error estimates for non-linear elliptic equations of monotone type
  publication-title: Numer. Math.
– volume: 45
  start-page: 1781
  year: 1901
  end-page: 1788
  ident: b2
  article-title: Wasserbewegung durch boden
  publication-title: Zeit. Ver. Deut. Ing.
– year: 1937
  ident: b5
  article-title: The flow of homogeneous fluids through porous media
– volume: 28
  start-page: 808
  year: 1997
  end-page: 830
  ident: b27
  article-title: Spatial decay estimates for flow in a porous medium
  publication-title: SIAM J. Math. Anal.
– volume: 75
  start-page: 225
  year: 1996
  end-page: 271
  ident: b23
  article-title: Stability in the initial-time geometry problem for the Brinkman and Darcy equations of flow in porous media
  publication-title: J. Math. Pures Appl. (9)
– year: 2013
  ident: b15
  article-title: Convection in porous media
– volume: 4
  start-page: 54
  year: 1981
  end-page: 66
  ident: b17
  article-title: Flow at high Reynolds numbers through anisotropic porous media
  publication-title: Adv. Water Resour.
– volume: 29
  start-page: 1124
  year: 2016
  end-page: 1155
  ident: b37
  article-title: Generalized Forchheimer flows in heterogeneous porous media
  publication-title: Nonlinearity
– year: 1974
  ident: b7
  article-title: The physics of flow through porous media
– volume: 105
  start-page: 59
  year: 2000
  end-page: 81
  ident: b25
  article-title: Unconditional nonlinear stability in temperature-dependent viscosity flow in a porous medium
  publication-title: Stud. Appl. Math.
– volume: 58
  year: 2017
  ident: b43
  article-title: Fluid flows of mixed regimes in porous media
  publication-title: J. Math. Phys.
– volume: 3
  start-page: 185
  year: 1999
  end-page: 204
  ident: b13
  article-title: Numerical well model for non-Darcy flow through isotropic porous media
  publication-title: Comput. Geosci.
– year: 1930
  ident: b3
  article-title: Hydraulik
– volume: vol. 165
  start-page: xiv+437
  year: 2008
  ident: b28
  publication-title: Stability and wave motion in porous media
– volume: 50
  year: 2009
  ident: b29
  article-title: Analysis of generalized Forchheimer flows of compressible fluids in porous media
  publication-title: J. Math. Phys.
– volume: 47
  start-page: 949
  year: 2023
  end-page: 987
  ident: b36
  article-title: Studying a doubly nonlinear model of slightly compressible Forchheimer flows in rotating porous media
  publication-title: Turkish J. Math.
– volume: 29
  start-page: 37
  year: 1965
  end-page: 43
  ident: b8
  article-title: Theoretical models of flow through porous media
  publication-title: Bull. R.I.L.E.M
– volume: 459
  start-page: 3195
  year: 2003
  end-page: 3202
  ident: b22
  article-title: Continuous dependence and decay for the Forchheimer equations
  publication-title: R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.
– volume: 90(HY5)
  start-page: 1
  year: 1964
  ident: 10.1016/j.nonrwa.2024.104269_b4
  article-title: Turbulent flow in porous media
  publication-title: J. Hydraulics Div. Proc. Am. Soc. Civ. Eng.
– volume: 3
  start-page: 185
  issue: 3–4
  year: 1999
  ident: 10.1016/j.nonrwa.2024.104269_b13
  article-title: Numerical well model for non-Darcy flow through isotropic porous media
  publication-title: Comput. Geosci.
  doi: 10.1023/A:1011543412675
– volume: 210
  start-page: 476
  year: 2015
  ident: 10.1016/j.nonrwa.2024.104269_b33
  article-title: Stability of solutions to generalized Forchheimer equations of any degree
  publication-title: J. Math. Sci. (N. Y.)
  doi: 10.1007/s10958-015-2576-1
– volume: 262
  start-page: 2158
  issue: 3
  year: 2017
  ident: 10.1016/j.nonrwa.2024.104269_b35
  article-title: Maximum estimates for generalized Forchheimer flows in heterogeneous porous media
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2016.10.043
– volume: 13
  start-page: 1025
  issue: 9
  year: 1989
  ident: 10.1016/j.nonrwa.2024.104269_b21
  article-title: Regularity of the solution of Darcy-Forchheimer’s equation
  publication-title: Nonlinear Anal.
  doi: 10.1016/0362-546X(89)90093-X
– volume: 17
  start-page: 511
  issue: 5–6
  year: 2012
  ident: 10.1016/j.nonrwa.2024.104269_b30
  article-title: Qualitative study of generalized Forchheimer flows with the flux boundary condition
  publication-title: Adv. Differential Equations
– volume: 29
  start-page: 37
  year: 1965
  ident: 10.1016/j.nonrwa.2024.104269_b8
  article-title: Theoretical models of flow through porous media
  publication-title: Bull. R.I.L.E.M
– year: 1930
  ident: 10.1016/j.nonrwa.2024.104269_b3
– volume: 51
  start-page: 867
  issue: 6
  year: 2000
  ident: 10.1016/j.nonrwa.2024.104269_b26
  article-title: Spatial decay for a model of double diffusive convection in Darcy and Brinkman flows
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/PL00001527
– volume: 137
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.nonrwa.2024.104269_b31
  article-title: Global estimates for generalized Forchheimer flows of slightly compressible fluids
  publication-title: J. Anal. Math.
  doi: 10.1007/s11854-018-0064-5
– volume: 44
  start-page: 325
  issue: 2
  year: 2001
  ident: 10.1016/j.nonrwa.2024.104269_b12
  article-title: Derivation of the Forchheimer law via homogenization
  publication-title: Transp. Porous Media
  doi: 10.1023/A:1010749114251
– year: 1967
  ident: 10.1016/j.nonrwa.2024.104269_b9
– volume: 25
  start-page: 27
  issue: 1
  year: 1996
  ident: 10.1016/j.nonrwa.2024.104269_b14
  article-title: The Forchheimer equation: A theoretical development
  publication-title: Transp. Porous Media
  doi: 10.1007/BF00141261
– year: 2013
  ident: 10.1016/j.nonrwa.2024.104269_b15
– volume: 29
  start-page: 1124
  issue: 3
  year: 2016
  ident: 10.1016/j.nonrwa.2024.104269_b37
  article-title: Generalized Forchheimer flows in heterogeneous porous media
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/29/3/1124
– volume: 58
  start-page: 35
  issue: 1
  year: 1990
  ident: 10.1016/j.nonrwa.2024.104269_b40
  article-title: Numerical analysis of quasi-Newtonian flow obeying the power low or the carreau flow
  publication-title: Numer. Math.
  doi: 10.1007/BF01385609
– volume: 48
  start-page: 89
  year: 1952
  ident: 10.1016/j.nonrwa.2024.104269_b6
  article-title: Fluid flow through packed columns
  publication-title: Chem. Eng. Prog.
– year: 1974
  ident: 10.1016/j.nonrwa.2024.104269_b7
– start-page: 1
  year: 2016
  ident: 10.1016/j.nonrwa.2024.104269_b42
– volume: 28
  start-page: 808
  issue: 4
  year: 1997
  ident: 10.1016/j.nonrwa.2024.104269_b27
  article-title: Spatial decay estimates for flow in a porous medium
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/S0036141095290562
– volume: 2
  start-page: 521
  issue: 6
  year: 1987
  ident: 10.1016/j.nonrwa.2024.104269_b19
  article-title: High velocity flow in porous media
  publication-title: Transp. Porous Media
  doi: 10.1007/BF00192152
– volume: 27
  start-page: 131
  issue: 2
  year: 1993
  ident: 10.1016/j.nonrwa.2024.104269_b41
  article-title: Sur lápproximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de carreau
  publication-title: ESAIM: M2AN
  doi: 10.1051/m2an/1993270201311
– volume: 45
  start-page: 92
  year: 1857
  ident: 10.1016/j.nonrwa.2024.104269_b1
  article-title: Mouvement de l’eau a travers le terrains permeables
  publication-title: C. R. Hebd. Seances Acad. Sci.
– year: 1988
  ident: 10.1016/j.nonrwa.2024.104269_b10
– volume: 4
  start-page: 54
  issue: 2
  year: 1981
  ident: 10.1016/j.nonrwa.2024.104269_b17
  article-title: Flow at high Reynolds numbers through anisotropic porous media
  publication-title: Adv. Water Resour.
  doi: 10.1016/0309-1708(81)90025-7
– volume: 75
  start-page: 225
  issue: 3
  year: 1996
  ident: 10.1016/j.nonrwa.2024.104269_b23
  article-title: Stability in the initial-time geometry problem for the Brinkman and Darcy equations of flow in porous media
  publication-title: J. Math. Pures Appl. (9)
– volume: 459
  start-page: 3195
  issue: 2040
  year: 2003
  ident: 10.1016/j.nonrwa.2024.104269_b22
  article-title: Continuous dependence and decay for the Forchheimer equations
  publication-title: R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.2003.1169
– volume: 58
  issue: 2
  year: 2017
  ident: 10.1016/j.nonrwa.2024.104269_b43
  article-title: Fluid flows of mixed regimes in porous media
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4976195
– volume: 47
  start-page: 949
  issue: 3
  year: 2023
  ident: 10.1016/j.nonrwa.2024.104269_b36
  article-title: Studying a doubly nonlinear model of slightly compressible Forchheimer flows in rotating porous media
  publication-title: Turkish J. Math.
  doi: 10.55730/1300-0098.3405
– volume: 105
  start-page: 59
  issue: 1
  year: 2000
  ident: 10.1016/j.nonrwa.2024.104269_b25
  article-title: Unconditional nonlinear stability in temperature-dependent viscosity flow in a porous medium
  publication-title: Stud. Appl. Math.
  doi: 10.1111/1467-9590.00142
– volume: 45
  start-page: 1781
  year: 1901
  ident: 10.1016/j.nonrwa.2024.104269_b2
  article-title: Wasserbewegung durch boden
  publication-title: Zeit. Ver. Deut. Ing.
– volume: 1
  start-page: 63
  year: 1965
  ident: 10.1016/j.nonrwa.2024.104269_b16
  article-title: Basic transport coefficients as aquifer characteristics
– volume: 50
  issue: 10
  year: 2009
  ident: 10.1016/j.nonrwa.2024.104269_b29
  article-title: Analysis of generalized Forchheimer flows of compressible fluids in porous media
  publication-title: J. Math. Phys.
  doi: 10.1063/1.3204977
– volume: 54
  start-page: 373
  issue: 4
  year: 1989
  ident: 10.1016/j.nonrwa.2024.104269_b39
  article-title: Finite element error estimates for non-linear elliptic equations of monotone type
  publication-title: Numer. Math.
  doi: 10.1007/BF01396320
– volume: 1
  start-page: 63
  issue: 1
  year: 1986
  ident: 10.1016/j.nonrwa.2024.104269_b18
  article-title: A continuum approach to high velocity flow in a porous medium
  publication-title: Transp. Porous Media
  doi: 10.1007/BF01036526
– volume: vol. 165
  start-page: xiv+437
  year: 2008
  ident: 10.1016/j.nonrwa.2024.104269_b28
– year: 1937
  ident: 10.1016/j.nonrwa.2024.104269_b5
– volume: 9
  start-page: 41
  issue: R2
  year: 1975
  ident: 10.1016/j.nonrwa.2024.104269_b38
  article-title: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires
  publication-title: Rev. française d’automat. informat. rech. opérationnelle. Anal. numér.
– volume: 102
  start-page: 419
  issue: 4
  year: 1999
  ident: 10.1016/j.nonrwa.2024.104269_b24
  article-title: Convergence and continuous dependence for the Brinkman-Forchheimer equations
  publication-title: Stud. Appl. Math.
  doi: 10.1111/1467-9590.00116
– volume: 39
  start-page: 702
  issue: 4
  year: 1958
  ident: 10.1016/j.nonrwa.2024.104269_b11
  article-title: On the theoretical derivation of Darcy and Forchheimer formulas
  publication-title: EOS Trans. Am. Geophys. Union
  doi: 10.1029/TR039i004p00702
– start-page: xxii+624
  year: 2007
  ident: 10.1016/j.nonrwa.2024.104269_b20
  article-title: The porous medium equation
– volume: 202
  start-page: 259
  issue: 2
  year: 2014
  ident: 10.1016/j.nonrwa.2024.104269_b32
  article-title: Properties of generalized Forchheimer flows in porous media
  publication-title: J. Math. Sci.
  doi: 10.1007/s10958-014-2045-2
– volume: 31
  start-page: 3617
  issue: 8
  year: 2018
  ident: 10.1016/j.nonrwa.2024.104269_b34
  article-title: Doubly nonlinear parabolic equations for a general class of Forchheimer gas flows in porous media
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/aabf05
– year: 1990
  ident: 10.1016/j.nonrwa.2024.104269_b44
SSID ssj0017131
Score 2.4284117
Snippet We study the anisotropic Forchheimer-typed flows for compressible fluids in porous media. The first half of the paper is devoted to understanding the nonlinear...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 104269
SubjectTerms Anisotropic
First-order system
Fluid flows
Forchheimer
Monotonicity
Nonlinear partial differential equations
Porous media
Title Anisotropic flows of Forchheimer-type in porous media and their steady states
URI https://dx.doi.org/10.1016/j.nonrwa.2024.104269
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPrE-yh68rk02m6Q5lmKpjxZRC72FfWQxoklJIsWLv93ZTVIUxIOnQMhC-HYy8012vhmELpQrBbBkRuhAMcIk04QHriKGyodCM2AkRig8nQWTObtZ-IsOGrVaGFNW2fj-2qdbb93c6Tdo9pdp2n80oiHXNCBndtKkabttuteBTV9-rss8XEjC3FZhZJ5u5XO2xgsy7GJlug9RZg47qSl7_i08fQs5412003BFPKxfZw91kmwfbU_XjVbLAzQdZmmZV0W-TCXWr_mqxLnG4xys9zlJ35KCmH-sOM0w8GxI8rFVimCeKWyPCLDd5A9sdUXlIZqPr55GE9JMSCASUoGK6AF3VOIFwve5olEgHaVlQoXQIdCMgCcS-JqUoaYmrROR9qKB8LiI4EP1JRfeEdoADJJjhCFocSkp5a7ymfbBhTuSOpGIfMVdJt0uIi0w8bJuhBG3FWIvcQ1kbICMayC7KGzRi39saAy--s-VJ_9eeYq2qBnPa-vzztBGVbwn58AZKtGzRtFDm8PRw929uV7fTmZfJ9PD-A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1AP4hPrcw9elzabTdocS7GktunFFnpb9pHFiCaljRT_vbt5FAXx4DUwEL7dzHyTmW8G4EE5UhiWTDHpK4qppBpz31HYUvme0NQwEisUjmZ-uKBPS2_ZgGGthbFtlZXvL3164a2rJ50Kzc4qSTrPVjTk2AHktNg06e9By06nok1oDcaTcLYrJpg8zKlFRtagVtAVbV4myV5v7QAiQm29k9jO598i1LeoMzqGo4ouokH5RifQiNNTOIx2s1Y3ZxAN0mST5etslUik37LtBmUajTJzgV_i5D1eY_ubFSUpMlTb5PmoEIsgnipUVAlQcc6fqJAWbc5hMXqcD0NcLUnA0mQDOdZ93lWx6wvP44oEvuwqLWMihO4ZpuHzWBrKJmVPE5vZiUC7QV-4XATmW_UkF-4FNA0G8SUgE7e4lIRwR3lUe8aLdyXpBiLwFHeodNqAa2DYqpyFweomsVdWAskskKwEsg29Gj3240yZcdd_Wl792_Ie9sN5NGXT8WxyDQfEbust2vVuoJmvP-JbQyFycVddkS_K8cUU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anisotropic+flows+of+Forchheimer-type+in+porous+media+and+their+steady+states&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Hoang%2C+Luan&rft.au=Kieu%2C+Thinh&rft.date=2025-08-01&rft.pub=Elsevier+Ltd&rft.issn=1468-1218&rft.volume=84&rft_id=info:doi/10.1016%2Fj.nonrwa.2024.104269&rft.externalDocID=S1468121824002086
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon