Enhancing hydrogen oxidation by Modulating Ru species on Ni3N@Mo2C through a Support-Induced Strategy
[Display omitted] •Ru/Ni3N@Mo2C composite was synthesized by; pyrolysis, hydrothermal, and wet-chemical route.•Synergistic effect between Ru and the support (Ni3N@Mo2C) optimized HOR kinetics.•Interfacial electronic interactions in Ru/Ni3N@Mo2C modulate Ru’s electronic structure.•The catalyst achiev...
Saved in:
Published in | Chemical physics letters Vol. 856; p. 141682 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Ru/Ni3N@Mo2C composite was synthesized by; pyrolysis, hydrothermal, and wet-chemical route.•Synergistic effect between Ru and the support (Ni3N@Mo2C) optimized HOR kinetics.•Interfacial electronic interactions in Ru/Ni3N@Mo2C modulate Ru’s electronic structure.•The catalyst achieves a kinetic current density of 4.76 mA cmdisk−2 @50 mV.
The use of hydrogen as an intermediator to convert and store electrochemical energy has been a subject of significant interest and focus. Unfortunately, the slow alkaline hydrogen oxidation reaction (HOR) is a barrier to further development of hydrogen–oxygen fuel cells. Ruthenium (Ru) has recently been investigated as a possible replacement for platinum (Pt) catalyst in the HOR because of the similar hydrogen binding energy (HBE) to Pt. Herein, Ru species was loaded on Ni3N@Mo2C support, which was used as an electrocatalyst for HOR. The catalyst presents an exchange current density and kinetic current densities of 3.05 and 4.76 mA cmdisk−2 that are 2 and 1.4 times greater than that of commercial Pt/C, respectively. The findings indicate that the Ni3N@Mo2C support reduces the hydrogen binding energy on Ru sites. This improves the Volmer step for HOR and increases the catalytic activity. This study thus provides some guidance in the designing of HOR catalysts for efficient hydrogen energy conversion. |
---|---|
AbstractList | [Display omitted]
•Ru/Ni3N@Mo2C composite was synthesized by; pyrolysis, hydrothermal, and wet-chemical route.•Synergistic effect between Ru and the support (Ni3N@Mo2C) optimized HOR kinetics.•Interfacial electronic interactions in Ru/Ni3N@Mo2C modulate Ru’s electronic structure.•The catalyst achieves a kinetic current density of 4.76 mA cmdisk−2 @50 mV.
The use of hydrogen as an intermediator to convert and store electrochemical energy has been a subject of significant interest and focus. Unfortunately, the slow alkaline hydrogen oxidation reaction (HOR) is a barrier to further development of hydrogen–oxygen fuel cells. Ruthenium (Ru) has recently been investigated as a possible replacement for platinum (Pt) catalyst in the HOR because of the similar hydrogen binding energy (HBE) to Pt. Herein, Ru species was loaded on Ni3N@Mo2C support, which was used as an electrocatalyst for HOR. The catalyst presents an exchange current density and kinetic current densities of 3.05 and 4.76 mA cmdisk−2 that are 2 and 1.4 times greater than that of commercial Pt/C, respectively. The findings indicate that the Ni3N@Mo2C support reduces the hydrogen binding energy on Ru sites. This improves the Volmer step for HOR and increases the catalytic activity. This study thus provides some guidance in the designing of HOR catalysts for efficient hydrogen energy conversion. |
ArticleNumber | 141682 |
Author | Peng, Yao Naz, Hina Akeno Nyaaba, Albert Premlatha, Subramanian Ji, Zhenyuan Kang, Ziliang Leetroy George, Stennard Zhu, Guoxing |
Author_xml | – sequence: 1 givenname: Albert surname: Akeno Nyaaba fullname: Akeno Nyaaba, Albert – sequence: 2 givenname: Yao surname: Peng fullname: Peng, Yao – sequence: 3 givenname: Ziliang surname: Kang fullname: Kang, Ziliang – sequence: 4 givenname: Hina surname: Naz fullname: Naz, Hina – sequence: 5 givenname: Subramanian surname: Premlatha fullname: Premlatha, Subramanian – sequence: 6 givenname: Zhenyuan surname: Ji fullname: Ji, Zhenyuan – sequence: 7 givenname: Stennard surname: Leetroy George fullname: Leetroy George, Stennard – sequence: 8 givenname: Guoxing surname: Zhu fullname: Zhu, Guoxing email: zhuguoxing@ujs.edu.cn |
BookMark | eNp9kMFOwzAQRH0oEm3hDzj4BxK8Tpw0FwSqClRqi0ThbLnxJnFV7MhxEPl7UpUzp9Vod0Y7b0Ym1lkk5A5YDAyy-2NcticMIeaMpzGkkC34hEwZY0XEM0ivyazrjqOERMCU4Mo2ypbG1rQZtHc1Wup-jFbBOEsPA9063Z9GNR6897RrsTTY0XG3M8nucev4kobGu75uqKL7vm2dD9Ha6r5ETffBq4D1cEOuKnXq8PZvzsnn8-pj-Rpt3l7Wy6dNVHIhQlTlIl1wkfEKkzwpCgQoWc5TniyqQmcKcpEzobHIQUAlsgNLmE41oFIqAQ7JnKSX3NK7rvNYydabL-UHCUye8cijvOCRZzzygme0PVxsOP72bdDLbmxpxwbGYxmkdub_gF8or3Oj |
Cites_doi | 10.1016/j.nanoen.2020.104877 10.1039/D1TA05876B 10.1038/s41467-022-29276-7 10.1002/adma.202208821 10.1039/D3DT03981A 10.1002/anie.201905430 10.1039/D0NR02527E 10.1016/j.ijhydene.2021.05.088 10.1021/acssuschemeng.1c01468 10.1002/cssc.202100200 10.1002/anie.201902751 10.1002/ange.202208040 10.1002/cssc.201800856 10.1016/j.nanoen.2017.12.008 10.1039/D2EE02216H 10.1002/anie.201908194 10.1021/acscatal.5b00247 10.1021/acs.chemrev.1c00331 10.1039/D2TA07417F 10.1002/adfm.202103673 10.1039/C6TA05517F 10.1016/j.jechem.2022.06.011 10.1038/s41929-020-0446-9 10.1021/acsmaterialslett.2c00699 10.1021/acs.jpclett.2c00021 10.1039/C7CC05172G 10.1002/ange.202013047 10.1002/smll.202100460 10.1126/sciadv.abm3779 10.1016/j.nanoen.2019.01.070 10.1016/j.jechem.2021.07.015 10.1021/acssuschemeng.1c07306 10.1021/cr400407a 10.1007/s41918-019-00034-6 10.1021/acscatal.0c03148 10.1149/2.037404jes 10.1002/aenm.202300881 10.1039/D1EE03482K 10.1002/advs.201500286 10.1039/C8NR00908B 10.1016/j.jechem.2021.07.012 10.1002/advs.202206096 10.1021/acscatal.5b01037 10.1021/acscatal.0c03801 10.1002/aenm.201601390 10.3390/catal11111339 10.1002/cssc.201801337 10.1016/j.nanoen.2020.104981 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cplett.2024.141682 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
ExternalDocumentID | 10_1016_j_cplett_2024_141682 S0009261424006249 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXKI AAXUO AAYJJ ABFNM ABMAC ABNEU ABXDB ABXRA ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADECG ADEZE ADMUD ADVLN AEBSH AEKER AENEX AEZYN AFFNX AFJKZ AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AIVDX AJOXV AJQLL AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMU HMV HVGLF HZ~ H~9 IHE J1W K-O KOM M36 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCH SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSK SSM SSQ SSZ T5K TN5 UPT UQL VH1 WH7 WUQ YK3 ZCG ZMT ~02 ~G- AATTM AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AETEA AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c255t-f75482562fe37399e11c0724238f9d6a175705de97151f56b030d4d1eaaa31213 |
IEDL.DBID | .~1 |
ISSN | 0009-2614 |
IngestDate | Tue Jul 01 00:28:30 EDT 2025 Sat Oct 26 15:43:12 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrocatalysis Alkaline condition Hydrogen oxidation reaction Hydrogen fuel cells Exchange current density |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-f75482562fe37399e11c0724238f9d6a175705de97151f56b030d4d1eaaa31213 |
ParticipantIDs | crossref_primary_10_1016_j_cplett_2024_141682 elsevier_sciencedirect_doi_10_1016_j_cplett_2024_141682 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationTitle | Chemical physics letters |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Zhao, Li, Liu, Wang, Yao (b0210) 2022; 13 Kundu, Bhowmik, Mishra, Barman (b0090) 2018; 11 Liu, Ai, Lu (b0120) 2014; 114 Yu, Huang, Chen, Srinivas, Zhang, Wang (b0145) 2021; 17 Chang, Yang, Shao, Zhang, Fan, Huang (b0160) 2018; 11 Yang, Lai, He, Wang, Yu, Liu (b0205) 2023; 13 Zhao, Hu, Gong, Lin, Deng, Lu (b0195) 2020; 74 Zhang, Li, Sun, Wei, Niu, Chen (b0055) 2022; 4 Wu, Zhou, Nie, Wei, Huang, Liao (b0190) 2022; 66 Zhang, Sa, Yang, Zhou, Jiang, Wang (b0220) 2020; 75 Ni, Krammer, Hsu, Chen, Schüler, Hu (b0150) 2019; 58 Yang, Sun, Han, Liu, Zhang, Sun (b0050) 2019; 58 Yang, Bao, Li, Wang, Cheng, Chen (b0020) 2019; 58 Zheng, Zhuang, Xu, Yan (b0250) 2015; 5 Chen, Qi, Guo, Lei, Zhang, Cao (b0140) 2017; 53 Liu, Zhang, Li, Qian, Li, Zhang (b0165) 2021; 31 Wang, Chen, Yu, Wang, Zheng (b0170) 2017; 7 Zhong, Xia, Shi, Zhan, Tu, Fan (b0110) 2016; 3 Han, Ou, Liu, Wang, Wang, Zhang (b0060) 2022; 8 Jervis, Mansor, Gibbs, Murray, Tang, Shearing (b0245) 2014; 161 Salah, Ren, Al-Ansi, Yu, Lang, Tan (b0155) 2021; 9 Su, Gong, Jin, Wu, Luo (b0075) 2022; 66 Kang, Peng, Wei, Liu, Song, Ji (b0225) 2024; 53 Samanta, Mishra, Barman (b0200) 2021; 14 Rebollar, Intikhab, Oliveira, Yan, Xu, McCrum (b0080) 2020; 10 Zhang, Xiao, Chen, Liu, Pan, Sun (b0100) 2022 Wang, Li, Ruan, Tang (b0185) 2020; 12 Zhao, Li, An, Iputera, Zhu, Gao (b0230) 2022; 15 Ohyama, Kumada, Satsuma (b0235) 2016; 4 Yang, Huang, Zhou, Liu, Shi, Isimjan (b0015) 2022; 72 Zadick, Dubau, Sergent, Berthome, Chatenet (b0105) 2015; 5 Zhao, Wang, Cheng, Luo (b0215) 2020; 10 Yang, Dai, Shi, Liu, Isimjan, Yang (b0115) 2022; 13 Huang, Lu, Zhang, Chen, Chen, Ma (b0040) 2023; 2306333 Liu, Lu, Xue, Guan, Fang, Zhu (b0240) 2019; 59 Xu, Liang, Gong, Zhang, Wang, Su (b0180) 2021; 9 Zhang, Xia, Zhao, Zhang, Chen, Chen (b0130) 2023; 35 Wang, Yang, Shi, Chen, Zhou, Wang (b0005) 2021; 133 Yang, Peltier, Zeng, Schimmenti, Li, Huang (b0010) 2022; 122 Zhang, Ma, Shui, Zhou, Wang (b0125) 2022; 430 Yang, Gao, Zhang, Qin, Zheng, Wang (b0030) 2022; 134 Özyalcin, Mauermann, Dirkes, Thiele, Sterlepper, Pischinger (b0035) 2021; 11 Cong, Yi, Song (b0095) 2018; 44 Zhou, Xie, Jiang, Wang, Song, He (b0045) 2020; 3 Midilli, Kucuk, Topal, Akbulut, Dincer (b0065) 2021; 46 Pi, Qiu, Sun, Ishii, Liao, Zhang (b0070) 2023; 10 Zhao, Wu, Luo (b0025) 2022; 10 Yu, Gao, Lang, Ma, Yin, Du (b0175) 2018; 10 Campos-Roldán, Alonso-Vante (b0085) 2019; 2 Ji, Chen, Liu, Ji, Zhou, Chen (b0135) 2023; 11 Samanta (10.1016/j.cplett.2024.141682_b0200) 2021; 14 Yu (10.1016/j.cplett.2024.141682_b0145) 2021; 17 Yang (10.1016/j.cplett.2024.141682_b0205) 2023; 13 Wang (10.1016/j.cplett.2024.141682_b0005) 2021; 133 Wang (10.1016/j.cplett.2024.141682_b0210) 2022; 13 Campos-Roldán (10.1016/j.cplett.2024.141682_b0085) 2019; 2 Wu (10.1016/j.cplett.2024.141682_b0190) 2022; 66 Pi (10.1016/j.cplett.2024.141682_b0070) 2023; 10 Yang (10.1016/j.cplett.2024.141682_b0030) 2022; 134 Huang (10.1016/j.cplett.2024.141682_b0040) 2023; 2306333 Yang (10.1016/j.cplett.2024.141682_b0015) 2022; 72 Zheng (10.1016/j.cplett.2024.141682_b0250) 2015; 5 Jervis (10.1016/j.cplett.2024.141682_b0245) 2014; 161 Zadick (10.1016/j.cplett.2024.141682_b0105) 2015; 5 Zhou (10.1016/j.cplett.2024.141682_b0045) 2020; 3 Kundu (10.1016/j.cplett.2024.141682_b0090) 2018; 11 Yang (10.1016/j.cplett.2024.141682_b0050) 2019; 58 Zhao (10.1016/j.cplett.2024.141682_b0195) 2020; 74 Liu (10.1016/j.cplett.2024.141682_b0120) 2014; 114 Yang (10.1016/j.cplett.2024.141682_b0010) 2022; 122 Zhang (10.1016/j.cplett.2024.141682_b0055) 2022; 4 Chen (10.1016/j.cplett.2024.141682_b0140) 2017; 53 Wang (10.1016/j.cplett.2024.141682_b0170) 2017; 7 Ji (10.1016/j.cplett.2024.141682_b0135) 2023; 11 Ni (10.1016/j.cplett.2024.141682_b0150) 2019; 58 Su (10.1016/j.cplett.2024.141682_b0075) 2022; 66 Zhang (10.1016/j.cplett.2024.141682_b0125) 2022; 430 Zhang (10.1016/j.cplett.2024.141682_b0220) 2020; 75 Midilli (10.1016/j.cplett.2024.141682_b0065) 2021; 46 Yang (10.1016/j.cplett.2024.141682_b0115) 2022; 13 Cong (10.1016/j.cplett.2024.141682_b0095) 2018; 44 Xu (10.1016/j.cplett.2024.141682_b0180) 2021; 9 Zhao (10.1016/j.cplett.2024.141682_b0230) 2022; 15 Salah (10.1016/j.cplett.2024.141682_b0155) 2021; 9 Zhang (10.1016/j.cplett.2024.141682_b0130) 2023; 35 Yang (10.1016/j.cplett.2024.141682_b0020) 2019; 58 Yu (10.1016/j.cplett.2024.141682_b0175) 2018; 10 Rebollar (10.1016/j.cplett.2024.141682_b0080) 2020; 10 Zhao (10.1016/j.cplett.2024.141682_b0215) 2020; 10 Han (10.1016/j.cplett.2024.141682_b0060) 2022; 8 Zhang (10.1016/j.cplett.2024.141682_b0100) 2022 Kang (10.1016/j.cplett.2024.141682_b0225) 2024; 53 Wang (10.1016/j.cplett.2024.141682_b0185) 2020; 12 Ohyama (10.1016/j.cplett.2024.141682_b0235) 2016; 4 Zhong (10.1016/j.cplett.2024.141682_b0110) 2016; 3 Özyalcin (10.1016/j.cplett.2024.141682_b0035) 2021; 11 Chang (10.1016/j.cplett.2024.141682_b0160) 2018; 11 Liu (10.1016/j.cplett.2024.141682_b0240) 2019; 59 Zhao (10.1016/j.cplett.2024.141682_b0025) 2022; 10 Liu (10.1016/j.cplett.2024.141682_b0165) 2021; 31 |
References_xml | – volume: 10 start-page: 6080 year: 2018 end-page: 6087 ident: b0175 article-title: Electrocatalytic performance of ultrasmall Mo publication-title: Nanoscale – volume: 66 start-page: 107 year: 2022 end-page: 122 ident: b0075 article-title: Recent advances in alkaline hydrogen oxidation reaction publication-title: Journal of Energy Chemistry. – volume: 3 start-page: 454 year: 2020 end-page: 462 ident: b0045 article-title: Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction publication-title: Nat. Catal. – volume: 11 start-page: 2388 year: 2018 end-page: 2401 ident: b0090 article-title: Platinum Nanostructure/Nitrogen-Doped Carbon Hybrid: Enhancing its Base Media HER/HOR Activity through Bi-functionality of the Catalyst publication-title: Chem. Sus. Chem. – volume: 15 start-page: 1234 year: 2022 end-page: 1242 ident: b0230 article-title: Nitrogen-inserted nickel nanosheets with controlled orbital hybridization and strain fields for boosted hydrogen oxidation in alkaline electrolytes publication-title: Energ. Environ. Sci. – volume: 2 start-page: 312 year: 2019 end-page: 331 ident: b0085 article-title: The hydrogen oxidation reaction in alkaline medium: an overview publication-title: Electrochemical Energy Reviews. – volume: 7 start-page: 1601390 year: 2017 ident: b0170 article-title: Superb alkaline hydrogen evolution and simultaneous electricity generation by pt-decorated Ni publication-title: Adv. Energy Mater. – volume: 58 start-page: 7445 year: 2019 end-page: 7449 ident: b0150 article-title: Ni3N as an active hydrogen oxidation reaction catalyst in alkaline medium publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 2097 year: 2022 end-page: 2105 ident: b0055 article-title: Regulating the surface electronic structure of RuNi alloys for boosting alkaline hydrogen oxidation electrocatalysis publication-title: ACS Materials Letters. – volume: 74 year: 2020 ident: b0195 article-title: Electronic structure and oxophilicity optimization of mono-layer Pt for efficient electrocatalysis publication-title: Nano Energy – volume: 58 start-page: 14179 year: 2019 end-page: 14183 ident: b0020 article-title: Boosting hydrogen oxidation activity of Ni in alkaline media through oxygen-vacancy-rich CeO publication-title: Angew. Chem. Int. Ed. – volume: 114 start-page: 5057 year: 2014 end-page: 5115 ident: b0120 article-title: Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields publication-title: Chem. Rev. – volume: 122 start-page: 6117 year: 2022 end-page: 6321 ident: b0010 article-title: Electrocatalysis in alkaline media and alkaline membrane-based energy technologies publication-title: Chem. Rev. – volume: 17 start-page: 2100460 year: 2021 ident: b0145 article-title: In situ construction of Mo publication-title: Small – volume: 14 start-page: 2112 year: 2021 end-page: 2125 ident: b0200 article-title: Interface-and surface-engineered PdO-RuO publication-title: ChemSusChem – volume: 430 year: 2022 ident: b0125 article-title: Ni publication-title: Chem. Eng. J. – volume: 13 start-page: 2107 year: 2022 end-page: 2116 ident: b0115 article-title: Electronic Modulation of Pt Nanoparticles on Ni3N–Mo2C by Support-Induced Strategy for Accelerating Hydrogen Oxidation and Evolution publication-title: The Journal of Physical Chemistry Letters. – volume: 5 start-page: 4819 year: 2015 end-page: 4824 ident: b0105 article-title: Huge instability of Pt/C catalysts in alkaline medium publication-title: ACS Catal. – volume: 4 start-page: 15980 year: 2016 end-page: 15985 ident: b0235 article-title: Improved hydrogen oxidation reaction under alkaline conditions by ruthenium–iridium alloyed nanoparticles publication-title: J. Mater. Chem. A – volume: 11 start-page: 1339 year: 2021 ident: b0035 article-title: Investigation of Filtration Phenomena of Air Pollutants on Cathode Air Filters for PEM Fuel Cells publication-title: Catalysts – volume: 11 start-page: 3198 year: 2018 end-page: 3207 ident: b0160 article-title: Bimetallic NiMoN nanowires with a preferential reactive facet: an ultraefficient bifunctional electrocatalyst for overall water splitting publication-title: ChemSusChem – volume: 9 start-page: 7120 year: 2021 end-page: 7129 ident: b0180 article-title: Fast and stable electrochemical production of H publication-title: ACS Sustain. Chem. Eng. – volume: 2306333 year: 2023 ident: b0040 article-title: A Highly Efficient pH-Universal HOR Catalyst with Engineered Electronic Structures of Single Pt Sites by Isolated Co Atoms publication-title: Adv. Funct. Mater. – volume: 8 start-page: eabm3779 year: 2022 ident: b0060 article-title: Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation publication-title: Sci. Adv. – volume: 53 start-page: 9566 year: 2017 end-page: 9569 ident: b0140 article-title: Facile synthesis of sponge-like Ni 3 N/NC for electrocatalytic water oxidation publication-title: Chem. Commun. – volume: 10 start-page: 11751 year: 2020 end-page: 11757 ident: b0215 article-title: Phosphorus-induced activation of ruthenium for boosting hydrogen oxidation and evolution electrocatalysis publication-title: ACS Catal. – volume: 31 start-page: 2103673 year: 2021 ident: b0165 article-title: Realizing the synergy of interface engineering and chemical substitution for Ni publication-title: Adv. Funct. Mater. – volume: 53 start-page: 2762 year: 2024 end-page: 2769 ident: b0225 article-title: A trinary support of Ni/NiO/C to immobilize Ir nanoclusters for alkaline hydrogen oxidation publication-title: Dalton Trans. – volume: 12 start-page: 12329 year: 2020 end-page: 12335 ident: b0185 article-title: Ru and RuO publication-title: Nanoscale – volume: 5 start-page: 4449 year: 2015 end-page: 4455 ident: b0250 article-title: Correlating hydrogen oxidation/evolution reaction activity with the minority weak hydrogen-binding sites on Ir/C catalysts publication-title: ACS Catal. – volume: 10 start-page: 1616 year: 2022 end-page: 1623 ident: b0025 article-title: Correlating alkaline hydrogen electrocatalysis and hydroxide binding energies on Mo-modified Ru catalysts publication-title: ACS Sustain. Chem. Eng. – volume: 44 start-page: 288 year: 2018 end-page: 303 ident: b0095 article-title: Hydrogen oxidation reaction in alkaline media: From mechanism to recent electrocatalysts publication-title: Nano Energy – volume: 134 start-page: e202208040 year: 2022 ident: b0030 article-title: Suppressing Electron Back-Donation for a Highly CO-tolerant Fuel Cell Anode Catalyst via Cobalt Modulation publication-title: Angew. Chem. – volume: 13 start-page: 1596 year: 2022 ident: b0210 article-title: Atomic-precision Pt publication-title: Nat. Commun. – volume: 72 start-page: 395 year: 2022 end-page: 404 ident: b0015 article-title: Delicate surface vacancies engineering of Ru doped MOF-derived Ni-NiO@ C hollow microsphere superstructure to achieve outstanding hydrogen oxidation performance publication-title: Journal of Energy Chemistry. – volume: 10 start-page: 14747 year: 2020 end-page: 14762 ident: b0080 article-title: “Beyond adsorption” descriptors in hydrogen electrocatalysis publication-title: ACS Catal. – volume: 11 start-page: 5076 year: 2023 end-page: 5082 ident: b0135 article-title: Ir/Ni-NiO/CNT composites as effective electrocatalysts for hydrogen oxidation publication-title: J. Mater. Chem. A – volume: 9 start-page: 20518 year: 2021 end-page: 20529 ident: b0155 article-title: Ru/Mo publication-title: J. Mater. Chem. A – volume: 10 start-page: 2206096 year: 2023 ident: b0070 article-title: Synergistic Mechanism of Sub-Nanometric Ru Clusters Anchored on Tungsten Oxide Nanowires for High-Efficient Bifunctional Hydrogen Electrocatalysis publication-title: Adv. Sci. – volume: 66 start-page: 61 year: 2022 end-page: 67 ident: b0190 article-title: Carbon dots regulate the interface electron transfer and catalytic kinetics of Pt-based alloys catalyst for highly efficient hydrogen oxidation publication-title: Journal of Energy Chemistry. – volume: 46 start-page: 25385 year: 2021 end-page: 25412 ident: b0065 article-title: A comprehensive review on hydrogen production from coal gasification: Challenges and Opportunities publication-title: Int. J. Hydrogen Energy – volume: 59 start-page: 26 year: 2019 end-page: 32 ident: b0240 article-title: One-pot synthesis of IrNi@ Ir core-shell nanoparticles as highly active hydrogen oxidation reaction electrocatalyst in alkaline electrolyte publication-title: Nano Energy – volume: 161 start-page: F458 year: 2014 ident: b0245 article-title: Hydrogen oxidation on PdIr/C catalysts in alkaline media publication-title: J. Electrochem. Soc. – volume: 133 start-page: 5835 year: 2021 end-page: 5841 ident: b0005 article-title: Alloying nickel with molybdenum significantly accelerates alkaline hydrogen electrocatalysis publication-title: Angew. Chem. – volume: 75 year: 2020 ident: b0220 article-title: A non-carbon catalyst support upgrades the intrinsic activity of ruthenium for hydrogen evolution electrocatalysis via strong interfacial electronic effects publication-title: Nano Energy – year: 2022 ident: b0100 article-title: Toward Fast and Durable Alkaline Hydrogen Oxidation Reaction on Ruthenium publication-title: Energ. Environ. Sci. – volume: 58 start-page: 10644 year: 2019 end-page: 10649 ident: b0050 article-title: Enhanced Electrocatalytic Hydrogen Oxidation on Ni/NiO/C Derived from a Nickel-Based Metal-Organic Framework publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 2300881 year: 2023 ident: b0205 article-title: Tailoring Interfacial Chemistry of Defective Carbon-Supported Ru Catalyst Toward Efficient and CO-Tolerant Alkaline Hydrogen Oxidation Reaction publication-title: Adv. Energy Mater. – volume: 3 start-page: 1500286 year: 2016 ident: b0110 article-title: Transition metal carbides and nitrides in energy storage and conversion publication-title: Adv. Sci. – volume: 35 start-page: 2208821 year: 2023 ident: b0130 article-title: Fast and Durable Alkaline Hydrogen Oxidation Reaction at the Electron-Deficient Ruthenium-Ruthenium Oxide Interface publication-title: Adv. Mater. – volume: 74 year: 2020 ident: 10.1016/j.cplett.2024.141682_b0195 article-title: Electronic structure and oxophilicity optimization of mono-layer Pt for efficient electrocatalysis publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104877 – volume: 9 start-page: 20518 year: 2021 ident: 10.1016/j.cplett.2024.141682_b0155 article-title: Ru/Mo2C@ NC Schottky junction-loaded hollow nanospheres as an efficient hydrogen evolution electrocatalyst publication-title: J. Mater. Chem. A doi: 10.1039/D1TA05876B – volume: 13 start-page: 1596 year: 2022 ident: 10.1016/j.cplett.2024.141682_b0210 article-title: Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation publication-title: Nat. Commun. doi: 10.1038/s41467-022-29276-7 – volume: 35 start-page: 2208821 year: 2023 ident: 10.1016/j.cplett.2024.141682_b0130 article-title: Fast and Durable Alkaline Hydrogen Oxidation Reaction at the Electron-Deficient Ruthenium-Ruthenium Oxide Interface publication-title: Adv. Mater. doi: 10.1002/adma.202208821 – volume: 53 start-page: 2762 year: 2024 ident: 10.1016/j.cplett.2024.141682_b0225 article-title: A trinary support of Ni/NiO/C to immobilize Ir nanoclusters for alkaline hydrogen oxidation publication-title: Dalton Trans. doi: 10.1039/D3DT03981A – volume: 58 start-page: 10644 year: 2019 ident: 10.1016/j.cplett.2024.141682_b0050 article-title: Enhanced Electrocatalytic Hydrogen Oxidation on Ni/NiO/C Derived from a Nickel-Based Metal-Organic Framework publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201905430 – volume: 12 start-page: 12329 year: 2020 ident: 10.1016/j.cplett.2024.141682_b0185 article-title: Ru and RuOx decorated carbon nitride for efficient ammonia photosynthesis publication-title: Nanoscale doi: 10.1039/D0NR02527E – volume: 46 start-page: 25385 year: 2021 ident: 10.1016/j.cplett.2024.141682_b0065 article-title: A comprehensive review on hydrogen production from coal gasification: Challenges and Opportunities publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.05.088 – volume: 9 start-page: 7120 year: 2021 ident: 10.1016/j.cplett.2024.141682_b0180 article-title: Fast and stable electrochemical production of H2O2 by electrode architecture engineering publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c01468 – volume: 14 start-page: 2112 year: 2021 ident: 10.1016/j.cplett.2024.141682_b0200 article-title: Interface-and surface-engineered PdO-RuO2 hetero-nanostructures with high activity for hydrogen evolution/oxidation reactions publication-title: ChemSusChem doi: 10.1002/cssc.202100200 – volume: 58 start-page: 7445 year: 2019 ident: 10.1016/j.cplett.2024.141682_b0150 article-title: Ni3N as an active hydrogen oxidation reaction catalyst in alkaline medium publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201902751 – volume: 134 start-page: e202208040 year: 2022 ident: 10.1016/j.cplett.2024.141682_b0030 article-title: Suppressing Electron Back-Donation for a Highly CO-tolerant Fuel Cell Anode Catalyst via Cobalt Modulation publication-title: Angew. Chem. doi: 10.1002/ange.202208040 – volume: 11 start-page: 2388 year: 2018 ident: 10.1016/j.cplett.2024.141682_b0090 article-title: Platinum Nanostructure/Nitrogen-Doped Carbon Hybrid: Enhancing its Base Media HER/HOR Activity through Bi-functionality of the Catalyst publication-title: Chem. Sus. Chem. doi: 10.1002/cssc.201800856 – volume: 44 start-page: 288 year: 2018 ident: 10.1016/j.cplett.2024.141682_b0095 article-title: Hydrogen oxidation reaction in alkaline media: From mechanism to recent electrocatalysts publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.008 – year: 2022 ident: 10.1016/j.cplett.2024.141682_b0100 article-title: Toward Fast and Durable Alkaline Hydrogen Oxidation Reaction on Ruthenium publication-title: Energ. Environ. Sci. doi: 10.1039/D2EE02216H – volume: 58 start-page: 14179 year: 2019 ident: 10.1016/j.cplett.2024.141682_b0020 article-title: Boosting hydrogen oxidation activity of Ni in alkaline media through oxygen-vacancy-rich CeO2/Ni heterostructures publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201908194 – volume: 5 start-page: 4449 year: 2015 ident: 10.1016/j.cplett.2024.141682_b0250 article-title: Correlating hydrogen oxidation/evolution reaction activity with the minority weak hydrogen-binding sites on Ir/C catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.5b00247 – volume: 122 start-page: 6117 year: 2022 ident: 10.1016/j.cplett.2024.141682_b0010 article-title: Electrocatalysis in alkaline media and alkaline membrane-based energy technologies publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00331 – volume: 11 start-page: 5076 year: 2023 ident: 10.1016/j.cplett.2024.141682_b0135 article-title: Ir/Ni-NiO/CNT composites as effective electrocatalysts for hydrogen oxidation publication-title: J. Mater. Chem. A doi: 10.1039/D2TA07417F – volume: 31 start-page: 2103673 year: 2021 ident: 10.1016/j.cplett.2024.141682_b0165 article-title: Realizing the synergy of interface engineering and chemical substitution for Ni3N enables its bifunctionality toward hydrazine oxidation assisted energy-saving hydrogen production publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202103673 – volume: 4 start-page: 15980 year: 2016 ident: 10.1016/j.cplett.2024.141682_b0235 article-title: Improved hydrogen oxidation reaction under alkaline conditions by ruthenium–iridium alloyed nanoparticles publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05517F – volume: 72 start-page: 395 year: 2022 ident: 10.1016/j.cplett.2024.141682_b0015 article-title: Delicate surface vacancies engineering of Ru doped MOF-derived Ni-NiO@ C hollow microsphere superstructure to achieve outstanding hydrogen oxidation performance publication-title: Journal of Energy Chemistry. doi: 10.1016/j.jechem.2022.06.011 – volume: 3 start-page: 454 year: 2020 ident: 10.1016/j.cplett.2024.141682_b0045 article-title: Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction publication-title: Nat. Catal. doi: 10.1038/s41929-020-0446-9 – volume: 4 start-page: 2097 year: 2022 ident: 10.1016/j.cplett.2024.141682_b0055 article-title: Regulating the surface electronic structure of RuNi alloys for boosting alkaline hydrogen oxidation electrocatalysis publication-title: ACS Materials Letters. doi: 10.1021/acsmaterialslett.2c00699 – volume: 430 year: 2022 ident: 10.1016/j.cplett.2024.141682_b0125 article-title: Ni3N nanoparticles on porous nitrogen-doped carbon nanorods for nitrate electroreduction publication-title: Chem. Eng. J. – volume: 2306333 year: 2023 ident: 10.1016/j.cplett.2024.141682_b0040 article-title: A Highly Efficient pH-Universal HOR Catalyst with Engineered Electronic Structures of Single Pt Sites by Isolated Co Atoms publication-title: Adv. Funct. Mater. – volume: 13 start-page: 2107 year: 2022 ident: 10.1016/j.cplett.2024.141682_b0115 article-title: Electronic Modulation of Pt Nanoparticles on Ni3N–Mo2C by Support-Induced Strategy for Accelerating Hydrogen Oxidation and Evolution publication-title: The Journal of Physical Chemistry Letters. doi: 10.1021/acs.jpclett.2c00021 – volume: 53 start-page: 9566 year: 2017 ident: 10.1016/j.cplett.2024.141682_b0140 article-title: Facile synthesis of sponge-like Ni 3 N/NC for electrocatalytic water oxidation publication-title: Chem. Commun. doi: 10.1039/C7CC05172G – volume: 133 start-page: 5835 year: 2021 ident: 10.1016/j.cplett.2024.141682_b0005 article-title: Alloying nickel with molybdenum significantly accelerates alkaline hydrogen electrocatalysis publication-title: Angew. Chem. doi: 10.1002/ange.202013047 – volume: 17 start-page: 2100460 year: 2021 ident: 10.1016/j.cplett.2024.141682_b0145 article-title: In situ construction of Mo2C quantum dots-decorated CNT networks as a multifunctional electrocatalyst for advanced lithium-sulfur batteries publication-title: Small doi: 10.1002/smll.202100460 – volume: 8 start-page: eabm3779 year: 2022 ident: 10.1016/j.cplett.2024.141682_b0060 article-title: Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation publication-title: Sci. Adv. doi: 10.1126/sciadv.abm3779 – volume: 59 start-page: 26 year: 2019 ident: 10.1016/j.cplett.2024.141682_b0240 article-title: One-pot synthesis of IrNi@ Ir core-shell nanoparticles as highly active hydrogen oxidation reaction electrocatalyst in alkaline electrolyte publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.070 – volume: 66 start-page: 107 year: 2022 ident: 10.1016/j.cplett.2024.141682_b0075 article-title: Recent advances in alkaline hydrogen oxidation reaction publication-title: Journal of Energy Chemistry. doi: 10.1016/j.jechem.2021.07.015 – volume: 10 start-page: 1616 year: 2022 ident: 10.1016/j.cplett.2024.141682_b0025 article-title: Correlating alkaline hydrogen electrocatalysis and hydroxide binding energies on Mo-modified Ru catalysts publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c07306 – volume: 114 start-page: 5057 year: 2014 ident: 10.1016/j.cplett.2024.141682_b0120 article-title: Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields publication-title: Chem. Rev. doi: 10.1021/cr400407a – volume: 2 start-page: 312 year: 2019 ident: 10.1016/j.cplett.2024.141682_b0085 article-title: The hydrogen oxidation reaction in alkaline medium: an overview publication-title: Electrochemical Energy Reviews. doi: 10.1007/s41918-019-00034-6 – volume: 10 start-page: 11751 year: 2020 ident: 10.1016/j.cplett.2024.141682_b0215 article-title: Phosphorus-induced activation of ruthenium for boosting hydrogen oxidation and evolution electrocatalysis publication-title: ACS Catal. doi: 10.1021/acscatal.0c03148 – volume: 161 start-page: F458 year: 2014 ident: 10.1016/j.cplett.2024.141682_b0245 article-title: Hydrogen oxidation on PdIr/C catalysts in alkaline media publication-title: J. Electrochem. Soc. doi: 10.1149/2.037404jes – volume: 13 start-page: 2300881 year: 2023 ident: 10.1016/j.cplett.2024.141682_b0205 article-title: Tailoring Interfacial Chemistry of Defective Carbon-Supported Ru Catalyst Toward Efficient and CO-Tolerant Alkaline Hydrogen Oxidation Reaction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202300881 – volume: 15 start-page: 1234 year: 2022 ident: 10.1016/j.cplett.2024.141682_b0230 article-title: Nitrogen-inserted nickel nanosheets with controlled orbital hybridization and strain fields for boosted hydrogen oxidation in alkaline electrolytes publication-title: Energ. Environ. Sci. doi: 10.1039/D1EE03482K – volume: 3 start-page: 1500286 year: 2016 ident: 10.1016/j.cplett.2024.141682_b0110 article-title: Transition metal carbides and nitrides in energy storage and conversion publication-title: Adv. Sci. doi: 10.1002/advs.201500286 – volume: 10 start-page: 6080 year: 2018 ident: 10.1016/j.cplett.2024.141682_b0175 article-title: Electrocatalytic performance of ultrasmall Mo2C affected by different transition metal dopants in hydrogen evolution reaction publication-title: Nanoscale doi: 10.1039/C8NR00908B – volume: 66 start-page: 61 year: 2022 ident: 10.1016/j.cplett.2024.141682_b0190 article-title: Carbon dots regulate the interface electron transfer and catalytic kinetics of Pt-based alloys catalyst for highly efficient hydrogen oxidation publication-title: Journal of Energy Chemistry. doi: 10.1016/j.jechem.2021.07.012 – volume: 10 start-page: 2206096 year: 2023 ident: 10.1016/j.cplett.2024.141682_b0070 article-title: Synergistic Mechanism of Sub-Nanometric Ru Clusters Anchored on Tungsten Oxide Nanowires for High-Efficient Bifunctional Hydrogen Electrocatalysis publication-title: Adv. Sci. doi: 10.1002/advs.202206096 – volume: 5 start-page: 4819 year: 2015 ident: 10.1016/j.cplett.2024.141682_b0105 article-title: Huge instability of Pt/C catalysts in alkaline medium publication-title: ACS Catal. doi: 10.1021/acscatal.5b01037 – volume: 10 start-page: 14747 year: 2020 ident: 10.1016/j.cplett.2024.141682_b0080 article-title: “Beyond adsorption” descriptors in hydrogen electrocatalysis publication-title: ACS Catal. doi: 10.1021/acscatal.0c03801 – volume: 7 start-page: 1601390 year: 2017 ident: 10.1016/j.cplett.2024.141682_b0170 article-title: Superb alkaline hydrogen evolution and simultaneous electricity generation by pt-decorated Ni3N nanosheets publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601390 – volume: 11 start-page: 1339 year: 2021 ident: 10.1016/j.cplett.2024.141682_b0035 article-title: Investigation of Filtration Phenomena of Air Pollutants on Cathode Air Filters for PEM Fuel Cells publication-title: Catalysts doi: 10.3390/catal11111339 – volume: 11 start-page: 3198 year: 2018 ident: 10.1016/j.cplett.2024.141682_b0160 article-title: Bimetallic NiMoN nanowires with a preferential reactive facet: an ultraefficient bifunctional electrocatalyst for overall water splitting publication-title: ChemSusChem doi: 10.1002/cssc.201801337 – volume: 75 year: 2020 ident: 10.1016/j.cplett.2024.141682_b0220 article-title: A non-carbon catalyst support upgrades the intrinsic activity of ruthenium for hydrogen evolution electrocatalysis via strong interfacial electronic effects publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104981 |
SSID | ssj0001351 |
Score | 2.4778457 |
Snippet | [Display omitted]
•Ru/Ni3N@Mo2C composite was synthesized by; pyrolysis, hydrothermal, and wet-chemical route.•Synergistic effect between Ru and the support... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 141682 |
SubjectTerms | Alkaline condition Electrocatalysis Exchange current density Hydrogen fuel cells Hydrogen oxidation reaction |
Title | Enhancing hydrogen oxidation by Modulating Ru species on Ni3N@Mo2C through a Support-Induced Strategy |
URI | https://dx.doi.org/10.1016/j.cplett.2024.141682 |
Volume | 856 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1KPehF_MT6UfbgdW02ySabmyW0VKU5iIXeQjbZ2HpISmnBXvztzuQDFcSDxyS7IbzdzL6BN_MAbpXJlfCM5EpmEhMUo3mAiTOXQhuhc2WCnKqRp5E3mbmPcznvQNjWwpCsson9dUyvonVzZ9CgOVgtl1TjawXI_11SQXqYRVAFu-vTLr_7-JJ5kANd66ZGo9vyuUrjla4QHFJU2i6GDOEp-_fj6duRMz6Cw4YrsmH9OcfQMcUJ7IetRdspmFGxoH4ZxStb7LJ1iZuBle_L2iaJ6R2bllllz4UDnreMqioxMWb4LFo60f20tEPWGPWwhJHBJ5JxTm4eiAtrGtfuzmA2Hr2EE974JvAUE4QNz31MQ5DK2LlxfCQgRojU8ok4qTzIvAQZg2_JzAQ-Hve59DT-6JmbCZMkiUMt3s6hW5SFuQAWSJU6TuqkCaZVKrA0vlK7iSu1Rmpmix7wFq54VbfHiFvd2FtcwxsTvHENbw_8FtP4xzLHGMH_nHn575lXcEBXtQblGrqb9dbcIJPY6H61VfqwN3x4mkSfd2rHfw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na4NAEB3S5JBeSj9p-rmHXpf4tbreGiTBNNFDSSC3xdW1SQ8aQgLNv-9s1NJC6aFX1xF5rrPvwcw8gCeucm66ilHOMoYCRUnqo3CmzJTKlDlXfq67kaPYDefOy4ItWhA0vTC6rLLO_VVOP2Tr-kq_RrO_Xq10j6_hI_93dBWkiyriCDp6OhVrQ2cwnoTxV0LWJnSNoZoOaDroDmVe6Rrx0UWVloNZw3S59fsJ9e3UGZ3CSU0XyaB6ozNoqeIcukHj0nYBalgs9ciM4o0s99mmxP1Ayo9V5ZRE5J5EZXZw6MIbXndEN1aiNia4Fq_s-DkqrYDUXj0kIdrjE_k41YYeCA2pZ9fuL2E-Gs6CkNbWCTRFjbCluYdKBNmMlSvbQw6iTDM1PM2deO5nboKkwTNYpnwPT_ycuRL_9czJTJUkia2nvF1BuygLdQ3EZzy17dROE1RW3DckPlI6icOkRHZmmT2gDVxiXU3IEE3p2Luo4BUaXlHB2wOvwVT8-NICk_ifkTf_jnyEbjiLpmI6jie3cKxXqpKUO2hvNzt1j8RiKx_qjfMJZMzKMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+hydrogen+oxidation+by+Modulating+Ru+species+on+Ni3N%40Mo2C+through+a+Support-Induced+Strategy&rft.jtitle=Chemical+physics+letters&rft.au=Akeno+Nyaaba%2C+Albert&rft.au=Peng%2C+Yao&rft.au=Kang%2C+Ziliang&rft.au=Naz%2C+Hina&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=0009-2614&rft.volume=856&rft_id=info:doi/10.1016%2Fj.cplett.2024.141682&rft.externalDocID=S0009261424006249 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2614&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2614&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2614&client=summon |