Enhancing hydrogen oxidation by Modulating Ru species on Ni3N@Mo2C through a Support-Induced Strategy

[Display omitted] •Ru/Ni3N@Mo2C composite was synthesized by; pyrolysis, hydrothermal, and wet-chemical route.•Synergistic effect between Ru and the support (Ni3N@Mo2C) optimized HOR kinetics.•Interfacial electronic interactions in Ru/Ni3N@Mo2C modulate Ru’s electronic structure.•The catalyst achiev...

Full description

Saved in:
Bibliographic Details
Published inChemical physics letters Vol. 856; p. 141682
Main Authors Akeno Nyaaba, Albert, Peng, Yao, Kang, Ziliang, Naz, Hina, Premlatha, Subramanian, Ji, Zhenyuan, Leetroy George, Stennard, Zhu, Guoxing
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Ru/Ni3N@Mo2C composite was synthesized by; pyrolysis, hydrothermal, and wet-chemical route.•Synergistic effect between Ru and the support (Ni3N@Mo2C) optimized HOR kinetics.•Interfacial electronic interactions in Ru/Ni3N@Mo2C modulate Ru’s electronic structure.•The catalyst achieves a kinetic current density of 4.76 mA cmdisk−2 @50 mV. The use of hydrogen as an intermediator to convert and store electrochemical energy has been a subject of significant interest and focus. Unfortunately, the slow alkaline hydrogen oxidation reaction (HOR) is a barrier to further development of hydrogen–oxygen fuel cells. Ruthenium (Ru) has recently been investigated as a possible replacement for platinum (Pt) catalyst in the HOR because of the similar hydrogen binding energy (HBE) to Pt. Herein, Ru species was loaded on Ni3N@Mo2C support, which was used as an electrocatalyst for HOR. The catalyst presents an exchange current density and kinetic current densities of 3.05 and 4.76 mA cmdisk−2 that are 2 and 1.4 times greater than that of commercial Pt/C, respectively. The findings indicate that the Ni3N@Mo2C support reduces the hydrogen binding energy on Ru sites. This improves the Volmer step for HOR and increases the catalytic activity. This study thus provides some guidance in the designing of HOR catalysts for efficient hydrogen energy conversion.
AbstractList [Display omitted] •Ru/Ni3N@Mo2C composite was synthesized by; pyrolysis, hydrothermal, and wet-chemical route.•Synergistic effect between Ru and the support (Ni3N@Mo2C) optimized HOR kinetics.•Interfacial electronic interactions in Ru/Ni3N@Mo2C modulate Ru’s electronic structure.•The catalyst achieves a kinetic current density of 4.76 mA cmdisk−2 @50 mV. The use of hydrogen as an intermediator to convert and store electrochemical energy has been a subject of significant interest and focus. Unfortunately, the slow alkaline hydrogen oxidation reaction (HOR) is a barrier to further development of hydrogen–oxygen fuel cells. Ruthenium (Ru) has recently been investigated as a possible replacement for platinum (Pt) catalyst in the HOR because of the similar hydrogen binding energy (HBE) to Pt. Herein, Ru species was loaded on Ni3N@Mo2C support, which was used as an electrocatalyst for HOR. The catalyst presents an exchange current density and kinetic current densities of 3.05 and 4.76 mA cmdisk−2 that are 2 and 1.4 times greater than that of commercial Pt/C, respectively. The findings indicate that the Ni3N@Mo2C support reduces the hydrogen binding energy on Ru sites. This improves the Volmer step for HOR and increases the catalytic activity. This study thus provides some guidance in the designing of HOR catalysts for efficient hydrogen energy conversion.
ArticleNumber 141682
Author Peng, Yao
Naz, Hina
Akeno Nyaaba, Albert
Premlatha, Subramanian
Ji, Zhenyuan
Kang, Ziliang
Leetroy George, Stennard
Zhu, Guoxing
Author_xml – sequence: 1
  givenname: Albert
  surname: Akeno Nyaaba
  fullname: Akeno Nyaaba, Albert
– sequence: 2
  givenname: Yao
  surname: Peng
  fullname: Peng, Yao
– sequence: 3
  givenname: Ziliang
  surname: Kang
  fullname: Kang, Ziliang
– sequence: 4
  givenname: Hina
  surname: Naz
  fullname: Naz, Hina
– sequence: 5
  givenname: Subramanian
  surname: Premlatha
  fullname: Premlatha, Subramanian
– sequence: 6
  givenname: Zhenyuan
  surname: Ji
  fullname: Ji, Zhenyuan
– sequence: 7
  givenname: Stennard
  surname: Leetroy George
  fullname: Leetroy George, Stennard
– sequence: 8
  givenname: Guoxing
  surname: Zhu
  fullname: Zhu, Guoxing
  email: zhuguoxing@ujs.edu.cn
BookMark eNp9kMFOwzAQRH0oEm3hDzj4BxK8Tpw0FwSqClRqi0ThbLnxJnFV7MhxEPl7UpUzp9Vod0Y7b0Ym1lkk5A5YDAyy-2NcticMIeaMpzGkkC34hEwZY0XEM0ivyazrjqOERMCU4Mo2ypbG1rQZtHc1Wup-jFbBOEsPA9063Z9GNR6897RrsTTY0XG3M8nucev4kobGu75uqKL7vm2dD9Ha6r5ETffBq4D1cEOuKnXq8PZvzsnn8-pj-Rpt3l7Wy6dNVHIhQlTlIl1wkfEKkzwpCgQoWc5TniyqQmcKcpEzobHIQUAlsgNLmE41oFIqAQ7JnKSX3NK7rvNYydabL-UHCUye8cijvOCRZzzygme0PVxsOP72bdDLbmxpxwbGYxmkdub_gF8or3Oj
Cites_doi 10.1016/j.nanoen.2020.104877
10.1039/D1TA05876B
10.1038/s41467-022-29276-7
10.1002/adma.202208821
10.1039/D3DT03981A
10.1002/anie.201905430
10.1039/D0NR02527E
10.1016/j.ijhydene.2021.05.088
10.1021/acssuschemeng.1c01468
10.1002/cssc.202100200
10.1002/anie.201902751
10.1002/ange.202208040
10.1002/cssc.201800856
10.1016/j.nanoen.2017.12.008
10.1039/D2EE02216H
10.1002/anie.201908194
10.1021/acscatal.5b00247
10.1021/acs.chemrev.1c00331
10.1039/D2TA07417F
10.1002/adfm.202103673
10.1039/C6TA05517F
10.1016/j.jechem.2022.06.011
10.1038/s41929-020-0446-9
10.1021/acsmaterialslett.2c00699
10.1021/acs.jpclett.2c00021
10.1039/C7CC05172G
10.1002/ange.202013047
10.1002/smll.202100460
10.1126/sciadv.abm3779
10.1016/j.nanoen.2019.01.070
10.1016/j.jechem.2021.07.015
10.1021/acssuschemeng.1c07306
10.1021/cr400407a
10.1007/s41918-019-00034-6
10.1021/acscatal.0c03148
10.1149/2.037404jes
10.1002/aenm.202300881
10.1039/D1EE03482K
10.1002/advs.201500286
10.1039/C8NR00908B
10.1016/j.jechem.2021.07.012
10.1002/advs.202206096
10.1021/acscatal.5b01037
10.1021/acscatal.0c03801
10.1002/aenm.201601390
10.3390/catal11111339
10.1002/cssc.201801337
10.1016/j.nanoen.2020.104981
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cplett.2024.141682
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
ExternalDocumentID 10_1016_j_cplett_2024_141682
S0009261424006249
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXKI
AAXUO
AAYJJ
ABFNM
ABMAC
ABNEU
ABXDB
ABXRA
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
ADVLN
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFJKZ
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJQLL
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HMU
HMV
HVGLF
HZ~
H~9
IHE
J1W
K-O
KOM
M36
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSK
SSM
SSQ
SSZ
T5K
TN5
UPT
UQL
VH1
WH7
WUQ
YK3
ZCG
ZMT
~02
~G-
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AETEA
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c255t-f75482562fe37399e11c0724238f9d6a175705de97151f56b030d4d1eaaa31213
IEDL.DBID .~1
ISSN 0009-2614
IngestDate Tue Jul 01 00:28:30 EDT 2025
Sat Oct 26 15:43:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrocatalysis
Alkaline condition
Hydrogen oxidation reaction
Hydrogen fuel cells
Exchange current density
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-f75482562fe37399e11c0724238f9d6a175705de97151f56b030d4d1eaaa31213
ParticipantIDs crossref_primary_10_1016_j_cplett_2024_141682
elsevier_sciencedirect_doi_10_1016_j_cplett_2024_141682
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Chemical physics letters
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Zhao, Li, Liu, Wang, Yao (b0210) 2022; 13
Kundu, Bhowmik, Mishra, Barman (b0090) 2018; 11
Liu, Ai, Lu (b0120) 2014; 114
Yu, Huang, Chen, Srinivas, Zhang, Wang (b0145) 2021; 17
Chang, Yang, Shao, Zhang, Fan, Huang (b0160) 2018; 11
Yang, Lai, He, Wang, Yu, Liu (b0205) 2023; 13
Zhao, Hu, Gong, Lin, Deng, Lu (b0195) 2020; 74
Zhang, Li, Sun, Wei, Niu, Chen (b0055) 2022; 4
Wu, Zhou, Nie, Wei, Huang, Liao (b0190) 2022; 66
Zhang, Sa, Yang, Zhou, Jiang, Wang (b0220) 2020; 75
Ni, Krammer, Hsu, Chen, Schüler, Hu (b0150) 2019; 58
Yang, Sun, Han, Liu, Zhang, Sun (b0050) 2019; 58
Yang, Bao, Li, Wang, Cheng, Chen (b0020) 2019; 58
Zheng, Zhuang, Xu, Yan (b0250) 2015; 5
Chen, Qi, Guo, Lei, Zhang, Cao (b0140) 2017; 53
Liu, Zhang, Li, Qian, Li, Zhang (b0165) 2021; 31
Wang, Chen, Yu, Wang, Zheng (b0170) 2017; 7
Zhong, Xia, Shi, Zhan, Tu, Fan (b0110) 2016; 3
Han, Ou, Liu, Wang, Wang, Zhang (b0060) 2022; 8
Jervis, Mansor, Gibbs, Murray, Tang, Shearing (b0245) 2014; 161
Salah, Ren, Al-Ansi, Yu, Lang, Tan (b0155) 2021; 9
Su, Gong, Jin, Wu, Luo (b0075) 2022; 66
Kang, Peng, Wei, Liu, Song, Ji (b0225) 2024; 53
Samanta, Mishra, Barman (b0200) 2021; 14
Rebollar, Intikhab, Oliveira, Yan, Xu, McCrum (b0080) 2020; 10
Zhang, Xiao, Chen, Liu, Pan, Sun (b0100) 2022
Wang, Li, Ruan, Tang (b0185) 2020; 12
Zhao, Li, An, Iputera, Zhu, Gao (b0230) 2022; 15
Ohyama, Kumada, Satsuma (b0235) 2016; 4
Yang, Huang, Zhou, Liu, Shi, Isimjan (b0015) 2022; 72
Zadick, Dubau, Sergent, Berthome, Chatenet (b0105) 2015; 5
Zhao, Wang, Cheng, Luo (b0215) 2020; 10
Yang, Dai, Shi, Liu, Isimjan, Yang (b0115) 2022; 13
Huang, Lu, Zhang, Chen, Chen, Ma (b0040) 2023; 2306333
Liu, Lu, Xue, Guan, Fang, Zhu (b0240) 2019; 59
Xu, Liang, Gong, Zhang, Wang, Su (b0180) 2021; 9
Zhang, Xia, Zhao, Zhang, Chen, Chen (b0130) 2023; 35
Wang, Yang, Shi, Chen, Zhou, Wang (b0005) 2021; 133
Yang, Peltier, Zeng, Schimmenti, Li, Huang (b0010) 2022; 122
Zhang, Ma, Shui, Zhou, Wang (b0125) 2022; 430
Yang, Gao, Zhang, Qin, Zheng, Wang (b0030) 2022; 134
Özyalcin, Mauermann, Dirkes, Thiele, Sterlepper, Pischinger (b0035) 2021; 11
Cong, Yi, Song (b0095) 2018; 44
Zhou, Xie, Jiang, Wang, Song, He (b0045) 2020; 3
Midilli, Kucuk, Topal, Akbulut, Dincer (b0065) 2021; 46
Pi, Qiu, Sun, Ishii, Liao, Zhang (b0070) 2023; 10
Zhao, Wu, Luo (b0025) 2022; 10
Yu, Gao, Lang, Ma, Yin, Du (b0175) 2018; 10
Campos-Roldán, Alonso-Vante (b0085) 2019; 2
Ji, Chen, Liu, Ji, Zhou, Chen (b0135) 2023; 11
Samanta (10.1016/j.cplett.2024.141682_b0200) 2021; 14
Yu (10.1016/j.cplett.2024.141682_b0145) 2021; 17
Yang (10.1016/j.cplett.2024.141682_b0205) 2023; 13
Wang (10.1016/j.cplett.2024.141682_b0005) 2021; 133
Wang (10.1016/j.cplett.2024.141682_b0210) 2022; 13
Campos-Roldán (10.1016/j.cplett.2024.141682_b0085) 2019; 2
Wu (10.1016/j.cplett.2024.141682_b0190) 2022; 66
Pi (10.1016/j.cplett.2024.141682_b0070) 2023; 10
Yang (10.1016/j.cplett.2024.141682_b0030) 2022; 134
Huang (10.1016/j.cplett.2024.141682_b0040) 2023; 2306333
Yang (10.1016/j.cplett.2024.141682_b0015) 2022; 72
Zheng (10.1016/j.cplett.2024.141682_b0250) 2015; 5
Jervis (10.1016/j.cplett.2024.141682_b0245) 2014; 161
Zadick (10.1016/j.cplett.2024.141682_b0105) 2015; 5
Zhou (10.1016/j.cplett.2024.141682_b0045) 2020; 3
Kundu (10.1016/j.cplett.2024.141682_b0090) 2018; 11
Yang (10.1016/j.cplett.2024.141682_b0050) 2019; 58
Zhao (10.1016/j.cplett.2024.141682_b0195) 2020; 74
Liu (10.1016/j.cplett.2024.141682_b0120) 2014; 114
Yang (10.1016/j.cplett.2024.141682_b0010) 2022; 122
Zhang (10.1016/j.cplett.2024.141682_b0055) 2022; 4
Chen (10.1016/j.cplett.2024.141682_b0140) 2017; 53
Wang (10.1016/j.cplett.2024.141682_b0170) 2017; 7
Ji (10.1016/j.cplett.2024.141682_b0135) 2023; 11
Ni (10.1016/j.cplett.2024.141682_b0150) 2019; 58
Su (10.1016/j.cplett.2024.141682_b0075) 2022; 66
Zhang (10.1016/j.cplett.2024.141682_b0125) 2022; 430
Zhang (10.1016/j.cplett.2024.141682_b0220) 2020; 75
Midilli (10.1016/j.cplett.2024.141682_b0065) 2021; 46
Yang (10.1016/j.cplett.2024.141682_b0115) 2022; 13
Cong (10.1016/j.cplett.2024.141682_b0095) 2018; 44
Xu (10.1016/j.cplett.2024.141682_b0180) 2021; 9
Zhao (10.1016/j.cplett.2024.141682_b0230) 2022; 15
Salah (10.1016/j.cplett.2024.141682_b0155) 2021; 9
Zhang (10.1016/j.cplett.2024.141682_b0130) 2023; 35
Yang (10.1016/j.cplett.2024.141682_b0020) 2019; 58
Yu (10.1016/j.cplett.2024.141682_b0175) 2018; 10
Rebollar (10.1016/j.cplett.2024.141682_b0080) 2020; 10
Zhao (10.1016/j.cplett.2024.141682_b0215) 2020; 10
Han (10.1016/j.cplett.2024.141682_b0060) 2022; 8
Zhang (10.1016/j.cplett.2024.141682_b0100) 2022
Kang (10.1016/j.cplett.2024.141682_b0225) 2024; 53
Wang (10.1016/j.cplett.2024.141682_b0185) 2020; 12
Ohyama (10.1016/j.cplett.2024.141682_b0235) 2016; 4
Zhong (10.1016/j.cplett.2024.141682_b0110) 2016; 3
Özyalcin (10.1016/j.cplett.2024.141682_b0035) 2021; 11
Chang (10.1016/j.cplett.2024.141682_b0160) 2018; 11
Liu (10.1016/j.cplett.2024.141682_b0240) 2019; 59
Zhao (10.1016/j.cplett.2024.141682_b0025) 2022; 10
Liu (10.1016/j.cplett.2024.141682_b0165) 2021; 31
References_xml – volume: 10
  start-page: 6080
  year: 2018
  end-page: 6087
  ident: b0175
  article-title: Electrocatalytic performance of ultrasmall Mo
  publication-title: Nanoscale
– volume: 66
  start-page: 107
  year: 2022
  end-page: 122
  ident: b0075
  article-title: Recent advances in alkaline hydrogen oxidation reaction
  publication-title: Journal of Energy Chemistry.
– volume: 3
  start-page: 454
  year: 2020
  end-page: 462
  ident: b0045
  article-title: Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction
  publication-title: Nat. Catal.
– volume: 11
  start-page: 2388
  year: 2018
  end-page: 2401
  ident: b0090
  article-title: Platinum Nanostructure/Nitrogen-Doped Carbon Hybrid: Enhancing its Base Media HER/HOR Activity through Bi-functionality of the Catalyst
  publication-title: Chem. Sus. Chem.
– volume: 15
  start-page: 1234
  year: 2022
  end-page: 1242
  ident: b0230
  article-title: Nitrogen-inserted nickel nanosheets with controlled orbital hybridization and strain fields for boosted hydrogen oxidation in alkaline electrolytes
  publication-title: Energ. Environ. Sci.
– volume: 2
  start-page: 312
  year: 2019
  end-page: 331
  ident: b0085
  article-title: The hydrogen oxidation reaction in alkaline medium: an overview
  publication-title: Electrochemical Energy Reviews.
– volume: 7
  start-page: 1601390
  year: 2017
  ident: b0170
  article-title: Superb alkaline hydrogen evolution and simultaneous electricity generation by pt-decorated Ni
  publication-title: Adv. Energy Mater.
– volume: 58
  start-page: 7445
  year: 2019
  end-page: 7449
  ident: b0150
  article-title: Ni3N as an active hydrogen oxidation reaction catalyst in alkaline medium
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 2097
  year: 2022
  end-page: 2105
  ident: b0055
  article-title: Regulating the surface electronic structure of RuNi alloys for boosting alkaline hydrogen oxidation electrocatalysis
  publication-title: ACS Materials Letters.
– volume: 74
  year: 2020
  ident: b0195
  article-title: Electronic structure and oxophilicity optimization of mono-layer Pt for efficient electrocatalysis
  publication-title: Nano Energy
– volume: 58
  start-page: 14179
  year: 2019
  end-page: 14183
  ident: b0020
  article-title: Boosting hydrogen oxidation activity of Ni in alkaline media through oxygen-vacancy-rich CeO
  publication-title: Angew. Chem. Int. Ed.
– volume: 114
  start-page: 5057
  year: 2014
  end-page: 5115
  ident: b0120
  article-title: Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields
  publication-title: Chem. Rev.
– volume: 122
  start-page: 6117
  year: 2022
  end-page: 6321
  ident: b0010
  article-title: Electrocatalysis in alkaline media and alkaline membrane-based energy technologies
  publication-title: Chem. Rev.
– volume: 17
  start-page: 2100460
  year: 2021
  ident: b0145
  article-title: In situ construction of Mo
  publication-title: Small
– volume: 14
  start-page: 2112
  year: 2021
  end-page: 2125
  ident: b0200
  article-title: Interface-and surface-engineered PdO-RuO
  publication-title: ChemSusChem
– volume: 430
  year: 2022
  ident: b0125
  article-title: Ni
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 2107
  year: 2022
  end-page: 2116
  ident: b0115
  article-title: Electronic Modulation of Pt Nanoparticles on Ni3N–Mo2C by Support-Induced Strategy for Accelerating Hydrogen Oxidation and Evolution
  publication-title: The Journal of Physical Chemistry Letters.
– volume: 5
  start-page: 4819
  year: 2015
  end-page: 4824
  ident: b0105
  article-title: Huge instability of Pt/C catalysts in alkaline medium
  publication-title: ACS Catal.
– volume: 4
  start-page: 15980
  year: 2016
  end-page: 15985
  ident: b0235
  article-title: Improved hydrogen oxidation reaction under alkaline conditions by ruthenium–iridium alloyed nanoparticles
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 1339
  year: 2021
  ident: b0035
  article-title: Investigation of Filtration Phenomena of Air Pollutants on Cathode Air Filters for PEM Fuel Cells
  publication-title: Catalysts
– volume: 11
  start-page: 3198
  year: 2018
  end-page: 3207
  ident: b0160
  article-title: Bimetallic NiMoN nanowires with a preferential reactive facet: an ultraefficient bifunctional electrocatalyst for overall water splitting
  publication-title: ChemSusChem
– volume: 9
  start-page: 7120
  year: 2021
  end-page: 7129
  ident: b0180
  article-title: Fast and stable electrochemical production of H
  publication-title: ACS Sustain. Chem. Eng.
– volume: 2306333
  year: 2023
  ident: b0040
  article-title: A Highly Efficient pH-Universal HOR Catalyst with Engineered Electronic Structures of Single Pt Sites by Isolated Co Atoms
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: eabm3779
  year: 2022
  ident: b0060
  article-title: Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation
  publication-title: Sci. Adv.
– volume: 53
  start-page: 9566
  year: 2017
  end-page: 9569
  ident: b0140
  article-title: Facile synthesis of sponge-like Ni 3 N/NC for electrocatalytic water oxidation
  publication-title: Chem. Commun.
– volume: 10
  start-page: 11751
  year: 2020
  end-page: 11757
  ident: b0215
  article-title: Phosphorus-induced activation of ruthenium for boosting hydrogen oxidation and evolution electrocatalysis
  publication-title: ACS Catal.
– volume: 31
  start-page: 2103673
  year: 2021
  ident: b0165
  article-title: Realizing the synergy of interface engineering and chemical substitution for Ni
  publication-title: Adv. Funct. Mater.
– volume: 53
  start-page: 2762
  year: 2024
  end-page: 2769
  ident: b0225
  article-title: A trinary support of Ni/NiO/C to immobilize Ir nanoclusters for alkaline hydrogen oxidation
  publication-title: Dalton Trans.
– volume: 12
  start-page: 12329
  year: 2020
  end-page: 12335
  ident: b0185
  article-title: Ru and RuO
  publication-title: Nanoscale
– volume: 5
  start-page: 4449
  year: 2015
  end-page: 4455
  ident: b0250
  article-title: Correlating hydrogen oxidation/evolution reaction activity with the minority weak hydrogen-binding sites on Ir/C catalysts
  publication-title: ACS Catal.
– volume: 10
  start-page: 1616
  year: 2022
  end-page: 1623
  ident: b0025
  article-title: Correlating alkaline hydrogen electrocatalysis and hydroxide binding energies on Mo-modified Ru catalysts
  publication-title: ACS Sustain. Chem. Eng.
– volume: 44
  start-page: 288
  year: 2018
  end-page: 303
  ident: b0095
  article-title: Hydrogen oxidation reaction in alkaline media: From mechanism to recent electrocatalysts
  publication-title: Nano Energy
– volume: 134
  start-page: e202208040
  year: 2022
  ident: b0030
  article-title: Suppressing Electron Back-Donation for a Highly CO-tolerant Fuel Cell Anode Catalyst via Cobalt Modulation
  publication-title: Angew. Chem.
– volume: 13
  start-page: 1596
  year: 2022
  ident: b0210
  article-title: Atomic-precision Pt
  publication-title: Nat. Commun.
– volume: 72
  start-page: 395
  year: 2022
  end-page: 404
  ident: b0015
  article-title: Delicate surface vacancies engineering of Ru doped MOF-derived Ni-NiO@ C hollow microsphere superstructure to achieve outstanding hydrogen oxidation performance
  publication-title: Journal of Energy Chemistry.
– volume: 10
  start-page: 14747
  year: 2020
  end-page: 14762
  ident: b0080
  article-title: “Beyond adsorption” descriptors in hydrogen electrocatalysis
  publication-title: ACS Catal.
– volume: 11
  start-page: 5076
  year: 2023
  end-page: 5082
  ident: b0135
  article-title: Ir/Ni-NiO/CNT composites as effective electrocatalysts for hydrogen oxidation
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 20518
  year: 2021
  end-page: 20529
  ident: b0155
  article-title: Ru/Mo
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 2206096
  year: 2023
  ident: b0070
  article-title: Synergistic Mechanism of Sub-Nanometric Ru Clusters Anchored on Tungsten Oxide Nanowires for High-Efficient Bifunctional Hydrogen Electrocatalysis
  publication-title: Adv. Sci.
– volume: 66
  start-page: 61
  year: 2022
  end-page: 67
  ident: b0190
  article-title: Carbon dots regulate the interface electron transfer and catalytic kinetics of Pt-based alloys catalyst for highly efficient hydrogen oxidation
  publication-title: Journal of Energy Chemistry.
– volume: 46
  start-page: 25385
  year: 2021
  end-page: 25412
  ident: b0065
  article-title: A comprehensive review on hydrogen production from coal gasification: Challenges and Opportunities
  publication-title: Int. J. Hydrogen Energy
– volume: 59
  start-page: 26
  year: 2019
  end-page: 32
  ident: b0240
  article-title: One-pot synthesis of IrNi@ Ir core-shell nanoparticles as highly active hydrogen oxidation reaction electrocatalyst in alkaline electrolyte
  publication-title: Nano Energy
– volume: 161
  start-page: F458
  year: 2014
  ident: b0245
  article-title: Hydrogen oxidation on PdIr/C catalysts in alkaline media
  publication-title: J. Electrochem. Soc.
– volume: 133
  start-page: 5835
  year: 2021
  end-page: 5841
  ident: b0005
  article-title: Alloying nickel with molybdenum significantly accelerates alkaline hydrogen electrocatalysis
  publication-title: Angew. Chem.
– volume: 75
  year: 2020
  ident: b0220
  article-title: A non-carbon catalyst support upgrades the intrinsic activity of ruthenium for hydrogen evolution electrocatalysis via strong interfacial electronic effects
  publication-title: Nano Energy
– year: 2022
  ident: b0100
  article-title: Toward Fast and Durable Alkaline Hydrogen Oxidation Reaction on Ruthenium
  publication-title: Energ. Environ. Sci.
– volume: 58
  start-page: 10644
  year: 2019
  end-page: 10649
  ident: b0050
  article-title: Enhanced Electrocatalytic Hydrogen Oxidation on Ni/NiO/C Derived from a Nickel-Based Metal-Organic Framework
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  start-page: 2300881
  year: 2023
  ident: b0205
  article-title: Tailoring Interfacial Chemistry of Defective Carbon-Supported Ru Catalyst Toward Efficient and CO-Tolerant Alkaline Hydrogen Oxidation Reaction
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 1500286
  year: 2016
  ident: b0110
  article-title: Transition metal carbides and nitrides in energy storage and conversion
  publication-title: Adv. Sci.
– volume: 35
  start-page: 2208821
  year: 2023
  ident: b0130
  article-title: Fast and Durable Alkaline Hydrogen Oxidation Reaction at the Electron-Deficient Ruthenium-Ruthenium Oxide Interface
  publication-title: Adv. Mater.
– volume: 74
  year: 2020
  ident: 10.1016/j.cplett.2024.141682_b0195
  article-title: Electronic structure and oxophilicity optimization of mono-layer Pt for efficient electrocatalysis
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104877
– volume: 9
  start-page: 20518
  year: 2021
  ident: 10.1016/j.cplett.2024.141682_b0155
  article-title: Ru/Mo2C@ NC Schottky junction-loaded hollow nanospheres as an efficient hydrogen evolution electrocatalyst
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA05876B
– volume: 13
  start-page: 1596
  year: 2022
  ident: 10.1016/j.cplett.2024.141682_b0210
  article-title: Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29276-7
– volume: 35
  start-page: 2208821
  year: 2023
  ident: 10.1016/j.cplett.2024.141682_b0130
  article-title: Fast and Durable Alkaline Hydrogen Oxidation Reaction at the Electron-Deficient Ruthenium-Ruthenium Oxide Interface
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202208821
– volume: 53
  start-page: 2762
  year: 2024
  ident: 10.1016/j.cplett.2024.141682_b0225
  article-title: A trinary support of Ni/NiO/C to immobilize Ir nanoclusters for alkaline hydrogen oxidation
  publication-title: Dalton Trans.
  doi: 10.1039/D3DT03981A
– volume: 58
  start-page: 10644
  year: 2019
  ident: 10.1016/j.cplett.2024.141682_b0050
  article-title: Enhanced Electrocatalytic Hydrogen Oxidation on Ni/NiO/C Derived from a Nickel-Based Metal-Organic Framework
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201905430
– volume: 12
  start-page: 12329
  year: 2020
  ident: 10.1016/j.cplett.2024.141682_b0185
  article-title: Ru and RuOx decorated carbon nitride for efficient ammonia photosynthesis
  publication-title: Nanoscale
  doi: 10.1039/D0NR02527E
– volume: 46
  start-page: 25385
  year: 2021
  ident: 10.1016/j.cplett.2024.141682_b0065
  article-title: A comprehensive review on hydrogen production from coal gasification: Challenges and Opportunities
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.05.088
– volume: 9
  start-page: 7120
  year: 2021
  ident: 10.1016/j.cplett.2024.141682_b0180
  article-title: Fast and stable electrochemical production of H2O2 by electrode architecture engineering
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.1c01468
– volume: 14
  start-page: 2112
  year: 2021
  ident: 10.1016/j.cplett.2024.141682_b0200
  article-title: Interface-and surface-engineered PdO-RuO2 hetero-nanostructures with high activity for hydrogen evolution/oxidation reactions
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202100200
– volume: 58
  start-page: 7445
  year: 2019
  ident: 10.1016/j.cplett.2024.141682_b0150
  article-title: Ni3N as an active hydrogen oxidation reaction catalyst in alkaline medium
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201902751
– volume: 134
  start-page: e202208040
  year: 2022
  ident: 10.1016/j.cplett.2024.141682_b0030
  article-title: Suppressing Electron Back-Donation for a Highly CO-tolerant Fuel Cell Anode Catalyst via Cobalt Modulation
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202208040
– volume: 11
  start-page: 2388
  year: 2018
  ident: 10.1016/j.cplett.2024.141682_b0090
  article-title: Platinum Nanostructure/Nitrogen-Doped Carbon Hybrid: Enhancing its Base Media HER/HOR Activity through Bi-functionality of the Catalyst
  publication-title: Chem. Sus. Chem.
  doi: 10.1002/cssc.201800856
– volume: 44
  start-page: 288
  year: 2018
  ident: 10.1016/j.cplett.2024.141682_b0095
  article-title: Hydrogen oxidation reaction in alkaline media: From mechanism to recent electrocatalysts
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.008
– year: 2022
  ident: 10.1016/j.cplett.2024.141682_b0100
  article-title: Toward Fast and Durable Alkaline Hydrogen Oxidation Reaction on Ruthenium
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/D2EE02216H
– volume: 58
  start-page: 14179
  year: 2019
  ident: 10.1016/j.cplett.2024.141682_b0020
  article-title: Boosting hydrogen oxidation activity of Ni in alkaline media through oxygen-vacancy-rich CeO2/Ni heterostructures
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201908194
– volume: 5
  start-page: 4449
  year: 2015
  ident: 10.1016/j.cplett.2024.141682_b0250
  article-title: Correlating hydrogen oxidation/evolution reaction activity with the minority weak hydrogen-binding sites on Ir/C catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00247
– volume: 122
  start-page: 6117
  year: 2022
  ident: 10.1016/j.cplett.2024.141682_b0010
  article-title: Electrocatalysis in alkaline media and alkaline membrane-based energy technologies
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00331
– volume: 11
  start-page: 5076
  year: 2023
  ident: 10.1016/j.cplett.2024.141682_b0135
  article-title: Ir/Ni-NiO/CNT composites as effective electrocatalysts for hydrogen oxidation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA07417F
– volume: 31
  start-page: 2103673
  year: 2021
  ident: 10.1016/j.cplett.2024.141682_b0165
  article-title: Realizing the synergy of interface engineering and chemical substitution for Ni3N enables its bifunctionality toward hydrazine oxidation assisted energy-saving hydrogen production
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202103673
– volume: 4
  start-page: 15980
  year: 2016
  ident: 10.1016/j.cplett.2024.141682_b0235
  article-title: Improved hydrogen oxidation reaction under alkaline conditions by ruthenium–iridium alloyed nanoparticles
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA05517F
– volume: 72
  start-page: 395
  year: 2022
  ident: 10.1016/j.cplett.2024.141682_b0015
  article-title: Delicate surface vacancies engineering of Ru doped MOF-derived Ni-NiO@ C hollow microsphere superstructure to achieve outstanding hydrogen oxidation performance
  publication-title: Journal of Energy Chemistry.
  doi: 10.1016/j.jechem.2022.06.011
– volume: 3
  start-page: 454
  year: 2020
  ident: 10.1016/j.cplett.2024.141682_b0045
  article-title: Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-0446-9
– volume: 4
  start-page: 2097
  year: 2022
  ident: 10.1016/j.cplett.2024.141682_b0055
  article-title: Regulating the surface electronic structure of RuNi alloys for boosting alkaline hydrogen oxidation electrocatalysis
  publication-title: ACS Materials Letters.
  doi: 10.1021/acsmaterialslett.2c00699
– volume: 430
  year: 2022
  ident: 10.1016/j.cplett.2024.141682_b0125
  article-title: Ni3N nanoparticles on porous nitrogen-doped carbon nanorods for nitrate electroreduction
  publication-title: Chem. Eng. J.
– volume: 2306333
  year: 2023
  ident: 10.1016/j.cplett.2024.141682_b0040
  article-title: A Highly Efficient pH-Universal HOR Catalyst with Engineered Electronic Structures of Single Pt Sites by Isolated Co Atoms
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 2107
  year: 2022
  ident: 10.1016/j.cplett.2024.141682_b0115
  article-title: Electronic Modulation of Pt Nanoparticles on Ni3N–Mo2C by Support-Induced Strategy for Accelerating Hydrogen Oxidation and Evolution
  publication-title: The Journal of Physical Chemistry Letters.
  doi: 10.1021/acs.jpclett.2c00021
– volume: 53
  start-page: 9566
  year: 2017
  ident: 10.1016/j.cplett.2024.141682_b0140
  article-title: Facile synthesis of sponge-like Ni 3 N/NC for electrocatalytic water oxidation
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC05172G
– volume: 133
  start-page: 5835
  year: 2021
  ident: 10.1016/j.cplett.2024.141682_b0005
  article-title: Alloying nickel with molybdenum significantly accelerates alkaline hydrogen electrocatalysis
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202013047
– volume: 17
  start-page: 2100460
  year: 2021
  ident: 10.1016/j.cplett.2024.141682_b0145
  article-title: In situ construction of Mo2C quantum dots-decorated CNT networks as a multifunctional electrocatalyst for advanced lithium-sulfur batteries
  publication-title: Small
  doi: 10.1002/smll.202100460
– volume: 8
  start-page: eabm3779
  year: 2022
  ident: 10.1016/j.cplett.2024.141682_b0060
  article-title: Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abm3779
– volume: 59
  start-page: 26
  year: 2019
  ident: 10.1016/j.cplett.2024.141682_b0240
  article-title: One-pot synthesis of IrNi@ Ir core-shell nanoparticles as highly active hydrogen oxidation reaction electrocatalyst in alkaline electrolyte
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.070
– volume: 66
  start-page: 107
  year: 2022
  ident: 10.1016/j.cplett.2024.141682_b0075
  article-title: Recent advances in alkaline hydrogen oxidation reaction
  publication-title: Journal of Energy Chemistry.
  doi: 10.1016/j.jechem.2021.07.015
– volume: 10
  start-page: 1616
  year: 2022
  ident: 10.1016/j.cplett.2024.141682_b0025
  article-title: Correlating alkaline hydrogen electrocatalysis and hydroxide binding energies on Mo-modified Ru catalysts
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.1c07306
– volume: 114
  start-page: 5057
  year: 2014
  ident: 10.1016/j.cplett.2024.141682_b0120
  article-title: Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields
  publication-title: Chem. Rev.
  doi: 10.1021/cr400407a
– volume: 2
  start-page: 312
  year: 2019
  ident: 10.1016/j.cplett.2024.141682_b0085
  article-title: The hydrogen oxidation reaction in alkaline medium: an overview
  publication-title: Electrochemical Energy Reviews.
  doi: 10.1007/s41918-019-00034-6
– volume: 10
  start-page: 11751
  year: 2020
  ident: 10.1016/j.cplett.2024.141682_b0215
  article-title: Phosphorus-induced activation of ruthenium for boosting hydrogen oxidation and evolution electrocatalysis
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03148
– volume: 161
  start-page: F458
  year: 2014
  ident: 10.1016/j.cplett.2024.141682_b0245
  article-title: Hydrogen oxidation on PdIr/C catalysts in alkaline media
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.037404jes
– volume: 13
  start-page: 2300881
  year: 2023
  ident: 10.1016/j.cplett.2024.141682_b0205
  article-title: Tailoring Interfacial Chemistry of Defective Carbon-Supported Ru Catalyst Toward Efficient and CO-Tolerant Alkaline Hydrogen Oxidation Reaction
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202300881
– volume: 15
  start-page: 1234
  year: 2022
  ident: 10.1016/j.cplett.2024.141682_b0230
  article-title: Nitrogen-inserted nickel nanosheets with controlled orbital hybridization and strain fields for boosted hydrogen oxidation in alkaline electrolytes
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/D1EE03482K
– volume: 3
  start-page: 1500286
  year: 2016
  ident: 10.1016/j.cplett.2024.141682_b0110
  article-title: Transition metal carbides and nitrides in energy storage and conversion
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500286
– volume: 10
  start-page: 6080
  year: 2018
  ident: 10.1016/j.cplett.2024.141682_b0175
  article-title: Electrocatalytic performance of ultrasmall Mo2C affected by different transition metal dopants in hydrogen evolution reaction
  publication-title: Nanoscale
  doi: 10.1039/C8NR00908B
– volume: 66
  start-page: 61
  year: 2022
  ident: 10.1016/j.cplett.2024.141682_b0190
  article-title: Carbon dots regulate the interface electron transfer and catalytic kinetics of Pt-based alloys catalyst for highly efficient hydrogen oxidation
  publication-title: Journal of Energy Chemistry.
  doi: 10.1016/j.jechem.2021.07.012
– volume: 10
  start-page: 2206096
  year: 2023
  ident: 10.1016/j.cplett.2024.141682_b0070
  article-title: Synergistic Mechanism of Sub-Nanometric Ru Clusters Anchored on Tungsten Oxide Nanowires for High-Efficient Bifunctional Hydrogen Electrocatalysis
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202206096
– volume: 5
  start-page: 4819
  year: 2015
  ident: 10.1016/j.cplett.2024.141682_b0105
  article-title: Huge instability of Pt/C catalysts in alkaline medium
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01037
– volume: 10
  start-page: 14747
  year: 2020
  ident: 10.1016/j.cplett.2024.141682_b0080
  article-title: “Beyond adsorption” descriptors in hydrogen electrocatalysis
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03801
– volume: 7
  start-page: 1601390
  year: 2017
  ident: 10.1016/j.cplett.2024.141682_b0170
  article-title: Superb alkaline hydrogen evolution and simultaneous electricity generation by pt-decorated Ni3N nanosheets
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601390
– volume: 11
  start-page: 1339
  year: 2021
  ident: 10.1016/j.cplett.2024.141682_b0035
  article-title: Investigation of Filtration Phenomena of Air Pollutants on Cathode Air Filters for PEM Fuel Cells
  publication-title: Catalysts
  doi: 10.3390/catal11111339
– volume: 11
  start-page: 3198
  year: 2018
  ident: 10.1016/j.cplett.2024.141682_b0160
  article-title: Bimetallic NiMoN nanowires with a preferential reactive facet: an ultraefficient bifunctional electrocatalyst for overall water splitting
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201801337
– volume: 75
  year: 2020
  ident: 10.1016/j.cplett.2024.141682_b0220
  article-title: A non-carbon catalyst support upgrades the intrinsic activity of ruthenium for hydrogen evolution electrocatalysis via strong interfacial electronic effects
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104981
SSID ssj0001351
Score 2.4778457
Snippet [Display omitted] •Ru/Ni3N@Mo2C composite was synthesized by; pyrolysis, hydrothermal, and wet-chemical route.•Synergistic effect between Ru and the support...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 141682
SubjectTerms Alkaline condition
Electrocatalysis
Exchange current density
Hydrogen fuel cells
Hydrogen oxidation reaction
Title Enhancing hydrogen oxidation by Modulating Ru species on Ni3N@Mo2C through a Support-Induced Strategy
URI https://dx.doi.org/10.1016/j.cplett.2024.141682
Volume 856
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1KPehF_MT6UfbgdW02ySabmyW0VKU5iIXeQjbZ2HpISmnBXvztzuQDFcSDxyS7IbzdzL6BN_MAbpXJlfCM5EpmEhMUo3mAiTOXQhuhc2WCnKqRp5E3mbmPcznvQNjWwpCsson9dUyvonVzZ9CgOVgtl1TjawXI_11SQXqYRVAFu-vTLr_7-JJ5kANd66ZGo9vyuUrjla4QHFJU2i6GDOEp-_fj6duRMz6Cw4YrsmH9OcfQMcUJ7IetRdspmFGxoH4ZxStb7LJ1iZuBle_L2iaJ6R2bllllz4UDnreMqioxMWb4LFo60f20tEPWGPWwhJHBJ5JxTm4eiAtrGtfuzmA2Hr2EE974JvAUE4QNz31MQ5DK2LlxfCQgRojU8ok4qTzIvAQZg2_JzAQ-Hve59DT-6JmbCZMkiUMt3s6hW5SFuQAWSJU6TuqkCaZVKrA0vlK7iSu1Rmpmix7wFq54VbfHiFvd2FtcwxsTvHENbw_8FtP4xzLHGMH_nHn575lXcEBXtQblGrqb9dbcIJPY6H61VfqwN3x4mkSfd2rHfw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na4NAEB3S5JBeSj9p-rmHXpf4tbreGiTBNNFDSSC3xdW1SQ8aQgLNv-9s1NJC6aFX1xF5rrPvwcw8gCeucm66ilHOMoYCRUnqo3CmzJTKlDlXfq67kaPYDefOy4ItWhA0vTC6rLLO_VVOP2Tr-kq_RrO_Xq10j6_hI_93dBWkiyriCDp6OhVrQ2cwnoTxV0LWJnSNoZoOaDroDmVe6Rrx0UWVloNZw3S59fsJ9e3UGZ3CSU0XyaB6ozNoqeIcukHj0nYBalgs9ciM4o0s99mmxP1Ayo9V5ZRE5J5EZXZw6MIbXndEN1aiNia4Fq_s-DkqrYDUXj0kIdrjE_k41YYeCA2pZ9fuL2E-Gs6CkNbWCTRFjbCluYdKBNmMlSvbQw6iTDM1PM2deO5nboKkwTNYpnwPT_ycuRL_9czJTJUkia2nvF1BuygLdQ3EZzy17dROE1RW3DckPlI6icOkRHZmmT2gDVxiXU3IEE3p2Luo4BUaXlHB2wOvwVT8-NICk_ifkTf_jnyEbjiLpmI6jie3cKxXqpKUO2hvNzt1j8RiKx_qjfMJZMzKMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+hydrogen+oxidation+by+Modulating+Ru+species+on+Ni3N%40Mo2C+through+a+Support-Induced+Strategy&rft.jtitle=Chemical+physics+letters&rft.au=Akeno+Nyaaba%2C+Albert&rft.au=Peng%2C+Yao&rft.au=Kang%2C+Ziliang&rft.au=Naz%2C+Hina&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=0009-2614&rft.volume=856&rft_id=info:doi/10.1016%2Fj.cplett.2024.141682&rft.externalDocID=S0009261424006249
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2614&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2614&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2614&client=summon