Dynamic and pattern formation of a diffusive predator–prey model with indirect prey-taxis and indirect predator-taxis

This paper is concerned with a diffusive predator–prey model with indirect prey-taxis and indirect predator-taxis, which describes the interaction between the predator and the prey. It means that the predator is attracted to the chemical excreted by prey, meanwhile, the prey is repelled to the chemi...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis: real world applications Vol. 84; p. 104299
Main Authors Wu, Sainan, Wang, Yiran, Geng, Dongxu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2025
Subjects
Online AccessGet full text
ISSN1468-1218
DOI10.1016/j.nonrwa.2024.104299

Cover

Loading…
Abstract This paper is concerned with a diffusive predator–prey model with indirect prey-taxis and indirect predator-taxis, which describes the interaction between the predator and the prey. It means that the predator is attracted to the chemical excreted by prey, meanwhile, the prey is repelled to the chemical excreted by predator. The linear stability of constant steady states to the system is obtained. We prove the existence of Hopf bifurcations by choosing the indirect predator-taxis coefficient as the bifurcation parameter and find that both the indirect prey-taxis and indirect predator-taxis promote the system to produce more complex spatiotemporal patterns. Through the bifurcation theory, the existence of steady state bifurcations is established. Moreover, we show the global stability of the semi-trivial steady state and positive constant steady state. Finally, we use numerical examples to check the theoretical results and gain the spatiotemporal patterns.
AbstractList This paper is concerned with a diffusive predator–prey model with indirect prey-taxis and indirect predator-taxis, which describes the interaction between the predator and the prey. It means that the predator is attracted to the chemical excreted by prey, meanwhile, the prey is repelled to the chemical excreted by predator. The linear stability of constant steady states to the system is obtained. We prove the existence of Hopf bifurcations by choosing the indirect predator-taxis coefficient as the bifurcation parameter and find that both the indirect prey-taxis and indirect predator-taxis promote the system to produce more complex spatiotemporal patterns. Through the bifurcation theory, the existence of steady state bifurcations is established. Moreover, we show the global stability of the semi-trivial steady state and positive constant steady state. Finally, we use numerical examples to check the theoretical results and gain the spatiotemporal patterns.
ArticleNumber 104299
Author Wang, Yiran
Wu, Sainan
Geng, Dongxu
Author_xml – sequence: 1
  givenname: Sainan
  orcidid: 0000-0002-8268-5925
  surname: Wu
  fullname: Wu, Sainan
  email: wusn@njupt.edu.cn
– sequence: 2
  givenname: Yiran
  surname: Wang
  fullname: Wang, Yiran
– sequence: 3
  givenname: Dongxu
  surname: Geng
  fullname: Geng, Dongxu
BookMark eNp9kD1OAzEQhV0EiSRwAwpfYIO9a2fXDRIKP0GKRAO15dhj4ShrR7ZJ2I47cENOwiZLQUU1ozfznma-CRr54AGhK0pmlND59WbWC_GgZiUpWS-xUogRGlM2bwpa0uYcTVLaEEJrWtExOtx1XrVOY-UN3qmcIXpsQ2xVdsHjYLHCxln7ntwe8C6CUTnE78-vvu1wGwxs8cHlN-y8cRF0Pu50RVYfLp0y_-on7zC7QGdWbRNc_tYpen24f1ksi9Xz49PidlXokvNcwNpaqFhVM1UJBrXWihuznltdM9s0Qghb8zURWjHOeaMYMQ1wKI1gpN-g1RSxIVfHkFIEK3fRtSp2khJ5BCY3cgAmj8DkAKy33Qw26G_bO4gyaQdew_CMNMH9H_ADu_V-mw
Cites_doi 10.1086/282272
10.3934/dcdsb.2023060
10.1142/S0218202518400158
10.1080/17513750802716112
10.1126/science.171.3969.385
10.1016/j.jde.2008.10.024
10.1086/284707
10.1007/s00285-010-0332-1
10.1002/mma.3079
10.3934/dcdsb.2021240
10.1016/j.jde.2019.10.019
10.1016/j.nonrwa.2007.06.017
10.1007/s00033-020-01461-y
10.1007/s00028-023-00931-w
10.1016/j.jde.2016.10.010
10.1016/j.jde.2023.02.063
10.1016/j.cnsns.2023.107647
10.1016/j.jmaa.2024.128948
10.1007/s10884-019-09778-7
10.3934/eect.2024015
10.1016/j.nonrwa.2009.05.005
10.1016/j.aml.2015.04.017
10.1142/S0218202516400108
10.1016/j.jde.2015.12.024
10.1142/S0218202522500014
10.1016/j.jmaa.2021.125820
10.3934/dcdsb.2015.20.3165
10.1016/j.jde.2008.09.009
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nonrwa.2024.104299
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_nonrwa_2024_104299
S1468121824002384
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABAOU
ABEFU
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADGUI
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J9A
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
XPP
YQT
ZMT
~G-
AATTM
AAYWO
AAYXX
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c255t-ebffe34374a394e7cca5ddb6fc74f88999f75b09ca45558a40d8e5e2d94074f13
IEDL.DBID .~1
ISSN 1468-1218
IngestDate Tue Jul 01 05:23:03 EDT 2025
Sat Mar 15 15:41:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords 92D25
35B35
Global stability
Indirect predator-taxis
Nonconstant steady state solution
Indirect prey-taxis
Periodic solution
Predator–prey model
Spatiotemporal pattern
35K55
35Q92
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-ebffe34374a394e7cca5ddb6fc74f88999f75b09ca45558a40d8e5e2d94074f13
ORCID 0000-0002-8268-5925
ParticipantIDs crossref_primary_10_1016_j_nonrwa_2024_104299
elsevier_sciencedirect_doi_10_1016_j_nonrwa_2024_104299
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2025
2025-08-00
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationTitle Nonlinear analysis: real world applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ladyzenskaja, Solonnikov, Ural’ceva (b33) 1967
Mishra, Wrzosek (b25) 2023; 361
Rosenzweig (b2) 1971; 171
Qi, Ke (b27) 2022; 27
Zhang, Zhang, Xin (b23) 2025; 543
Murray (b1) 2002; vol. 17
Wu, Ni (b15) 2020
Zheng, Liu, Zhang (b29) 2023; 28
Wu, Shi, Wu (b14) 2016; 260
Mishra, Wrzosek (b22) 2022; 32
Lee, Hillen, Lewis (b9) 2009; 3
Kareiva, Odell (b6) 1987; 130
Liu, Shi, Wang (b31) 2013; 18
Ahn, Yoon (b21) 2021; 72
Zhang, Zhang, Xin (b24) 2024; 13
Wu, Wang, Shi (b7) 2018; 28
Ainseba, Bendahmane, Noussair (b8) 2008; 9
Jin, Wang (b13) 2017; 262
Wang, Wu, Shi (b16) 2021; 26
Wan, Zheng, Shan (b28) 2023; 23
Shi, Wang (b32) 2009; 246
Wang, Wang, Zhang (b11) 2015; 38
Wu (b26) 2022; 507
Yi, Wei, Shi (b4) 2009; 246
Xiao, Zheng (b12) 2015; 49
Tao, Winkler (b30) 2015; 20
Wang, Wang (b18) 2020; 32
Geng, Wang, Jiang, Wang (b20) 2024; 128
Tello, Wrzosek (b17) 2016; 26
Wang, Shi, Wei (b5) 2011; 62
Ahn, Yoon (b19) 2020; 268
Rosenzweig, MacArthur (b3) 1963; 97
Tao (b10) 2010; 11
Wu (10.1016/j.nonrwa.2024.104299_b26) 2022; 507
Ahn (10.1016/j.nonrwa.2024.104299_b21) 2021; 72
Wang (10.1016/j.nonrwa.2024.104299_b18) 2020; 32
Wang (10.1016/j.nonrwa.2024.104299_b11) 2015; 38
Ahn (10.1016/j.nonrwa.2024.104299_b19) 2020; 268
Kareiva (10.1016/j.nonrwa.2024.104299_b6) 1987; 130
Yi (10.1016/j.nonrwa.2024.104299_b4) 2009; 246
Jin (10.1016/j.nonrwa.2024.104299_b13) 2017; 262
Wan (10.1016/j.nonrwa.2024.104299_b28) 2023; 23
Tello (10.1016/j.nonrwa.2024.104299_b17) 2016; 26
Zheng (10.1016/j.nonrwa.2024.104299_b29) 2023; 28
Wang (10.1016/j.nonrwa.2024.104299_b16) 2021; 26
Shi (10.1016/j.nonrwa.2024.104299_b32) 2009; 246
Liu (10.1016/j.nonrwa.2024.104299_b31) 2013; 18
Xiao (10.1016/j.nonrwa.2024.104299_b12) 2015; 49
Mishra (10.1016/j.nonrwa.2024.104299_b25) 2023; 361
Tao (10.1016/j.nonrwa.2024.104299_b30) 2015; 20
Wang (10.1016/j.nonrwa.2024.104299_b5) 2011; 62
Wu (10.1016/j.nonrwa.2024.104299_b7) 2018; 28
Rosenzweig (10.1016/j.nonrwa.2024.104299_b3) 1963; 97
Zhang (10.1016/j.nonrwa.2024.104299_b23) 2025; 543
Zhang (10.1016/j.nonrwa.2024.104299_b24) 2024; 13
Ainseba (10.1016/j.nonrwa.2024.104299_b8) 2008; 9
Wu (10.1016/j.nonrwa.2024.104299_b15) 2020
Qi (10.1016/j.nonrwa.2024.104299_b27) 2022; 27
Murray (10.1016/j.nonrwa.2024.104299_b1) 2002; vol. 17
Lee (10.1016/j.nonrwa.2024.104299_b9) 2009; 3
Mishra (10.1016/j.nonrwa.2024.104299_b22) 2022; 32
Rosenzweig (10.1016/j.nonrwa.2024.104299_b2) 1971; 171
Tao (10.1016/j.nonrwa.2024.104299_b10) 2010; 11
Wu (10.1016/j.nonrwa.2024.104299_b14) 2016; 260
Geng (10.1016/j.nonrwa.2024.104299_b20) 2024; 128
Ladyzenskaja (10.1016/j.nonrwa.2024.104299_b33) 1967
References_xml – volume: 62
  start-page: 291
  year: 2011
  end-page: 331
  ident: b5
  article-title: Predator-prey system with strong Allee effect in prey
  publication-title: J. Math. Biol.
– volume: 11
  start-page: 2056
  year: 2010
  end-page: 2064
  ident: b10
  article-title: Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis
  publication-title: Nonlinear Anal. Real World Appl.
– volume: 128
  start-page: 22
  year: 2024
  ident: b20
  article-title: Double-hopf bifurcation and pattern formation of a Gause-Kolmogorov-type system with indirect prey-taxis and direct predator-taxis
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 32
  start-page: 1291
  year: 2020
  end-page: 1310
  ident: b18
  article-title: The dynamic of a predator-prey model with diffusion and indirect prey-taxis
  publication-title: J. Dyn. Differ. Equ.
– volume: 26
  start-page: 2129
  year: 2016
  end-page: 2162
  ident: b17
  article-title: Predator-prey model with diffusion and indirect prey-taxis
  publication-title: Math. Models Methods Appl. Sci.
– volume: 171
  start-page: 385
  year: 1971
  end-page: 387
  ident: b2
  article-title: Paradox of enrichment: destabilization of exploitation ecosystems in ecological time
  publication-title: Science
– volume: 26
  start-page: 1273
  year: 2021
  end-page: 1289
  ident: b16
  article-title: Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 49
  start-page: 73
  year: 2015
  end-page: 77
  ident: b12
  article-title: Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis
  publication-title: Appl. Math. Lett.
– volume: 3
  start-page: 551
  year: 2009
  end-page: 573
  ident: b9
  article-title: Pattern formation in prey-taxis systems
  publication-title: J. Biol. Dyn.
– volume: 72
  year: 2021
  ident: b21
  article-title: Global solvability of prey-predator models with indirect predator-taxis
  publication-title: Z. Angew. Math. Phys.
– volume: 32
  start-page: 1
  year: 2022
  end-page: 42
  ident: b22
  article-title: Repulsive chemotaxis and predator evasion in predator-prey models with diffusion and prey-taxis
  publication-title: Math. Models Methods Appl. Sci.
– volume: 262
  start-page: 1257
  year: 2017
  end-page: 1290
  ident: b13
  article-title: Global stability of prey-taxis systems
  publication-title: J. Differential Equations
– volume: 246
  start-page: 2788
  year: 2009
  end-page: 2812
  ident: b32
  article-title: On global bifurcation for quasilinear elliptic systems on bounded domains
  publication-title: J. Differential Equations
– start-page: 736
  year: 1967
  ident: b33
  article-title: Linear and quasi-linear equations of parabolic type
– volume: 97
  start-page: 209
  year: 1963
  end-page: 223
  ident: b3
  article-title: Graphical representation and stability conditions of predator-prey interactions
  publication-title: Amer. Nat.
– volume: 507
  start-page: 21
  year: 2022
  ident: b26
  article-title: Global boundedness of a diffusive prey-predator model with indirect prey-taxis and predator-taxis
  publication-title: J. Math. Anal. Appl.
– volume: 268
  start-page: 4222
  year: 2020
  end-page: 4255
  ident: b19
  article-title: Global well-posedness and stability analysis of prey-predator model with indirect prey-taxis
  publication-title: J. Differential Equations
– volume: 23
  start-page: 39
  year: 2023
  ident: b28
  article-title: On a quasilinear fully parabolic predator-prey model with indirect pursuit-evasion interaction
  publication-title: J. Evol. Equ.
– volume: 20
  start-page: 3165
  year: 2015
  end-page: 3183
  ident: b30
  article-title: Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 543
  start-page: 28
  year: 2025
  ident: b23
  article-title: Dynamic behavior in a pursuit-evasion system with signaling mechanism
  publication-title: J. Math. Anal. Appl.
– volume: 9
  start-page: 2086
  year: 2008
  end-page: 2105
  ident: b8
  article-title: A reaction-diffusion system modeling predator-prey with prey-taxis
  publication-title: Nonlinear Anal. Real World Appl.
– volume: 361
  start-page: 391
  year: 2023
  end-page: 416
  ident: b25
  article-title: Pursuit-evasion dynamics for bazykin-type predator-prey model with indirect predator taxis
  publication-title: J. Differential Equations
– volume: 130
  start-page: 233
  year: 1987
  end-page: 270
  ident: b6
  article-title: Swarms of predators exhibit “preytaxis” if individual predators use area-restricted search
  publication-title: Amer. Nat.
– volume: vol. 17
  start-page: xxiv+551
  year: 2002
  ident: b1
  publication-title: Mathematical Biology. I
– year: 2020
  ident: b15
  article-title: Boundedness and global stability of a diffusive prey-predator model with prey-taxis
  publication-title: Appl. Anal.
– volume: 260
  start-page: 5847
  year: 2016
  end-page: 5874
  ident: b14
  article-title: Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis
  publication-title: J. Differential Equations
– volume: 27
  start-page: 4531
  year: 2022
  end-page: 4549
  ident: b27
  article-title: Large time behavior in a predator-prey system with pursuit-evasion interaction
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 38
  start-page: 431
  year: 2015
  end-page: 443
  ident: b11
  article-title: Global bifurcation of solutions for a predator-prey model with prey-taxis
  publication-title: Math. Methods Appl. Sci.
– volume: 13
  start-page: 1015
  year: 2024
  end-page: 1037
  ident: b24
  article-title: Global dynamics of bazykin-type cross-diffusive model with indirect predator-taxis
  publication-title: Evol. Equ. Control Theory
– volume: 28
  start-page: 2275
  year: 2018
  end-page: 2312
  ident: b7
  article-title: Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis
  publication-title: Math. Models Methods Appl. Sci.
– volume: 246
  start-page: 1944
  year: 2009
  end-page: 1977
  ident: b4
  article-title: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system
  publication-title: J. Differential Equations
– volume: 28
  start-page: 5437
  year: 2023
  end-page: 5446
  ident: b29
  article-title: Existence and boundedness of solutions for a parabolic-elliptic predator-prey chemotaxis system
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 18
  start-page: 2597
  year: 2013
  end-page: 2625
  ident: b31
  article-title: Pattern formation of the attraction-repulsion Keller-Segel system
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 97
  start-page: 209
  year: 1963
  ident: 10.1016/j.nonrwa.2024.104299_b3
  article-title: Graphical representation and stability conditions of predator-prey interactions
  publication-title: Amer. Nat.
  doi: 10.1086/282272
– volume: 28
  start-page: 5437
  issue: 11
  year: 2023
  ident: 10.1016/j.nonrwa.2024.104299_b29
  article-title: Existence and boundedness of solutions for a parabolic-elliptic predator-prey chemotaxis system
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
  doi: 10.3934/dcdsb.2023060
– volume: 28
  start-page: 2275
  issue: 11
  year: 2018
  ident: 10.1016/j.nonrwa.2024.104299_b7
  article-title: Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202518400158
– volume: 3
  start-page: 551
  issue: 6
  year: 2009
  ident: 10.1016/j.nonrwa.2024.104299_b9
  article-title: Pattern formation in prey-taxis systems
  publication-title: J. Biol. Dyn.
  doi: 10.1080/17513750802716112
– volume: 171
  start-page: 385
  issue: 3969
  year: 1971
  ident: 10.1016/j.nonrwa.2024.104299_b2
  article-title: Paradox of enrichment: destabilization of exploitation ecosystems in ecological time
  publication-title: Science
  doi: 10.1126/science.171.3969.385
– volume: 246
  start-page: 1944
  issue: 5
  year: 2009
  ident: 10.1016/j.nonrwa.2024.104299_b4
  article-title: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2008.10.024
– volume: 130
  start-page: 233
  issue: 2
  year: 1987
  ident: 10.1016/j.nonrwa.2024.104299_b6
  article-title: Swarms of predators exhibit “preytaxis” if individual predators use area-restricted search
  publication-title: Amer. Nat.
  doi: 10.1086/284707
– volume: 62
  start-page: 291
  issue: 3
  year: 2011
  ident: 10.1016/j.nonrwa.2024.104299_b5
  article-title: Predator-prey system with strong Allee effect in prey
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-010-0332-1
– volume: 38
  start-page: 431
  year: 2015
  ident: 10.1016/j.nonrwa.2024.104299_b11
  article-title: Global bifurcation of solutions for a predator-prey model with prey-taxis
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.3079
– volume: 27
  start-page: 4531
  issue: 8
  year: 2022
  ident: 10.1016/j.nonrwa.2024.104299_b27
  article-title: Large time behavior in a predator-prey system with pursuit-evasion interaction
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
  doi: 10.3934/dcdsb.2021240
– volume: 268
  start-page: 4222
  issue: 8
  year: 2020
  ident: 10.1016/j.nonrwa.2024.104299_b19
  article-title: Global well-posedness and stability analysis of prey-predator model with indirect prey-taxis
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2019.10.019
– volume: 9
  start-page: 2086
  issue: 5
  year: 2008
  ident: 10.1016/j.nonrwa.2024.104299_b8
  article-title: A reaction-diffusion system modeling predator-prey with prey-taxis
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2007.06.017
– year: 2020
  ident: 10.1016/j.nonrwa.2024.104299_b15
  article-title: Boundedness and global stability of a diffusive prey-predator model with prey-taxis
  publication-title: Appl. Anal.
– volume: 18
  start-page: 2597
  issue: 10
  year: 2013
  ident: 10.1016/j.nonrwa.2024.104299_b31
  article-title: Pattern formation of the attraction-repulsion Keller-Segel system
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 72
  issue: 1
  year: 2021
  ident: 10.1016/j.nonrwa.2024.104299_b21
  article-title: Global solvability of prey-predator models with indirect predator-taxis
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s00033-020-01461-y
– volume: 23
  start-page: 39
  issue: 4
  year: 2023
  ident: 10.1016/j.nonrwa.2024.104299_b28
  article-title: On a quasilinear fully parabolic predator-prey model with indirect pursuit-evasion interaction
  publication-title: J. Evol. Equ.
  doi: 10.1007/s00028-023-00931-w
– volume: 262
  start-page: 1257
  issue: 3
  year: 2017
  ident: 10.1016/j.nonrwa.2024.104299_b13
  article-title: Global stability of prey-taxis systems
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2016.10.010
– volume: 361
  start-page: 391
  year: 2023
  ident: 10.1016/j.nonrwa.2024.104299_b25
  article-title: Pursuit-evasion dynamics for bazykin-type predator-prey model with indirect predator taxis
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2023.02.063
– volume: 128
  start-page: 22
  year: 2024
  ident: 10.1016/j.nonrwa.2024.104299_b20
  article-title: Double-hopf bifurcation and pattern formation of a Gause-Kolmogorov-type system with indirect prey-taxis and direct predator-taxis
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2023.107647
– volume: 543
  start-page: 28
  issue: 2
  year: 2025
  ident: 10.1016/j.nonrwa.2024.104299_b23
  article-title: Dynamic behavior in a pursuit-evasion system with signaling mechanism
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2024.128948
– volume: 32
  start-page: 1291
  year: 2020
  ident: 10.1016/j.nonrwa.2024.104299_b18
  article-title: The dynamic of a predator-prey model with diffusion and indirect prey-taxis
  publication-title: J. Dyn. Differ. Equ.
  doi: 10.1007/s10884-019-09778-7
– volume: 13
  start-page: 1015
  issue: 4
  year: 2024
  ident: 10.1016/j.nonrwa.2024.104299_b24
  article-title: Global dynamics of bazykin-type cross-diffusive model with indirect predator-taxis
  publication-title: Evol. Equ. Control Theory
  doi: 10.3934/eect.2024015
– volume: 26
  start-page: 1273
  issue: 3
  year: 2021
  ident: 10.1016/j.nonrwa.2024.104299_b16
  article-title: Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 11
  start-page: 2056
  issue: 3
  year: 2010
  ident: 10.1016/j.nonrwa.2024.104299_b10
  article-title: Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2009.05.005
– volume: 49
  start-page: 73
  year: 2015
  ident: 10.1016/j.nonrwa.2024.104299_b12
  article-title: Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2015.04.017
– volume: 26
  start-page: 2129
  issue: 11
  year: 2016
  ident: 10.1016/j.nonrwa.2024.104299_b17
  article-title: Predator-prey model with diffusion and indirect prey-taxis
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202516400108
– volume: vol. 17
  start-page: xxiv+551
  year: 2002
  ident: 10.1016/j.nonrwa.2024.104299_b1
– start-page: 736
  year: 1967
  ident: 10.1016/j.nonrwa.2024.104299_b33
– volume: 260
  start-page: 5847
  issue: 7
  year: 2016
  ident: 10.1016/j.nonrwa.2024.104299_b14
  article-title: Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2015.12.024
– volume: 32
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.nonrwa.2024.104299_b22
  article-title: Repulsive chemotaxis and predator evasion in predator-prey models with diffusion and prey-taxis
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202522500014
– volume: 507
  start-page: 21
  issue: 2
  year: 2022
  ident: 10.1016/j.nonrwa.2024.104299_b26
  article-title: Global boundedness of a diffusive prey-predator model with indirect prey-taxis and predator-taxis
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2021.125820
– volume: 20
  start-page: 3165
  issue: 9
  year: 2015
  ident: 10.1016/j.nonrwa.2024.104299_b30
  article-title: Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
  doi: 10.3934/dcdsb.2015.20.3165
– volume: 246
  start-page: 2788
  issue: 7
  year: 2009
  ident: 10.1016/j.nonrwa.2024.104299_b32
  article-title: On global bifurcation for quasilinear elliptic systems on bounded domains
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2008.09.009
SSID ssj0017131
Score 2.4228547
Snippet This paper is concerned with a diffusive predator–prey model with indirect prey-taxis and indirect predator-taxis, which describes the interaction between the...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 104299
SubjectTerms Global stability
Indirect predator-taxis
Indirect prey-taxis
Nonconstant steady state solution
Periodic solution
Predator–prey model
Spatiotemporal pattern
Title Dynamic and pattern formation of a diffusive predator–prey model with indirect prey-taxis and indirect predator-taxis
URI https://dx.doi.org/10.1016/j.nonrwa.2024.104299
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLUqWGBAPEV5VB5YQ5PYjuOxKlTl0QoBlbpFTmxLZShRHypdEP_AH_Il-DpJVSTEwBTLsaPo2Lr2se89F6GLyASKMcM8X8PRDdPGi6WRtkQikREZMQEBzr1-1B3Q2yEb1lC7ioUBt8rS9hc23VnrsqZZotnMR6PmEwQNBSBATt3CA5qglHKY5ZfvKzePwJKwoIowgtZV-Jzz8bIMe7IA9aGQwmVn6BRgf1me1paczi7aKfeKuFX8zh6q6fE-2u6thFanB2hxVWSUx3KscO60Msd4FZCIXw2WGHKgzMFLHecTrYBkf3182uISuzQ4GI5iMVxdAxDQZunN5Nto6r65Xu_6Fu8O0aBz_dzuemUuBS-zpGHm6dQYTSjhVBJBNbcDx5RykT7UxJZ0CcNZ6otMUlAAk9RXsWY6VMIyPmoCcoQ2LFr6GGHfV5ajCa4yI6mIeBrFipDQtk251jKqI6-CMMkLyYyk8iV7SQrIE4A8KSCvI17hnPwY-sRa9T97nvy75ynaCiGRr_PkO0Mbs8lcn9vdxSxtuOnTQJut9uP9Azxv7rr9bxNo1Sg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcEKsoqw9co2axk_pYFaqULhdaqbfIqW2pHErVRaU3_oE_5EvwOElVJMSBm-V4oug5GvvZM28AHkLtScY0c1yFRzdMaacutDCtIOTjQISMY4Jzrx_GQ_o8YqMSNItcGAyrzH1_5tOtt857ajmatdlkUnvBpCEPBcipXXjoHlRQnYqVodJod-L-9jLB8DCvSDJCgyKDzoZ5GZI9X6MAkU_xvtO3IrC_rFA7q07rGI7y7SJpZF90AiU1PYXD3lZrdXEG68esqDwRU0lmVi5zSrY5ieRNE0GwDMoKA9XJbK4k8uyvj0_T3BBbCYfgaSzB22vEAsdsnKV4nyzsO3f7rW327ByGradBM3bycgrO2PCGpaNSrVVAg4iKgFMVmbljUtpkH6rrhndxHbHU5WNBUQRMUFfWFVO-5Ib0Ue0FF1A2aKlLIK4rDU3jkRxrQXkYpWFdBoFvxqaRUiKsglNAmMwy1YykCCd7TTLIE4Q8ySCvQlTgnPyY_cQ49j8tr_5teQ_78aDXTbrtfucaDnys62sD-26gvJyv1K3ZbCzTu_xn-ga1ZNZE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+and+pattern+formation+of+a+diffusive+predator%E2%80%93prey+model+with+indirect+prey-taxis+and+indirect+predator-taxis&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Wu%2C+Sainan&rft.au=Wang%2C+Yiran&rft.au=Geng%2C+Dongxu&rft.date=2025-08-01&rft.issn=1468-1218&rft.volume=84&rft.spage=104299&rft_id=info:doi/10.1016%2Fj.nonrwa.2024.104299&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nonrwa_2024_104299
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon