Towards accurate machine learning predictions of properties of the P–O bond cleaving in ATP upon enzymatic hydrolysis
[Display omitted] Molecular dynamic simulations using QM/MM potentials are performed for the enzyme–substrate complex of adenosine triphosphate (ATP) with the motor protein myosin. Machine learning methods are applied to a dataset consisting of the geometry parameters of the active site in the enzym...
Saved in:
Published in | Mendeleev communications Vol. 34; no. 6; pp. 776 - 779 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0959-9436 |
DOI | 10.1016/j.mencom.2024.10.003 |
Cover
Loading…
Abstract | [Display omitted]
Molecular dynamic simulations using QM/MM potentials are performed for the enzyme–substrate complex of adenosine triphosphate (ATP) with the motor protein myosin. Machine learning methods are applied to a dataset consisting of the geometry parameters of the active site in the enzyme–substrate complex to predict the Laplacian of electron density at the bond critical point of the PG–O3B bond being broken in ATP. Using a gradient boosting machine learning model, a mean absolute error of 0.01 a.u. and an R2 score of 0.99 are achieved, and it is found that the PG–O3B bond length is the most important feature, contributing 2/3, while other geometry features contribute 1/3. |
---|---|
AbstractList | [Display omitted]
Molecular dynamic simulations using QM/MM potentials are performed for the enzyme–substrate complex of adenosine triphosphate (ATP) with the motor protein myosin. Machine learning methods are applied to a dataset consisting of the geometry parameters of the active site in the enzyme–substrate complex to predict the Laplacian of electron density at the bond critical point of the PG–O3B bond being broken in ATP. Using a gradient boosting machine learning model, a mean absolute error of 0.01 a.u. and an R2 score of 0.99 are achieved, and it is found that the PG–O3B bond length is the most important feature, contributing 2/3, while other geometry features contribute 1/3. |
Author | Polyakov, Igor V. Marchenko, Ekaterina I. Miroshnichenko, Kirill D. Moskovsky, Alexander A. Mulashkina, Tatiana I. Khrenova, Maria G. |
Author_xml | – sequence: 1 givenname: Igor V. surname: Polyakov fullname: Polyakov, Igor V. organization: Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation – sequence: 2 givenname: Kirill D. surname: Miroshnichenko fullname: Miroshnichenko, Kirill D. organization: Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation – sequence: 3 givenname: Tatiana I. surname: Mulashkina fullname: Mulashkina, Tatiana I. organization: Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation – sequence: 4 givenname: Alexander A. surname: Moskovsky fullname: Moskovsky, Alexander A. organization: Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation – sequence: 5 givenname: Ekaterina I. surname: Marchenko fullname: Marchenko, Ekaterina I. organization: Department of Materials Science, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation – sequence: 6 givenname: Maria G. surname: Khrenova fullname: Khrenova, Maria G. email: khrenovamg@my.msu.ru organization: Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation |
BookMark | eNp9kE1OwzAQhb0oEm3hBix8gQQnjpN4g1RV_EmV2kVZW44zoa4aO7LTVmHFHbghJ8GhrFmN3tO8p5lvhibGGkDoLiFxQpL8fh-3YJRt45SkWbBiQugETQlnPOIZza_RzPs9IaRgNJmi89aepas9lkodnewBt1LttAF8AOmMNu-4c1Br1WtrPLZNkLYD12v4Vf0O8Ob782uNK2tqrELqNIa0wYvtBh87azCYj6GVvVZ4N9TOHgav_Q26auTBw-3fnKO3p8ft8iVarZ9fl4tVpFLG-gjyvKqpAkpBVZwTaIqqSnmlqoYVNGU5JyUksmYFZ2l4MSGUF1SWaVmWVKmMzlF26VXOeu-gEZ3TrXSDSIgYgYm9uAATI7DRDcBC7OESg3DbSYMTXumwFkg4UL2orf6_4AdtaH0R |
Cites_doi | 10.1016/j.mencom.2023.04.002 10.3103/S0027131424700093 10.1038/nmeth.4638 10.1063/1.478522 10.1016/0263-7855(96)00018-5 10.1021/acs.jpcb.4c01601 10.1038/s42256-019-0138-9 10.1016/j.mencom.2024.01.001 10.1002/jcc.22885 10.1063/1.3382344 10.1242/jcs.094300 10.1080/00268978800100823 10.1063/1.445869 10.1006/jmbi.1998.2401 10.1021/acscatal.1c00582 10.1063/5.0014475 10.1021/ct300400x 10.1021/bi952633+ 10.1063/1.463940 10.1016/j.mencom.2023.01.012 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mencom.2024.10.003 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EndPage | 779 |
ExternalDocumentID | 10_1016_j_mencom_2024_10_003 S0959943624003018 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXKI AAXUO ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN GBLVA HMS HVGLF HZ~ IHE J1W KOM M2Y M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- R56 RIG ROL RPZ SCB SDF SDG SES SLH SOC SPC SPCBC SSK SSZ T5K ~G- AAYWO AAYXX ABWVN ADNMO AEIPS AGCQF AGQPQ ANKPU APXCP CITATION |
ID | FETCH-LOGICAL-c255t-e66bd3ce33ecb990ef7bb29bcbf573256908e1ad57952959103973a828883cc43 |
IEDL.DBID | .~1 |
ISSN | 0959-9436 |
IngestDate | Thu Jul 03 08:19:28 EDT 2025 Wed Dec 04 16:49:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | myosin Laplacian of electron density QM/MM molecular dynamics ATP hydrolysis machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-e66bd3ce33ecb990ef7bb29bcbf573256908e1ad57952959103973a828883cc43 |
PageCount | 4 |
ParticipantIDs | crossref_primary_10_1016_j_mencom_2024_10_003 elsevier_sciencedirect_doi_10_1016_j_mencom_2024_10_003 |
PublicationCentury | 2000 |
PublicationDate | November-December 2024 2024-11-00 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November-December 2024 |
PublicationDecade | 2020 |
PublicationTitle | Mendeleev communications |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – sequence: 0 name: Elsevier B.V |
References | eds. U. von Luxburg, I. Guyon, S. Bengio, H. Wallach, R. Fergus, S. V. N. Vishwanathan and R. Garnett, Curran Associates, Red Hook, NY, pp. 3147–3155 Joseph (b0130) 2021; v1 Hartman, Spudich (b0005) 2012; 125 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b0120) 2011; 12 Khrenova, Mulashkina, Kulakova, Polyakov, Nemukhin (b0100) 2024; 79 Sweeney, Holzbaur (b0015) 2018; 10 Melo, Bernardi, Rudack, Scheurer, Riplinger, Phillips, Maia, Rocha, Ribeiro, Stone, Neese, Schulten, Luthey-Schulten (b0095) 2018; 15 Seritan, Bannwarth, Fales, Hohenstein, Isborn, Kokkila-Schumacher, Li, Liu, Luehr, Snyder, Song, Titov, Ufimtsev, Wang, Martínez (b0090) 2021; 11 Chakraborti, Tardiff, Schwartz (b0025) 2024; 128 Rumyantcev, Zhigulin, Zabrodina, Katkova, Ketkov, Fukin (b0040) 2023; 33 Grimme, Antony, Ehrlich, Krieg (b0085) 2010; 132 Smith, Rayment (b0050) 1996; 35 Martyna, Klein, Tuckerman (b0105) 1992; 97 Gribanova, Minyaev, Minkin (b0045) 2023; 33 Khrenova, Grigorenko, Nemukhin (b0030) 2021; 11 Lundberg, Erion, Chen, DeGrave, Prutkin, Nair, Katz, Himmelfarb, Bansal, Lee (b0140) 2020; 2 Jorgensen, Chandrasekhar, Madura, Impey, Klein (b0070) 1983; 79 Lu, Chen (b0115) 2012; 33 Adamo, Barone (b0080) 1999; 110 Best, Zhu, Shim, Lopes, Mittal, Feig, MacKerell (b0065) 2012; 8 Bader (b0035) 1994 . Kolomeisky (b0010) 2013; 25 Singer, Smith (b0110) 1988; 64 Khrenova, Mulashkina, Stepanyuk, Nemukhin (b0020) 2024; 34 Humphrey, Dalke, Schulten (b0075) 1996; 14 G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye and T.-Y. Liu, in Polyakov (b0135) 2024; v1 Word, Lovell, Richardson, Richardson (b0055) 1999; 285 Phillips, Hardy, Maia, Stone, Ribeiro, Bernardi, Buch, Fiorin, Hénin, Jiang, McGreevy, Melo, Radak, Skeel, Singharoy, Wang, Roux, Aksimentiev, Luthey-Schulten, Kalé, Schulten, Chipot, Tajkhorshid (b0060) 2020; 153 Rumyantcev (10.1016/j.mencom.2024.10.003_b0040) 2023; 33 Khrenova (10.1016/j.mencom.2024.10.003_b0030) 2021; 11 Polyakov (10.1016/j.mencom.2024.10.003_b0135) 2024; v1 Humphrey (10.1016/j.mencom.2024.10.003_b0075) 1996; 14 Martyna (10.1016/j.mencom.2024.10.003_b0105) 1992; 97 Bader (10.1016/j.mencom.2024.10.003_b0035) 1994 Smith (10.1016/j.mencom.2024.10.003_b0050) 1996; 35 Jorgensen (10.1016/j.mencom.2024.10.003_b0070) 1983; 79 Pedregosa (10.1016/j.mencom.2024.10.003_b0120) 2011; 12 Best (10.1016/j.mencom.2024.10.003_b0065) 2012; 8 Hartman (10.1016/j.mencom.2024.10.003_b0005) 2012; 125 Khrenova (10.1016/j.mencom.2024.10.003_b0100) 2024; 79 Gribanova (10.1016/j.mencom.2024.10.003_b0045) 2023; 33 Adamo (10.1016/j.mencom.2024.10.003_b0080) 1999; 110 Seritan (10.1016/j.mencom.2024.10.003_b0090) 2021; 11 Word (10.1016/j.mencom.2024.10.003_b0055) 1999; 285 Kolomeisky (10.1016/j.mencom.2024.10.003_b0010) 2013; 25 Khrenova (10.1016/j.mencom.2024.10.003_b0020) 2024; 34 Melo (10.1016/j.mencom.2024.10.003_b0095) 2018; 15 Sweeney (10.1016/j.mencom.2024.10.003_b0015) 2018; 10 Lu (10.1016/j.mencom.2024.10.003_b0115) 2012; 33 Lundberg (10.1016/j.mencom.2024.10.003_b0140) 2020; 2 Grimme (10.1016/j.mencom.2024.10.003_b0085) 2010; 132 Singer (10.1016/j.mencom.2024.10.003_b0110) 1988; 64 10.1016/j.mencom.2024.10.003_b0125 Joseph (10.1016/j.mencom.2024.10.003_b0130) 2021; v1 Chakraborti (10.1016/j.mencom.2024.10.003_b0025) 2024; 128 Phillips (10.1016/j.mencom.2024.10.003_b0060) 2020; 153 |
References_xml | – volume: 79 start-page: 926 year: 1983 ident: b0070 publication-title: J. Chem. Phys. – volume: 25 year: 2013 ident: b0010 publication-title: J. Phys.: Condens. Matter – reference: , eds. U. von Luxburg, I. Guyon, S. Bengio, H. Wallach, R. Fergus, S. V. N. Vishwanathan and R. Garnett, Curran Associates, Red Hook, NY, pp. 3147–3155; – volume: 10 year: 2018 ident: b0015 publication-title: Cold Spring Harbor Perspect. Biol. – volume: 2 start-page: 56 year: 2020 ident: b0140 publication-title: Nat. Mach. Intell. – year: 1994 ident: b0035 article-title: Atoms in Molecules: A Quantum Theory – volume: 15 start-page: 351 year: 2018 ident: b0095 publication-title: Nat. Methods – volume: 14 start-page: 33 year: 1996 ident: b0075 publication-title: J. Mol. Graphics – volume: v1 year: 2024 ident: b0135 article-title: Machine learning predictions of Laplacian value of bond-critical point in enzymatic phosphate hydrolysis publication-title: Zenodo – volume: 11 start-page: e1494 year: 2021 ident: b0090 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 110 start-page: 6158 year: 1999 ident: b0080 publication-title: J. Chem. Phys. – volume: v1 year: 2021 ident: b0130 article-title: PyTorch Tabular: a framework for deep learning with tabular data publication-title: arXiv – volume: 128 start-page: 4716 year: 2024 ident: b0025 publication-title: J. Phys. Chem. B – volume: 79 start-page: 86 year: 2024 ident: b0100 publication-title: Moscow Univ. Chem. Bull. – volume: 35 start-page: 5404 year: 1996 ident: b0050 publication-title: Biochemistry – volume: 132 year: 2010 ident: b0085 publication-title: J. Chem. Phys. – volume: 125 start-page: 1627 year: 2012 ident: b0005 publication-title: J. Cell Sci. – volume: 64 start-page: 1215 year: 1988 ident: b0110 publication-title: Mol. Phys. – volume: 153 year: 2020 ident: b0060 publication-title: J. Chem. Phys. – volume: 11 start-page: 8985 year: 2021 ident: b0030 publication-title: ACS Catal. – volume: 97 start-page: 2635 year: 1992 ident: b0105 publication-title: J. Chem. Phys. – volume: 33 start-page: 580 year: 2012 ident: b0115 publication-title: J. Comput. Chem. – volume: 33 start-page: 302 year: 2023 ident: b0045 publication-title: Mendeleev Commun. – reference: . – volume: 285 start-page: 1735 year: 1999 ident: b0055 publication-title: J. Mol. Biol. – volume: 8 start-page: 3257 year: 2012 ident: b0065 publication-title: J. Chem. Theory Comput. – volume: 12 start-page: 2825 year: 2011 ident: b0120 publication-title: J. Mach. Learn. Res. – reference: G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye and T.-Y. Liu, in – volume: 33 start-page: 41 year: 2023 ident: b0040 publication-title: Mendeleev Commun. – volume: 34 start-page: 1 year: 2024 ident: b0020 publication-title: Mendeleev Commun. – volume: 33 start-page: 302 year: 2023 ident: 10.1016/j.mencom.2024.10.003_b0045 publication-title: Mendeleev Commun. doi: 10.1016/j.mencom.2023.04.002 – volume: 79 start-page: 86 year: 2024 ident: 10.1016/j.mencom.2024.10.003_b0100 publication-title: Moscow Univ. Chem. Bull. doi: 10.3103/S0027131424700093 – volume: v1 year: 2024 ident: 10.1016/j.mencom.2024.10.003_b0135 article-title: Machine learning predictions of Laplacian value of bond-critical point in enzymatic phosphate hydrolysis publication-title: Zenodo – volume: 15 start-page: 351 year: 2018 ident: 10.1016/j.mencom.2024.10.003_b0095 publication-title: Nat. Methods doi: 10.1038/nmeth.4638 – volume: 110 start-page: 6158 year: 1999 ident: 10.1016/j.mencom.2024.10.003_b0080 publication-title: J. Chem. Phys. doi: 10.1063/1.478522 – volume: 10 year: 2018 ident: 10.1016/j.mencom.2024.10.003_b0015 publication-title: Cold Spring Harbor Perspect. Biol. – year: 1994 ident: 10.1016/j.mencom.2024.10.003_b0035 – volume: 14 start-page: 33 year: 1996 ident: 10.1016/j.mencom.2024.10.003_b0075 publication-title: J. Mol. Graphics doi: 10.1016/0263-7855(96)00018-5 – volume: 25 year: 2013 ident: 10.1016/j.mencom.2024.10.003_b0010 publication-title: J. Phys.: Condens. Matter – volume: 128 start-page: 4716 year: 2024 ident: 10.1016/j.mencom.2024.10.003_b0025 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.4c01601 – volume: 2 start-page: 56 year: 2020 ident: 10.1016/j.mencom.2024.10.003_b0140 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0138-9 – volume: 34 start-page: 1 year: 2024 ident: 10.1016/j.mencom.2024.10.003_b0020 publication-title: Mendeleev Commun. doi: 10.1016/j.mencom.2024.01.001 – volume: 11 start-page: e1494 year: 2021 ident: 10.1016/j.mencom.2024.10.003_b0090 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 33 start-page: 580 year: 2012 ident: 10.1016/j.mencom.2024.10.003_b0115 publication-title: J. Comput. Chem. doi: 10.1002/jcc.22885 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.mencom.2024.10.003_b0120 publication-title: J. Mach. Learn. Res. – volume: 132 year: 2010 ident: 10.1016/j.mencom.2024.10.003_b0085 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 125 start-page: 1627 year: 2012 ident: 10.1016/j.mencom.2024.10.003_b0005 publication-title: J. Cell Sci. doi: 10.1242/jcs.094300 – volume: 64 start-page: 1215 year: 1988 ident: 10.1016/j.mencom.2024.10.003_b0110 publication-title: Mol. Phys. doi: 10.1080/00268978800100823 – volume: 79 start-page: 926 year: 1983 ident: 10.1016/j.mencom.2024.10.003_b0070 publication-title: J. Chem. Phys. doi: 10.1063/1.445869 – volume: 285 start-page: 1735 year: 1999 ident: 10.1016/j.mencom.2024.10.003_b0055 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1998.2401 – volume: 11 start-page: 8985 year: 2021 ident: 10.1016/j.mencom.2024.10.003_b0030 publication-title: ACS Catal. doi: 10.1021/acscatal.1c00582 – volume: 153 year: 2020 ident: 10.1016/j.mencom.2024.10.003_b0060 publication-title: J. Chem. Phys. doi: 10.1063/5.0014475 – volume: 8 start-page: 3257 year: 2012 ident: 10.1016/j.mencom.2024.10.003_b0065 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300400x – volume: 35 start-page: 5404 year: 1996 ident: 10.1016/j.mencom.2024.10.003_b0050 publication-title: Biochemistry doi: 10.1021/bi952633+ – volume: 97 start-page: 2635 year: 1992 ident: 10.1016/j.mencom.2024.10.003_b0105 publication-title: J. Chem. Phys. doi: 10.1063/1.463940 – ident: 10.1016/j.mencom.2024.10.003_b0125 – volume: 33 start-page: 41 year: 2023 ident: 10.1016/j.mencom.2024.10.003_b0040 publication-title: Mendeleev Commun. doi: 10.1016/j.mencom.2023.01.012 – volume: v1 year: 2021 ident: 10.1016/j.mencom.2024.10.003_b0130 article-title: PyTorch Tabular: a framework for deep learning with tabular data publication-title: arXiv |
SSID | ssj0007531 |
Score | 2.3405843 |
Snippet | [Display omitted]
Molecular dynamic simulations using QM/MM potentials are performed for the enzyme–substrate complex of adenosine triphosphate (ATP) with the... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 776 |
SubjectTerms | ATP hydrolysis Laplacian of electron density machine learning myosin QM/MM molecular dynamics |
Title | Towards accurate machine learning predictions of properties of the P–O bond cleaving in ATP upon enzymatic hydrolysis |
URI | https://dx.doi.org/10.1016/j.mencom.2024.10.003 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KL3oRn1hf7MHr9rWbZHMsxVIEtWALvYXsI1qhSegDqQfxP_gP_SXObBJUEA8ed8mSMBnmsfPNN4Rcep4Bx9z1mbAyZkIYCXZQW8bbMuHaxp7vKqY3t_5wIq6n3rRG-lUvDMIqS9tf2HRnrcudVinNVj6bte7xBisUYICFi-ux4RfZ60Cnm69fMA8IxzsF317I8Omqfc5hvOZIFon96F3RdBgv_rt7-uZyBrtkp4wVaa_4nD1Ss-k-2epXI9oOyPPYgV6XNNZ6jZwPdO6wkZaWwyAeaL7ASoxTLpolsMxyRFJbt4Lgj44-3t7vqMpSQ-ElMd4v0FlKe-MRXedZSm36snG0rvRxYxaZYzA5JJPB1bg_ZOUkBaYhZVgx6_vKgOg5t1qB_7FJoFQ3VFolXsAh6gnb0nZi4wUhFv5CrA8HPIZsTEquteBHpJ5mqT0mVCRWCtU2kH0mArLB2HSEkoIrHPUnRdIgrBJglBeEGVGFJHuKCoFHKHDcBYE3SFBJOfrx4yOw6X-ePPn3yVOyjauipfCM1FeLtT2H2GKlLpzyfAKPqM6- |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOZQLYhVl9YGru9lJnGNVUZWlpRKt1FsUL4EiNYlKK1QOiH_gD_kSxk4iQEIcONqJlejFmcXzZgahc8dRoJhbLmGah4QxxUEOSk1og0dU6tBxbcS0P3B7Y3Y1cSYl1ClyYQytMpf9mUy30jqfqedo1tPptH5nTrB8BgKYWbuer6F1Br-v6d9Qe_3ieYA93swK7vnE3F7kz1mS18xUizQJ6S1WsyQv-rt--qZzultoMzcWcTt7n21U0vEOqnSKHm276HlkWa9POJRyaYo-4JklR2qcd4O4x-nchGLs7sJJBMMkNVRqbUdg_eHhx9v7LRZJrDA8JDQHDHga4_ZoiJdpEmMdv6xsXVf8sFLzxJYw2UPj7sWo0yN5KwUiwWdYEO26QgH2lGopQAHpyBOi5QspIsejYPb4Da6boXI830T-fBMg9mgI7hjnVEpG91E5TmJ9gDCLNGeiocD9jBi4g6FqMsEZFabXH2dRFZECwCDNKmYEBZXsMcgADwzgZhYAryKvQDn48eUDEOp_rjz898ozVOmN-jfBzeXg-ghtmCtZfuExKi_mS30ChsZCnNqN9An3K9HZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+accurate+machine+learning+predictions+of+properties+of+the+P%E2%80%93O+bond+cleaving+in+ATP+upon+enzymatic+hydrolysis&rft.jtitle=Mendeleev+communications&rft.au=Polyakov%2C+Igor+V.&rft.au=Miroshnichenko%2C+Kirill+D.&rft.au=Mulashkina%2C+Tatiana+I.&rft.au=Moskovsky%2C+Alexander+A.&rft.date=2024-11-01&rft.issn=0959-9436&rft.volume=34&rft.issue=6&rft.spage=776&rft.epage=779&rft_id=info:doi/10.1016%2Fj.mencom.2024.10.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mencom_2024_10_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-9436&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-9436&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-9436&client=summon |