Towards accurate machine learning predictions of properties of the P–O bond cleaving in ATP upon enzymatic hydrolysis

[Display omitted] Molecular dynamic simulations using QM/MM potentials are performed for the enzyme–substrate complex of adenosine triphosphate (ATP) with the motor protein myosin. Machine learning methods are applied to a dataset consisting of the geometry parameters of the active site in the enzym...

Full description

Saved in:
Bibliographic Details
Published inMendeleev communications Vol. 34; no. 6; pp. 776 - 779
Main Authors Polyakov, Igor V., Miroshnichenko, Kirill D., Mulashkina, Tatiana I., Moskovsky, Alexander A., Marchenko, Ekaterina I., Khrenova, Maria G.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2024
Subjects
Online AccessGet full text
ISSN0959-9436
DOI10.1016/j.mencom.2024.10.003

Cover

Loading…
Abstract [Display omitted] Molecular dynamic simulations using QM/MM potentials are performed for the enzyme–substrate complex of adenosine triphosphate (ATP) with the motor protein myosin. Machine learning methods are applied to a dataset consisting of the geometry parameters of the active site in the enzyme–substrate complex to predict the Laplacian of electron density at the bond critical point of the PG–O3B bond being broken in ATP. Using a gradient boosting machine learning model, a mean absolute error of 0.01 a.u. and an R2 score of 0.99 are achieved, and it is found that the PG–O3B bond length is the most important feature, contributing 2/3, while other geometry features contribute 1/3.
AbstractList [Display omitted] Molecular dynamic simulations using QM/MM potentials are performed for the enzyme–substrate complex of adenosine triphosphate (ATP) with the motor protein myosin. Machine learning methods are applied to a dataset consisting of the geometry parameters of the active site in the enzyme–substrate complex to predict the Laplacian of electron density at the bond critical point of the PG–O3B bond being broken in ATP. Using a gradient boosting machine learning model, a mean absolute error of 0.01 a.u. and an R2 score of 0.99 are achieved, and it is found that the PG–O3B bond length is the most important feature, contributing 2/3, while other geometry features contribute 1/3.
Author Polyakov, Igor V.
Marchenko, Ekaterina I.
Miroshnichenko, Kirill D.
Moskovsky, Alexander A.
Mulashkina, Tatiana I.
Khrenova, Maria G.
Author_xml – sequence: 1
  givenname: Igor V.
  surname: Polyakov
  fullname: Polyakov, Igor V.
  organization: Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
– sequence: 2
  givenname: Kirill D.
  surname: Miroshnichenko
  fullname: Miroshnichenko, Kirill D.
  organization: Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
– sequence: 3
  givenname: Tatiana I.
  surname: Mulashkina
  fullname: Mulashkina, Tatiana I.
  organization: Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
– sequence: 4
  givenname: Alexander A.
  surname: Moskovsky
  fullname: Moskovsky, Alexander A.
  organization: Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
– sequence: 5
  givenname: Ekaterina I.
  surname: Marchenko
  fullname: Marchenko, Ekaterina I.
  organization: Department of Materials Science, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
– sequence: 6
  givenname: Maria G.
  surname: Khrenova
  fullname: Khrenova, Maria G.
  email: khrenovamg@my.msu.ru
  organization: Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
BookMark eNp9kE1OwzAQhb0oEm3hBix8gQQnjpN4g1RV_EmV2kVZW44zoa4aO7LTVmHFHbghJ8GhrFmN3tO8p5lvhibGGkDoLiFxQpL8fh-3YJRt45SkWbBiQugETQlnPOIZza_RzPs9IaRgNJmi89aepas9lkodnewBt1LttAF8AOmMNu-4c1Br1WtrPLZNkLYD12v4Vf0O8Ob782uNK2tqrELqNIa0wYvtBh87azCYj6GVvVZ4N9TOHgav_Q26auTBw-3fnKO3p8ft8iVarZ9fl4tVpFLG-gjyvKqpAkpBVZwTaIqqSnmlqoYVNGU5JyUksmYFZ2l4MSGUF1SWaVmWVKmMzlF26VXOeu-gEZ3TrXSDSIgYgYm9uAATI7DRDcBC7OESg3DbSYMTXumwFkg4UL2orf6_4AdtaH0R
Cites_doi 10.1016/j.mencom.2023.04.002
10.3103/S0027131424700093
10.1038/nmeth.4638
10.1063/1.478522
10.1016/0263-7855(96)00018-5
10.1021/acs.jpcb.4c01601
10.1038/s42256-019-0138-9
10.1016/j.mencom.2024.01.001
10.1002/jcc.22885
10.1063/1.3382344
10.1242/jcs.094300
10.1080/00268978800100823
10.1063/1.445869
10.1006/jmbi.1998.2401
10.1021/acscatal.1c00582
10.1063/5.0014475
10.1021/ct300400x
10.1021/bi952633+
10.1063/1.463940
10.1016/j.mencom.2023.01.012
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.mencom.2024.10.003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EndPage 779
ExternalDocumentID 10_1016_j_mencom_2024_10_003
S0959943624003018
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXKI
AAXUO
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
GBLVA
HMS
HVGLF
HZ~
IHE
J1W
KOM
M2Y
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
R56
RIG
ROL
RPZ
SCB
SDF
SDG
SES
SLH
SOC
SPC
SPCBC
SSK
SSZ
T5K
~G-
AAYWO
AAYXX
ABWVN
ADNMO
AEIPS
AGCQF
AGQPQ
ANKPU
APXCP
CITATION
ID FETCH-LOGICAL-c255t-e66bd3ce33ecb990ef7bb29bcbf573256908e1ad57952959103973a828883cc43
IEDL.DBID .~1
ISSN 0959-9436
IngestDate Thu Jul 03 08:19:28 EDT 2025
Wed Dec 04 16:49:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords myosin
Laplacian of electron density
QM/MM molecular dynamics
ATP hydrolysis
machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-e66bd3ce33ecb990ef7bb29bcbf573256908e1ad57952959103973a828883cc43
PageCount 4
ParticipantIDs crossref_primary_10_1016_j_mencom_2024_10_003
elsevier_sciencedirect_doi_10_1016_j_mencom_2024_10_003
PublicationCentury 2000
PublicationDate November-December 2024
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November-December 2024
PublicationDecade 2020
PublicationTitle Mendeleev communications
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – sequence: 0
  name: Elsevier B.V
References eds. U. von Luxburg, I. Guyon, S. Bengio, H. Wallach, R. Fergus, S. V. N. Vishwanathan and R. Garnett, Curran Associates, Red Hook, NY, pp. 3147–3155
Joseph (b0130) 2021; v1
Hartman, Spudich (b0005) 2012; 125
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b0120) 2011; 12
Khrenova, Mulashkina, Kulakova, Polyakov, Nemukhin (b0100) 2024; 79
Sweeney, Holzbaur (b0015) 2018; 10
Melo, Bernardi, Rudack, Scheurer, Riplinger, Phillips, Maia, Rocha, Ribeiro, Stone, Neese, Schulten, Luthey-Schulten (b0095) 2018; 15
Seritan, Bannwarth, Fales, Hohenstein, Isborn, Kokkila-Schumacher, Li, Liu, Luehr, Snyder, Song, Titov, Ufimtsev, Wang, Martínez (b0090) 2021; 11
Chakraborti, Tardiff, Schwartz (b0025) 2024; 128
Rumyantcev, Zhigulin, Zabrodina, Katkova, Ketkov, Fukin (b0040) 2023; 33
Grimme, Antony, Ehrlich, Krieg (b0085) 2010; 132
Smith, Rayment (b0050) 1996; 35
Martyna, Klein, Tuckerman (b0105) 1992; 97
Gribanova, Minyaev, Minkin (b0045) 2023; 33
Khrenova, Grigorenko, Nemukhin (b0030) 2021; 11
Lundberg, Erion, Chen, DeGrave, Prutkin, Nair, Katz, Himmelfarb, Bansal, Lee (b0140) 2020; 2
Jorgensen, Chandrasekhar, Madura, Impey, Klein (b0070) 1983; 79
Lu, Chen (b0115) 2012; 33
Adamo, Barone (b0080) 1999; 110
Best, Zhu, Shim, Lopes, Mittal, Feig, MacKerell (b0065) 2012; 8
Bader (b0035) 1994
.
Kolomeisky (b0010) 2013; 25
Singer, Smith (b0110) 1988; 64
Khrenova, Mulashkina, Stepanyuk, Nemukhin (b0020) 2024; 34
Humphrey, Dalke, Schulten (b0075) 1996; 14
G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye and T.-Y. Liu, in
Polyakov (b0135) 2024; v1
Word, Lovell, Richardson, Richardson (b0055) 1999; 285
Phillips, Hardy, Maia, Stone, Ribeiro, Bernardi, Buch, Fiorin, Hénin, Jiang, McGreevy, Melo, Radak, Skeel, Singharoy, Wang, Roux, Aksimentiev, Luthey-Schulten, Kalé, Schulten, Chipot, Tajkhorshid (b0060) 2020; 153
Rumyantcev (10.1016/j.mencom.2024.10.003_b0040) 2023; 33
Khrenova (10.1016/j.mencom.2024.10.003_b0030) 2021; 11
Polyakov (10.1016/j.mencom.2024.10.003_b0135) 2024; v1
Humphrey (10.1016/j.mencom.2024.10.003_b0075) 1996; 14
Martyna (10.1016/j.mencom.2024.10.003_b0105) 1992; 97
Bader (10.1016/j.mencom.2024.10.003_b0035) 1994
Smith (10.1016/j.mencom.2024.10.003_b0050) 1996; 35
Jorgensen (10.1016/j.mencom.2024.10.003_b0070) 1983; 79
Pedregosa (10.1016/j.mencom.2024.10.003_b0120) 2011; 12
Best (10.1016/j.mencom.2024.10.003_b0065) 2012; 8
Hartman (10.1016/j.mencom.2024.10.003_b0005) 2012; 125
Khrenova (10.1016/j.mencom.2024.10.003_b0100) 2024; 79
Gribanova (10.1016/j.mencom.2024.10.003_b0045) 2023; 33
Adamo (10.1016/j.mencom.2024.10.003_b0080) 1999; 110
Seritan (10.1016/j.mencom.2024.10.003_b0090) 2021; 11
Word (10.1016/j.mencom.2024.10.003_b0055) 1999; 285
Kolomeisky (10.1016/j.mencom.2024.10.003_b0010) 2013; 25
Khrenova (10.1016/j.mencom.2024.10.003_b0020) 2024; 34
Melo (10.1016/j.mencom.2024.10.003_b0095) 2018; 15
Sweeney (10.1016/j.mencom.2024.10.003_b0015) 2018; 10
Lu (10.1016/j.mencom.2024.10.003_b0115) 2012; 33
Lundberg (10.1016/j.mencom.2024.10.003_b0140) 2020; 2
Grimme (10.1016/j.mencom.2024.10.003_b0085) 2010; 132
Singer (10.1016/j.mencom.2024.10.003_b0110) 1988; 64
10.1016/j.mencom.2024.10.003_b0125
Joseph (10.1016/j.mencom.2024.10.003_b0130) 2021; v1
Chakraborti (10.1016/j.mencom.2024.10.003_b0025) 2024; 128
Phillips (10.1016/j.mencom.2024.10.003_b0060) 2020; 153
References_xml – volume: 79
  start-page: 926
  year: 1983
  ident: b0070
  publication-title: J. Chem. Phys.
– volume: 25
  year: 2013
  ident: b0010
  publication-title: J. Phys.: Condens. Matter
– reference: , eds. U. von Luxburg, I. Guyon, S. Bengio, H. Wallach, R. Fergus, S. V. N. Vishwanathan and R. Garnett, Curran Associates, Red Hook, NY, pp. 3147–3155;
– volume: 10
  year: 2018
  ident: b0015
  publication-title: Cold Spring Harbor Perspect. Biol.
– volume: 2
  start-page: 56
  year: 2020
  ident: b0140
  publication-title: Nat. Mach. Intell.
– year: 1994
  ident: b0035
  article-title: Atoms in Molecules: A Quantum Theory
– volume: 15
  start-page: 351
  year: 2018
  ident: b0095
  publication-title: Nat. Methods
– volume: 14
  start-page: 33
  year: 1996
  ident: b0075
  publication-title: J. Mol. Graphics
– volume: v1
  year: 2024
  ident: b0135
  article-title: Machine learning predictions of Laplacian value of bond-critical point in enzymatic phosphate hydrolysis
  publication-title: Zenodo
– volume: 11
  start-page: e1494
  year: 2021
  ident: b0090
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 110
  start-page: 6158
  year: 1999
  ident: b0080
  publication-title: J. Chem. Phys.
– volume: v1
  year: 2021
  ident: b0130
  article-title: PyTorch Tabular: a framework for deep learning with tabular data
  publication-title: arXiv
– volume: 128
  start-page: 4716
  year: 2024
  ident: b0025
  publication-title: J. Phys. Chem. B
– volume: 79
  start-page: 86
  year: 2024
  ident: b0100
  publication-title: Moscow Univ. Chem. Bull.
– volume: 35
  start-page: 5404
  year: 1996
  ident: b0050
  publication-title: Biochemistry
– volume: 132
  year: 2010
  ident: b0085
  publication-title: J. Chem. Phys.
– volume: 125
  start-page: 1627
  year: 2012
  ident: b0005
  publication-title: J. Cell Sci.
– volume: 64
  start-page: 1215
  year: 1988
  ident: b0110
  publication-title: Mol. Phys.
– volume: 153
  year: 2020
  ident: b0060
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 8985
  year: 2021
  ident: b0030
  publication-title: ACS Catal.
– volume: 97
  start-page: 2635
  year: 1992
  ident: b0105
  publication-title: J. Chem. Phys.
– volume: 33
  start-page: 580
  year: 2012
  ident: b0115
  publication-title: J. Comput. Chem.
– volume: 33
  start-page: 302
  year: 2023
  ident: b0045
  publication-title: Mendeleev Commun.
– reference: .
– volume: 285
  start-page: 1735
  year: 1999
  ident: b0055
  publication-title: J. Mol. Biol.
– volume: 8
  start-page: 3257
  year: 2012
  ident: b0065
  publication-title: J. Chem. Theory Comput.
– volume: 12
  start-page: 2825
  year: 2011
  ident: b0120
  publication-title: J. Mach. Learn. Res.
– reference: G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye and T.-Y. Liu, in
– volume: 33
  start-page: 41
  year: 2023
  ident: b0040
  publication-title: Mendeleev Commun.
– volume: 34
  start-page: 1
  year: 2024
  ident: b0020
  publication-title: Mendeleev Commun.
– volume: 33
  start-page: 302
  year: 2023
  ident: 10.1016/j.mencom.2024.10.003_b0045
  publication-title: Mendeleev Commun.
  doi: 10.1016/j.mencom.2023.04.002
– volume: 79
  start-page: 86
  year: 2024
  ident: 10.1016/j.mencom.2024.10.003_b0100
  publication-title: Moscow Univ. Chem. Bull.
  doi: 10.3103/S0027131424700093
– volume: v1
  year: 2024
  ident: 10.1016/j.mencom.2024.10.003_b0135
  article-title: Machine learning predictions of Laplacian value of bond-critical point in enzymatic phosphate hydrolysis
  publication-title: Zenodo
– volume: 15
  start-page: 351
  year: 2018
  ident: 10.1016/j.mencom.2024.10.003_b0095
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4638
– volume: 110
  start-page: 6158
  year: 1999
  ident: 10.1016/j.mencom.2024.10.003_b0080
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478522
– volume: 10
  year: 2018
  ident: 10.1016/j.mencom.2024.10.003_b0015
  publication-title: Cold Spring Harbor Perspect. Biol.
– year: 1994
  ident: 10.1016/j.mencom.2024.10.003_b0035
– volume: 14
  start-page: 33
  year: 1996
  ident: 10.1016/j.mencom.2024.10.003_b0075
  publication-title: J. Mol. Graphics
  doi: 10.1016/0263-7855(96)00018-5
– volume: 25
  year: 2013
  ident: 10.1016/j.mencom.2024.10.003_b0010
  publication-title: J. Phys.: Condens. Matter
– volume: 128
  start-page: 4716
  year: 2024
  ident: 10.1016/j.mencom.2024.10.003_b0025
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.4c01601
– volume: 2
  start-page: 56
  year: 2020
  ident: 10.1016/j.mencom.2024.10.003_b0140
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0138-9
– volume: 34
  start-page: 1
  year: 2024
  ident: 10.1016/j.mencom.2024.10.003_b0020
  publication-title: Mendeleev Commun.
  doi: 10.1016/j.mencom.2024.01.001
– volume: 11
  start-page: e1494
  year: 2021
  ident: 10.1016/j.mencom.2024.10.003_b0090
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 33
  start-page: 580
  year: 2012
  ident: 10.1016/j.mencom.2024.10.003_b0115
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22885
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.mencom.2024.10.003_b0120
  publication-title: J. Mach. Learn. Res.
– volume: 132
  year: 2010
  ident: 10.1016/j.mencom.2024.10.003_b0085
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 125
  start-page: 1627
  year: 2012
  ident: 10.1016/j.mencom.2024.10.003_b0005
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.094300
– volume: 64
  start-page: 1215
  year: 1988
  ident: 10.1016/j.mencom.2024.10.003_b0110
  publication-title: Mol. Phys.
  doi: 10.1080/00268978800100823
– volume: 79
  start-page: 926
  year: 1983
  ident: 10.1016/j.mencom.2024.10.003_b0070
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445869
– volume: 285
  start-page: 1735
  year: 1999
  ident: 10.1016/j.mencom.2024.10.003_b0055
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1998.2401
– volume: 11
  start-page: 8985
  year: 2021
  ident: 10.1016/j.mencom.2024.10.003_b0030
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c00582
– volume: 153
  year: 2020
  ident: 10.1016/j.mencom.2024.10.003_b0060
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0014475
– volume: 8
  start-page: 3257
  year: 2012
  ident: 10.1016/j.mencom.2024.10.003_b0065
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300400x
– volume: 35
  start-page: 5404
  year: 1996
  ident: 10.1016/j.mencom.2024.10.003_b0050
  publication-title: Biochemistry
  doi: 10.1021/bi952633+
– volume: 97
  start-page: 2635
  year: 1992
  ident: 10.1016/j.mencom.2024.10.003_b0105
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463940
– ident: 10.1016/j.mencom.2024.10.003_b0125
– volume: 33
  start-page: 41
  year: 2023
  ident: 10.1016/j.mencom.2024.10.003_b0040
  publication-title: Mendeleev Commun.
  doi: 10.1016/j.mencom.2023.01.012
– volume: v1
  year: 2021
  ident: 10.1016/j.mencom.2024.10.003_b0130
  article-title: PyTorch Tabular: a framework for deep learning with tabular data
  publication-title: arXiv
SSID ssj0007531
Score 2.3405843
Snippet [Display omitted] Molecular dynamic simulations using QM/MM potentials are performed for the enzyme–substrate complex of adenosine triphosphate (ATP) with the...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 776
SubjectTerms ATP hydrolysis
Laplacian of electron density
machine learning
myosin
QM/MM molecular dynamics
Title Towards accurate machine learning predictions of properties of the P–O bond cleaving in ATP upon enzymatic hydrolysis
URI https://dx.doi.org/10.1016/j.mencom.2024.10.003
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KL3oRn1hf7MHr9rWbZHMsxVIEtWALvYXsI1qhSegDqQfxP_gP_SXObBJUEA8ed8mSMBnmsfPNN4Rcep4Bx9z1mbAyZkIYCXZQW8bbMuHaxp7vKqY3t_5wIq6n3rRG-lUvDMIqS9tf2HRnrcudVinNVj6bte7xBisUYICFi-ux4RfZ60Cnm69fMA8IxzsF317I8Omqfc5hvOZIFon96F3RdBgv_rt7-uZyBrtkp4wVaa_4nD1Ss-k-2epXI9oOyPPYgV6XNNZ6jZwPdO6wkZaWwyAeaL7ASoxTLpolsMxyRFJbt4Lgj44-3t7vqMpSQ-ElMd4v0FlKe-MRXedZSm36snG0rvRxYxaZYzA5JJPB1bg_ZOUkBaYhZVgx6_vKgOg5t1qB_7FJoFQ3VFolXsAh6gnb0nZi4wUhFv5CrA8HPIZsTEquteBHpJ5mqT0mVCRWCtU2kH0mArLB2HSEkoIrHPUnRdIgrBJglBeEGVGFJHuKCoFHKHDcBYE3SFBJOfrx4yOw6X-ePPn3yVOyjauipfCM1FeLtT2H2GKlLpzyfAKPqM6-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOZQLYhVl9YGru9lJnGNVUZWlpRKt1FsUL4EiNYlKK1QOiH_gD_kSxk4iQEIcONqJlejFmcXzZgahc8dRoJhbLmGah4QxxUEOSk1og0dU6tBxbcS0P3B7Y3Y1cSYl1ClyYQytMpf9mUy30jqfqedo1tPptH5nTrB8BgKYWbuer6F1Br-v6d9Qe_3ieYA93swK7vnE3F7kz1mS18xUizQJ6S1WsyQv-rt--qZzultoMzcWcTt7n21U0vEOqnSKHm276HlkWa9POJRyaYo-4JklR2qcd4O4x-nchGLs7sJJBMMkNVRqbUdg_eHhx9v7LRZJrDA8JDQHDHga4_ZoiJdpEmMdv6xsXVf8sFLzxJYw2UPj7sWo0yN5KwUiwWdYEO26QgH2lGopQAHpyBOi5QspIsejYPb4Da6boXI830T-fBMg9mgI7hjnVEpG91E5TmJ9gDCLNGeiocD9jBi4g6FqMsEZFabXH2dRFZECwCDNKmYEBZXsMcgADwzgZhYAryKvQDn48eUDEOp_rjz898ozVOmN-jfBzeXg-ghtmCtZfuExKi_mS30ChsZCnNqN9An3K9HZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+accurate+machine+learning+predictions+of+properties+of+the+P%E2%80%93O+bond+cleaving+in+ATP+upon+enzymatic+hydrolysis&rft.jtitle=Mendeleev+communications&rft.au=Polyakov%2C+Igor+V.&rft.au=Miroshnichenko%2C+Kirill+D.&rft.au=Mulashkina%2C+Tatiana+I.&rft.au=Moskovsky%2C+Alexander+A.&rft.date=2024-11-01&rft.issn=0959-9436&rft.volume=34&rft.issue=6&rft.spage=776&rft.epage=779&rft_id=info:doi/10.1016%2Fj.mencom.2024.10.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mencom_2024_10_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-9436&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-9436&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-9436&client=summon