Enhanced NH3 sensing performance of polyaniline via a facile morphology modification strategy
The synthesis of polyaniline (PANI) composites is an effective method to improve the ammonia (NH3) gas sensing performance of PANI, and it is of great significance to develop a simple method to prepare PANI composites. Herein, the PANI/halloysite nanotubes (PANI/HNTs) composite was prepared via a si...
Saved in:
Published in | Sensors and actuators. B, Chemical Vol. 369; p. 132302 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.10.2022
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The synthesis of polyaniline (PANI) composites is an effective method to improve the ammonia (NH3) gas sensing performance of PANI, and it is of great significance to develop a simple method to prepare PANI composites. Herein, the PANI/halloysite nanotubes (PANI/HNTs) composite was prepared via a simple in-situ polymerization method. Morphology characterization results show that the HNTs are covered by PANI to form a porous three-dimensional structure. Especially, the specific surface areas of the PANI and PANI/HNTs are 15.892 and 25.899 m2/g, respectively, and the specific surface area of PANI has been greatly improved (1.63 times). Gas sensing properties test results show that the PANI/HNTs sensor exhibits larger response (1.60 times) and shorter response/recovery times (0.93/0.6 times) than that of the PANI sensor to 10 ppm NH3 (25 °C, 50% relative humidity). In addition, the PANI/HNTs sensor exhibits low detection limit of 10 ppb NH3 and excellent selectivity. The enhanced NH3 sensing performance of PANI can be attributed to the unique hollow structure and large specific surface area of HNTs. In this work, a simple method is proposed to improve the NH3 sensing performance of PANI only by morphology modification. Meanwhile, it provides an idea for the application of HNTs in the field of gas sensors.
•The NH3 sensing performance of PANI is improved by a facile morphology modification strategy.•PANI/HNTs sensor was prepared by the in-situ polymerization method.•PANI/HNTs sensor exhibits higher NH3 sensing response than the PANI sensor.•PANI/HNTs sensor has an ultra-low detection limit of 10 ppb NH3. |
---|---|
AbstractList | The synthesis of polyaniline (PANI) composites is an effective method to improve the ammonia (NH3) gas sensing performance of PANI, and it is of great significance to develop a simple method to prepare PANI composites. Herein, the PANI/halloysite nanotubes (PANI/HNTs) composite was prepared via a simple in-situ polymerization method. Morphology characterization results show that the HNTs are covered by PANI to form a porous three-dimensional structure. Especially, the specific surface areas of the PANI and PANI/HNTs are 15.892 and 25.899 m2/g, respectively, and the specific surface area of PANI has been greatly improved (1.63 times). Gas sensing properties test results show that the PANI/HNTs sensor exhibits larger response (1.60 times) and shorter response/recovery times (0.93/0.6 times) than that of the PANI sensor to 10 ppm NH3 (25 °C, 50% relative humidity). In addition, the PANI/HNTs sensor exhibits low detection limit of 10 ppb NH3 and excellent selectivity. The enhanced NH3 sensing performance of PANI can be attributed to the unique hollow structure and large specific surface area of HNTs. In this work, a simple method is proposed to improve the NH3 sensing performance of PANI only by morphology modification. Meanwhile, it provides an idea for the application of HNTs in the field of gas sensors. The synthesis of polyaniline (PANI) composites is an effective method to improve the ammonia (NH3) gas sensing performance of PANI, and it is of great significance to develop a simple method to prepare PANI composites. Herein, the PANI/halloysite nanotubes (PANI/HNTs) composite was prepared via a simple in-situ polymerization method. Morphology characterization results show that the HNTs are covered by PANI to form a porous three-dimensional structure. Especially, the specific surface areas of the PANI and PANI/HNTs are 15.892 and 25.899 m2/g, respectively, and the specific surface area of PANI has been greatly improved (1.63 times). Gas sensing properties test results show that the PANI/HNTs sensor exhibits larger response (1.60 times) and shorter response/recovery times (0.93/0.6 times) than that of the PANI sensor to 10 ppm NH3 (25 °C, 50% relative humidity). In addition, the PANI/HNTs sensor exhibits low detection limit of 10 ppb NH3 and excellent selectivity. The enhanced NH3 sensing performance of PANI can be attributed to the unique hollow structure and large specific surface area of HNTs. In this work, a simple method is proposed to improve the NH3 sensing performance of PANI only by morphology modification. Meanwhile, it provides an idea for the application of HNTs in the field of gas sensors. •The NH3 sensing performance of PANI is improved by a facile morphology modification strategy.•PANI/HNTs sensor was prepared by the in-situ polymerization method.•PANI/HNTs sensor exhibits higher NH3 sensing response than the PANI sensor.•PANI/HNTs sensor has an ultra-low detection limit of 10 ppb NH3. |
ArticleNumber | 132302 |
Author | Duan, Xiaohui Yuan, Zhen Liu, Bohao Li, Xian Jiang, Yadong Zhao, Qiuni Duan, Zaihua Zhang, Yajie Tai, Huiling |
Author_xml | – sequence: 1 givenname: Xiaohui surname: Duan fullname: Duan, Xiaohui organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 2 givenname: Zaihua surname: Duan fullname: Duan, Zaihua organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 3 givenname: Yajie surname: Zhang fullname: Zhang, Yajie organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 4 givenname: Bohao surname: Liu fullname: Liu, Bohao organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 5 givenname: Xian surname: Li fullname: Li, Xian organization: Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Agricultural Information Service Technology of Ministry of Agriculture, Beijing 100081, PR China – sequence: 6 givenname: Qiuni surname: Zhao fullname: Zhao, Qiuni organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 7 givenname: Zhen surname: Yuan fullname: Yuan, Zhen organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 8 givenname: Yadong surname: Jiang fullname: Jiang, Yadong organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China – sequence: 9 givenname: Huiling surname: Tai fullname: Tai, Huiling email: taitai1980@uestc.edu.cn organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China |
BookMark | eNp9kE1LAzEQhoNUsFZ_gLeA513z0d1s8SSlWqHoRY8S0tlJm7JN1mRb6L93az156GkGZp4Z3ueaDHzwSMgdZzlnvHzY5Mkvc8GEyLkUkokLMuSVkplkSg3IkE1EkY0ZK67IdUobxthYlmxIvmZ-bTxgTd_mkib0yfkVbTHaELfHAQ2WtqE5GO8a55HunaGGWgOuQboNsV2HJqwOfVs768B0Lniaumg6XB1uyKU1TcLbvzoin8-zj-k8W7y_vE6fFhmIouiymnEDBUAFuBxzLHi1BD4BnMBYilqAKUvF7KQsrFIGlLGFsZWwprQSVR9fjsj96W4bw_cOU6c3YRd9_1ILxUVVKVGW_RY_bUEMKUW0uo1ua-JBc6aPFvVG9xb10aI-WewZ9Y8B1_2G7CO65iz5eCKxD753GHUCh0fVLiJ0ug7uDP0DdB6Phw |
CitedBy_id | crossref_primary_10_1016_j_jece_2025_116258 crossref_primary_10_3390_s24248154 crossref_primary_10_3390_polym15224353 crossref_primary_10_1016_j_mseb_2023_117066 crossref_primary_10_3390_molecules29133028 crossref_primary_10_1039_D3TA02405A crossref_primary_10_1007_s10853_023_08692_0 crossref_primary_10_1016_j_inoche_2023_111524 crossref_primary_10_1016_j_jhazmat_2024_136723 crossref_primary_10_1088_1402_4896_acfad1 crossref_primary_10_1016_j_snb_2023_135209 crossref_primary_10_1016_j_jece_2023_109969 crossref_primary_10_1016_j_ccr_2024_215657 crossref_primary_10_1016_j_snb_2023_133396 crossref_primary_10_1088_1361_6439_ace4d5 crossref_primary_10_1021_acssensors_4c03092 crossref_primary_10_1021_acsapm_3c01872 crossref_primary_10_1002_cnma_202400053 crossref_primary_10_1016_j_materresbull_2023_112394 crossref_primary_10_1016_j_apsusc_2023_157529 crossref_primary_10_1016_j_snb_2025_137404 crossref_primary_10_1016_j_snb_2024_135585 crossref_primary_10_1109_JSEN_2024_3388607 crossref_primary_10_1109_JSEN_2023_3312334 crossref_primary_10_1016_j_rechem_2023_101188 crossref_primary_10_1021_acsaelm_4c02132 crossref_primary_10_1038_s41598_024_62939_7 crossref_primary_10_1016_j_ceramint_2023_12_165 crossref_primary_10_1080_10601325_2022_2111262 crossref_primary_10_1016_j_snb_2023_134579 crossref_primary_10_3390_chemosensors11020132 crossref_primary_10_1016_j_jallcom_2024_174155 crossref_primary_10_1557_s43580_024_00817_0 crossref_primary_10_1021_acsomega_2c06243 crossref_primary_10_1039_D4CP04718D crossref_primary_10_1021_acsmaterialslett_3c00698 crossref_primary_10_1016_j_cej_2024_155286 crossref_primary_10_1016_j_cplett_2025_142044 crossref_primary_10_1039_D3TA04974D crossref_primary_10_1016_j_ijbiomac_2024_137226 crossref_primary_10_1016_j_sna_2025_116330 crossref_primary_10_1039_D4TA06632D crossref_primary_10_1021_acs_biomac_3c01228 crossref_primary_10_1016_j_jece_2024_115294 crossref_primary_10_1016_j_snb_2022_133113 crossref_primary_10_1039_D3SD00067B crossref_primary_10_1021_acssensors_4c03583 crossref_primary_10_1016_j_synthmet_2023_117348 crossref_primary_10_1038_s41598_024_77083_5 crossref_primary_10_1039_D4MH00651H crossref_primary_10_1016_j_talanta_2024_127086 crossref_primary_10_1016_j_microc_2024_112369 crossref_primary_10_1016_j_clay_2024_107589 crossref_primary_10_1021_acsanm_3c01744 crossref_primary_10_1016_j_arabjc_2022_104478 crossref_primary_10_1021_acsomega_4c08662 crossref_primary_10_1109_JSEN_2024_3474703 crossref_primary_10_1016_j_jece_2024_114391 crossref_primary_10_1109_JSEN_2023_3266167 crossref_primary_10_3390_polym16010079 crossref_primary_10_1016_j_snb_2023_134320 crossref_primary_10_1039_D3TA03686C crossref_primary_10_1021_acsanm_4c01054 crossref_primary_10_1109_JSEN_2023_3332036 crossref_primary_10_3390_chemosensors12030043 crossref_primary_10_1021_acsanm_3c02270 crossref_primary_10_1016_j_synthmet_2024_117695 crossref_primary_10_1039_D3MH01596C crossref_primary_10_1016_j_talanta_2024_127226 crossref_primary_10_1021_acsaelm_4c01273 crossref_primary_10_1016_j_matchemphys_2023_127768 crossref_primary_10_3390_coatings13101677 crossref_primary_10_1039_D3DT02401F crossref_primary_10_1016_j_jsamd_2025_100850 crossref_primary_10_1016_j_cej_2025_160598 crossref_primary_10_1016_j_sna_2025_116398 crossref_primary_10_1016_j_jallcom_2024_177710 crossref_primary_10_1016_j_snb_2023_135136 crossref_primary_10_3390_s24061824 crossref_primary_10_1016_j_jiec_2024_02_050 crossref_primary_10_1016_j_apsusc_2023_158478 crossref_primary_10_1016_j_cplett_2023_140803 crossref_primary_10_1039_D3TC00016H crossref_primary_10_1016_j_jfca_2023_105422 crossref_primary_10_1016_j_matchemphys_2023_127573 crossref_primary_10_3390_pr13020401 crossref_primary_10_3390_polym14163401 crossref_primary_10_1016_j_matchemphys_2023_127975 crossref_primary_10_1021_acssensors_4c03487 crossref_primary_10_1016_j_matdes_2023_112360 crossref_primary_10_1002_cnma_202300191 crossref_primary_10_3390_s24113695 crossref_primary_10_1016_j_cej_2025_161381 crossref_primary_10_1016_j_rechem_2024_101395 crossref_primary_10_1016_j_snb_2023_135230 crossref_primary_10_1021_acsanm_3c05965 crossref_primary_10_1016_j_synthmet_2024_117710 crossref_primary_10_1016_j_est_2023_108266 crossref_primary_10_1016_j_snb_2024_135938 crossref_primary_10_1109_JSEN_2025_3526256 crossref_primary_10_1016_j_apsadv_2023_100516 crossref_primary_10_1016_j_sna_2024_115665 crossref_primary_10_1016_j_jallcom_2023_172782 crossref_primary_10_1016_j_snb_2024_136621 |
Cites_doi | 10.3390/s20010149 10.1016/j.snb.2020.128204 10.1016/j.jhazmat.2016.01.081 10.1016/j.snb.2017.01.046 10.1007/s10853-020-04370-7 10.1039/D1TC04180K 10.1016/j.jcis.2020.02.042 10.1016/j.ccr.2022.214517 10.1016/j.snb.2020.128984 10.1016/j.jhazmat.2022.128836 10.3389/fchem.2018.00493 10.1021/nn204688c 10.1016/j.snb.2017.11.168 10.1016/j.snb.2019.02.094 10.1016/S1005-0302(10)60093-X 10.1039/C7TA11285H 10.1021/acsami.6b09074 10.1016/j.surfcoat.2019.04.031 10.1016/j.ceramint.2020.04.261 10.1098/rsta.2019.0324 10.1007/s11664-017-5738-8 10.3390/s21041443 10.1021/acs.iecr.0c04952 10.1088/1361-6528/ab9daa 10.1016/j.snb.2021.130069 10.1016/j.snb.2020.128104 10.1016/j.materresbull.2020.110810 10.1016/j.snb.2022.131708 10.1016/j.snb.2018.08.120 10.1016/j.snb.2016.12.064 10.1016/j.snb.2017.08.212 10.1016/j.snb.2021.130621 10.1007/s00604-020-04513-2 10.1016/j.ijhydene.2016.02.023 10.1039/C6TC01718E 10.3390/s21227522 10.1149/2162-8777/abe3ce 10.1021/acs.iecr.1c00780 10.1016/j.snb.2007.08.013 10.1021/acssensors.1c00132 10.1016/j.ijbiomac.2012.06.022 10.1016/j.snb.2019.03.073 10.1016/j.snb.2017.04.115 10.1016/j.snb.2022.131790 10.1016/j.snb.2015.12.007 10.1016/j.cclet.2019.04.071 10.1016/j.cej.2022.136910 10.1016/j.sna.2021.113127 10.3390/polym13183077 10.1002/adma.201500846 10.1039/C7NJ03343E 10.1016/j.snb.2017.12.022 10.1016/j.snb.2020.128923 10.1021/am503286h 10.1039/C5RA19079G 10.1016/j.micromeso.2014.12.031 10.1016/j.snb.2016.07.174 10.1016/j.orgel.2018.12.018 10.1021/am4022973 10.1039/D0TC03132A 10.1016/j.jhazmat.2018.10.016 10.5414/CNP88FX04 10.1016/j.snb.2022.132102 10.1016/j.snb.2020.128293 10.1016/j.snb.2021.131262 10.1016/j.snb.2020.128198 10.1021/ja067545z 10.1016/j.matlet.2017.12.062 10.1016/j.apsusc.2016.01.137 10.1016/j.snb.2015.08.002 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright Elsevier Science Ltd. Oct 15, 2022 |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Oct 15, 2022 |
DBID | AAYXX CITATION 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
DOI | 10.1016/j.snb.2022.132302 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3077 |
ExternalDocumentID | 10_1016_j_snb_2022_132302 S0925400522009443 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATTM AAXKI AAXUO ABFNM ABMAC ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEIPS AEKER AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJSZI ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSH SSK SST SSZ T5K TN5 YK3 ~G- AAQXK AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ R2- RIG SCB SCH SEW WUQ 7SP 7SR 7TB 7U5 8BQ 8FD EFKBS FR3 JG9 L7M |
ID | FETCH-LOGICAL-c255t-d01ac5cc8ceb41e518bc19ce9c432d2ca6670f965f77ac7af5af82fa6f3e71013 |
IEDL.DBID | .~1 |
ISSN | 0925-4005 |
IngestDate | Fri Jul 25 07:36:16 EDT 2025 Tue Jul 01 01:28:07 EDT 2025 Thu Apr 24 23:00:58 EDT 2025 Sun Apr 06 06:54:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | NH3 sensor Morphology modification Halloysite nanotubes Polyaniline |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-d01ac5cc8ceb41e518bc19ce9c432d2ca6670f965f77ac7af5af82fa6f3e71013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2712887266 |
PQPubID | 2047454 |
ParticipantIDs | proquest_journals_2712887266 crossref_primary_10_1016_j_snb_2022_132302 crossref_citationtrail_10_1016_j_snb_2022_132302 elsevier_sciencedirect_doi_10_1016_j_snb_2022_132302 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-15 |
PublicationDateYYYYMMDD | 2022-10-15 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. B, Chemical |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Li, Diao, Yang, He, Wang, Liu, Liu, Lu, Yan, Sun, Lu (bib63) 2018; 276 Tai, Wang, Duan, Jiang (bib8) 2020; 318 Zhang, Jiang, Duan, Wu, Zhao, Liu, Huang, Yuan, Li, Tai (bib2) 2022; 434 Wen, Wei, Zhang, Cui, Cui, Jing, Hu, He, Fu, Liu, Cheng (bib37) 2020; 31 Zhang, Duan, Zou, Ma (bib75) 2018; 215 Li, Liu, Yang, Zhao, Wang, Liu, You, He, Wang, Yan, Sun, Liang, Lu (bib6) 2019; 289 Alharthy, Saleh (bib30) 2021; 13 Zhang, Wang, Li, Zhou, Zong, Dong (bib53) 2018; 255 Joseph, Jemmis (bib57) 2007; 129 Yuan, Zhao, Duan, Xie, Duan, Li, Ye, Jiang, Tai (bib44) 2022; 363 Bai, Tian, Cui, Sun, Tian, Luo, Chen, Li (bib46) 2016; 226 Yang, Wu, Shen, Zhou, Li, He, Liu (bib50) 2016; 8 Liu, Tai, Zhang, Ye, Su, Jiang (bib32) 2017; 246 Liu, Tai, Zhang, Yuan, Du, Xie, Jiang (bib26) 2018; 261 Tai, Jiang, Xie, Yu, Chen, Ying (bib40) 2008; 129 Duan, Jiang, Tai (bib71) 2021; 9 Liu, Zhang, Wu, Xiong, Zhou (bib56) 2012; 51 Zou, Wang, Xiang, Tang, Chu, Qiu, Yan, Xu, Sun (bib33) 2016; 41 Zhao, Sun, Wang, Duan, Yuan, Wei, Tai, Jiang (bib43) 2021; 6 Verma, Yadav, Singh, Gupta, Thapa, Yadav (bib73) 2022; 361 Matsuguchi, Nakamae, Fujisada, SShiba (bib22) 2021; 21 Hung, Dat, Duy, Quang, Toan, Hieu, Hoa (bib13) 2020; 125 Chao, Liu, Wang, Zhang, Zhang, Zhang, Xiang, Chen (bib48) 2013; 5 Wang, Liu, Duan, Zhao, Zhang, Xie, Jiang, Li, Tai (bib15) 2021; 327 Heo, Sung, Jin, Ahn, Kim, Lee, Cha, Choi, Jo (bib36) 2015; 27 Ju, Park, Kim (bib55) 2018; 6 Bai, Ye, Luo, Chen, Li (bib58) 2016; 6 Liu, Zheng, Kumar, Kumar, Zhang (bib34) 2022; 462 Liu, Xu, Du, Tang, Zhang, Zhang, Wen, Hao, Pan, Zhang, Gu, Zhao, Shen, Zhou, Gao, Feng, Chang, Goulding, Collett, Vitousek, Zhang (bib5) 2020; 378 Kulkarni, Navale, Navale, Stadler, Ramgir, Patil (bib66) 2019; 288 Tang, Debliquy, Lahem, Yan, Raskin (bib9) 2021; 21 Wu, Lv, Shen, Song, Tan (bib17) 2020; 316 Yuan, Zhu, Yang, Hang, Tao, Ma, Jiang, Zhang, Lu (bib12) 2020; 568 Bai, Zhao, Sun, Tong, Luo, Li, Chen (bib54) 2017; 239 Wang, Cheng, Wang, Yang, Su, Li, An, Luo, Wu, Xie (bib68) 2022; 355 Tian, Wang, Wang, Komarneni, Yang (bib49) 2015; 207 Zhang, Wu, Meng, Guo, Liu, Liu (bib60) 2016; 366 Kumar, Choi, Shin, Chang, Dai, Baek (bib52) 2012; 6 Wu, Hou, Yu, Yu (bib21) 2020; 8 Duan, Zhang, Tong, Zou, Peng, Zheng (bib64) 2017; 46 Zhang, Wu, Li, Zong, Dong, Zhang (bib67) 2018; 258 Zhang, Dong, Zeng, Hu, Hussain, Zhang (bib7) 2021; 60 Chao, Liu, Xing, Gao, Zhao (bib69) 2021; 347 Jha, Wan, Jacob, Guha (bib23) 2018; 42 Xue, Wang, Guo, Liu, Wan (bib51) 2017; 244 Gupta, Chaudhary, Singh, Verma, Yadav, Yadav (bib3) 2022; 368 Zhang, Cao, Wu, Zhang, Cao, Guo, Zhong, Duan, Jia (bib19) 2019; 20 Gao, Zhu, Gao, Liu, Zhang, Cheng, Huo (bib16) 2020; 187 Tohidi, Parhizkar, Bidadi, Mohamad-Rezaei (bib29) 2020; 31 Hien, Thu, Ngan, Thai, Trung, Trung, Tan, Giang (bib14) 2021; 340 Kaushik, Eliášc, Michalička, Hegemann, Pytlíček, Nečas, Zajíčková (bib18) 2019; 370 Li, Wang, Qin, Han, Sun, Wang (bib11) 2020; 46 Duan, Zhao, Wang, Huang, Yuan, Zhang, Jiang, Tai (bib39) 2020; 317 Saravanan, Karthik, Mirtha, Balaji, Rajeshkanna (bib27) 2020; 31 Bevc, Mohorko, Kolar, Brglez, Holobar, Kniepeiss, Podbregar, Piko, Hojs, Knehtl, Ekart, Hojs (bib10) 2017; 88 Singh, Sikarwar, Verma, Chandra Yadav (bib45) 2021; 332 Tang, Debliquy, Lahem, Yan, Raskin (bib4) 2021; 21 Abdulla, Mathew, Pullithadathil (bib28) 2015; 221 Tai, Jiang, Xie, Yu (bib42) 2010; 26 Liu, Cui, Xu, Wang, Gu, Dou (bib35) 2021; 10 Cho, Yu, Lee, Jang (bib38) 2020; 55 Zhang, Zhang, Jiang, Duan, Liu, Zhao, Wang, Yuan, Tai (bib61) 2020; 319 Tajik, Beitollahi, Nejad, Dourandish, Khalilzadeh, Jang, Venditti, Varma, Shokouhimehr (bib20) 2021; 60 Liu, Libanori, Zhou, Xiao, Xie, Zhao, Su, Wang, Yuan, Duan, Liang, Jiang, Tai, Chen (bib74) 2022; 14 Sonker, Yadav, Gupta, Tomar (bib1) 2019; 370 Zhu, Cheng, Dong, Xu (bib25) 2018; 6 Duan, Yuan, Jiang, Zhao, Huang, Zhang, Liu, Tai (bib72) 2022; 446 Wang, Huang, Xiao, Cai, Liu, Liu, Wang, Wang, Li, Wang, Li, Wang (bib62) 2014; 6 Qin, Wang, Wang (bib24) 2019; 66 Tai, Jiang, Xie (bib41) 2010; 8 Liu, Huang, Yan, Zhao (bib59) 2016; 4 Wu, Yu, Li, Yao, Cao, Li, Zhu, He, Tang (bib70) 2021; 329 Hien, Giang, Hieu, Trung, Tuan (bib31) 2017; 249 Wang, Jiang, Liu, Duan, Pan, Yuan, Xie, Wang, Fang, Tai (bib65) 2021; 343 Tian, Wang, Tian, Zhou, Yang, Komarneni (bib47) 2016; 309 Liu (10.1016/j.snb.2022.132302_bib26) 2018; 261 Bevc (10.1016/j.snb.2022.132302_bib10) 2017; 88 Wang (10.1016/j.snb.2022.132302_bib65) 2021; 343 Tai (10.1016/j.snb.2022.132302_bib8) 2020; 318 Hien (10.1016/j.snb.2022.132302_bib31) 2017; 249 Zhao (10.1016/j.snb.2022.132302_bib43) 2021; 6 Qin (10.1016/j.snb.2022.132302_bib24) 2019; 66 Liu (10.1016/j.snb.2022.132302_bib34) 2022; 462 Wu (10.1016/j.snb.2022.132302_bib17) 2020; 316 Liu (10.1016/j.snb.2022.132302_bib59) 2016; 4 Duan (10.1016/j.snb.2022.132302_bib71) 2021; 9 Wang (10.1016/j.snb.2022.132302_bib68) 2022; 355 Zhang (10.1016/j.snb.2022.132302_bib60) 2016; 366 Jha (10.1016/j.snb.2022.132302_bib23) 2018; 42 Zhu (10.1016/j.snb.2022.132302_bib25) 2018; 6 Xue (10.1016/j.snb.2022.132302_bib51) 2017; 244 Liu (10.1016/j.snb.2022.132302_bib74) 2022; 14 Joseph (10.1016/j.snb.2022.132302_bib57) 2007; 129 Zhang (10.1016/j.snb.2022.132302_bib67) 2018; 258 Duan (10.1016/j.snb.2022.132302_bib64) 2017; 46 Chao (10.1016/j.snb.2022.132302_bib48) 2013; 5 Zhang (10.1016/j.snb.2022.132302_bib61) 2020; 319 Wen (10.1016/j.snb.2022.132302_bib37) 2020; 31 Liu (10.1016/j.snb.2022.132302_bib5) 2020; 378 Tang (10.1016/j.snb.2022.132302_bib9) 2021; 21 Matsuguchi (10.1016/j.snb.2022.132302_bib22) 2021; 21 Alharthy (10.1016/j.snb.2022.132302_bib30) 2021; 13 Abdulla (10.1016/j.snb.2022.132302_bib28) 2015; 221 Chao (10.1016/j.snb.2022.132302_bib69) 2021; 347 Zhang (10.1016/j.snb.2022.132302_bib19) 2019; 20 Zhang (10.1016/j.snb.2022.132302_bib75) 2018; 215 Cho (10.1016/j.snb.2022.132302_bib38) 2020; 55 Tian (10.1016/j.snb.2022.132302_bib47) 2016; 309 Kumar (10.1016/j.snb.2022.132302_bib52) 2012; 6 Wang (10.1016/j.snb.2022.132302_bib62) 2014; 6 Wu (10.1016/j.snb.2022.132302_bib21) 2020; 8 Bai (10.1016/j.snb.2022.132302_bib58) 2016; 6 Duan (10.1016/j.snb.2022.132302_bib72) 2022; 446 Yang (10.1016/j.snb.2022.132302_bib50) 2016; 8 Yuan (10.1016/j.snb.2022.132302_bib12) 2020; 568 Tang (10.1016/j.snb.2022.132302_bib4) 2021; 21 Gao (10.1016/j.snb.2022.132302_bib16) 2020; 187 Tai (10.1016/j.snb.2022.132302_bib40) 2008; 129 Yuan (10.1016/j.snb.2022.132302_bib44) 2022; 363 Wang (10.1016/j.snb.2022.132302_bib15) 2021; 327 Saravanan (10.1016/j.snb.2022.132302_bib27) 2020; 31 Tohidi (10.1016/j.snb.2022.132302_bib29) 2020; 31 Duan (10.1016/j.snb.2022.132302_bib39) 2020; 317 Sonker (10.1016/j.snb.2022.132302_bib1) 2019; 370 Hung (10.1016/j.snb.2022.132302_bib13) 2020; 125 Ju (10.1016/j.snb.2022.132302_bib55) 2018; 6 Heo (10.1016/j.snb.2022.132302_bib36) 2015; 27 Bai (10.1016/j.snb.2022.132302_bib54) 2017; 239 Hien (10.1016/j.snb.2022.132302_bib14) 2021; 340 Tai (10.1016/j.snb.2022.132302_bib41) 2010; 8 Zhang (10.1016/j.snb.2022.132302_bib53) 2018; 255 Wu (10.1016/j.snb.2022.132302_bib70) 2021; 329 Kaushik (10.1016/j.snb.2022.132302_bib18) 2019; 370 Zhang (10.1016/j.snb.2022.132302_bib2) 2022; 434 Zhang (10.1016/j.snb.2022.132302_bib7) 2021; 60 Tajik (10.1016/j.snb.2022.132302_bib20) 2021; 60 Liu (10.1016/j.snb.2022.132302_bib32) 2017; 246 Bai (10.1016/j.snb.2022.132302_bib46) 2016; 226 Singh (10.1016/j.snb.2022.132302_bib45) 2021; 332 Li (10.1016/j.snb.2022.132302_bib63) 2018; 276 Gupta (10.1016/j.snb.2022.132302_bib3) 2022; 368 Liu (10.1016/j.snb.2022.132302_bib35) 2021; 10 Zou (10.1016/j.snb.2022.132302_bib33) 2016; 41 Verma (10.1016/j.snb.2022.132302_bib73) 2022; 361 Li (10.1016/j.snb.2022.132302_bib11) 2020; 46 Kulkarni (10.1016/j.snb.2022.132302_bib66) 2019; 288 Tai (10.1016/j.snb.2022.132302_bib42) 2010; 26 Tian (10.1016/j.snb.2022.132302_bib49) 2015; 207 Liu (10.1016/j.snb.2022.132302_bib56) 2012; 51 Li (10.1016/j.snb.2022.132302_bib6) 2019; 289 |
References_xml | – volume: 51 start-page: 566 year: 2012 end-page: 575 ident: bib56 article-title: Chitosan/halloysite nanotubes bionanocomposites: Structure, mechanical properties and biocompatibility publication-title: Int. J. Biol. Macromol. – volume: 361 year: 2022 ident: bib73 article-title: Detection of acetone via exhaling human breath for regular monitoring of diabetes by low-cost sensing device based on perovskite BaSnO publication-title: Sens. Actuators B Chem. – volume: 41 start-page: 5396 year: 2016 end-page: 5404 ident: bib33 article-title: Doping composite of polyaniline and reduced graphene oxide with palladium nanoparticles for room-temperature hydrogen-gas sensing publication-title: Int. J. Hydrog. Energy – volume: 332 year: 2021 ident: bib45 article-title: The recent development of metal oxide heterostructures based gas sensor, their future opportunities and challenges: a review publication-title: Sens. Actuators, A – volume: 207 start-page: 46 year: 2015 end-page: 52 ident: bib49 article-title: Polyethylenimine functionalized halloysite nanotubes for efficient removal and fixation of Cr (VI) publication-title: Microporous Mesoporous Mater. – volume: 8 start-page: 26578 year: 2016 end-page: 26590 ident: bib50 article-title: Enhanced therapeutic efficacy of doxorubicin for breast cancer using chitosan oligosaccharide-modified halloysite nanotubes publication-title: ACS Appl. Mater. Interfaces – volume: 129 start-page: 319 year: 2008 end-page: 326 ident: bib40 article-title: Influence of polymerization temperature on NH publication-title: Sens. Actuators B Chem. – volume: 6 start-page: 14131 year: 2014 end-page: 14140 ident: bib62 article-title: Enhanced sensitivity and stability of room-temperature NH publication-title: ACS Appl. Mater. Interfaces – volume: 10 year: 2021 ident: bib35 article-title: High-performance PANI-based ammonia gas sensor promoted by surface nanostructuralization publication-title: ECS J. Solid State Sci. Technol. – volume: 6 start-page: 1715 year: 2012 end-page: 1723 ident: bib52 article-title: Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors publication-title: ACS Nano – volume: 276 start-page: 526 year: 2018 end-page: 533 ident: bib63 article-title: Enhanced room temperature gas sensor based on Au-loaded mesoporous In publication-title: Sens. Actuators B Chem. – volume: 355 year: 2022 ident: bib68 article-title: Sea urchins-like WO publication-title: Sens. Actuators B Chem. – volume: 88 start-page: 14 year: 2017 ident: bib10 article-title: Measurement of breath ammonia for detection of patients with chronic kidney disease publication-title: Clin. Nephrol. – volume: 6 start-page: 6939 year: 2016 end-page: 6945 ident: bib58 article-title: Hierarchical polyaniline microspheres loading on flexible PET films for NH publication-title: RSC Adv. – volume: 125 year: 2020 ident: bib13 article-title: Facile synthesis of ultrafine rGO/WO publication-title: Mater. Res. Bull. – volume: 319 year: 2020 ident: bib61 article-title: Ultrasensitive flexible NH publication-title: Sens. Actuators B Chem. – volume: 42 start-page: 735 year: 2018 end-page: 745 ident: bib23 article-title: Ammonia vapour sensing properties of in situ polymerized conducting PANI-nanofiber/WS publication-title: N. J. Chem. – volume: 318 year: 2020 ident: bib8 article-title: Evolution of breath analysis based on humidity and gas sensors: potential and challenges publication-title: Sens. Actuators B Chem. – volume: 20 start-page: 149 year: 2019 ident: bib19 article-title: High-performance gas sensor of polyaniline/carbon nanotube composites promoted by interface engineering publication-title: Sensors – volume: 316 year: 2020 ident: bib17 article-title: Trace-level ammonia detection at room temperature based on porous flexible polyaniline/polyvinylidene fluoride sensing film with carbon nanotube additives publication-title: Sens. Actuators B Chem. – volume: 9 start-page: 14963 year: 2021 end-page: 14980 ident: bib71 article-title: Recent advances in humidity sensors for human body related humidity detection publication-title: J. Mater. Chem. C. – volume: 370 start-page: 126 year: 2019 end-page: 137 ident: bib1 article-title: Fabrication and characterization of ZnO-TiO publication-title: J. Hazard. Mater. – volume: 46 start-page: 6895 year: 2017 end-page: 6900 ident: bib64 article-title: Mixed-potential-type gas sensors based on Pt/YSZ film/LaFeO publication-title: J. Electron. Mater. – volume: 14 start-page: 7301 year: 2022 end-page: 7310 ident: bib74 article-title: Simultaneous biomechanical and biochemical monitoring for self-powered breath analysis, ACS Appl. Mater publication-title: Interface – volume: 6 start-page: 2858 year: 2021 end-page: 2867 ident: bib43 article-title: Enhanced blocking effect: a new strategy to improve the NO publication-title: ACS Sens. – volume: 21 start-page: 1443 year: 2021 ident: bib9 article-title: A review on functionalized graphene sensors for detection of ammonia publication-title: Sensors – volume: 244 start-page: 47 year: 2017 end-page: 53 ident: bib51 article-title: Flexible polyaniline/carbon nanotube nanocomposite film-based electronic gas sensors publication-title: Sens. Actuators B Chem. – volume: 246 start-page: 85 year: 2017 end-page: 95 ident: bib32 article-title: Enhanced ammonia-sensing properties of PANI-TiO publication-title: Sens. Actuators B Chem. – volume: 309 start-page: 151 year: 2016 end-page: 156 ident: bib47 article-title: Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe publication-title: J. Hazard. Mater. – volume: 13 start-page: 3077 year: 2021 ident: bib30 article-title: A novel trace-level ammonia gas sensing based on flexible PANI-CoFe publication-title: Polymers – volume: 55 start-page: 5156 year: 2020 end-page: 5165 ident: bib38 article-title: Facile synthesis of palladium-decorated three-dimensional conducting polymer nanofilm for highly sensitive H publication-title: J. Mater. Sci. – volume: 21 start-page: 7522 year: 2021 ident: bib22 article-title: A highly sensitive ammonia gas sensor using micrometer-sized core-shell-type spherical polyaniline particles publication-title: Sensors – volume: 26 start-page: 605 year: 2010 end-page: 613 ident: bib42 article-title: Preparation, characterization and comparative NH publication-title: J. Mater. Sci. Technol. – volume: 66 start-page: 102 year: 2019 end-page: 109 ident: bib24 article-title: A high performance sensor based on PANI/ZnTi-LDHs nanocomposite for trace NH publication-title: Org. Electron. – volume: 340 year: 2021 ident: bib14 article-title: High NH publication-title: Sens. Actuators B Chem. – volume: 317 year: 2020 ident: bib39 article-title: Halloysite nanotubes: natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor publication-title: Sens. Actuators B Chem. – volume: 4 start-page: 6362 year: 2016 end-page: 6370 ident: bib59 article-title: Magnetic graphene@PANI@porous TiO publication-title: J. Mater. Chem. C. – volume: 21 start-page: 1443 year: 2021 ident: bib4 article-title: A review on functionalized graphene sensors for detection of ammonia publication-title: Sensors – volume: 462 year: 2022 ident: bib34 article-title: Conducting polymer-based nanostructures for gas sensors publication-title: Coord. Chem. Rev. – volume: 6 start-page: 5627 year: 2018 end-page: 5634 ident: bib55 article-title: Solution-processable flexible thermoelectric composite films based on conductive polymer/SnSe publication-title: J. Mater. Chem. A. – volume: 378 start-page: 20190324 year: 2020 ident: bib5 article-title: Environmental impacts of nitrogen emissions in China and the role of policies in emission reduction publication-title: Philos. Trans. R. Soc., A – volume: 239 start-page: 131 year: 2017 end-page: 138 ident: bib54 article-title: Preparation of conducting films based on α-MoO publication-title: Sens. Actuators B Chem. – volume: 347 year: 2021 ident: bib69 article-title: Enhanced ammonia detection of gas sensors based on square-like tungsten oxide loaded by Pt nanoparticles publication-title: Sens. Actuators B Chem. – volume: 568 start-page: 81 year: 2020 end-page: 88 ident: bib12 article-title: Precise preparation of WO publication-title: J. Colloid Interface Sci. – volume: 60 start-page: 1112 year: 2021 end-page: 1136 ident: bib20 article-title: Recent developments in polymer nanocomposite-based electrochemical sensors for detecting environmental pollutants publication-title: Ind. Eng. Chem. Res. – volume: 31 year: 2020 ident: bib29 article-title: High-performance chemiresistor-type NH publication-title: Nanotechnology – volume: 249 start-page: 348 year: 2017 end-page: 356 ident: bib31 article-title: Elaboration of Pd-nanoparticle decorated polyaniline films for room temperature NH publication-title: Sens. Actuators B Chem. – volume: 363 year: 2022 ident: bib44 article-title: Ag publication-title: Sens. Actuators B Chem. – volume: 366 start-page: 486 year: 2016 end-page: 493 ident: bib60 article-title: One-step synthesis of novel PANI-Fe publication-title: Appl. Surf. Sci. – volume: 8 start-page: 13482 year: 2020 end-page: 13500 ident: bib21 article-title: Recent progress in chemical gas sensors based on organic thin film transistors publication-title: J. Mater. Chem. C. – volume: 327 year: 2021 ident: bib15 article-title: PANI nanofibers-supported Nb publication-title: Sens. Actuators B Chem. – volume: 446 year: 2022 ident: bib72 article-title: Power generation humidity sensor based on primary battery structure publication-title: Chem. Eng. J. – volume: 187 start-page: 1 year: 2020 end-page: 10 ident: bib16 article-title: Synthesis of ZnO@ poly-o-methoxyaniline nanosheet composite for enhanced NH publication-title: Microchim. Acta – volume: 5 start-page: 10559 year: 2013 end-page: 10564 ident: bib48 article-title: Surface modification of halloysite nanotubes with dopamine for enzyme immobilization publication-title: ACS Appl. Mater. Interfaces – volume: 370 start-page: 235 year: 2019 end-page: 243 ident: bib18 article-title: Atomic layer deposition of titanium dioxide on multi-walled carbon nanotubes for ammonia gas sensing publication-title: Surf. Coat. Technol. – volume: 434 year: 2022 ident: bib2 article-title: Edge-enriched MoS publication-title: J. Hazard. Mater. – volume: 368 year: 2022 ident: bib3 article-title: Development of MoO publication-title: Sens. Actuators B Chem. – volume: 46 start-page: 19232 year: 2020 end-page: 19240 ident: bib11 article-title: Band-gap-tunable CeO publication-title: Ceram. Int. – volume: 60 start-page: 6908 year: 2021 end-page: 6924 ident: bib7 article-title: An overview of ammonia separation by ionic liquids publication-title: Ind. Eng. Chem. Res. – volume: 343 year: 2021 ident: bib65 article-title: Ultrathin Nb publication-title: Sens. Actuators B Chem. – volume: 8 start-page: 154 year: 2010 end-page: 159 ident: bib41 article-title: Preparation of surfactants directed PANI/In publication-title: J. Electron. Sci. Technol. – volume: 288 start-page: 279 year: 2019 end-page: 288 ident: bib66 article-title: Hybrid polyaniline-WO publication-title: Sens. Actuators B Chem. – volume: 255 start-page: 1869 year: 2018 end-page: 1877 ident: bib53 article-title: Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film publication-title: Sens. Actuators B Chem. – volume: 226 start-page: 540 year: 2016 end-page: 547 ident: bib46 article-title: Polyaniline@SnO publication-title: Sens. Actuators B Chem. – volume: 289 start-page: 252 year: 2019 end-page: 259 ident: bib6 article-title: Design and preparation of the WO publication-title: Sens. Actuators B Chem. – volume: 258 start-page: 895 year: 2018 end-page: 905 ident: bib67 article-title: Facile fabrication of polyaniline/multi-walled carbon nanotubes/molybdenum disulfide ternary nanocomposite and its high-performance ammonia-sensing at room temperature publication-title: Sens. Actuators B Chem. – volume: 6 start-page: 493 year: 2018 ident: bib25 article-title: Enhanced sub-ppm NH publication-title: Front. Chem. – volume: 261 start-page: 587 year: 2018 end-page: 597 ident: bib26 article-title: A high-performance flexible gas sensor based on self-assembled PANI-CeO publication-title: Sens. Actuators B Chem. – volume: 31 start-page: 8825 year: 2020 end-page: 8836 ident: bib27 article-title: A one-pot hydrothermal-induced PANI/SnO publication-title: J. Mater. Sci.: Mater. Electron. – volume: 221 start-page: 1523 year: 2015 end-page: 1534 ident: bib28 article-title: Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection publication-title: Sens. Actuators B Chem. – volume: 215 start-page: 58 year: 2018 end-page: 61 ident: bib75 article-title: Fabrication of electrospun LaFeO publication-title: Mater. Lett. – volume: 27 start-page: 3803 year: 2015 end-page: 3810 ident: bib36 article-title: Rotation-misfit-free heteroepitaxial stacking and stitching growth of hexagonal transition-metal dichalcogenide monolayers by nucleation kinetics controls publication-title: Adv. Mater. – volume: 31 start-page: 521 year: 2020 end-page: 524 ident: bib37 article-title: Two-dimensional mesoporous sensing materials publication-title: Chin. Chem. Lett. – volume: 129 year: 2007 ident: bib57 article-title: Red-, blue-, or no-shift in hydrogen bonds: a unified explanation publication-title: J. Am. Chem. Soc. – volume: 329 year: 2021 ident: bib70 article-title: Microhotplate gas sensors incorporated with Al electrodes and 3D hierarchical structured PdO/PdO publication-title: Sens. Actuators B Chem. – volume: 20 start-page: 149 year: 2019 ident: 10.1016/j.snb.2022.132302_bib19 article-title: High-performance gas sensor of polyaniline/carbon nanotube composites promoted by interface engineering publication-title: Sensors doi: 10.3390/s20010149 – volume: 317 year: 2020 ident: 10.1016/j.snb.2022.132302_bib39 article-title: Halloysite nanotubes: natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.128204 – volume: 309 start-page: 151 year: 2016 ident: 10.1016/j.snb.2022.132302_bib47 article-title: Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe3O4/halloysite nanohybrid publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.01.081 – volume: 246 start-page: 85 year: 2017 ident: 10.1016/j.snb.2022.132302_bib32 article-title: Enhanced ammonia-sensing properties of PANI-TiO2-Au ternary self-assembly nanocomposite thin film at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.01.046 – volume: 55 start-page: 5156 year: 2020 ident: 10.1016/j.snb.2022.132302_bib38 article-title: Facile synthesis of palladium-decorated three-dimensional conducting polymer nanofilm for highly sensitive H2 gas sensor publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-04370-7 – volume: 9 start-page: 14963 year: 2021 ident: 10.1016/j.snb.2022.132302_bib71 article-title: Recent advances in humidity sensors for human body related humidity detection publication-title: J. Mater. Chem. C. doi: 10.1039/D1TC04180K – volume: 568 start-page: 81 year: 2020 ident: 10.1016/j.snb.2022.132302_bib12 article-title: Precise preparation of WO3@SnO2 core shell nanosheets for efficient NH3 gas sensing publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.02.042 – volume: 462 year: 2022 ident: 10.1016/j.snb.2022.132302_bib34 article-title: Conducting polymer-based nanostructures for gas sensors publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214517 – volume: 329 year: 2021 ident: 10.1016/j.snb.2022.132302_bib70 article-title: Microhotplate gas sensors incorporated with Al electrodes and 3D hierarchical structured PdO/PdO2-SnO2:Sb materials for sensitive VOC detection publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.128984 – volume: 434 year: 2022 ident: 10.1016/j.snb.2022.132302_bib2 article-title: Edge-enriched MoS2 nanosheets modified porous nanosheet-assembled hierarchical In2O3 microflowers for room temperature detection of NO2 with ultrahigh sensitivity and selectivity publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.128836 – volume: 6 start-page: 493 year: 2018 ident: 10.1016/j.snb.2022.132302_bib25 article-title: Enhanced sub-ppm NH3 gas sensing performance of PANI/TiO2 nanocomposites at room temperature publication-title: Front. Chem. doi: 10.3389/fchem.2018.00493 – volume: 6 start-page: 1715 year: 2012 ident: 10.1016/j.snb.2022.132302_bib52 article-title: Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors publication-title: ACS Nano doi: 10.1021/nn204688c – volume: 258 start-page: 895 year: 2018 ident: 10.1016/j.snb.2022.132302_bib67 article-title: Facile fabrication of polyaniline/multi-walled carbon nanotubes/molybdenum disulfide ternary nanocomposite and its high-performance ammonia-sensing at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.11.168 – volume: 288 start-page: 279 year: 2019 ident: 10.1016/j.snb.2022.132302_bib66 article-title: Hybrid polyaniline-WO3 flexible sensor: a room temperature competence towards NH3 gas publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.02.094 – volume: 26 start-page: 605 year: 2010 ident: 10.1016/j.snb.2022.132302_bib42 article-title: Preparation, characterization and comparative NH3-sensing characteristic studies of PANI/inorganic oxides nanocomposite thin films publication-title: J. Mater. Sci. Technol. doi: 10.1016/S1005-0302(10)60093-X – volume: 6 start-page: 5627 year: 2018 ident: 10.1016/j.snb.2022.132302_bib55 article-title: Solution-processable flexible thermoelectric composite films based on conductive polymer/SnSe0.8S0.2 nanosheets/carbon nanotubes for wearable electronic applications publication-title: J. Mater. Chem. A. doi: 10.1039/C7TA11285H – volume: 8 start-page: 26578 year: 2016 ident: 10.1016/j.snb.2022.132302_bib50 article-title: Enhanced therapeutic efficacy of doxorubicin for breast cancer using chitosan oligosaccharide-modified halloysite nanotubes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b09074 – volume: 370 start-page: 235 year: 2019 ident: 10.1016/j.snb.2022.132302_bib18 article-title: Atomic layer deposition of titanium dioxide on multi-walled carbon nanotubes for ammonia gas sensing publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2019.04.031 – volume: 46 start-page: 19232 year: 2020 ident: 10.1016/j.snb.2022.132302_bib11 article-title: Band-gap-tunable CeO2 nanoparticles for room-temperature NH3 gas sensors publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.04.261 – volume: 378 start-page: 20190324 year: 2020 ident: 10.1016/j.snb.2022.132302_bib5 article-title: Environmental impacts of nitrogen emissions in China and the role of policies in emission reduction publication-title: Philos. Trans. R. Soc., A doi: 10.1098/rsta.2019.0324 – volume: 46 start-page: 6895 year: 2017 ident: 10.1016/j.snb.2022.132302_bib64 article-title: Mixed-potential-type gas sensors based on Pt/YSZ film/LaFeO3 for detecting NO2 publication-title: J. Electron. Mater. doi: 10.1007/s11664-017-5738-8 – volume: 21 start-page: 1443 year: 2021 ident: 10.1016/j.snb.2022.132302_bib4 article-title: A review on functionalized graphene sensors for detection of ammonia publication-title: Sensors doi: 10.3390/s21041443 – volume: 60 start-page: 1112 year: 2021 ident: 10.1016/j.snb.2022.132302_bib20 article-title: Recent developments in polymer nanocomposite-based electrochemical sensors for detecting environmental pollutants publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c04952 – volume: 31 year: 2020 ident: 10.1016/j.snb.2022.132302_bib29 article-title: High-performance chemiresistor-type NH3 gas sensor based on three-dimensional reduced graphene oxide/polyaniline hybrid publication-title: Nanotechnology doi: 10.1088/1361-6528/ab9daa – volume: 343 year: 2021 ident: 10.1016/j.snb.2022.132302_bib65 article-title: Ultrathin Nb2CTx nanosheets-supported polyaniline nanocomposite: enabling ultrasensitive NH3 detection publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2021.130069 – volume: 318 year: 2020 ident: 10.1016/j.snb.2022.132302_bib8 article-title: Evolution of breath analysis based on humidity and gas sensors: potential and challenges publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.128104 – volume: 125 year: 2020 ident: 10.1016/j.snb.2022.132302_bib13 article-title: Facile synthesis of ultrafine rGO/WO3 nanowire nanocomposites for highly sensitive toxic NH3 gas sensors publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2020.110810 – volume: 361 year: 2022 ident: 10.1016/j.snb.2022.132302_bib73 article-title: Detection of acetone via exhaling human breath for regular monitoring of diabetes by low-cost sensing device based on perovskite BaSnO3 nanorods publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2022.131708 – volume: 276 start-page: 526 year: 2018 ident: 10.1016/j.snb.2022.132302_bib63 article-title: Enhanced room temperature gas sensor based on Au-loaded mesoporous In2O3 nanospheres@polyaniline core-shell nanohybrid assembled on flexible PET substrate for NH3 detection publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.08.120 – volume: 244 start-page: 47 year: 2017 ident: 10.1016/j.snb.2022.132302_bib51 article-title: Flexible polyaniline/carbon nanotube nanocomposite film-based electronic gas sensors publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2016.12.064 – volume: 255 start-page: 1869 year: 2018 ident: 10.1016/j.snb.2022.132302_bib53 article-title: Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.08.212 – volume: 347 year: 2021 ident: 10.1016/j.snb.2022.132302_bib69 article-title: Enhanced ammonia detection of gas sensors based on square-like tungsten oxide loaded by Pt nanoparticles publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2021.130621 – volume: 187 start-page: 1 year: 2020 ident: 10.1016/j.snb.2022.132302_bib16 article-title: Synthesis of ZnO@ poly-o-methoxyaniline nanosheet composite for enhanced NH3-sensing performance at room temperature publication-title: Microchim. Acta doi: 10.1007/s00604-020-04513-2 – volume: 41 start-page: 5396 year: 2016 ident: 10.1016/j.snb.2022.132302_bib33 article-title: Doping composite of polyaniline and reduced graphene oxide with palladium nanoparticles for room-temperature hydrogen-gas sensing publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.02.023 – volume: 340 year: 2021 ident: 10.1016/j.snb.2022.132302_bib14 article-title: High NH3 sensing performance of NiO/PPy hybrid nanostructures publication-title: Sens. Actuators B Chem. – volume: 4 start-page: 6362 year: 2016 ident: 10.1016/j.snb.2022.132302_bib59 article-title: Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption publication-title: J. Mater. Chem. C. doi: 10.1039/C6TC01718E – volume: 21 start-page: 7522 year: 2021 ident: 10.1016/j.snb.2022.132302_bib22 article-title: A highly sensitive ammonia gas sensor using micrometer-sized core-shell-type spherical polyaniline particles publication-title: Sensors doi: 10.3390/s21227522 – volume: 10 year: 2021 ident: 10.1016/j.snb.2022.132302_bib35 article-title: High-performance PANI-based ammonia gas sensor promoted by surface nanostructuralization publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2162-8777/abe3ce – volume: 60 start-page: 6908 year: 2021 ident: 10.1016/j.snb.2022.132302_bib7 article-title: An overview of ammonia separation by ionic liquids publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.1c00780 – volume: 129 start-page: 319 year: 2008 ident: 10.1016/j.snb.2022.132302_bib40 article-title: Influence of polymerization temperature on NH3 response of PANI/TiO2 thin film gas sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2007.08.013 – volume: 6 start-page: 2858 year: 2021 ident: 10.1016/j.snb.2022.132302_bib43 article-title: Enhanced blocking effect: a new strategy to improve the NO2 sensing performance of Ti3C2Tx by γ-Poly (l-glutamic acid) modification publication-title: ACS Sens. doi: 10.1021/acssensors.1c00132 – volume: 51 start-page: 566 year: 2012 ident: 10.1016/j.snb.2022.132302_bib56 article-title: Chitosan/halloysite nanotubes bionanocomposites: Structure, mechanical properties and biocompatibility publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2012.06.022 – volume: 289 start-page: 252 year: 2019 ident: 10.1016/j.snb.2022.132302_bib6 article-title: Design and preparation of the WO3 hollow spheres@PANI conducting films for room temperature flexible NH3 sensing device publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.03.073 – volume: 249 start-page: 348 year: 2017 ident: 10.1016/j.snb.2022.132302_bib31 article-title: Elaboration of Pd-nanoparticle decorated polyaniline films for room temperature NH3 gas sensors publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.04.115 – volume: 363 year: 2022 ident: 10.1016/j.snb.2022.132302_bib44 article-title: Ag2Te nanowires for humidity-resistant trace-level NO2 detection at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2022.131790 – volume: 226 start-page: 540 year: 2016 ident: 10.1016/j.snb.2022.132302_bib46 article-title: Polyaniline@SnO2 heterojunction loading on flexible PET thin film for detection of NH3 at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.12.007 – volume: 31 start-page: 521 year: 2020 ident: 10.1016/j.snb.2022.132302_bib37 article-title: Two-dimensional mesoporous sensing materials publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2019.04.071 – volume: 446 year: 2022 ident: 10.1016/j.snb.2022.132302_bib72 article-title: Power generation humidity sensor based on primary battery structure publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136910 – volume: 332 year: 2021 ident: 10.1016/j.snb.2022.132302_bib45 article-title: The recent development of metal oxide heterostructures based gas sensor, their future opportunities and challenges: a review publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2021.113127 – volume: 13 start-page: 3077 year: 2021 ident: 10.1016/j.snb.2022.132302_bib30 article-title: A novel trace-level ammonia gas sensing based on flexible PANI-CoFe2O4 nanocomposite film at room temperature publication-title: Polymers doi: 10.3390/polym13183077 – volume: 27 start-page: 3803 year: 2015 ident: 10.1016/j.snb.2022.132302_bib36 article-title: Rotation-misfit-free heteroepitaxial stacking and stitching growth of hexagonal transition-metal dichalcogenide monolayers by nucleation kinetics controls publication-title: Adv. Mater. doi: 10.1002/adma.201500846 – volume: 42 start-page: 735 year: 2018 ident: 10.1016/j.snb.2022.132302_bib23 article-title: Ammonia vapour sensing properties of in situ polymerized conducting PANI-nanofiber/WS2 nanosheet composites publication-title: N. J. Chem. doi: 10.1039/C7NJ03343E – volume: 261 start-page: 587 year: 2018 ident: 10.1016/j.snb.2022.132302_bib26 article-title: A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.12.022 – volume: 31 start-page: 8825 year: 2020 ident: 10.1016/j.snb.2022.132302_bib27 article-title: A one-pot hydrothermal-induced PANI/SnO2 and PANI/SnO2/rGO ternary composites for high-performance chemiresistive-based H2S and NH3 gas sensors publication-title: J. Mater. Sci.: Mater. Electron. – volume: 327 year: 2021 ident: 10.1016/j.snb.2022.132302_bib15 article-title: PANI nanofibers-supported Nb2CTx nanosheets-enabled selective NH3 detection driven by TENG at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.128923 – volume: 6 start-page: 14131 year: 2014 ident: 10.1016/j.snb.2022.132302_bib62 article-title: Enhanced sensitivity and stability of room-temperature NH3 sensors using core-shell CeO2 nanoparticles@cross-linked PANI with p-n heterojunctions publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am503286h – volume: 6 start-page: 6939 year: 2016 ident: 10.1016/j.snb.2022.132302_bib58 article-title: Hierarchical polyaniline microspheres loading on flexible PET films for NH3 sensing at room temperature publication-title: RSC Adv. doi: 10.1039/C5RA19079G – volume: 207 start-page: 46 year: 2015 ident: 10.1016/j.snb.2022.132302_bib49 article-title: Polyethylenimine functionalized halloysite nanotubes for efficient removal and fixation of Cr (VI) publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2014.12.031 – volume: 239 start-page: 131 year: 2017 ident: 10.1016/j.snb.2022.132302_bib54 article-title: Preparation of conducting films based on α-MoO3/PANI hybrids and their sensing properties to triethylamine at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2016.07.174 – volume: 66 start-page: 102 year: 2019 ident: 10.1016/j.snb.2022.132302_bib24 article-title: A high performance sensor based on PANI/ZnTi-LDHs nanocomposite for trace NH3 detection publication-title: Org. Electron. doi: 10.1016/j.orgel.2018.12.018 – volume: 5 start-page: 10559 year: 2013 ident: 10.1016/j.snb.2022.132302_bib48 article-title: Surface modification of halloysite nanotubes with dopamine for enzyme immobilization publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4022973 – volume: 8 start-page: 13482 year: 2020 ident: 10.1016/j.snb.2022.132302_bib21 article-title: Recent progress in chemical gas sensors based on organic thin film transistors publication-title: J. Mater. Chem. C. doi: 10.1039/D0TC03132A – volume: 370 start-page: 126 year: 2019 ident: 10.1016/j.snb.2022.132302_bib1 article-title: Fabrication and characterization of ZnO-TiO2-PANI (ZTP) micro/nanoballs for the detection of flammable and toxic gases publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.10.016 – volume: 88 start-page: 14 year: 2017 ident: 10.1016/j.snb.2022.132302_bib10 article-title: Measurement of breath ammonia for detection of patients with chronic kidney disease publication-title: Clin. Nephrol. doi: 10.5414/CNP88FX04 – volume: 8 start-page: 154 year: 2010 ident: 10.1016/j.snb.2022.132302_bib41 article-title: Preparation of surfactants directed PANI/In2O3 nanocomposite thin films and its NH3-sensing properties publication-title: J. Electron. Sci. Technol. – volume: 368 year: 2022 ident: 10.1016/j.snb.2022.132302_bib3 article-title: Development of MoO3-CdO nanoparticles based sensing device for the detection of harmful acetone levels in our skin and body via nail paint remover publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2022.132102 – volume: 319 year: 2020 ident: 10.1016/j.snb.2022.132302_bib61 article-title: Ultrasensitive flexible NH3 gas sensor based on polyaniline/SrGe4O9 nanocomposite with ppt-level detection ability at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.128293 – volume: 14 start-page: 7301 year: 2022 ident: 10.1016/j.snb.2022.132302_bib74 article-title: Simultaneous biomechanical and biochemical monitoring for self-powered breath analysis, ACS Appl. Mater publication-title: Interface – volume: 21 start-page: 1443 year: 2021 ident: 10.1016/j.snb.2022.132302_bib9 article-title: A review on functionalized graphene sensors for detection of ammonia publication-title: Sensors doi: 10.3390/s21041443 – volume: 355 year: 2022 ident: 10.1016/j.snb.2022.132302_bib68 article-title: Sea urchins-like WO3 as a material for resistive acetone gas sensors publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2021.131262 – volume: 316 year: 2020 ident: 10.1016/j.snb.2022.132302_bib17 article-title: Trace-level ammonia detection at room temperature based on porous flexible polyaniline/polyvinylidene fluoride sensing film with carbon nanotube additives publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.128198 – volume: 129 year: 2007 ident: 10.1016/j.snb.2022.132302_bib57 article-title: Red-, blue-, or no-shift in hydrogen bonds: a unified explanation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja067545z – volume: 215 start-page: 58 year: 2018 ident: 10.1016/j.snb.2022.132302_bib75 article-title: Fabrication of electrospun LaFeO3 nanotubes via annealing technique for fast ethanol detection publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.12.062 – volume: 366 start-page: 486 year: 2016 ident: 10.1016/j.snb.2022.132302_bib60 article-title: One-step synthesis of novel PANI-Fe3O4@ZnO core-shell microspheres: an efficient photocatalyst under visible light irradiation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.01.137 – volume: 221 start-page: 1523 year: 2015 ident: 10.1016/j.snb.2022.132302_bib28 article-title: Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.08.002 |
SSID | ssj0004360 |
Score | 2.6486256 |
Snippet | The synthesis of polyaniline (PANI) composites is an effective method to improve the ammonia (NH3) gas sensing performance of PANI, and it is of great... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 132302 |
SubjectTerms | Ammonia Composite materials Gas sensors Halloysite nanotubes Morphology Morphology modification NH3 sensor Polyaniline Polyanilines Relative humidity Selectivity Sensors Specific surface Surface area |
Title | Enhanced NH3 sensing performance of polyaniline via a facile morphology modification strategy |
URI | https://dx.doi.org/10.1016/j.snb.2022.132302 https://www.proquest.com/docview/2712887266 |
Volume | 369 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSsNAcCn1ogfxifVR9uBJSJvHJJscRZSq2IsWepFlsw-N1LSYKnjx253Nw6pID96SMLuEmdl57TwIOQaQWglfODKQzAHwwUljoxwj3DCWIagosIXCN8NoMIKrcThukbOmFsamVdayv5LppbSuv_RrbPZnWda_dRN0bmxY0wb4AWzHTwBmubz3sUjzgKCsFLbAjoVubjbLHK8iT9FF9P0e-mRBHVn5Qzf9ktKl6rnYIOu1zUhPq9_aJC2db5G1b50Et8n9ef5Y3uXT4SCghc1Kzx_obFEVQKeGzqaTd5Fn1rCkb5mgghohUSrQ5yliu4yv46OyyUMlvWhRta593yGji_O7s4FTT05wJLoIc0e5npChlLHUKXg69OJUeonUiYTAV74UUcRck0ShYUxIJkwoTOwbEZlAo8nhBbuknU9zvUeojiNlR6wj8TQkwFLcUKEPlQrUfZ5KOsRtcMZl3VbcTreY8CZ_7IkjmrlFM6_Q3CEnX0tmVU-NZcDQEIL_YAyOMn_ZssOGaLw-lQX3GWrjmKFNsv-_XQ_Iqn2zussLD0l7_vKqj9Aomafdkuu6ZOX08now_AREg-E1 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH8Ylvc_Ak1G2bpI-jiFJfe1HBi4Q0D13R7uKugv_eSZv6Qjx4K20mlG-SeWVmArDLmDJaxjJQVKUBYzELyszqwMqQZ4oznVBXKHzRS4prdnrDbybgsK2FcWmVXvY3Mr2W1v5N16PZHfb73cswR-fGhTVdgJ8xOglTrjsV78DUwclZ0fssj6R1sbAbHziC9nCzTvMaVSV6iXG8j24Z9cGVX9TTD0Fda5_jeZjzZiM5aP5sASZMtQizX5oJLsHtUXVfH-eTXkHJyCWmV3dk-FkYQAaWDAePb7LqO9uSvPYlkcRKhYKBPA0Q8DrEjo_a5Q_VLCOjpnvt2zJcHx9dHRaBvzwhUOgljAMdRlJxpTJlShYZHmWlinJlcsVorGMlkyQNbZ5wm6ZSpdJyabPYysRSg1ZHRFegUw0qswrEZIl2t6wj_wzLWVrihBrdqFKi-ot0vgZhi5lQvrO4u-DiUbQpZA8CYRYOZtHAvAZ7HyTDpq3GX4NZywjxbW0IFPt_kW22TBN-Y45EnKJCzlI0S9b_N-sOTBdXF-fi_KR3tgEz7otTZRHfhM74-cVsoY0yLrf9GnwHBrXj5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+NH3+sensing+performance+of+polyaniline+via+a+facile+morphology+modification+strategy&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Duan%2C+Xiaohui&rft.au=Duan%2C+Zaihua&rft.au=Zhang%2C+Yajie&rft.au=Liu%2C+Bohao&rft.date=2022-10-15&rft.pub=Elsevier+Science+Ltd&rft.issn=0925-4005&rft.eissn=1873-3077&rft.volume=B369&rft.spage=1&rft_id=info:doi/10.1016%2Fj.snb.2022.132302&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon |