Enhanced NH3 sensing performance of polyaniline via a facile morphology modification strategy

The synthesis of polyaniline (PANI) composites is an effective method to improve the ammonia (NH3) gas sensing performance of PANI, and it is of great significance to develop a simple method to prepare PANI composites. Herein, the PANI/halloysite nanotubes (PANI/HNTs) composite was prepared via a si...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. B, Chemical Vol. 369; p. 132302
Main Authors Duan, Xiaohui, Duan, Zaihua, Zhang, Yajie, Liu, Bohao, Li, Xian, Zhao, Qiuni, Yuan, Zhen, Jiang, Yadong, Tai, Huiling
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.10.2022
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The synthesis of polyaniline (PANI) composites is an effective method to improve the ammonia (NH3) gas sensing performance of PANI, and it is of great significance to develop a simple method to prepare PANI composites. Herein, the PANI/halloysite nanotubes (PANI/HNTs) composite was prepared via a simple in-situ polymerization method. Morphology characterization results show that the HNTs are covered by PANI to form a porous three-dimensional structure. Especially, the specific surface areas of the PANI and PANI/HNTs are 15.892 and 25.899 m2/g, respectively, and the specific surface area of PANI has been greatly improved (1.63 times). Gas sensing properties test results show that the PANI/HNTs sensor exhibits larger response (1.60 times) and shorter response/recovery times (0.93/0.6 times) than that of the PANI sensor to 10 ppm NH3 (25 °C, 50% relative humidity). In addition, the PANI/HNTs sensor exhibits low detection limit of 10 ppb NH3 and excellent selectivity. The enhanced NH3 sensing performance of PANI can be attributed to the unique hollow structure and large specific surface area of HNTs. In this work, a simple method is proposed to improve the NH3 sensing performance of PANI only by morphology modification. Meanwhile, it provides an idea for the application of HNTs in the field of gas sensors. •The NH3 sensing performance of PANI is improved by a facile morphology modification strategy.•PANI/HNTs sensor was prepared by the in-situ polymerization method.•PANI/HNTs sensor exhibits higher NH3 sensing response than the PANI sensor.•PANI/HNTs sensor has an ultra-low detection limit of 10 ppb NH3.
AbstractList The synthesis of polyaniline (PANI) composites is an effective method to improve the ammonia (NH3) gas sensing performance of PANI, and it is of great significance to develop a simple method to prepare PANI composites. Herein, the PANI/halloysite nanotubes (PANI/HNTs) composite was prepared via a simple in-situ polymerization method. Morphology characterization results show that the HNTs are covered by PANI to form a porous three-dimensional structure. Especially, the specific surface areas of the PANI and PANI/HNTs are 15.892 and 25.899 m2/g, respectively, and the specific surface area of PANI has been greatly improved (1.63 times). Gas sensing properties test results show that the PANI/HNTs sensor exhibits larger response (1.60 times) and shorter response/recovery times (0.93/0.6 times) than that of the PANI sensor to 10 ppm NH3 (25 °C, 50% relative humidity). In addition, the PANI/HNTs sensor exhibits low detection limit of 10 ppb NH3 and excellent selectivity. The enhanced NH3 sensing performance of PANI can be attributed to the unique hollow structure and large specific surface area of HNTs. In this work, a simple method is proposed to improve the NH3 sensing performance of PANI only by morphology modification. Meanwhile, it provides an idea for the application of HNTs in the field of gas sensors.
The synthesis of polyaniline (PANI) composites is an effective method to improve the ammonia (NH3) gas sensing performance of PANI, and it is of great significance to develop a simple method to prepare PANI composites. Herein, the PANI/halloysite nanotubes (PANI/HNTs) composite was prepared via a simple in-situ polymerization method. Morphology characterization results show that the HNTs are covered by PANI to form a porous three-dimensional structure. Especially, the specific surface areas of the PANI and PANI/HNTs are 15.892 and 25.899 m2/g, respectively, and the specific surface area of PANI has been greatly improved (1.63 times). Gas sensing properties test results show that the PANI/HNTs sensor exhibits larger response (1.60 times) and shorter response/recovery times (0.93/0.6 times) than that of the PANI sensor to 10 ppm NH3 (25 °C, 50% relative humidity). In addition, the PANI/HNTs sensor exhibits low detection limit of 10 ppb NH3 and excellent selectivity. The enhanced NH3 sensing performance of PANI can be attributed to the unique hollow structure and large specific surface area of HNTs. In this work, a simple method is proposed to improve the NH3 sensing performance of PANI only by morphology modification. Meanwhile, it provides an idea for the application of HNTs in the field of gas sensors. •The NH3 sensing performance of PANI is improved by a facile morphology modification strategy.•PANI/HNTs sensor was prepared by the in-situ polymerization method.•PANI/HNTs sensor exhibits higher NH3 sensing response than the PANI sensor.•PANI/HNTs sensor has an ultra-low detection limit of 10 ppb NH3.
ArticleNumber 132302
Author Duan, Xiaohui
Yuan, Zhen
Liu, Bohao
Li, Xian
Jiang, Yadong
Zhao, Qiuni
Duan, Zaihua
Zhang, Yajie
Tai, Huiling
Author_xml – sequence: 1
  givenname: Xiaohui
  surname: Duan
  fullname: Duan, Xiaohui
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
– sequence: 2
  givenname: Zaihua
  surname: Duan
  fullname: Duan, Zaihua
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
– sequence: 3
  givenname: Yajie
  surname: Zhang
  fullname: Zhang, Yajie
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
– sequence: 4
  givenname: Bohao
  surname: Liu
  fullname: Liu, Bohao
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
– sequence: 5
  givenname: Xian
  surname: Li
  fullname: Li, Xian
  organization: Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Agricultural Information Service Technology of Ministry of Agriculture, Beijing 100081, PR China
– sequence: 6
  givenname: Qiuni
  surname: Zhao
  fullname: Zhao, Qiuni
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
– sequence: 7
  givenname: Zhen
  surname: Yuan
  fullname: Yuan, Zhen
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
– sequence: 8
  givenname: Yadong
  surname: Jiang
  fullname: Jiang, Yadong
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
– sequence: 9
  givenname: Huiling
  surname: Tai
  fullname: Tai, Huiling
  email: taitai1980@uestc.edu.cn
  organization: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
BookMark eNp9kE1LAzEQhoNUsFZ_gLeA513z0d1s8SSlWqHoRY8S0tlJm7JN1mRb6L93az156GkGZp4Z3ueaDHzwSMgdZzlnvHzY5Mkvc8GEyLkUkokLMuSVkplkSg3IkE1EkY0ZK67IdUobxthYlmxIvmZ-bTxgTd_mkib0yfkVbTHaELfHAQ2WtqE5GO8a55HunaGGWgOuQboNsV2HJqwOfVs768B0Lniaumg6XB1uyKU1TcLbvzoin8-zj-k8W7y_vE6fFhmIouiymnEDBUAFuBxzLHi1BD4BnMBYilqAKUvF7KQsrFIGlLGFsZWwprQSVR9fjsj96W4bw_cOU6c3YRd9_1ILxUVVKVGW_RY_bUEMKUW0uo1ua-JBc6aPFvVG9xb10aI-WewZ9Y8B1_2G7CO65iz5eCKxD753GHUCh0fVLiJ0ug7uDP0DdB6Phw
CitedBy_id crossref_primary_10_1016_j_jece_2025_116258
crossref_primary_10_3390_s24248154
crossref_primary_10_3390_polym15224353
crossref_primary_10_1016_j_mseb_2023_117066
crossref_primary_10_3390_molecules29133028
crossref_primary_10_1039_D3TA02405A
crossref_primary_10_1007_s10853_023_08692_0
crossref_primary_10_1016_j_inoche_2023_111524
crossref_primary_10_1016_j_jhazmat_2024_136723
crossref_primary_10_1088_1402_4896_acfad1
crossref_primary_10_1016_j_snb_2023_135209
crossref_primary_10_1016_j_jece_2023_109969
crossref_primary_10_1016_j_ccr_2024_215657
crossref_primary_10_1016_j_snb_2023_133396
crossref_primary_10_1088_1361_6439_ace4d5
crossref_primary_10_1021_acssensors_4c03092
crossref_primary_10_1021_acsapm_3c01872
crossref_primary_10_1002_cnma_202400053
crossref_primary_10_1016_j_materresbull_2023_112394
crossref_primary_10_1016_j_apsusc_2023_157529
crossref_primary_10_1016_j_snb_2025_137404
crossref_primary_10_1016_j_snb_2024_135585
crossref_primary_10_1109_JSEN_2024_3388607
crossref_primary_10_1109_JSEN_2023_3312334
crossref_primary_10_1016_j_rechem_2023_101188
crossref_primary_10_1021_acsaelm_4c02132
crossref_primary_10_1038_s41598_024_62939_7
crossref_primary_10_1016_j_ceramint_2023_12_165
crossref_primary_10_1080_10601325_2022_2111262
crossref_primary_10_1016_j_snb_2023_134579
crossref_primary_10_3390_chemosensors11020132
crossref_primary_10_1016_j_jallcom_2024_174155
crossref_primary_10_1557_s43580_024_00817_0
crossref_primary_10_1021_acsomega_2c06243
crossref_primary_10_1039_D4CP04718D
crossref_primary_10_1021_acsmaterialslett_3c00698
crossref_primary_10_1016_j_cej_2024_155286
crossref_primary_10_1016_j_cplett_2025_142044
crossref_primary_10_1039_D3TA04974D
crossref_primary_10_1016_j_ijbiomac_2024_137226
crossref_primary_10_1016_j_sna_2025_116330
crossref_primary_10_1039_D4TA06632D
crossref_primary_10_1021_acs_biomac_3c01228
crossref_primary_10_1016_j_jece_2024_115294
crossref_primary_10_1016_j_snb_2022_133113
crossref_primary_10_1039_D3SD00067B
crossref_primary_10_1021_acssensors_4c03583
crossref_primary_10_1016_j_synthmet_2023_117348
crossref_primary_10_1038_s41598_024_77083_5
crossref_primary_10_1039_D4MH00651H
crossref_primary_10_1016_j_talanta_2024_127086
crossref_primary_10_1016_j_microc_2024_112369
crossref_primary_10_1016_j_clay_2024_107589
crossref_primary_10_1021_acsanm_3c01744
crossref_primary_10_1016_j_arabjc_2022_104478
crossref_primary_10_1021_acsomega_4c08662
crossref_primary_10_1109_JSEN_2024_3474703
crossref_primary_10_1016_j_jece_2024_114391
crossref_primary_10_1109_JSEN_2023_3266167
crossref_primary_10_3390_polym16010079
crossref_primary_10_1016_j_snb_2023_134320
crossref_primary_10_1039_D3TA03686C
crossref_primary_10_1021_acsanm_4c01054
crossref_primary_10_1109_JSEN_2023_3332036
crossref_primary_10_3390_chemosensors12030043
crossref_primary_10_1021_acsanm_3c02270
crossref_primary_10_1016_j_synthmet_2024_117695
crossref_primary_10_1039_D3MH01596C
crossref_primary_10_1016_j_talanta_2024_127226
crossref_primary_10_1021_acsaelm_4c01273
crossref_primary_10_1016_j_matchemphys_2023_127768
crossref_primary_10_3390_coatings13101677
crossref_primary_10_1039_D3DT02401F
crossref_primary_10_1016_j_jsamd_2025_100850
crossref_primary_10_1016_j_cej_2025_160598
crossref_primary_10_1016_j_sna_2025_116398
crossref_primary_10_1016_j_jallcom_2024_177710
crossref_primary_10_1016_j_snb_2023_135136
crossref_primary_10_3390_s24061824
crossref_primary_10_1016_j_jiec_2024_02_050
crossref_primary_10_1016_j_apsusc_2023_158478
crossref_primary_10_1016_j_cplett_2023_140803
crossref_primary_10_1039_D3TC00016H
crossref_primary_10_1016_j_jfca_2023_105422
crossref_primary_10_1016_j_matchemphys_2023_127573
crossref_primary_10_3390_pr13020401
crossref_primary_10_3390_polym14163401
crossref_primary_10_1016_j_matchemphys_2023_127975
crossref_primary_10_1021_acssensors_4c03487
crossref_primary_10_1016_j_matdes_2023_112360
crossref_primary_10_1002_cnma_202300191
crossref_primary_10_3390_s24113695
crossref_primary_10_1016_j_cej_2025_161381
crossref_primary_10_1016_j_rechem_2024_101395
crossref_primary_10_1016_j_snb_2023_135230
crossref_primary_10_1021_acsanm_3c05965
crossref_primary_10_1016_j_synthmet_2024_117710
crossref_primary_10_1016_j_est_2023_108266
crossref_primary_10_1016_j_snb_2024_135938
crossref_primary_10_1109_JSEN_2025_3526256
crossref_primary_10_1016_j_apsadv_2023_100516
crossref_primary_10_1016_j_sna_2024_115665
crossref_primary_10_1016_j_jallcom_2023_172782
crossref_primary_10_1016_j_snb_2024_136621
Cites_doi 10.3390/s20010149
10.1016/j.snb.2020.128204
10.1016/j.jhazmat.2016.01.081
10.1016/j.snb.2017.01.046
10.1007/s10853-020-04370-7
10.1039/D1TC04180K
10.1016/j.jcis.2020.02.042
10.1016/j.ccr.2022.214517
10.1016/j.snb.2020.128984
10.1016/j.jhazmat.2022.128836
10.3389/fchem.2018.00493
10.1021/nn204688c
10.1016/j.snb.2017.11.168
10.1016/j.snb.2019.02.094
10.1016/S1005-0302(10)60093-X
10.1039/C7TA11285H
10.1021/acsami.6b09074
10.1016/j.surfcoat.2019.04.031
10.1016/j.ceramint.2020.04.261
10.1098/rsta.2019.0324
10.1007/s11664-017-5738-8
10.3390/s21041443
10.1021/acs.iecr.0c04952
10.1088/1361-6528/ab9daa
10.1016/j.snb.2021.130069
10.1016/j.snb.2020.128104
10.1016/j.materresbull.2020.110810
10.1016/j.snb.2022.131708
10.1016/j.snb.2018.08.120
10.1016/j.snb.2016.12.064
10.1016/j.snb.2017.08.212
10.1016/j.snb.2021.130621
10.1007/s00604-020-04513-2
10.1016/j.ijhydene.2016.02.023
10.1039/C6TC01718E
10.3390/s21227522
10.1149/2162-8777/abe3ce
10.1021/acs.iecr.1c00780
10.1016/j.snb.2007.08.013
10.1021/acssensors.1c00132
10.1016/j.ijbiomac.2012.06.022
10.1016/j.snb.2019.03.073
10.1016/j.snb.2017.04.115
10.1016/j.snb.2022.131790
10.1016/j.snb.2015.12.007
10.1016/j.cclet.2019.04.071
10.1016/j.cej.2022.136910
10.1016/j.sna.2021.113127
10.3390/polym13183077
10.1002/adma.201500846
10.1039/C7NJ03343E
10.1016/j.snb.2017.12.022
10.1016/j.snb.2020.128923
10.1021/am503286h
10.1039/C5RA19079G
10.1016/j.micromeso.2014.12.031
10.1016/j.snb.2016.07.174
10.1016/j.orgel.2018.12.018
10.1021/am4022973
10.1039/D0TC03132A
10.1016/j.jhazmat.2018.10.016
10.5414/CNP88FX04
10.1016/j.snb.2022.132102
10.1016/j.snb.2020.128293
10.1016/j.snb.2021.131262
10.1016/j.snb.2020.128198
10.1021/ja067545z
10.1016/j.matlet.2017.12.062
10.1016/j.apsusc.2016.01.137
10.1016/j.snb.2015.08.002
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier Science Ltd. Oct 15, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Oct 15, 2022
DBID AAYXX
CITATION
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1016/j.snb.2022.132302
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3077
ExternalDocumentID 10_1016_j_snb_2022_132302
S0925400522009443
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATTM
AAXKI
AAXUO
ABFNM
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSH
SSK
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
RIG
SCB
SCH
SEW
WUQ
7SP
7SR
7TB
7U5
8BQ
8FD
EFKBS
FR3
JG9
L7M
ID FETCH-LOGICAL-c255t-d01ac5cc8ceb41e518bc19ce9c432d2ca6670f965f77ac7af5af82fa6f3e71013
IEDL.DBID .~1
ISSN 0925-4005
IngestDate Fri Jul 25 07:36:16 EDT 2025
Tue Jul 01 01:28:07 EDT 2025
Thu Apr 24 23:00:58 EDT 2025
Sun Apr 06 06:54:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords NH3 sensor
Morphology modification
Halloysite nanotubes
Polyaniline
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-d01ac5cc8ceb41e518bc19ce9c432d2ca6670f965f77ac7af5af82fa6f3e71013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2712887266
PQPubID 2047454
ParticipantIDs proquest_journals_2712887266
crossref_primary_10_1016_j_snb_2022_132302
crossref_citationtrail_10_1016_j_snb_2022_132302
elsevier_sciencedirect_doi_10_1016_j_snb_2022_132302
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-15
PublicationDateYYYYMMDD 2022-10-15
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-15
  day: 15
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. B, Chemical
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Li, Diao, Yang, He, Wang, Liu, Liu, Lu, Yan, Sun, Lu (bib63) 2018; 276
Tai, Wang, Duan, Jiang (bib8) 2020; 318
Zhang, Jiang, Duan, Wu, Zhao, Liu, Huang, Yuan, Li, Tai (bib2) 2022; 434
Wen, Wei, Zhang, Cui, Cui, Jing, Hu, He, Fu, Liu, Cheng (bib37) 2020; 31
Zhang, Duan, Zou, Ma (bib75) 2018; 215
Li, Liu, Yang, Zhao, Wang, Liu, You, He, Wang, Yan, Sun, Liang, Lu (bib6) 2019; 289
Alharthy, Saleh (bib30) 2021; 13
Zhang, Wang, Li, Zhou, Zong, Dong (bib53) 2018; 255
Joseph, Jemmis (bib57) 2007; 129
Yuan, Zhao, Duan, Xie, Duan, Li, Ye, Jiang, Tai (bib44) 2022; 363
Bai, Tian, Cui, Sun, Tian, Luo, Chen, Li (bib46) 2016; 226
Yang, Wu, Shen, Zhou, Li, He, Liu (bib50) 2016; 8
Liu, Tai, Zhang, Ye, Su, Jiang (bib32) 2017; 246
Liu, Tai, Zhang, Yuan, Du, Xie, Jiang (bib26) 2018; 261
Tai, Jiang, Xie, Yu, Chen, Ying (bib40) 2008; 129
Duan, Jiang, Tai (bib71) 2021; 9
Liu, Zhang, Wu, Xiong, Zhou (bib56) 2012; 51
Zou, Wang, Xiang, Tang, Chu, Qiu, Yan, Xu, Sun (bib33) 2016; 41
Zhao, Sun, Wang, Duan, Yuan, Wei, Tai, Jiang (bib43) 2021; 6
Verma, Yadav, Singh, Gupta, Thapa, Yadav (bib73) 2022; 361
Matsuguchi, Nakamae, Fujisada, SShiba (bib22) 2021; 21
Hung, Dat, Duy, Quang, Toan, Hieu, Hoa (bib13) 2020; 125
Chao, Liu, Wang, Zhang, Zhang, Zhang, Xiang, Chen (bib48) 2013; 5
Wang, Liu, Duan, Zhao, Zhang, Xie, Jiang, Li, Tai (bib15) 2021; 327
Heo, Sung, Jin, Ahn, Kim, Lee, Cha, Choi, Jo (bib36) 2015; 27
Ju, Park, Kim (bib55) 2018; 6
Bai, Ye, Luo, Chen, Li (bib58) 2016; 6
Liu, Zheng, Kumar, Kumar, Zhang (bib34) 2022; 462
Liu, Xu, Du, Tang, Zhang, Zhang, Wen, Hao, Pan, Zhang, Gu, Zhao, Shen, Zhou, Gao, Feng, Chang, Goulding, Collett, Vitousek, Zhang (bib5) 2020; 378
Kulkarni, Navale, Navale, Stadler, Ramgir, Patil (bib66) 2019; 288
Tang, Debliquy, Lahem, Yan, Raskin (bib9) 2021; 21
Wu, Lv, Shen, Song, Tan (bib17) 2020; 316
Yuan, Zhu, Yang, Hang, Tao, Ma, Jiang, Zhang, Lu (bib12) 2020; 568
Bai, Zhao, Sun, Tong, Luo, Li, Chen (bib54) 2017; 239
Wang, Cheng, Wang, Yang, Su, Li, An, Luo, Wu, Xie (bib68) 2022; 355
Tian, Wang, Wang, Komarneni, Yang (bib49) 2015; 207
Zhang, Wu, Meng, Guo, Liu, Liu (bib60) 2016; 366
Kumar, Choi, Shin, Chang, Dai, Baek (bib52) 2012; 6
Wu, Hou, Yu, Yu (bib21) 2020; 8
Duan, Zhang, Tong, Zou, Peng, Zheng (bib64) 2017; 46
Zhang, Wu, Li, Zong, Dong, Zhang (bib67) 2018; 258
Zhang, Dong, Zeng, Hu, Hussain, Zhang (bib7) 2021; 60
Chao, Liu, Xing, Gao, Zhao (bib69) 2021; 347
Jha, Wan, Jacob, Guha (bib23) 2018; 42
Xue, Wang, Guo, Liu, Wan (bib51) 2017; 244
Gupta, Chaudhary, Singh, Verma, Yadav, Yadav (bib3) 2022; 368
Zhang, Cao, Wu, Zhang, Cao, Guo, Zhong, Duan, Jia (bib19) 2019; 20
Gao, Zhu, Gao, Liu, Zhang, Cheng, Huo (bib16) 2020; 187
Tohidi, Parhizkar, Bidadi, Mohamad-Rezaei (bib29) 2020; 31
Hien, Thu, Ngan, Thai, Trung, Trung, Tan, Giang (bib14) 2021; 340
Kaushik, Eliášc, Michalička, Hegemann, Pytlíček, Nečas, Zajíčková (bib18) 2019; 370
Li, Wang, Qin, Han, Sun, Wang (bib11) 2020; 46
Duan, Zhao, Wang, Huang, Yuan, Zhang, Jiang, Tai (bib39) 2020; 317
Saravanan, Karthik, Mirtha, Balaji, Rajeshkanna (bib27) 2020; 31
Bevc, Mohorko, Kolar, Brglez, Holobar, Kniepeiss, Podbregar, Piko, Hojs, Knehtl, Ekart, Hojs (bib10) 2017; 88
Singh, Sikarwar, Verma, Chandra Yadav (bib45) 2021; 332
Tang, Debliquy, Lahem, Yan, Raskin (bib4) 2021; 21
Abdulla, Mathew, Pullithadathil (bib28) 2015; 221
Tai, Jiang, Xie, Yu (bib42) 2010; 26
Liu, Cui, Xu, Wang, Gu, Dou (bib35) 2021; 10
Cho, Yu, Lee, Jang (bib38) 2020; 55
Zhang, Zhang, Jiang, Duan, Liu, Zhao, Wang, Yuan, Tai (bib61) 2020; 319
Tajik, Beitollahi, Nejad, Dourandish, Khalilzadeh, Jang, Venditti, Varma, Shokouhimehr (bib20) 2021; 60
Liu, Libanori, Zhou, Xiao, Xie, Zhao, Su, Wang, Yuan, Duan, Liang, Jiang, Tai, Chen (bib74) 2022; 14
Sonker, Yadav, Gupta, Tomar (bib1) 2019; 370
Zhu, Cheng, Dong, Xu (bib25) 2018; 6
Duan, Yuan, Jiang, Zhao, Huang, Zhang, Liu, Tai (bib72) 2022; 446
Wang, Huang, Xiao, Cai, Liu, Liu, Wang, Wang, Li, Wang, Li, Wang (bib62) 2014; 6
Qin, Wang, Wang (bib24) 2019; 66
Tai, Jiang, Xie (bib41) 2010; 8
Liu, Huang, Yan, Zhao (bib59) 2016; 4
Wu, Yu, Li, Yao, Cao, Li, Zhu, He, Tang (bib70) 2021; 329
Hien, Giang, Hieu, Trung, Tuan (bib31) 2017; 249
Wang, Jiang, Liu, Duan, Pan, Yuan, Xie, Wang, Fang, Tai (bib65) 2021; 343
Tian, Wang, Tian, Zhou, Yang, Komarneni (bib47) 2016; 309
Liu (10.1016/j.snb.2022.132302_bib26) 2018; 261
Bevc (10.1016/j.snb.2022.132302_bib10) 2017; 88
Wang (10.1016/j.snb.2022.132302_bib65) 2021; 343
Tai (10.1016/j.snb.2022.132302_bib8) 2020; 318
Hien (10.1016/j.snb.2022.132302_bib31) 2017; 249
Zhao (10.1016/j.snb.2022.132302_bib43) 2021; 6
Qin (10.1016/j.snb.2022.132302_bib24) 2019; 66
Liu (10.1016/j.snb.2022.132302_bib34) 2022; 462
Wu (10.1016/j.snb.2022.132302_bib17) 2020; 316
Liu (10.1016/j.snb.2022.132302_bib59) 2016; 4
Duan (10.1016/j.snb.2022.132302_bib71) 2021; 9
Wang (10.1016/j.snb.2022.132302_bib68) 2022; 355
Zhang (10.1016/j.snb.2022.132302_bib60) 2016; 366
Jha (10.1016/j.snb.2022.132302_bib23) 2018; 42
Zhu (10.1016/j.snb.2022.132302_bib25) 2018; 6
Xue (10.1016/j.snb.2022.132302_bib51) 2017; 244
Liu (10.1016/j.snb.2022.132302_bib74) 2022; 14
Joseph (10.1016/j.snb.2022.132302_bib57) 2007; 129
Zhang (10.1016/j.snb.2022.132302_bib67) 2018; 258
Duan (10.1016/j.snb.2022.132302_bib64) 2017; 46
Chao (10.1016/j.snb.2022.132302_bib48) 2013; 5
Zhang (10.1016/j.snb.2022.132302_bib61) 2020; 319
Wen (10.1016/j.snb.2022.132302_bib37) 2020; 31
Liu (10.1016/j.snb.2022.132302_bib5) 2020; 378
Tang (10.1016/j.snb.2022.132302_bib9) 2021; 21
Matsuguchi (10.1016/j.snb.2022.132302_bib22) 2021; 21
Alharthy (10.1016/j.snb.2022.132302_bib30) 2021; 13
Abdulla (10.1016/j.snb.2022.132302_bib28) 2015; 221
Chao (10.1016/j.snb.2022.132302_bib69) 2021; 347
Zhang (10.1016/j.snb.2022.132302_bib19) 2019; 20
Zhang (10.1016/j.snb.2022.132302_bib75) 2018; 215
Cho (10.1016/j.snb.2022.132302_bib38) 2020; 55
Tian (10.1016/j.snb.2022.132302_bib47) 2016; 309
Kumar (10.1016/j.snb.2022.132302_bib52) 2012; 6
Wang (10.1016/j.snb.2022.132302_bib62) 2014; 6
Wu (10.1016/j.snb.2022.132302_bib21) 2020; 8
Bai (10.1016/j.snb.2022.132302_bib58) 2016; 6
Duan (10.1016/j.snb.2022.132302_bib72) 2022; 446
Yang (10.1016/j.snb.2022.132302_bib50) 2016; 8
Yuan (10.1016/j.snb.2022.132302_bib12) 2020; 568
Tang (10.1016/j.snb.2022.132302_bib4) 2021; 21
Gao (10.1016/j.snb.2022.132302_bib16) 2020; 187
Tai (10.1016/j.snb.2022.132302_bib40) 2008; 129
Yuan (10.1016/j.snb.2022.132302_bib44) 2022; 363
Wang (10.1016/j.snb.2022.132302_bib15) 2021; 327
Saravanan (10.1016/j.snb.2022.132302_bib27) 2020; 31
Tohidi (10.1016/j.snb.2022.132302_bib29) 2020; 31
Duan (10.1016/j.snb.2022.132302_bib39) 2020; 317
Sonker (10.1016/j.snb.2022.132302_bib1) 2019; 370
Hung (10.1016/j.snb.2022.132302_bib13) 2020; 125
Ju (10.1016/j.snb.2022.132302_bib55) 2018; 6
Heo (10.1016/j.snb.2022.132302_bib36) 2015; 27
Bai (10.1016/j.snb.2022.132302_bib54) 2017; 239
Hien (10.1016/j.snb.2022.132302_bib14) 2021; 340
Tai (10.1016/j.snb.2022.132302_bib41) 2010; 8
Zhang (10.1016/j.snb.2022.132302_bib53) 2018; 255
Wu (10.1016/j.snb.2022.132302_bib70) 2021; 329
Kaushik (10.1016/j.snb.2022.132302_bib18) 2019; 370
Zhang (10.1016/j.snb.2022.132302_bib2) 2022; 434
Zhang (10.1016/j.snb.2022.132302_bib7) 2021; 60
Tajik (10.1016/j.snb.2022.132302_bib20) 2021; 60
Liu (10.1016/j.snb.2022.132302_bib32) 2017; 246
Bai (10.1016/j.snb.2022.132302_bib46) 2016; 226
Singh (10.1016/j.snb.2022.132302_bib45) 2021; 332
Li (10.1016/j.snb.2022.132302_bib63) 2018; 276
Gupta (10.1016/j.snb.2022.132302_bib3) 2022; 368
Liu (10.1016/j.snb.2022.132302_bib35) 2021; 10
Zou (10.1016/j.snb.2022.132302_bib33) 2016; 41
Verma (10.1016/j.snb.2022.132302_bib73) 2022; 361
Li (10.1016/j.snb.2022.132302_bib11) 2020; 46
Kulkarni (10.1016/j.snb.2022.132302_bib66) 2019; 288
Tai (10.1016/j.snb.2022.132302_bib42) 2010; 26
Tian (10.1016/j.snb.2022.132302_bib49) 2015; 207
Liu (10.1016/j.snb.2022.132302_bib56) 2012; 51
Li (10.1016/j.snb.2022.132302_bib6) 2019; 289
References_xml – volume: 51
  start-page: 566
  year: 2012
  end-page: 575
  ident: bib56
  article-title: Chitosan/halloysite nanotubes bionanocomposites: Structure, mechanical properties and biocompatibility
  publication-title: Int. J. Biol. Macromol.
– volume: 361
  year: 2022
  ident: bib73
  article-title: Detection of acetone via exhaling human breath for regular monitoring of diabetes by low-cost sensing device based on perovskite BaSnO
  publication-title: Sens. Actuators B Chem.
– volume: 41
  start-page: 5396
  year: 2016
  end-page: 5404
  ident: bib33
  article-title: Doping composite of polyaniline and reduced graphene oxide with palladium nanoparticles for room-temperature hydrogen-gas sensing
  publication-title: Int. J. Hydrog. Energy
– volume: 332
  year: 2021
  ident: bib45
  article-title: The recent development of metal oxide heterostructures based gas sensor, their future opportunities and challenges: a review
  publication-title: Sens. Actuators, A
– volume: 207
  start-page: 46
  year: 2015
  end-page: 52
  ident: bib49
  article-title: Polyethylenimine functionalized halloysite nanotubes for efficient removal and fixation of Cr (VI)
  publication-title: Microporous Mesoporous Mater.
– volume: 8
  start-page: 26578
  year: 2016
  end-page: 26590
  ident: bib50
  article-title: Enhanced therapeutic efficacy of doxorubicin for breast cancer using chitosan oligosaccharide-modified halloysite nanotubes
  publication-title: ACS Appl. Mater. Interfaces
– volume: 129
  start-page: 319
  year: 2008
  end-page: 326
  ident: bib40
  article-title: Influence of polymerization temperature on NH
  publication-title: Sens. Actuators B Chem.
– volume: 6
  start-page: 14131
  year: 2014
  end-page: 14140
  ident: bib62
  article-title: Enhanced sensitivity and stability of room-temperature NH
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  year: 2021
  ident: bib35
  article-title: High-performance PANI-based ammonia gas sensor promoted by surface nanostructuralization
  publication-title: ECS J. Solid State Sci. Technol.
– volume: 6
  start-page: 1715
  year: 2012
  end-page: 1723
  ident: bib52
  article-title: Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors
  publication-title: ACS Nano
– volume: 276
  start-page: 526
  year: 2018
  end-page: 533
  ident: bib63
  article-title: Enhanced room temperature gas sensor based on Au-loaded mesoporous In
  publication-title: Sens. Actuators B Chem.
– volume: 355
  year: 2022
  ident: bib68
  article-title: Sea urchins-like WO
  publication-title: Sens. Actuators B Chem.
– volume: 88
  start-page: 14
  year: 2017
  ident: bib10
  article-title: Measurement of breath ammonia for detection of patients with chronic kidney disease
  publication-title: Clin. Nephrol.
– volume: 6
  start-page: 6939
  year: 2016
  end-page: 6945
  ident: bib58
  article-title: Hierarchical polyaniline microspheres loading on flexible PET films for NH
  publication-title: RSC Adv.
– volume: 125
  year: 2020
  ident: bib13
  article-title: Facile synthesis of ultrafine rGO/WO
  publication-title: Mater. Res. Bull.
– volume: 319
  year: 2020
  ident: bib61
  article-title: Ultrasensitive flexible NH
  publication-title: Sens. Actuators B Chem.
– volume: 42
  start-page: 735
  year: 2018
  end-page: 745
  ident: bib23
  article-title: Ammonia vapour sensing properties of in situ polymerized conducting PANI-nanofiber/WS
  publication-title: N. J. Chem.
– volume: 318
  year: 2020
  ident: bib8
  article-title: Evolution of breath analysis based on humidity and gas sensors: potential and challenges
  publication-title: Sens. Actuators B Chem.
– volume: 20
  start-page: 149
  year: 2019
  ident: bib19
  article-title: High-performance gas sensor of polyaniline/carbon nanotube composites promoted by interface engineering
  publication-title: Sensors
– volume: 316
  year: 2020
  ident: bib17
  article-title: Trace-level ammonia detection at room temperature based on porous flexible polyaniline/polyvinylidene fluoride sensing film with carbon nanotube additives
  publication-title: Sens. Actuators B Chem.
– volume: 9
  start-page: 14963
  year: 2021
  end-page: 14980
  ident: bib71
  article-title: Recent advances in humidity sensors for human body related humidity detection
  publication-title: J. Mater. Chem. C.
– volume: 370
  start-page: 126
  year: 2019
  end-page: 137
  ident: bib1
  article-title: Fabrication and characterization of ZnO-TiO
  publication-title: J. Hazard. Mater.
– volume: 46
  start-page: 6895
  year: 2017
  end-page: 6900
  ident: bib64
  article-title: Mixed-potential-type gas sensors based on Pt/YSZ film/LaFeO
  publication-title: J. Electron. Mater.
– volume: 14
  start-page: 7301
  year: 2022
  end-page: 7310
  ident: bib74
  article-title: Simultaneous biomechanical and biochemical monitoring for self-powered breath analysis, ACS Appl. Mater
  publication-title: Interface
– volume: 6
  start-page: 2858
  year: 2021
  end-page: 2867
  ident: bib43
  article-title: Enhanced blocking effect: a new strategy to improve the NO
  publication-title: ACS Sens.
– volume: 21
  start-page: 1443
  year: 2021
  ident: bib9
  article-title: A review on functionalized graphene sensors for detection of ammonia
  publication-title: Sensors
– volume: 244
  start-page: 47
  year: 2017
  end-page: 53
  ident: bib51
  article-title: Flexible polyaniline/carbon nanotube nanocomposite film-based electronic gas sensors
  publication-title: Sens. Actuators B Chem.
– volume: 246
  start-page: 85
  year: 2017
  end-page: 95
  ident: bib32
  article-title: Enhanced ammonia-sensing properties of PANI-TiO
  publication-title: Sens. Actuators B Chem.
– volume: 309
  start-page: 151
  year: 2016
  end-page: 156
  ident: bib47
  article-title: Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe
  publication-title: J. Hazard. Mater.
– volume: 13
  start-page: 3077
  year: 2021
  ident: bib30
  article-title: A novel trace-level ammonia gas sensing based on flexible PANI-CoFe
  publication-title: Polymers
– volume: 55
  start-page: 5156
  year: 2020
  end-page: 5165
  ident: bib38
  article-title: Facile synthesis of palladium-decorated three-dimensional conducting polymer nanofilm for highly sensitive H
  publication-title: J. Mater. Sci.
– volume: 21
  start-page: 7522
  year: 2021
  ident: bib22
  article-title: A highly sensitive ammonia gas sensor using micrometer-sized core-shell-type spherical polyaniline particles
  publication-title: Sensors
– volume: 26
  start-page: 605
  year: 2010
  end-page: 613
  ident: bib42
  article-title: Preparation, characterization and comparative NH
  publication-title: J. Mater. Sci. Technol.
– volume: 66
  start-page: 102
  year: 2019
  end-page: 109
  ident: bib24
  article-title: A high performance sensor based on PANI/ZnTi-LDHs nanocomposite for trace NH
  publication-title: Org. Electron.
– volume: 340
  year: 2021
  ident: bib14
  article-title: High NH
  publication-title: Sens. Actuators B Chem.
– volume: 317
  year: 2020
  ident: bib39
  article-title: Halloysite nanotubes: natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor
  publication-title: Sens. Actuators B Chem.
– volume: 4
  start-page: 6362
  year: 2016
  end-page: 6370
  ident: bib59
  article-title: Magnetic graphene@PANI@porous TiO
  publication-title: J. Mater. Chem. C.
– volume: 21
  start-page: 1443
  year: 2021
  ident: bib4
  article-title: A review on functionalized graphene sensors for detection of ammonia
  publication-title: Sensors
– volume: 462
  year: 2022
  ident: bib34
  article-title: Conducting polymer-based nanostructures for gas sensors
  publication-title: Coord. Chem. Rev.
– volume: 6
  start-page: 5627
  year: 2018
  end-page: 5634
  ident: bib55
  article-title: Solution-processable flexible thermoelectric composite films based on conductive polymer/SnSe
  publication-title: J. Mater. Chem. A.
– volume: 378
  start-page: 20190324
  year: 2020
  ident: bib5
  article-title: Environmental impacts of nitrogen emissions in China and the role of policies in emission reduction
  publication-title: Philos. Trans. R. Soc., A
– volume: 239
  start-page: 131
  year: 2017
  end-page: 138
  ident: bib54
  article-title: Preparation of conducting films based on α-MoO
  publication-title: Sens. Actuators B Chem.
– volume: 347
  year: 2021
  ident: bib69
  article-title: Enhanced ammonia detection of gas sensors based on square-like tungsten oxide loaded by Pt nanoparticles
  publication-title: Sens. Actuators B Chem.
– volume: 568
  start-page: 81
  year: 2020
  end-page: 88
  ident: bib12
  article-title: Precise preparation of WO
  publication-title: J. Colloid Interface Sci.
– volume: 60
  start-page: 1112
  year: 2021
  end-page: 1136
  ident: bib20
  article-title: Recent developments in polymer nanocomposite-based electrochemical sensors for detecting environmental pollutants
  publication-title: Ind. Eng. Chem. Res.
– volume: 31
  year: 2020
  ident: bib29
  article-title: High-performance chemiresistor-type NH
  publication-title: Nanotechnology
– volume: 249
  start-page: 348
  year: 2017
  end-page: 356
  ident: bib31
  article-title: Elaboration of Pd-nanoparticle decorated polyaniline films for room temperature NH
  publication-title: Sens. Actuators B Chem.
– volume: 363
  year: 2022
  ident: bib44
  article-title: Ag
  publication-title: Sens. Actuators B Chem.
– volume: 366
  start-page: 486
  year: 2016
  end-page: 493
  ident: bib60
  article-title: One-step synthesis of novel PANI-Fe
  publication-title: Appl. Surf. Sci.
– volume: 8
  start-page: 13482
  year: 2020
  end-page: 13500
  ident: bib21
  article-title: Recent progress in chemical gas sensors based on organic thin film transistors
  publication-title: J. Mater. Chem. C.
– volume: 327
  year: 2021
  ident: bib15
  article-title: PANI nanofibers-supported Nb
  publication-title: Sens. Actuators B Chem.
– volume: 446
  year: 2022
  ident: bib72
  article-title: Power generation humidity sensor based on primary battery structure
  publication-title: Chem. Eng. J.
– volume: 187
  start-page: 1
  year: 2020
  end-page: 10
  ident: bib16
  article-title: Synthesis of ZnO@ poly-o-methoxyaniline nanosheet composite for enhanced NH
  publication-title: Microchim. Acta
– volume: 5
  start-page: 10559
  year: 2013
  end-page: 10564
  ident: bib48
  article-title: Surface modification of halloysite nanotubes with dopamine for enzyme immobilization
  publication-title: ACS Appl. Mater. Interfaces
– volume: 370
  start-page: 235
  year: 2019
  end-page: 243
  ident: bib18
  article-title: Atomic layer deposition of titanium dioxide on multi-walled carbon nanotubes for ammonia gas sensing
  publication-title: Surf. Coat. Technol.
– volume: 434
  year: 2022
  ident: bib2
  article-title: Edge-enriched MoS
  publication-title: J. Hazard. Mater.
– volume: 368
  year: 2022
  ident: bib3
  article-title: Development of MoO
  publication-title: Sens. Actuators B Chem.
– volume: 46
  start-page: 19232
  year: 2020
  end-page: 19240
  ident: bib11
  article-title: Band-gap-tunable CeO
  publication-title: Ceram. Int.
– volume: 60
  start-page: 6908
  year: 2021
  end-page: 6924
  ident: bib7
  article-title: An overview of ammonia separation by ionic liquids
  publication-title: Ind. Eng. Chem. Res.
– volume: 343
  year: 2021
  ident: bib65
  article-title: Ultrathin Nb
  publication-title: Sens. Actuators B Chem.
– volume: 8
  start-page: 154
  year: 2010
  end-page: 159
  ident: bib41
  article-title: Preparation of surfactants directed PANI/In
  publication-title: J. Electron. Sci. Technol.
– volume: 288
  start-page: 279
  year: 2019
  end-page: 288
  ident: bib66
  article-title: Hybrid polyaniline-WO
  publication-title: Sens. Actuators B Chem.
– volume: 255
  start-page: 1869
  year: 2018
  end-page: 1877
  ident: bib53
  article-title: Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film
  publication-title: Sens. Actuators B Chem.
– volume: 226
  start-page: 540
  year: 2016
  end-page: 547
  ident: bib46
  article-title: Polyaniline@SnO
  publication-title: Sens. Actuators B Chem.
– volume: 289
  start-page: 252
  year: 2019
  end-page: 259
  ident: bib6
  article-title: Design and preparation of the WO
  publication-title: Sens. Actuators B Chem.
– volume: 258
  start-page: 895
  year: 2018
  end-page: 905
  ident: bib67
  article-title: Facile fabrication of polyaniline/multi-walled carbon nanotubes/molybdenum disulfide ternary nanocomposite and its high-performance ammonia-sensing at room temperature
  publication-title: Sens. Actuators B Chem.
– volume: 6
  start-page: 493
  year: 2018
  ident: bib25
  article-title: Enhanced sub-ppm NH
  publication-title: Front. Chem.
– volume: 261
  start-page: 587
  year: 2018
  end-page: 597
  ident: bib26
  article-title: A high-performance flexible gas sensor based on self-assembled PANI-CeO
  publication-title: Sens. Actuators B Chem.
– volume: 31
  start-page: 8825
  year: 2020
  end-page: 8836
  ident: bib27
  article-title: A one-pot hydrothermal-induced PANI/SnO
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 221
  start-page: 1523
  year: 2015
  end-page: 1534
  ident: bib28
  article-title: Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection
  publication-title: Sens. Actuators B Chem.
– volume: 215
  start-page: 58
  year: 2018
  end-page: 61
  ident: bib75
  article-title: Fabrication of electrospun LaFeO
  publication-title: Mater. Lett.
– volume: 27
  start-page: 3803
  year: 2015
  end-page: 3810
  ident: bib36
  article-title: Rotation-misfit-free heteroepitaxial stacking and stitching growth of hexagonal transition-metal dichalcogenide monolayers by nucleation kinetics controls
  publication-title: Adv. Mater.
– volume: 31
  start-page: 521
  year: 2020
  end-page: 524
  ident: bib37
  article-title: Two-dimensional mesoporous sensing materials
  publication-title: Chin. Chem. Lett.
– volume: 129
  year: 2007
  ident: bib57
  article-title: Red-, blue-, or no-shift in hydrogen bonds: a unified explanation
  publication-title: J. Am. Chem. Soc.
– volume: 329
  year: 2021
  ident: bib70
  article-title: Microhotplate gas sensors incorporated with Al electrodes and 3D hierarchical structured PdO/PdO
  publication-title: Sens. Actuators B Chem.
– volume: 20
  start-page: 149
  year: 2019
  ident: 10.1016/j.snb.2022.132302_bib19
  article-title: High-performance gas sensor of polyaniline/carbon nanotube composites promoted by interface engineering
  publication-title: Sensors
  doi: 10.3390/s20010149
– volume: 317
  year: 2020
  ident: 10.1016/j.snb.2022.132302_bib39
  article-title: Halloysite nanotubes: natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.128204
– volume: 309
  start-page: 151
  year: 2016
  ident: 10.1016/j.snb.2022.132302_bib47
  article-title: Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe3O4/halloysite nanohybrid
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.01.081
– volume: 246
  start-page: 85
  year: 2017
  ident: 10.1016/j.snb.2022.132302_bib32
  article-title: Enhanced ammonia-sensing properties of PANI-TiO2-Au ternary self-assembly nanocomposite thin film at room temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.01.046
– volume: 55
  start-page: 5156
  year: 2020
  ident: 10.1016/j.snb.2022.132302_bib38
  article-title: Facile synthesis of palladium-decorated three-dimensional conducting polymer nanofilm for highly sensitive H2 gas sensor
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-020-04370-7
– volume: 9
  start-page: 14963
  year: 2021
  ident: 10.1016/j.snb.2022.132302_bib71
  article-title: Recent advances in humidity sensors for human body related humidity detection
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/D1TC04180K
– volume: 568
  start-page: 81
  year: 2020
  ident: 10.1016/j.snb.2022.132302_bib12
  article-title: Precise preparation of WO3@SnO2 core shell nanosheets for efficient NH3 gas sensing
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.02.042
– volume: 462
  year: 2022
  ident: 10.1016/j.snb.2022.132302_bib34
  article-title: Conducting polymer-based nanostructures for gas sensors
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214517
– volume: 329
  year: 2021
  ident: 10.1016/j.snb.2022.132302_bib70
  article-title: Microhotplate gas sensors incorporated with Al electrodes and 3D hierarchical structured PdO/PdO2-SnO2:Sb materials for sensitive VOC detection
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.128984
– volume: 434
  year: 2022
  ident: 10.1016/j.snb.2022.132302_bib2
  article-title: Edge-enriched MoS2 nanosheets modified porous nanosheet-assembled hierarchical In2O3 microflowers for room temperature detection of NO2 with ultrahigh sensitivity and selectivity
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2022.128836
– volume: 6
  start-page: 493
  year: 2018
  ident: 10.1016/j.snb.2022.132302_bib25
  article-title: Enhanced sub-ppm NH3 gas sensing performance of PANI/TiO2 nanocomposites at room temperature
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2018.00493
– volume: 6
  start-page: 1715
  year: 2012
  ident: 10.1016/j.snb.2022.132302_bib52
  article-title: Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors
  publication-title: ACS Nano
  doi: 10.1021/nn204688c
– volume: 258
  start-page: 895
  year: 2018
  ident: 10.1016/j.snb.2022.132302_bib67
  article-title: Facile fabrication of polyaniline/multi-walled carbon nanotubes/molybdenum disulfide ternary nanocomposite and its high-performance ammonia-sensing at room temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.11.168
– volume: 288
  start-page: 279
  year: 2019
  ident: 10.1016/j.snb.2022.132302_bib66
  article-title: Hybrid polyaniline-WO3 flexible sensor: a room temperature competence towards NH3 gas
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.02.094
– volume: 26
  start-page: 605
  year: 2010
  ident: 10.1016/j.snb.2022.132302_bib42
  article-title: Preparation, characterization and comparative NH3-sensing characteristic studies of PANI/inorganic oxides nanocomposite thin films
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/S1005-0302(10)60093-X
– volume: 6
  start-page: 5627
  year: 2018
  ident: 10.1016/j.snb.2022.132302_bib55
  article-title: Solution-processable flexible thermoelectric composite films based on conductive polymer/SnSe0.8S0.2 nanosheets/carbon nanotubes for wearable electronic applications
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C7TA11285H
– volume: 8
  start-page: 26578
  year: 2016
  ident: 10.1016/j.snb.2022.132302_bib50
  article-title: Enhanced therapeutic efficacy of doxorubicin for breast cancer using chitosan oligosaccharide-modified halloysite nanotubes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b09074
– volume: 370
  start-page: 235
  year: 2019
  ident: 10.1016/j.snb.2022.132302_bib18
  article-title: Atomic layer deposition of titanium dioxide on multi-walled carbon nanotubes for ammonia gas sensing
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2019.04.031
– volume: 46
  start-page: 19232
  year: 2020
  ident: 10.1016/j.snb.2022.132302_bib11
  article-title: Band-gap-tunable CeO2 nanoparticles for room-temperature NH3 gas sensors
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.04.261
– volume: 378
  start-page: 20190324
  year: 2020
  ident: 10.1016/j.snb.2022.132302_bib5
  article-title: Environmental impacts of nitrogen emissions in China and the role of policies in emission reduction
  publication-title: Philos. Trans. R. Soc., A
  doi: 10.1098/rsta.2019.0324
– volume: 46
  start-page: 6895
  year: 2017
  ident: 10.1016/j.snb.2022.132302_bib64
  article-title: Mixed-potential-type gas sensors based on Pt/YSZ film/LaFeO3 for detecting NO2
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-017-5738-8
– volume: 21
  start-page: 1443
  year: 2021
  ident: 10.1016/j.snb.2022.132302_bib4
  article-title: A review on functionalized graphene sensors for detection of ammonia
  publication-title: Sensors
  doi: 10.3390/s21041443
– volume: 60
  start-page: 1112
  year: 2021
  ident: 10.1016/j.snb.2022.132302_bib20
  article-title: Recent developments in polymer nanocomposite-based electrochemical sensors for detecting environmental pollutants
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c04952
– volume: 31
  year: 2020
  ident: 10.1016/j.snb.2022.132302_bib29
  article-title: High-performance chemiresistor-type NH3 gas sensor based on three-dimensional reduced graphene oxide/polyaniline hybrid
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab9daa
– volume: 343
  year: 2021
  ident: 10.1016/j.snb.2022.132302_bib65
  article-title: Ultrathin Nb2CTx nanosheets-supported polyaniline nanocomposite: enabling ultrasensitive NH3 detection
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2021.130069
– volume: 318
  year: 2020
  ident: 10.1016/j.snb.2022.132302_bib8
  article-title: Evolution of breath analysis based on humidity and gas sensors: potential and challenges
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.128104
– volume: 125
  year: 2020
  ident: 10.1016/j.snb.2022.132302_bib13
  article-title: Facile synthesis of ultrafine rGO/WO3 nanowire nanocomposites for highly sensitive toxic NH3 gas sensors
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2020.110810
– volume: 361
  year: 2022
  ident: 10.1016/j.snb.2022.132302_bib73
  article-title: Detection of acetone via exhaling human breath for regular monitoring of diabetes by low-cost sensing device based on perovskite BaSnO3 nanorods
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2022.131708
– volume: 276
  start-page: 526
  year: 2018
  ident: 10.1016/j.snb.2022.132302_bib63
  article-title: Enhanced room temperature gas sensor based on Au-loaded mesoporous In2O3 nanospheres@polyaniline core-shell nanohybrid assembled on flexible PET substrate for NH3 detection
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.08.120
– volume: 244
  start-page: 47
  year: 2017
  ident: 10.1016/j.snb.2022.132302_bib51
  article-title: Flexible polyaniline/carbon nanotube nanocomposite film-based electronic gas sensors
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2016.12.064
– volume: 255
  start-page: 1869
  year: 2018
  ident: 10.1016/j.snb.2022.132302_bib53
  article-title: Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.08.212
– volume: 347
  year: 2021
  ident: 10.1016/j.snb.2022.132302_bib69
  article-title: Enhanced ammonia detection of gas sensors based on square-like tungsten oxide loaded by Pt nanoparticles
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2021.130621
– volume: 187
  start-page: 1
  year: 2020
  ident: 10.1016/j.snb.2022.132302_bib16
  article-title: Synthesis of ZnO@ poly-o-methoxyaniline nanosheet composite for enhanced NH3-sensing performance at room temperature
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-020-04513-2
– volume: 41
  start-page: 5396
  year: 2016
  ident: 10.1016/j.snb.2022.132302_bib33
  article-title: Doping composite of polyaniline and reduced graphene oxide with palladium nanoparticles for room-temperature hydrogen-gas sensing
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2016.02.023
– volume: 340
  year: 2021
  ident: 10.1016/j.snb.2022.132302_bib14
  article-title: High NH3 sensing performance of NiO/PPy hybrid nanostructures
  publication-title: Sens. Actuators B Chem.
– volume: 4
  start-page: 6362
  year: 2016
  ident: 10.1016/j.snb.2022.132302_bib59
  article-title: Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C6TC01718E
– volume: 21
  start-page: 7522
  year: 2021
  ident: 10.1016/j.snb.2022.132302_bib22
  article-title: A highly sensitive ammonia gas sensor using micrometer-sized core-shell-type spherical polyaniline particles
  publication-title: Sensors
  doi: 10.3390/s21227522
– volume: 10
  year: 2021
  ident: 10.1016/j.snb.2022.132302_bib35
  article-title: High-performance PANI-based ammonia gas sensor promoted by surface nanostructuralization
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2162-8777/abe3ce
– volume: 60
  start-page: 6908
  year: 2021
  ident: 10.1016/j.snb.2022.132302_bib7
  article-title: An overview of ammonia separation by ionic liquids
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.1c00780
– volume: 129
  start-page: 319
  year: 2008
  ident: 10.1016/j.snb.2022.132302_bib40
  article-title: Influence of polymerization temperature on NH3 response of PANI/TiO2 thin film gas sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2007.08.013
– volume: 6
  start-page: 2858
  year: 2021
  ident: 10.1016/j.snb.2022.132302_bib43
  article-title: Enhanced blocking effect: a new strategy to improve the NO2 sensing performance of Ti3C2Tx by γ-Poly (l-glutamic acid) modification
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.1c00132
– volume: 51
  start-page: 566
  year: 2012
  ident: 10.1016/j.snb.2022.132302_bib56
  article-title: Chitosan/halloysite nanotubes bionanocomposites: Structure, mechanical properties and biocompatibility
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2012.06.022
– volume: 289
  start-page: 252
  year: 2019
  ident: 10.1016/j.snb.2022.132302_bib6
  article-title: Design and preparation of the WO3 hollow spheres@PANI conducting films for room temperature flexible NH3 sensing device
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.03.073
– volume: 249
  start-page: 348
  year: 2017
  ident: 10.1016/j.snb.2022.132302_bib31
  article-title: Elaboration of Pd-nanoparticle decorated polyaniline films for room temperature NH3 gas sensors
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.04.115
– volume: 363
  year: 2022
  ident: 10.1016/j.snb.2022.132302_bib44
  article-title: Ag2Te nanowires for humidity-resistant trace-level NO2 detection at room temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2022.131790
– volume: 226
  start-page: 540
  year: 2016
  ident: 10.1016/j.snb.2022.132302_bib46
  article-title: Polyaniline@SnO2 heterojunction loading on flexible PET thin film for detection of NH3 at room temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.12.007
– volume: 31
  start-page: 521
  year: 2020
  ident: 10.1016/j.snb.2022.132302_bib37
  article-title: Two-dimensional mesoporous sensing materials
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2019.04.071
– volume: 446
  year: 2022
  ident: 10.1016/j.snb.2022.132302_bib72
  article-title: Power generation humidity sensor based on primary battery structure
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136910
– volume: 332
  year: 2021
  ident: 10.1016/j.snb.2022.132302_bib45
  article-title: The recent development of metal oxide heterostructures based gas sensor, their future opportunities and challenges: a review
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2021.113127
– volume: 13
  start-page: 3077
  year: 2021
  ident: 10.1016/j.snb.2022.132302_bib30
  article-title: A novel trace-level ammonia gas sensing based on flexible PANI-CoFe2O4 nanocomposite film at room temperature
  publication-title: Polymers
  doi: 10.3390/polym13183077
– volume: 27
  start-page: 3803
  year: 2015
  ident: 10.1016/j.snb.2022.132302_bib36
  article-title: Rotation-misfit-free heteroepitaxial stacking and stitching growth of hexagonal transition-metal dichalcogenide monolayers by nucleation kinetics controls
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500846
– volume: 42
  start-page: 735
  year: 2018
  ident: 10.1016/j.snb.2022.132302_bib23
  article-title: Ammonia vapour sensing properties of in situ polymerized conducting PANI-nanofiber/WS2 nanosheet composites
  publication-title: N. J. Chem.
  doi: 10.1039/C7NJ03343E
– volume: 261
  start-page: 587
  year: 2018
  ident: 10.1016/j.snb.2022.132302_bib26
  article-title: A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.12.022
– volume: 31
  start-page: 8825
  year: 2020
  ident: 10.1016/j.snb.2022.132302_bib27
  article-title: A one-pot hydrothermal-induced PANI/SnO2 and PANI/SnO2/rGO ternary composites for high-performance chemiresistive-based H2S and NH3 gas sensors
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 327
  year: 2021
  ident: 10.1016/j.snb.2022.132302_bib15
  article-title: PANI nanofibers-supported Nb2CTx nanosheets-enabled selective NH3 detection driven by TENG at room temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.128923
– volume: 6
  start-page: 14131
  year: 2014
  ident: 10.1016/j.snb.2022.132302_bib62
  article-title: Enhanced sensitivity and stability of room-temperature NH3 sensors using core-shell CeO2 nanoparticles@cross-linked PANI with p-n heterojunctions
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am503286h
– volume: 6
  start-page: 6939
  year: 2016
  ident: 10.1016/j.snb.2022.132302_bib58
  article-title: Hierarchical polyaniline microspheres loading on flexible PET films for NH3 sensing at room temperature
  publication-title: RSC Adv.
  doi: 10.1039/C5RA19079G
– volume: 207
  start-page: 46
  year: 2015
  ident: 10.1016/j.snb.2022.132302_bib49
  article-title: Polyethylenimine functionalized halloysite nanotubes for efficient removal and fixation of Cr (VI)
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2014.12.031
– volume: 239
  start-page: 131
  year: 2017
  ident: 10.1016/j.snb.2022.132302_bib54
  article-title: Preparation of conducting films based on α-MoO3/PANI hybrids and their sensing properties to triethylamine at room temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2016.07.174
– volume: 66
  start-page: 102
  year: 2019
  ident: 10.1016/j.snb.2022.132302_bib24
  article-title: A high performance sensor based on PANI/ZnTi-LDHs nanocomposite for trace NH3 detection
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2018.12.018
– volume: 5
  start-page: 10559
  year: 2013
  ident: 10.1016/j.snb.2022.132302_bib48
  article-title: Surface modification of halloysite nanotubes with dopamine for enzyme immobilization
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am4022973
– volume: 8
  start-page: 13482
  year: 2020
  ident: 10.1016/j.snb.2022.132302_bib21
  article-title: Recent progress in chemical gas sensors based on organic thin film transistors
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/D0TC03132A
– volume: 370
  start-page: 126
  year: 2019
  ident: 10.1016/j.snb.2022.132302_bib1
  article-title: Fabrication and characterization of ZnO-TiO2-PANI (ZTP) micro/nanoballs for the detection of flammable and toxic gases
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.10.016
– volume: 88
  start-page: 14
  year: 2017
  ident: 10.1016/j.snb.2022.132302_bib10
  article-title: Measurement of breath ammonia for detection of patients with chronic kidney disease
  publication-title: Clin. Nephrol.
  doi: 10.5414/CNP88FX04
– volume: 8
  start-page: 154
  year: 2010
  ident: 10.1016/j.snb.2022.132302_bib41
  article-title: Preparation of surfactants directed PANI/In2O3 nanocomposite thin films and its NH3-sensing properties
  publication-title: J. Electron. Sci. Technol.
– volume: 368
  year: 2022
  ident: 10.1016/j.snb.2022.132302_bib3
  article-title: Development of MoO3-CdO nanoparticles based sensing device for the detection of harmful acetone levels in our skin and body via nail paint remover
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2022.132102
– volume: 319
  year: 2020
  ident: 10.1016/j.snb.2022.132302_bib61
  article-title: Ultrasensitive flexible NH3 gas sensor based on polyaniline/SrGe4O9 nanocomposite with ppt-level detection ability at room temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.128293
– volume: 14
  start-page: 7301
  year: 2022
  ident: 10.1016/j.snb.2022.132302_bib74
  article-title: Simultaneous biomechanical and biochemical monitoring for self-powered breath analysis, ACS Appl. Mater
  publication-title: Interface
– volume: 21
  start-page: 1443
  year: 2021
  ident: 10.1016/j.snb.2022.132302_bib9
  article-title: A review on functionalized graphene sensors for detection of ammonia
  publication-title: Sensors
  doi: 10.3390/s21041443
– volume: 355
  year: 2022
  ident: 10.1016/j.snb.2022.132302_bib68
  article-title: Sea urchins-like WO3 as a material for resistive acetone gas sensors
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2021.131262
– volume: 316
  year: 2020
  ident: 10.1016/j.snb.2022.132302_bib17
  article-title: Trace-level ammonia detection at room temperature based on porous flexible polyaniline/polyvinylidene fluoride sensing film with carbon nanotube additives
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.128198
– volume: 129
  year: 2007
  ident: 10.1016/j.snb.2022.132302_bib57
  article-title: Red-, blue-, or no-shift in hydrogen bonds: a unified explanation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja067545z
– volume: 215
  start-page: 58
  year: 2018
  ident: 10.1016/j.snb.2022.132302_bib75
  article-title: Fabrication of electrospun LaFeO3 nanotubes via annealing technique for fast ethanol detection
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.12.062
– volume: 366
  start-page: 486
  year: 2016
  ident: 10.1016/j.snb.2022.132302_bib60
  article-title: One-step synthesis of novel PANI-Fe3O4@ZnO core-shell microspheres: an efficient photocatalyst under visible light irradiation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.01.137
– volume: 221
  start-page: 1523
  year: 2015
  ident: 10.1016/j.snb.2022.132302_bib28
  article-title: Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.08.002
SSID ssj0004360
Score 2.6486256
Snippet The synthesis of polyaniline (PANI) composites is an effective method to improve the ammonia (NH3) gas sensing performance of PANI, and it is of great...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 132302
SubjectTerms Ammonia
Composite materials
Gas sensors
Halloysite nanotubes
Morphology
Morphology modification
NH3 sensor
Polyaniline
Polyanilines
Relative humidity
Selectivity
Sensors
Specific surface
Surface area
Title Enhanced NH3 sensing performance of polyaniline via a facile morphology modification strategy
URI https://dx.doi.org/10.1016/j.snb.2022.132302
https://www.proquest.com/docview/2712887266
Volume 369
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSsNAcCn1ogfxifVR9uBJSJvHJJscRZSq2IsWepFlsw-N1LSYKnjx253Nw6pID96SMLuEmdl57TwIOQaQWglfODKQzAHwwUljoxwj3DCWIagosIXCN8NoMIKrcThukbOmFsamVdayv5LppbSuv_RrbPZnWda_dRN0bmxY0wb4AWzHTwBmubz3sUjzgKCsFLbAjoVubjbLHK8iT9FF9P0e-mRBHVn5Qzf9ktKl6rnYIOu1zUhPq9_aJC2db5G1b50Et8n9ef5Y3uXT4SCghc1Kzx_obFEVQKeGzqaTd5Fn1rCkb5mgghohUSrQ5yliu4yv46OyyUMlvWhRta593yGji_O7s4FTT05wJLoIc0e5npChlLHUKXg69OJUeonUiYTAV74UUcRck0ShYUxIJkwoTOwbEZlAo8nhBbuknU9zvUeojiNlR6wj8TQkwFLcUKEPlQrUfZ5KOsRtcMZl3VbcTreY8CZ_7IkjmrlFM6_Q3CEnX0tmVU-NZcDQEIL_YAyOMn_ZssOGaLw-lQX3GWrjmKFNsv-_XQ_Iqn2zussLD0l7_vKqj9Aomafdkuu6ZOX08now_AREg-E1
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH8Ylvc_Ak1G2bpI-jiFJfe1HBi4Q0D13R7uKugv_eSZv6Qjx4K20mlG-SeWVmArDLmDJaxjJQVKUBYzELyszqwMqQZ4oznVBXKHzRS4prdnrDbybgsK2FcWmVXvY3Mr2W1v5N16PZHfb73cswR-fGhTVdgJ8xOglTrjsV78DUwclZ0fssj6R1sbAbHziC9nCzTvMaVSV6iXG8j24Z9cGVX9TTD0Fda5_jeZjzZiM5aP5sASZMtQizX5oJLsHtUXVfH-eTXkHJyCWmV3dk-FkYQAaWDAePb7LqO9uSvPYlkcRKhYKBPA0Q8DrEjo_a5Q_VLCOjpnvt2zJcHx9dHRaBvzwhUOgljAMdRlJxpTJlShYZHmWlinJlcsVorGMlkyQNbZ5wm6ZSpdJyabPYysRSg1ZHRFegUw0qswrEZIl2t6wj_wzLWVrihBrdqFKi-ot0vgZhi5lQvrO4u-DiUbQpZA8CYRYOZtHAvAZ7HyTDpq3GX4NZywjxbW0IFPt_kW22TBN-Y45EnKJCzlI0S9b_N-sOTBdXF-fi_KR3tgEz7otTZRHfhM74-cVsoY0yLrf9GnwHBrXj5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+NH3+sensing+performance+of+polyaniline+via+a+facile+morphology+modification+strategy&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Duan%2C+Xiaohui&rft.au=Duan%2C+Zaihua&rft.au=Zhang%2C+Yajie&rft.au=Liu%2C+Bohao&rft.date=2022-10-15&rft.pub=Elsevier+Science+Ltd&rft.issn=0925-4005&rft.eissn=1873-3077&rft.volume=B369&rft.spage=1&rft_id=info:doi/10.1016%2Fj.snb.2022.132302&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon