Self-supervised sub-category exploration for Pseudo label generation

Image segmentation-based applications have been actively investigated. However, it is non-trivial to prepare polygon annotations. Previous studies suggested pseudo label generation methods based on weakly supervised learning to lessen the burden of annotation. Nevertheless, the quality of pseudo lab...

Full description

Saved in:
Bibliographic Details
Published inAutomation in construction Vol. 151; p. 104862
Main Authors Chern, Wei-Chih, Kim, Taegeon, Nguyen, Tam V., Asari, Vijayan K., Kim, Hongjo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2023
Subjects
Online AccessGet full text
ISSN0926-5805
1872-7891
DOI10.1016/j.autcon.2023.104862

Cover

Loading…
Abstract Image segmentation-based applications have been actively investigated. However, it is non-trivial to prepare polygon annotations. Previous studies suggested pseudo label generation methods based on weakly supervised learning to lessen the burden of annotation. Nevertheless, the quality of pseudo labels could not be ideal due to target object characteristics and insufficient data size in the construction domain, as identified in this study. This study proposes a fusion architecture, SESC-CAM, to address the challenge, building upon weakly and self-supervised learning methods. The proposed architecture was validated on the AIM dataset, and the generated pseudo labels recorded a mIoU score of 64.99% and 67.65% after the refinement by using a conditional random field, and outperformed its predecessors by 11.29% and 9.14%. The refined pseudo labels were used to train a segmentation model and recorded a 74% mIoU score in semantic segmentation results. The findings of this study provide insights for automated training data preparation. •Generating pseudo labels using weakly and self-supervised learning techniques.•Proposing a novel pseudo label generation method for construction vehicles.•Demonstrating the effectiveness of pseudo labels for segmentation models•Providing polygon annotations for the AIM dataset for segmentation-related study.
AbstractList Image segmentation-based applications have been actively investigated. However, it is non-trivial to prepare polygon annotations. Previous studies suggested pseudo label generation methods based on weakly supervised learning to lessen the burden of annotation. Nevertheless, the quality of pseudo labels could not be ideal due to target object characteristics and insufficient data size in the construction domain, as identified in this study. This study proposes a fusion architecture, SESC-CAM, to address the challenge, building upon weakly and self-supervised learning methods. The proposed architecture was validated on the AIM dataset, and the generated pseudo labels recorded a mIoU score of 64.99% and 67.65% after the refinement by using a conditional random field, and outperformed its predecessors by 11.29% and 9.14%. The refined pseudo labels were used to train a segmentation model and recorded a 74% mIoU score in semantic segmentation results. The findings of this study provide insights for automated training data preparation. •Generating pseudo labels using weakly and self-supervised learning techniques.•Proposing a novel pseudo label generation method for construction vehicles.•Demonstrating the effectiveness of pseudo labels for segmentation models•Providing polygon annotations for the AIM dataset for segmentation-related study.
ArticleNumber 104862
Author Nguyen, Tam V.
Kim, Hongjo
Asari, Vijayan K.
Kim, Taegeon
Chern, Wei-Chih
Author_xml – sequence: 1
  givenname: Wei-Chih
  surname: Chern
  fullname: Chern, Wei-Chih
  email: chernw1@udayton.edu
  organization: Department of Electrical and Computer Engineering, University of Dayton, Dayton, OH 45469, USA
– sequence: 2
  givenname: Taegeon
  surname: Kim
  fullname: Kim, Taegeon
  email: ktg9655@yonsei.ac.kr
  organization: Department of Civil & Environmental Engineering, Yonsei University, Seoul, South Korea
– sequence: 3
  givenname: Tam V.
  surname: Nguyen
  fullname: Nguyen, Tam V.
  email: tamnguyen@udayton.edu
  organization: Department of Computer Science, University of Dayton, Dayton, OH 45469, USA
– sequence: 4
  givenname: Vijayan K.
  surname: Asari
  fullname: Asari, Vijayan K.
  email: vasari1@udayton.edu
  organization: Department of Electrical and Computer Engineering, University of Dayton, Dayton, OH 45469, USA
– sequence: 5
  givenname: Hongjo
  surname: Kim
  fullname: Kim, Hongjo
  email: hongjo@yonsei.ac.kr
  organization: Department of Civil & Environmental Engineering, Yonsei University, Seoul, South Korea
BookMark eNp9kM9KAzEYxIMo2FbfwMO-QGqSzSbZiyD1LxQU1HNIvv1StqybkuwW-_a2rGdPAzPMMPzm5LyPPRJyw9mSM65ut0s3DhD7pWCiPFrSKHFGZtxoQbWp-TmZsVooWhlWXZJ5zlvGmGaqnpGHD-wCzeMO077N2BR59BTcgJuYDgX-7LqY3NDGvggxFe8ZxyYWnfPYFRvsccquyEVwXcbrP12Qr6fHz9ULXb89v67u1xREVQ0UlDega-N9AChRgyoZcM08SsldKbnysuJSyyYobUSDdRNkVZbBCMDKs3JB5LQLKeacMNhdar9dOljO7ImE3dqJhD2RsBOJY-1uquHx277FZDO02AM2bUIYbBPb_wd-Aavza_w
Cites_doi 10.1016/j.autcon.2022.104139
10.1016/j.autcon.2021.103871
10.1007/s11263-020-01293-3
10.1109/TPAMI.2020.3046647
10.1016/j.patcog.2021.108504
10.1111/mice.12632
10.1016/j.patcog.2022.108953
10.1016/j.patcog.2022.108925
10.1061/(ASCE)CO.1943-7862.0001010
10.1111/mice.12741
10.1007/s11263-018-1112-4
10.1016/j.autcon.2021.103566
10.1061/(ASCE)CP.1943-5487.0000731
10.1007/s11263-022-01590-z
10.1007/s11263-014-0733-5
10.1016/j.autcon.2015.10.002
10.1016/j.patcog.2021.107858
10.1109/TPAMI.2017.2699184
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.autcon.2023.104862
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1872-7891
ExternalDocumentID 10_1016_j_autcon_2023_104862
S092658052300122X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c255t-c6b8c798bbfcc3e7c630c170be441a3416b451474df6782de9df4533f82ce5b03
IEDL.DBID .~1
ISSN 0926-5805
IngestDate Tue Jul 01 03:18:20 EDT 2025
Fri Feb 23 02:37:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Construction vehicle
Training data preparation
Semantic segmentation
Pseudo label generation
Weakly supervised learning
Self-supervised learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-c6b8c798bbfcc3e7c630c170be441a3416b451474df6782de9df4533f82ce5b03
ParticipantIDs crossref_primary_10_1016_j_autcon_2023_104862
elsevier_sciencedirect_doi_10_1016_j_autcon_2023_104862
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Automation in construction
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Liu, Ma, Yang (bb0105) June 2020; 128
He, Zhang, Ren, Sun (bb0130) 2016
Zhang, Han, Zhao, Meng (bb0010) 2019; 127
Gao, Zhai, Mosalam (bb0050) September 2021; 36
Wang, Zhang, Kan, Shan (bb0090) 2022; 132
Tan, Le (bb0145) 15 Jun 2019
Deng, Dong, Socher, Li, Li, Fei-Fei (bb0140) 2009
Yi, Ma, Wang, Hu, Li, Yu (bb0115) April 2022; 124
Zlateski, Jaroensri, Sharma, Durand (bb0170) 2018
Lin, Dollár, Girshick, He, Hariharan, Belongie (bb0040) 2016
Hong, Park, Kim, Kim (bb0075) 2021; 130
Ronneberger, Fischer, Brox (bb0035) 2015; vol. 9351
Liu, Golparvar-Fard (bb0085) 2015; 141
Chang, Wang, Hung, Piramuthu, Tsai, Yang (bb0030) 2020
Zhang, Zeng, Yao, Han (bb0005) 2022; 44
Braun, Borrmann (bb0070) 2019; 106
Kim, Kim, Hong, Byun (bb0150) 2018; 32
Khoreva, Benenson, Hosang, Hein, Schiele (bb0165) July 2017
Mark Everingham, Eslami, Van Gool, Williams, Winn, Zisserman (bb0120) 2015; 111
Russakovsky, Deng, Huang, Berg, Fei-Fei (bb0125) 2013
Guo, Wang, Li (bb0055) March 2021; 36
Xie, Xiang, Chen, Hou, Zhao, Shen (bb0175) June 2022
Luo, Yang, Zheng (bb0100) July 2021; 115
Zhou, Khosla, Lapedriza, Oliva, Torralba (bb0020) June 2016
.
Pan, Zhu, Zhang, Bing Cao, Wang, Han, Qinghua (bb0110) May 2022; 130
Jinwoo Kim and Seokho Chi. A few-shot learning approach for database-free vision-based monitoring on construction sites. Autom. Constr., 124. ISSN 0926-5805. pp. 103566. pp. 103566. doi
Chen, Papandreou, Kokkinos, Murphy, Yuille (bb0160) 2018 Apr; 40
Soltani, Zhu, Hammad (bb0080) 2016; 62
Shim, Kim, Lee, Cho (bb0060) March 2022; 135
Jie, Wei, Jin, Feng, Liu (bb0045) 2017
Kho, Lee, Lee, Ki, Byun (bb0095) 2022; 132
Zhong, Zheng, Kang, Li, Yang (bb0155) 2017
Jie, Wei, Jin, Feng, Liu (bb0015) 2017
Wang, Zhang, Kan, Shan, Chen (bb0025) 2020
Krähenbühl, Koltun (bb0135) 2011; Vol. 24
Guo (10.1016/j.autcon.2023.104862_bb0055) 2021; 36
Zhou (10.1016/j.autcon.2023.104862_bb0020) 2016
Russakovsky (10.1016/j.autcon.2023.104862_bb0125) 2013
Xie (10.1016/j.autcon.2023.104862_bb0175) 2022
Wang (10.1016/j.autcon.2023.104862_bb0090) 2022; 132
Jie (10.1016/j.autcon.2023.104862_bb0045) 2017
He (10.1016/j.autcon.2023.104862_bb0130) 2016
Kim (10.1016/j.autcon.2023.104862_bb0150) 2018; 32
Zhang (10.1016/j.autcon.2023.104862_bb0010) 2019; 127
Chang (10.1016/j.autcon.2023.104862_bb0030) 2020
Shim (10.1016/j.autcon.2023.104862_bb0060) 2022; 135
Soltani (10.1016/j.autcon.2023.104862_bb0080) 2016; 62
Liu (10.1016/j.autcon.2023.104862_bb0085) 2015; 141
Lin (10.1016/j.autcon.2023.104862_bb0040) 2016
Braun (10.1016/j.autcon.2023.104862_bb0070) 2019; 106
Chen (10.1016/j.autcon.2023.104862_bb0160) 2018; 40
Krähenbühl (10.1016/j.autcon.2023.104862_bb0135) 2011; Vol. 24
Ronneberger (10.1016/j.autcon.2023.104862_bb0035) 2015; vol. 9351
Deng (10.1016/j.autcon.2023.104862_bb0140) 2009
Gao (10.1016/j.autcon.2023.104862_bb0050) 2021; 36
Kho (10.1016/j.autcon.2023.104862_bb0095) 2022; 132
Tan (10.1016/j.autcon.2023.104862_bb0145) 2019
Pan (10.1016/j.autcon.2023.104862_bb0110) 2022; 130
Hong (10.1016/j.autcon.2023.104862_bb0075) 2021; 130
Zhang (10.1016/j.autcon.2023.104862_bb0005) 2022; 44
Luo (10.1016/j.autcon.2023.104862_bb0100) 2021; 115
Zhong (10.1016/j.autcon.2023.104862_bb0155) 2017
Wang (10.1016/j.autcon.2023.104862_bb0105) 2020; 128
Jie (10.1016/j.autcon.2023.104862_bb0015) 2017
Wang (10.1016/j.autcon.2023.104862_bb0025) 2020
10.1016/j.autcon.2023.104862_bb0065
Yi (10.1016/j.autcon.2023.104862_bb0115) 2022; 124
Khoreva (10.1016/j.autcon.2023.104862_bb0165) 2017
Zlateski (10.1016/j.autcon.2023.104862_bb0170) 2018
Mark Everingham (10.1016/j.autcon.2023.104862_bb0120) 2015; 111
References_xml – start-page: 770
  year: 2016
  end-page: 778
  ident: bb0130
  article-title: Deep residual learning for image recognition
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 6105
  year: 15 Jun 2019
  end-page: 6114
  ident: bb0145
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
  publication-title: Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research
– volume: 141
  start-page: 04015035
  year: 2015
  ident: bb0085
  article-title: Crowdsourcing construction activity analysis from jobsite video streams
  publication-title: J. Constr. Eng. Manag.
– start-page: 1
  year: 2017
  end-page: 9
  ident: bb0045
  article-title: Deep self-taught learning for weakly supervised object localization
– start-page: 989
  year: June 2022
  end-page: 998
  ident: bb0175
  article-title: C2am: Contrastive learning of class-agnostic activation map for weakly supervised object localization and semantic segmentation
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 40
  start-page: 834
  year: 2018 Apr
  end-page: 848
  ident: bb0160
  article-title: DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 115
  start-page: 107858
  year: July 2021
  ident: bb0100
  article-title: Weakly-supervised semantic segmentation with saliency and incremental supervision updating
  publication-title: Pattern Recogn.
– start-page: 1
  year: 2017
  end-page: 9
  ident: bb0015
  article-title: Deep Self-taught Learning for Weakly Supervised Object Localization
– volume: vol. 9351
  start-page: 234
  year: 2015
  end-page: 241
  ident: bb0035
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science
– volume: 44
  start-page: 3349
  year: 2022
  end-page: 3363
  ident: bb0005
  article-title: Weakly supervised object detection using proposal- and semantic-level relationships
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: Vol. 24
  start-page: 1
  year: 2011
  end-page: 9
  ident: bb0135
  article-title: Efficient inference in fully connected CRFs with Gaussian edge potentials
  publication-title: Advances in Neural Information Processing Systems
– volume: 127
  start-page: 363
  year: 2019
  end-page: 380
  ident: bb0010
  article-title: Leveraging prior-knowledge for weakly supervised object detection under a collaborative self-paced curriculum learning framework
  publication-title: Int. J. Comput. Vis.
– start-page: 1
  year: 2017
  end-page: 10
  ident: bb0155
  article-title: Random erasing data augmentation
  publication-title: CoRR
– volume: 130
  start-page: 103871
  year: 2021
  ident: bb0075
  article-title: Synthetic data generation using building information models
  publication-title: Autom. Constr.
– volume: 36
  start-page: 302
  year: March 2021
  end-page: 317
  ident: bb0055
  article-title: Semi-supervised learning based on convolutional neural network and uncertainty filter for façade defects classification
  publication-title: Comput.-Aid. Civ. Infrastruct. Eng.
– reference: Jinwoo Kim and Seokho Chi. A few-shot learning approach for database-free vision-based monitoring on construction sites. Autom. Constr., 124. ISSN 0926-5805. pp. 103566. pp. 103566. doi:
– volume: 32
  start-page: 04017082
  year: 2018
  ident: bb0150
  article-title: Detecting construction equipment using a region-based fully convolutional network and transfer learning
  publication-title: J. Comput. Civ. Eng.
– volume: 130
  start-page: 1181
  year: May 2022
  end-page: 1195
  ident: bb0110
  article-title: Learning self-supervised low-rank network for single-stage weakly and semi-supervised semantic segmentation
  publication-title: Int. J. Comput. Vis.
– start-page: 2064
  year: 2013
  end-page: 2071
  ident: bb0125
  article-title: Detecting avocados to zucchinis: what have we done, and where are we going?
  publication-title: International Conference on Computer Vision (ICCV)
– start-page: 8988
  year: 2020
  end-page: 8997
  ident: bb0030
  article-title: Weakly-supervised semantic segmentation via sub-category exploration
  publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 1
  year: 2016
  end-page: 10
  ident: bb0040
  article-title: Feature pyramid networks for object detection
  publication-title: CoRR
– volume: 132
  start-page: 108953
  year: 2022
  ident: bb0095
  article-title: Exploiting shape cues for weakly supervised semantic segmentation
  publication-title: Pattern Recogn.
– volume: 135
  start-page: 104139
  year: March 2022
  ident: bb0060
  article-title: Road damage detection using super-resolution and semi-supervised learning with generative adversarial network
  publication-title: Autom. Constr.
– volume: 106
  start-page: 103566
  year: 2019
  ident: bb0070
  article-title: Combining inverse photogrammetry and bim for automated labeling of construction site images for machine learning
  publication-title: Autom. Constr.
– volume: 124
  start-page: 108504
  year: April 2022
  ident: bb0115
  article-title: Weakly-supervised semantic segmentation with superpixel guided local and global consistency
  publication-title: Pattern Recogn.
– reference: .
– start-page: 1479
  year: 2018
  end-page: 1487
  ident: bb0170
  article-title: On the importance of label quality for semantic segmentation
  publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 2921
  year: June 2016
  end-page: 2929
  ident: bb0020
  article-title: Learning deep features for discriminative localization
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 248
  year: 2009
  end-page: 255
  ident: bb0140
  article-title: ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09
– volume: 62
  start-page: 14
  year: 2016
  end-page: 23
  ident: bb0080
  article-title: Automated annotation for visual recognition of construction resources using synthetic images
  publication-title: Autom. Constr.
– start-page: 12272
  year: 2020
  end-page: 12281
  ident: bb0025
  article-title: Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation
  publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 36
  start-page: 1094
  year: September 2021
  end-page: 1113
  ident: bb0050
  article-title: Balanced semisupervised generative adversarial network for damage assessment from low-data imbalanced-class regime
  publication-title: Comput.-Aid. Civ. Infrastruct. Eng.
– volume: 132
  start-page: 108925
  year: 2022
  ident: bb0090
  article-title: Learning pseudo labels for semi-and-weakly supervised semantic segmentation
  publication-title: Pattern Recogn.
– volume: 128
  start-page: 1736
  year: June 2020
  end-page: 1749
  ident: bb0105
  article-title: Weakly-supervised semantic segmentation by iterative affinity learning
  publication-title: Int. J. Comput. Vis.
– volume: 111
  start-page: 98
  year: 2015
  ident: bb0120
  article-title: The pascal visual object classes challenge: a retrospective
  publication-title: Int. J. Comput. Vis.
– start-page: 1665
  year: July 2017
  end-page: 1674
  ident: bb0165
  article-title: Simple does it: Weakly supervised instance and semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 1
  year: 2016
  ident: 10.1016/j.autcon.2023.104862_bb0040
  article-title: Feature pyramid networks for object detection
  publication-title: CoRR
– volume: 135
  start-page: 104139
  year: 2022
  ident: 10.1016/j.autcon.2023.104862_bb0060
  article-title: Road damage detection using super-resolution and semi-supervised learning with generative adversarial network
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104139
– volume: 106
  start-page: 103566
  issue: 102879
  year: 2019
  ident: 10.1016/j.autcon.2023.104862_bb0070
  article-title: Combining inverse photogrammetry and bim for automated labeling of construction site images for machine learning
  publication-title: Autom. Constr.
– volume: 130
  start-page: 103871
  year: 2021
  ident: 10.1016/j.autcon.2023.104862_bb0075
  article-title: Synthetic data generation using building information models
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103871
– volume: 128
  start-page: 1736
  issue: 6
  year: 2020
  ident: 10.1016/j.autcon.2023.104862_bb0105
  article-title: Weakly-supervised semantic segmentation by iterative affinity learning
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-020-01293-3
– volume: 44
  start-page: 3349
  issue: 6
  year: 2022
  ident: 10.1016/j.autcon.2023.104862_bb0005
  article-title: Weakly supervised object detection using proposal- and semantic-level relationships
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3046647
– volume: vol. 9351
  start-page: 234
  year: 2015
  ident: 10.1016/j.autcon.2023.104862_bb0035
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 124
  start-page: 108504
  year: 2022
  ident: 10.1016/j.autcon.2023.104862_bb0115
  article-title: Weakly-supervised semantic segmentation with superpixel guided local and global consistency
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2021.108504
– start-page: 1
  year: 2017
  ident: 10.1016/j.autcon.2023.104862_bb0045
– start-page: 1
  year: 2017
  ident: 10.1016/j.autcon.2023.104862_bb0155
  article-title: Random erasing data augmentation
  publication-title: CoRR
– volume: 36
  start-page: 302
  issue: 3
  year: 2021
  ident: 10.1016/j.autcon.2023.104862_bb0055
  article-title: Semi-supervised learning based on convolutional neural network and uncertainty filter for façade defects classification
  publication-title: Comput.-Aid. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12632
– volume: 132
  start-page: 108953
  year: 2022
  ident: 10.1016/j.autcon.2023.104862_bb0095
  article-title: Exploiting shape cues for weakly supervised semantic segmentation
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2022.108953
– volume: 132
  start-page: 108925
  year: 2022
  ident: 10.1016/j.autcon.2023.104862_bb0090
  article-title: Learning pseudo labels for semi-and-weakly supervised semantic segmentation
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2022.108925
– start-page: 989
  year: 2022
  ident: 10.1016/j.autcon.2023.104862_bb0175
  article-title: C2am: Contrastive learning of class-agnostic activation map for weakly supervised object localization and semantic segmentation
– start-page: 1665
  year: 2017
  ident: 10.1016/j.autcon.2023.104862_bb0165
  article-title: Simple does it: Weakly supervised instance and semantic segmentation
– start-page: 770
  year: 2016
  ident: 10.1016/j.autcon.2023.104862_bb0130
  article-title: Deep residual learning for image recognition
– start-page: 8988
  year: 2020
  ident: 10.1016/j.autcon.2023.104862_bb0030
  article-title: Weakly-supervised semantic segmentation via sub-category exploration
– volume: 141
  start-page: 04015035
  issue: 11
  year: 2015
  ident: 10.1016/j.autcon.2023.104862_bb0085
  article-title: Crowdsourcing construction activity analysis from jobsite video streams
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001010
– start-page: 1479
  year: 2018
  ident: 10.1016/j.autcon.2023.104862_bb0170
  article-title: On the importance of label quality for semantic segmentation
– start-page: 2064
  year: 2013
  ident: 10.1016/j.autcon.2023.104862_bb0125
  article-title: Detecting avocados to zucchinis: what have we done, and where are we going?
– volume: 36
  start-page: 1094
  issue: 9
  year: 2021
  ident: 10.1016/j.autcon.2023.104862_bb0050
  article-title: Balanced semisupervised generative adversarial network for damage assessment from low-data imbalanced-class regime
  publication-title: Comput.-Aid. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12741
– volume: 127
  start-page: 363
  issue: 4
  year: 2019
  ident: 10.1016/j.autcon.2023.104862_bb0010
  article-title: Leveraging prior-knowledge for weakly supervised object detection under a collaborative self-paced curriculum learning framework
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-018-1112-4
– ident: 10.1016/j.autcon.2023.104862_bb0065
  doi: 10.1016/j.autcon.2021.103566
– start-page: 1
  year: 2017
  ident: 10.1016/j.autcon.2023.104862_bb0015
– start-page: 248
  year: 2009
  ident: 10.1016/j.autcon.2023.104862_bb0140
– start-page: 2921
  year: 2016
  ident: 10.1016/j.autcon.2023.104862_bb0020
  article-title: Learning deep features for discriminative localization
– volume: Vol. 24
  start-page: 1
  year: 2011
  ident: 10.1016/j.autcon.2023.104862_bb0135
  article-title: Efficient inference in fully connected CRFs with Gaussian edge potentials
– volume: 32
  start-page: 04017082
  issue: 2
  year: 2018
  ident: 10.1016/j.autcon.2023.104862_bb0150
  article-title: Detecting construction equipment using a region-based fully convolutional network and transfer learning
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000731
– volume: 130
  start-page: 1181
  issue: 5
  year: 2022
  ident: 10.1016/j.autcon.2023.104862_bb0110
  article-title: Learning self-supervised low-rank network for single-stage weakly and semi-supervised semantic segmentation
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-022-01590-z
– volume: 111
  start-page: 98
  issue: 1
  year: 2015
  ident: 10.1016/j.autcon.2023.104862_bb0120
  article-title: The pascal visual object classes challenge: a retrospective
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0733-5
– start-page: 6105
  year: 2019
  ident: 10.1016/j.autcon.2023.104862_bb0145
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
– volume: 62
  start-page: 14
  year: 2016
  ident: 10.1016/j.autcon.2023.104862_bb0080
  article-title: Automated annotation for visual recognition of construction resources using synthetic images
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2015.10.002
– start-page: 12272
  year: 2020
  ident: 10.1016/j.autcon.2023.104862_bb0025
  article-title: Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation
– volume: 115
  start-page: 107858
  year: 2021
  ident: 10.1016/j.autcon.2023.104862_bb0100
  article-title: Weakly-supervised semantic segmentation with saliency and incremental supervision updating
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2021.107858
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  ident: 10.1016/j.autcon.2023.104862_bb0160
  article-title: DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
SSID ssj0007069
Score 2.378766
Snippet Image segmentation-based applications have been actively investigated. However, it is non-trivial to prepare polygon annotations. Previous studies suggested...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 104862
SubjectTerms Construction vehicle
Pseudo label generation
Self-supervised learning
Semantic segmentation
Training data preparation
Weakly supervised learning
Title Self-supervised sub-category exploration for Pseudo label generation
URI https://dx.doi.org/10.1016/j.autcon.2023.104862
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KPagH0apYH2UPXtfmuZs9lqpUxSLUQm8hu5lIpbTFNFd_u7N5YAXx4DGbLISZycy32e-bBbhWAUqXEj93jKAFSuhmXMsg4REmVJ-Ep8LEqpGfx2I0DR5n4awFw0YLY2mVde6vcnqZreuRfm3N_no-708c5VH5LH9r2v2hmVWwB9JG-c3nN81DOqLqt-cJbp9u5HMlxyspNnbVaY8Qt5udkfB-L09bJef-EA5qrMgG1escQQuXHdhtpMR5B_a3ugkew-0EFxnPi7X9_HNMWV5obglPVoTCsCTblX5gBFTZS45FumIUBLhgb2XzaXvvBKb3d6_DEa8PSeCGVgMbboSOjFSR1pkxPkojfMe40tFIQCehGiU0eSCQQZpRXfJSVGkWEMbLIs9gqB3_FNrL1RLPgCnU0jG-EBmBpMRTiauNDF2fBlMPldsF3tgmXle9MOKGJPYeV7aMrS3jypZdkI0B4x8-jSld_znz_N8zL2DPXlWE2ktobz4KvCLYsNG9Mi56sDN4eBqNvwBEq8G6
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qe6geRKtifebgNXSfyeZYqmVrHwhtobewyWalUtri7v5_k31IBfHgNWFgmQnffLP5ZgLwxDxFbQ382JJEFyi-nWBBvQgHKtL5iTjMj0w38nRGwqX3uvJXDRjUvTBGVllhf4npBVpXK73Km739et2bW8zR6bP4rWnuh1ZH0DLTqfwmtPqjcTj7BmRqkXLknkOwMag76AqZV5RnpvA0r4ib-86AOL9nqIOsMzyD04ouon75RefQUNsOtOtu4rQDJwcDBS_gea42CU7zvUGAVMUozQU2mifTh4JUobcrQoE0V0VvqcrjHdLnQG3QezF_2uxdwnL4shiEuHonAUtdEGRYEhFIygIhEildRSVxLWlTSyjNdSKdpojQQfCoFyc6NTmxYnHiaZqXBI5UvrDcK2hud1t1DYgpQS3pEpJonhQ5LLKFpL7t6sXYUczuAq59w_flOAxe68Q-eOlLbnzJS192gdYO5D_CyjVi_2l582_LR2iHi-mET0az8S0cm51SX3sHzewzV_eaRWTioTolX_6QxGs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-supervised+sub-category+exploration+for+Pseudo+label+generation&rft.jtitle=Automation+in+construction&rft.au=Chern%2C+Wei-Chih&rft.au=Kim%2C+Taegeon&rft.au=Nguyen%2C+Tam+V.&rft.au=Asari%2C+Vijayan+K.&rft.date=2023-07-01&rft.pub=Elsevier+B.V&rft.issn=0926-5805&rft.eissn=1872-7891&rft.volume=151&rft_id=info:doi/10.1016%2Fj.autcon.2023.104862&rft.externalDocID=S092658052300122X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon