Self-supervised sub-category exploration for Pseudo label generation
Image segmentation-based applications have been actively investigated. However, it is non-trivial to prepare polygon annotations. Previous studies suggested pseudo label generation methods based on weakly supervised learning to lessen the burden of annotation. Nevertheless, the quality of pseudo lab...
Saved in:
Published in | Automation in construction Vol. 151; p. 104862 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0926-5805 1872-7891 |
DOI | 10.1016/j.autcon.2023.104862 |
Cover
Loading…
Abstract | Image segmentation-based applications have been actively investigated. However, it is non-trivial to prepare polygon annotations. Previous studies suggested pseudo label generation methods based on weakly supervised learning to lessen the burden of annotation. Nevertheless, the quality of pseudo labels could not be ideal due to target object characteristics and insufficient data size in the construction domain, as identified in this study. This study proposes a fusion architecture, SESC-CAM, to address the challenge, building upon weakly and self-supervised learning methods. The proposed architecture was validated on the AIM dataset, and the generated pseudo labels recorded a mIoU score of 64.99% and 67.65% after the refinement by using a conditional random field, and outperformed its predecessors by 11.29% and 9.14%. The refined pseudo labels were used to train a segmentation model and recorded a 74% mIoU score in semantic segmentation results. The findings of this study provide insights for automated training data preparation.
•Generating pseudo labels using weakly and self-supervised learning techniques.•Proposing a novel pseudo label generation method for construction vehicles.•Demonstrating the effectiveness of pseudo labels for segmentation models•Providing polygon annotations for the AIM dataset for segmentation-related study. |
---|---|
AbstractList | Image segmentation-based applications have been actively investigated. However, it is non-trivial to prepare polygon annotations. Previous studies suggested pseudo label generation methods based on weakly supervised learning to lessen the burden of annotation. Nevertheless, the quality of pseudo labels could not be ideal due to target object characteristics and insufficient data size in the construction domain, as identified in this study. This study proposes a fusion architecture, SESC-CAM, to address the challenge, building upon weakly and self-supervised learning methods. The proposed architecture was validated on the AIM dataset, and the generated pseudo labels recorded a mIoU score of 64.99% and 67.65% after the refinement by using a conditional random field, and outperformed its predecessors by 11.29% and 9.14%. The refined pseudo labels were used to train a segmentation model and recorded a 74% mIoU score in semantic segmentation results. The findings of this study provide insights for automated training data preparation.
•Generating pseudo labels using weakly and self-supervised learning techniques.•Proposing a novel pseudo label generation method for construction vehicles.•Demonstrating the effectiveness of pseudo labels for segmentation models•Providing polygon annotations for the AIM dataset for segmentation-related study. |
ArticleNumber | 104862 |
Author | Nguyen, Tam V. Kim, Hongjo Asari, Vijayan K. Kim, Taegeon Chern, Wei-Chih |
Author_xml | – sequence: 1 givenname: Wei-Chih surname: Chern fullname: Chern, Wei-Chih email: chernw1@udayton.edu organization: Department of Electrical and Computer Engineering, University of Dayton, Dayton, OH 45469, USA – sequence: 2 givenname: Taegeon surname: Kim fullname: Kim, Taegeon email: ktg9655@yonsei.ac.kr organization: Department of Civil & Environmental Engineering, Yonsei University, Seoul, South Korea – sequence: 3 givenname: Tam V. surname: Nguyen fullname: Nguyen, Tam V. email: tamnguyen@udayton.edu organization: Department of Computer Science, University of Dayton, Dayton, OH 45469, USA – sequence: 4 givenname: Vijayan K. surname: Asari fullname: Asari, Vijayan K. email: vasari1@udayton.edu organization: Department of Electrical and Computer Engineering, University of Dayton, Dayton, OH 45469, USA – sequence: 5 givenname: Hongjo surname: Kim fullname: Kim, Hongjo email: hongjo@yonsei.ac.kr organization: Department of Civil & Environmental Engineering, Yonsei University, Seoul, South Korea |
BookMark | eNp9kM9KAzEYxIMo2FbfwMO-QGqSzSbZiyD1LxQU1HNIvv1StqybkuwW-_a2rGdPAzPMMPzm5LyPPRJyw9mSM65ut0s3DhD7pWCiPFrSKHFGZtxoQbWp-TmZsVooWhlWXZJ5zlvGmGaqnpGHD-wCzeMO077N2BR59BTcgJuYDgX-7LqY3NDGvggxFe8ZxyYWnfPYFRvsccquyEVwXcbrP12Qr6fHz9ULXb89v67u1xREVQ0UlDega-N9AChRgyoZcM08SsldKbnysuJSyyYobUSDdRNkVZbBCMDKs3JB5LQLKeacMNhdar9dOljO7ImE3dqJhD2RsBOJY-1uquHx277FZDO02AM2bUIYbBPb_wd-Aavza_w |
Cites_doi | 10.1016/j.autcon.2022.104139 10.1016/j.autcon.2021.103871 10.1007/s11263-020-01293-3 10.1109/TPAMI.2020.3046647 10.1016/j.patcog.2021.108504 10.1111/mice.12632 10.1016/j.patcog.2022.108953 10.1016/j.patcog.2022.108925 10.1061/(ASCE)CO.1943-7862.0001010 10.1111/mice.12741 10.1007/s11263-018-1112-4 10.1016/j.autcon.2021.103566 10.1061/(ASCE)CP.1943-5487.0000731 10.1007/s11263-022-01590-z 10.1007/s11263-014-0733-5 10.1016/j.autcon.2015.10.002 10.1016/j.patcog.2021.107858 10.1109/TPAMI.2017.2699184 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.autcon.2023.104862 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1872-7891 |
ExternalDocumentID | 10_1016_j_autcon_2023_104862 S092658052300122X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A NEJ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c255t-c6b8c798bbfcc3e7c630c170be441a3416b451474df6782de9df4533f82ce5b03 |
IEDL.DBID | .~1 |
ISSN | 0926-5805 |
IngestDate | Tue Jul 01 03:18:20 EDT 2025 Fri Feb 23 02:37:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Construction vehicle Training data preparation Semantic segmentation Pseudo label generation Weakly supervised learning Self-supervised learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-c6b8c798bbfcc3e7c630c170be441a3416b451474df6782de9df4533f82ce5b03 |
ParticipantIDs | crossref_primary_10_1016_j_autcon_2023_104862 elsevier_sciencedirect_doi_10_1016_j_autcon_2023_104862 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationTitle | Automation in construction |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Liu, Ma, Yang (bb0105) June 2020; 128 He, Zhang, Ren, Sun (bb0130) 2016 Zhang, Han, Zhao, Meng (bb0010) 2019; 127 Gao, Zhai, Mosalam (bb0050) September 2021; 36 Wang, Zhang, Kan, Shan (bb0090) 2022; 132 Tan, Le (bb0145) 15 Jun 2019 Deng, Dong, Socher, Li, Li, Fei-Fei (bb0140) 2009 Yi, Ma, Wang, Hu, Li, Yu (bb0115) April 2022; 124 Zlateski, Jaroensri, Sharma, Durand (bb0170) 2018 Lin, Dollár, Girshick, He, Hariharan, Belongie (bb0040) 2016 Hong, Park, Kim, Kim (bb0075) 2021; 130 Ronneberger, Fischer, Brox (bb0035) 2015; vol. 9351 Liu, Golparvar-Fard (bb0085) 2015; 141 Chang, Wang, Hung, Piramuthu, Tsai, Yang (bb0030) 2020 Zhang, Zeng, Yao, Han (bb0005) 2022; 44 Braun, Borrmann (bb0070) 2019; 106 Kim, Kim, Hong, Byun (bb0150) 2018; 32 Khoreva, Benenson, Hosang, Hein, Schiele (bb0165) July 2017 Mark Everingham, Eslami, Van Gool, Williams, Winn, Zisserman (bb0120) 2015; 111 Russakovsky, Deng, Huang, Berg, Fei-Fei (bb0125) 2013 Guo, Wang, Li (bb0055) March 2021; 36 Xie, Xiang, Chen, Hou, Zhao, Shen (bb0175) June 2022 Luo, Yang, Zheng (bb0100) July 2021; 115 Zhou, Khosla, Lapedriza, Oliva, Torralba (bb0020) June 2016 . Pan, Zhu, Zhang, Bing Cao, Wang, Han, Qinghua (bb0110) May 2022; 130 Jinwoo Kim and Seokho Chi. A few-shot learning approach for database-free vision-based monitoring on construction sites. Autom. Constr., 124. ISSN 0926-5805. pp. 103566. pp. 103566. doi Chen, Papandreou, Kokkinos, Murphy, Yuille (bb0160) 2018 Apr; 40 Soltani, Zhu, Hammad (bb0080) 2016; 62 Shim, Kim, Lee, Cho (bb0060) March 2022; 135 Jie, Wei, Jin, Feng, Liu (bb0045) 2017 Kho, Lee, Lee, Ki, Byun (bb0095) 2022; 132 Zhong, Zheng, Kang, Li, Yang (bb0155) 2017 Jie, Wei, Jin, Feng, Liu (bb0015) 2017 Wang, Zhang, Kan, Shan, Chen (bb0025) 2020 Krähenbühl, Koltun (bb0135) 2011; Vol. 24 Guo (10.1016/j.autcon.2023.104862_bb0055) 2021; 36 Zhou (10.1016/j.autcon.2023.104862_bb0020) 2016 Russakovsky (10.1016/j.autcon.2023.104862_bb0125) 2013 Xie (10.1016/j.autcon.2023.104862_bb0175) 2022 Wang (10.1016/j.autcon.2023.104862_bb0090) 2022; 132 Jie (10.1016/j.autcon.2023.104862_bb0045) 2017 He (10.1016/j.autcon.2023.104862_bb0130) 2016 Kim (10.1016/j.autcon.2023.104862_bb0150) 2018; 32 Zhang (10.1016/j.autcon.2023.104862_bb0010) 2019; 127 Chang (10.1016/j.autcon.2023.104862_bb0030) 2020 Shim (10.1016/j.autcon.2023.104862_bb0060) 2022; 135 Soltani (10.1016/j.autcon.2023.104862_bb0080) 2016; 62 Liu (10.1016/j.autcon.2023.104862_bb0085) 2015; 141 Lin (10.1016/j.autcon.2023.104862_bb0040) 2016 Braun (10.1016/j.autcon.2023.104862_bb0070) 2019; 106 Chen (10.1016/j.autcon.2023.104862_bb0160) 2018; 40 Krähenbühl (10.1016/j.autcon.2023.104862_bb0135) 2011; Vol. 24 Ronneberger (10.1016/j.autcon.2023.104862_bb0035) 2015; vol. 9351 Deng (10.1016/j.autcon.2023.104862_bb0140) 2009 Gao (10.1016/j.autcon.2023.104862_bb0050) 2021; 36 Kho (10.1016/j.autcon.2023.104862_bb0095) 2022; 132 Tan (10.1016/j.autcon.2023.104862_bb0145) 2019 Pan (10.1016/j.autcon.2023.104862_bb0110) 2022; 130 Hong (10.1016/j.autcon.2023.104862_bb0075) 2021; 130 Zhang (10.1016/j.autcon.2023.104862_bb0005) 2022; 44 Luo (10.1016/j.autcon.2023.104862_bb0100) 2021; 115 Zhong (10.1016/j.autcon.2023.104862_bb0155) 2017 Wang (10.1016/j.autcon.2023.104862_bb0105) 2020; 128 Jie (10.1016/j.autcon.2023.104862_bb0015) 2017 Wang (10.1016/j.autcon.2023.104862_bb0025) 2020 10.1016/j.autcon.2023.104862_bb0065 Yi (10.1016/j.autcon.2023.104862_bb0115) 2022; 124 Khoreva (10.1016/j.autcon.2023.104862_bb0165) 2017 Zlateski (10.1016/j.autcon.2023.104862_bb0170) 2018 Mark Everingham (10.1016/j.autcon.2023.104862_bb0120) 2015; 111 |
References_xml | – start-page: 770 year: 2016 end-page: 778 ident: bb0130 article-title: Deep residual learning for image recognition publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 6105 year: 15 Jun 2019 end-page: 6114 ident: bb0145 article-title: EfficientNet: Rethinking model scaling for convolutional neural networks publication-title: Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research – volume: 141 start-page: 04015035 year: 2015 ident: bb0085 article-title: Crowdsourcing construction activity analysis from jobsite video streams publication-title: J. Constr. Eng. Manag. – start-page: 1 year: 2017 end-page: 9 ident: bb0045 article-title: Deep self-taught learning for weakly supervised object localization – start-page: 989 year: June 2022 end-page: 998 ident: bb0175 article-title: C2am: Contrastive learning of class-agnostic activation map for weakly supervised object localization and semantic segmentation publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 40 start-page: 834 year: 2018 Apr end-page: 848 ident: bb0160 article-title: DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 115 start-page: 107858 year: July 2021 ident: bb0100 article-title: Weakly-supervised semantic segmentation with saliency and incremental supervision updating publication-title: Pattern Recogn. – start-page: 1 year: 2017 end-page: 9 ident: bb0015 article-title: Deep Self-taught Learning for Weakly Supervised Object Localization – volume: vol. 9351 start-page: 234 year: 2015 end-page: 241 ident: bb0035 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science – volume: 44 start-page: 3349 year: 2022 end-page: 3363 ident: bb0005 article-title: Weakly supervised object detection using proposal- and semantic-level relationships publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: Vol. 24 start-page: 1 year: 2011 end-page: 9 ident: bb0135 article-title: Efficient inference in fully connected CRFs with Gaussian edge potentials publication-title: Advances in Neural Information Processing Systems – volume: 127 start-page: 363 year: 2019 end-page: 380 ident: bb0010 article-title: Leveraging prior-knowledge for weakly supervised object detection under a collaborative self-paced curriculum learning framework publication-title: Int. J. Comput. Vis. – start-page: 1 year: 2017 end-page: 10 ident: bb0155 article-title: Random erasing data augmentation publication-title: CoRR – volume: 130 start-page: 103871 year: 2021 ident: bb0075 article-title: Synthetic data generation using building information models publication-title: Autom. Constr. – volume: 36 start-page: 302 year: March 2021 end-page: 317 ident: bb0055 article-title: Semi-supervised learning based on convolutional neural network and uncertainty filter for façade defects classification publication-title: Comput.-Aid. Civ. Infrastruct. Eng. – reference: Jinwoo Kim and Seokho Chi. A few-shot learning approach for database-free vision-based monitoring on construction sites. Autom. Constr., 124. ISSN 0926-5805. pp. 103566. pp. 103566. doi: – volume: 32 start-page: 04017082 year: 2018 ident: bb0150 article-title: Detecting construction equipment using a region-based fully convolutional network and transfer learning publication-title: J. Comput. Civ. Eng. – volume: 130 start-page: 1181 year: May 2022 end-page: 1195 ident: bb0110 article-title: Learning self-supervised low-rank network for single-stage weakly and semi-supervised semantic segmentation publication-title: Int. J. Comput. Vis. – start-page: 2064 year: 2013 end-page: 2071 ident: bb0125 article-title: Detecting avocados to zucchinis: what have we done, and where are we going? publication-title: International Conference on Computer Vision (ICCV) – start-page: 8988 year: 2020 end-page: 8997 ident: bb0030 article-title: Weakly-supervised semantic segmentation via sub-category exploration publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 1 year: 2016 end-page: 10 ident: bb0040 article-title: Feature pyramid networks for object detection publication-title: CoRR – volume: 132 start-page: 108953 year: 2022 ident: bb0095 article-title: Exploiting shape cues for weakly supervised semantic segmentation publication-title: Pattern Recogn. – volume: 135 start-page: 104139 year: March 2022 ident: bb0060 article-title: Road damage detection using super-resolution and semi-supervised learning with generative adversarial network publication-title: Autom. Constr. – volume: 106 start-page: 103566 year: 2019 ident: bb0070 article-title: Combining inverse photogrammetry and bim for automated labeling of construction site images for machine learning publication-title: Autom. Constr. – volume: 124 start-page: 108504 year: April 2022 ident: bb0115 article-title: Weakly-supervised semantic segmentation with superpixel guided local and global consistency publication-title: Pattern Recogn. – reference: . – start-page: 1479 year: 2018 end-page: 1487 ident: bb0170 article-title: On the importance of label quality for semantic segmentation publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 2921 year: June 2016 end-page: 2929 ident: bb0020 article-title: Learning deep features for discriminative localization publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 248 year: 2009 end-page: 255 ident: bb0140 article-title: ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09 – volume: 62 start-page: 14 year: 2016 end-page: 23 ident: bb0080 article-title: Automated annotation for visual recognition of construction resources using synthetic images publication-title: Autom. Constr. – start-page: 12272 year: 2020 end-page: 12281 ident: bb0025 article-title: Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 36 start-page: 1094 year: September 2021 end-page: 1113 ident: bb0050 article-title: Balanced semisupervised generative adversarial network for damage assessment from low-data imbalanced-class regime publication-title: Comput.-Aid. Civ. Infrastruct. Eng. – volume: 132 start-page: 108925 year: 2022 ident: bb0090 article-title: Learning pseudo labels for semi-and-weakly supervised semantic segmentation publication-title: Pattern Recogn. – volume: 128 start-page: 1736 year: June 2020 end-page: 1749 ident: bb0105 article-title: Weakly-supervised semantic segmentation by iterative affinity learning publication-title: Int. J. Comput. Vis. – volume: 111 start-page: 98 year: 2015 ident: bb0120 article-title: The pascal visual object classes challenge: a retrospective publication-title: Int. J. Comput. Vis. – start-page: 1665 year: July 2017 end-page: 1674 ident: bb0165 article-title: Simple does it: Weakly supervised instance and semantic segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 1 year: 2016 ident: 10.1016/j.autcon.2023.104862_bb0040 article-title: Feature pyramid networks for object detection publication-title: CoRR – volume: 135 start-page: 104139 year: 2022 ident: 10.1016/j.autcon.2023.104862_bb0060 article-title: Road damage detection using super-resolution and semi-supervised learning with generative adversarial network publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104139 – volume: 106 start-page: 103566 issue: 102879 year: 2019 ident: 10.1016/j.autcon.2023.104862_bb0070 article-title: Combining inverse photogrammetry and bim for automated labeling of construction site images for machine learning publication-title: Autom. Constr. – volume: 130 start-page: 103871 year: 2021 ident: 10.1016/j.autcon.2023.104862_bb0075 article-title: Synthetic data generation using building information models publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103871 – volume: 128 start-page: 1736 issue: 6 year: 2020 ident: 10.1016/j.autcon.2023.104862_bb0105 article-title: Weakly-supervised semantic segmentation by iterative affinity learning publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-020-01293-3 – volume: 44 start-page: 3349 issue: 6 year: 2022 ident: 10.1016/j.autcon.2023.104862_bb0005 article-title: Weakly supervised object detection using proposal- and semantic-level relationships publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3046647 – volume: vol. 9351 start-page: 234 year: 2015 ident: 10.1016/j.autcon.2023.104862_bb0035 article-title: U-net: Convolutional networks for biomedical image segmentation – volume: 124 start-page: 108504 year: 2022 ident: 10.1016/j.autcon.2023.104862_bb0115 article-title: Weakly-supervised semantic segmentation with superpixel guided local and global consistency publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2021.108504 – start-page: 1 year: 2017 ident: 10.1016/j.autcon.2023.104862_bb0045 – start-page: 1 year: 2017 ident: 10.1016/j.autcon.2023.104862_bb0155 article-title: Random erasing data augmentation publication-title: CoRR – volume: 36 start-page: 302 issue: 3 year: 2021 ident: 10.1016/j.autcon.2023.104862_bb0055 article-title: Semi-supervised learning based on convolutional neural network and uncertainty filter for façade defects classification publication-title: Comput.-Aid. Civ. Infrastruct. Eng. doi: 10.1111/mice.12632 – volume: 132 start-page: 108953 year: 2022 ident: 10.1016/j.autcon.2023.104862_bb0095 article-title: Exploiting shape cues for weakly supervised semantic segmentation publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2022.108953 – volume: 132 start-page: 108925 year: 2022 ident: 10.1016/j.autcon.2023.104862_bb0090 article-title: Learning pseudo labels for semi-and-weakly supervised semantic segmentation publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2022.108925 – start-page: 989 year: 2022 ident: 10.1016/j.autcon.2023.104862_bb0175 article-title: C2am: Contrastive learning of class-agnostic activation map for weakly supervised object localization and semantic segmentation – start-page: 1665 year: 2017 ident: 10.1016/j.autcon.2023.104862_bb0165 article-title: Simple does it: Weakly supervised instance and semantic segmentation – start-page: 770 year: 2016 ident: 10.1016/j.autcon.2023.104862_bb0130 article-title: Deep residual learning for image recognition – start-page: 8988 year: 2020 ident: 10.1016/j.autcon.2023.104862_bb0030 article-title: Weakly-supervised semantic segmentation via sub-category exploration – volume: 141 start-page: 04015035 issue: 11 year: 2015 ident: 10.1016/j.autcon.2023.104862_bb0085 article-title: Crowdsourcing construction activity analysis from jobsite video streams publication-title: J. Constr. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0001010 – start-page: 1479 year: 2018 ident: 10.1016/j.autcon.2023.104862_bb0170 article-title: On the importance of label quality for semantic segmentation – start-page: 2064 year: 2013 ident: 10.1016/j.autcon.2023.104862_bb0125 article-title: Detecting avocados to zucchinis: what have we done, and where are we going? – volume: 36 start-page: 1094 issue: 9 year: 2021 ident: 10.1016/j.autcon.2023.104862_bb0050 article-title: Balanced semisupervised generative adversarial network for damage assessment from low-data imbalanced-class regime publication-title: Comput.-Aid. Civ. Infrastruct. Eng. doi: 10.1111/mice.12741 – volume: 127 start-page: 363 issue: 4 year: 2019 ident: 10.1016/j.autcon.2023.104862_bb0010 article-title: Leveraging prior-knowledge for weakly supervised object detection under a collaborative self-paced curriculum learning framework publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-018-1112-4 – ident: 10.1016/j.autcon.2023.104862_bb0065 doi: 10.1016/j.autcon.2021.103566 – start-page: 1 year: 2017 ident: 10.1016/j.autcon.2023.104862_bb0015 – start-page: 248 year: 2009 ident: 10.1016/j.autcon.2023.104862_bb0140 – start-page: 2921 year: 2016 ident: 10.1016/j.autcon.2023.104862_bb0020 article-title: Learning deep features for discriminative localization – volume: Vol. 24 start-page: 1 year: 2011 ident: 10.1016/j.autcon.2023.104862_bb0135 article-title: Efficient inference in fully connected CRFs with Gaussian edge potentials – volume: 32 start-page: 04017082 issue: 2 year: 2018 ident: 10.1016/j.autcon.2023.104862_bb0150 article-title: Detecting construction equipment using a region-based fully convolutional network and transfer learning publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000731 – volume: 130 start-page: 1181 issue: 5 year: 2022 ident: 10.1016/j.autcon.2023.104862_bb0110 article-title: Learning self-supervised low-rank network for single-stage weakly and semi-supervised semantic segmentation publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-022-01590-z – volume: 111 start-page: 98 issue: 1 year: 2015 ident: 10.1016/j.autcon.2023.104862_bb0120 article-title: The pascal visual object classes challenge: a retrospective publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0733-5 – start-page: 6105 year: 2019 ident: 10.1016/j.autcon.2023.104862_bb0145 article-title: EfficientNet: Rethinking model scaling for convolutional neural networks – volume: 62 start-page: 14 year: 2016 ident: 10.1016/j.autcon.2023.104862_bb0080 article-title: Automated annotation for visual recognition of construction resources using synthetic images publication-title: Autom. Constr. doi: 10.1016/j.autcon.2015.10.002 – start-page: 12272 year: 2020 ident: 10.1016/j.autcon.2023.104862_bb0025 article-title: Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation – volume: 115 start-page: 107858 year: 2021 ident: 10.1016/j.autcon.2023.104862_bb0100 article-title: Weakly-supervised semantic segmentation with saliency and incremental supervision updating publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2021.107858 – volume: 40 start-page: 834 issue: 4 year: 2018 ident: 10.1016/j.autcon.2023.104862_bb0160 article-title: DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 |
SSID | ssj0007069 |
Score | 2.378766 |
Snippet | Image segmentation-based applications have been actively investigated. However, it is non-trivial to prepare polygon annotations. Previous studies suggested... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 104862 |
SubjectTerms | Construction vehicle Pseudo label generation Self-supervised learning Semantic segmentation Training data preparation Weakly supervised learning |
Title | Self-supervised sub-category exploration for Pseudo label generation |
URI | https://dx.doi.org/10.1016/j.autcon.2023.104862 |
Volume | 151 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KPagH0apYH2UPXtfmuZs9lqpUxSLUQm8hu5lIpbTFNFd_u7N5YAXx4DGbLISZycy32e-bBbhWAUqXEj93jKAFSuhmXMsg4REmVJ-Ep8LEqpGfx2I0DR5n4awFw0YLY2mVde6vcnqZreuRfm3N_no-708c5VH5LH9r2v2hmVWwB9JG-c3nN81DOqLqt-cJbp9u5HMlxyspNnbVaY8Qt5udkfB-L09bJef-EA5qrMgG1escQQuXHdhtpMR5B_a3ugkew-0EFxnPi7X9_HNMWV5obglPVoTCsCTblX5gBFTZS45FumIUBLhgb2XzaXvvBKb3d6_DEa8PSeCGVgMbboSOjFSR1pkxPkojfMe40tFIQCehGiU0eSCQQZpRXfJSVGkWEMbLIs9gqB3_FNrL1RLPgCnU0jG-EBmBpMRTiauNDF2fBlMPldsF3tgmXle9MOKGJPYeV7aMrS3jypZdkI0B4x8-jSld_znz_N8zL2DPXlWE2ktobz4KvCLYsNG9Mi56sDN4eBqNvwBEq8G6 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qe6geRKtifebgNXSfyeZYqmVrHwhtobewyWalUtri7v5_k31IBfHgNWFgmQnffLP5ZgLwxDxFbQ382JJEFyi-nWBBvQgHKtL5iTjMj0w38nRGwqX3uvJXDRjUvTBGVllhf4npBVpXK73Km739et2bW8zR6bP4rWnuh1ZH0DLTqfwmtPqjcTj7BmRqkXLknkOwMag76AqZV5RnpvA0r4ib-86AOL9nqIOsMzyD04ouon75RefQUNsOtOtu4rQDJwcDBS_gea42CU7zvUGAVMUozQU2mifTh4JUobcrQoE0V0VvqcrjHdLnQG3QezF_2uxdwnL4shiEuHonAUtdEGRYEhFIygIhEildRSVxLWlTSyjNdSKdpojQQfCoFyc6NTmxYnHiaZqXBI5UvrDcK2hud1t1DYgpQS3pEpJonhQ5LLKFpL7t6sXYUczuAq59w_flOAxe68Q-eOlLbnzJS192gdYO5D_CyjVi_2l582_LR2iHi-mET0az8S0cm51SX3sHzewzV_eaRWTioTolX_6QxGs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-supervised+sub-category+exploration+for+Pseudo+label+generation&rft.jtitle=Automation+in+construction&rft.au=Chern%2C+Wei-Chih&rft.au=Kim%2C+Taegeon&rft.au=Nguyen%2C+Tam+V.&rft.au=Asari%2C+Vijayan+K.&rft.date=2023-07-01&rft.pub=Elsevier+B.V&rft.issn=0926-5805&rft.eissn=1872-7891&rft.volume=151&rft_id=info:doi/10.1016%2Fj.autcon.2023.104862&rft.externalDocID=S092658052300122X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon |