Expectation‐maximization algorithm for bilinear state‐space models with time‐varying delays under non‐Gaussian noise
In this paper, the parameter identification of bilinear state‐space model (SSM) in the presence of random outliers and time‐varying delays is investigated. Under the basis of the observable canonical form of the bilinear model, the system output can be written as a regressive form, and a bilinear st...
Saved in:
Published in | International journal of adaptive control and signal processing Vol. 37; no. 10; pp. 2706 - 2724 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, the parameter identification of bilinear state‐space model (SSM) in the presence of random outliers and time‐varying delays is investigated. Under the basis of the observable canonical form of the bilinear model, the system output can be written as a regressive form, and a bilinear state observer is applied to estimate the unknown states. To eliminate the influence of outliers and time‐varying delays on parameter estimation, we employ the Student's distribution to deal with the measurement noise and use a first‐order Markov chain to model the delays. In the framework of expectation‐maximization (EM) algorithm, the unknown parameters, delays, noise variance, states and transition probability matrix can be estimated iteratively. A numerical simulation and a continuous stirred tank reactor (CSTR) process demonstrate that the proposed algorithm has good immunity against outliers and time‐varying delays and offers good estimation accuracy for the bilinear SSM. |
---|---|
AbstractList | In this paper, the parameter identification of bilinear state‐space model (SSM) in the presence of random outliers and time‐varying delays is investigated. Under the basis of the observable canonical form of the bilinear model, the system output can be written as a regressive form, and a bilinear state observer is applied to estimate the unknown states. To eliminate the influence of outliers and time‐varying delays on parameter estimation, we employ the Student's t$$ t $$ distribution to deal with the measurement noise and use a first‐order Markov chain to model the delays. In the framework of expectation‐maximization (EM) algorithm, the unknown parameters, delays, noise variance, states and transition probability matrix can be estimated iteratively. A numerical simulation and a continuous stirred tank reactor (CSTR) process demonstrate that the proposed algorithm has good immunity against outliers and time‐varying delays and offers good estimation accuracy for the bilinear SSM. In this paper, the parameter identification of bilinear state‐space model (SSM) in the presence of random outliers and time‐varying delays is investigated. Under the basis of the observable canonical form of the bilinear model, the system output can be written as a regressive form, and a bilinear state observer is applied to estimate the unknown states. To eliminate the influence of outliers and time‐varying delays on parameter estimation, we employ the Student's distribution to deal with the measurement noise and use a first‐order Markov chain to model the delays. In the framework of expectation‐maximization (EM) algorithm, the unknown parameters, delays, noise variance, states and transition probability matrix can be estimated iteratively. A numerical simulation and a continuous stirred tank reactor (CSTR) process demonstrate that the proposed algorithm has good immunity against outliers and time‐varying delays and offers good estimation accuracy for the bilinear SSM. |
Author | Xiong, Weili Wang, Xinyue Ma, Junxia |
Author_xml | – sequence: 1 givenname: Xinyue orcidid: 0000-0002-9958-2463 surname: Wang fullname: Wang, Xinyue organization: Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering Jiangnan University Wuxi People's Republic of China – sequence: 2 givenname: Junxia orcidid: 0000-0002-0151-3188 surname: Ma fullname: Ma, Junxia organization: Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering Jiangnan University Wuxi People's Republic of China – sequence: 3 givenname: Weili surname: Xiong fullname: Xiong, Weili organization: Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering Jiangnan University Wuxi People's Republic of China |
BookMark | eNplkE1OwzAQhS1UJNqCxBEssWGTYjt1fpaoKgWpEhtYRxNnUlwldrBTKIgFR-CMnAS3ZQWr0dP75o3mjcjAWIOEnHM24YyJK1B-EicyPSJDzvI84pzLARmyLGdREov0hIy8XzMWPB4Pycd826HqodfWfH9-tbDVrX7fSwrNyjrdP7W0to6WutEGwVEfaAys70AhbW2FjaevgaO9bnfGC7g3bVY0GPDm6cZU6KjZ5y9g470GE6T2eEqOa2g8nv3OMXm8mT_MbqPl_eJudr2MlJCyj8pKxmlWYpIwrBBEPK2mSpaySkAxwTOZcEwhr4UEVfGY11micuACJIKqgcdjcnHI7Zx93qDvi7XdOBNOFiJLWSalFFmgLg-UctZ7h3XROd2GXwrOil23Rei22HUb0MkfVOlDh70D3fxf-AFqs4Wj |
CitedBy_id | crossref_primary_10_1016_j_dsp_2024_104445 crossref_primary_10_1002_acs_3963 crossref_primary_10_1016_j_cam_2024_115976 crossref_primary_10_1002_oca_3210 crossref_primary_10_1016_j_cnsns_2023_107759 crossref_primary_10_1002_acs_3923 crossref_primary_10_1177_09596518241256145 crossref_primary_10_1002_oca_3257 crossref_primary_10_1007_s11071_024_10613_y crossref_primary_10_1002_acs_3884 crossref_primary_10_1016_j_sysconle_2024_105762 crossref_primary_10_1002_rnc_7323 crossref_primary_10_1007_s11071_024_10186_w crossref_primary_10_1016_j_dsp_2024_104951 crossref_primary_10_1002_acs_3931 crossref_primary_10_1002_rnc_7705 crossref_primary_10_1002_rnc_7307 crossref_primary_10_1002_acs_3891 crossref_primary_10_1007_s00034_024_02730_1 crossref_primary_10_1007_s00034_024_02776_1 crossref_primary_10_1016_j_jfranklin_2024_107352 crossref_primary_10_3390_jmse12010142 crossref_primary_10_1007_s11071_024_10763_z crossref_primary_10_1002_acs_3865 crossref_primary_10_1002_acs_3904 crossref_primary_10_1002_rnc_7338 crossref_primary_10_1002_oca_3158 crossref_primary_10_1002_oca_3279 crossref_primary_10_1016_j_chaos_2024_115181 crossref_primary_10_1007_s00034_025_03068_y crossref_primary_10_3390_en17092145 crossref_primary_10_1016_j_isatra_2024_01_035 crossref_primary_10_1016_j_isatra_2024_11_048 crossref_primary_10_1002_rnc_7344 crossref_primary_10_1007_s12555_024_0430_2 crossref_primary_10_1016_j_apm_2023_10_038 crossref_primary_10_1177_09596518241280323 crossref_primary_10_1002_acs_3712 crossref_primary_10_1016_j_amc_2024_129102 crossref_primary_10_1016_j_cam_2023_115724 crossref_primary_10_1177_09596518241309132 crossref_primary_10_1002_acs_3792 crossref_primary_10_1007_s00034_024_02777_0 crossref_primary_10_1002_acs_3753 crossref_primary_10_1002_acs_3874 crossref_primary_10_1002_acs_3871 crossref_primary_10_1007_s00034_024_02627_z crossref_primary_10_1016_j_cam_2023_115687 crossref_primary_10_1016_j_arcontrol_2024_100942 crossref_primary_10_1016_j_sysconle_2024_105774 crossref_primary_10_1007_s13369_024_09313_x |
Cites_doi | 10.1016/j.jfranklin.2020.06.003 10.1109/TSMC.2017.2689920 10.1002/acs.3296 10.1021/ie0601753 10.1111/j.2517-6161.1983.tb01229.x 10.1016/j.dsp.2017.11.009 10.1109/TIM.2021.3067242 10.1109/TCYB.2022.3183104 10.1109/TII.2018.2829167 10.1007/s11071-017-3594-y 10.1109/TCST.2019.2947868 10.1016/j.cam.2019.112575 10.1109/TIE.2019.2924876 10.1109/TNNLS.2019.2904952 10.1002/acs.3308 10.1016/j.cam.2022.114794 10.1016/j.neucom.2020.01.088 10.1016/S0304-3800(96)00069-5 10.1016/j.ins.2022.05.105 10.1016/j.jfranklin.2019.01.054 10.1109/TSMC.2017.2692273 10.1016/j.jfranklin.2021.05.003 10.1109/TCST.2023.3249042 10.1109/TSMC.2019.2949087 10.1109/TII.2018.2871194 10.1016/j.ast.2021.106995 10.1016/j.neucom.2019.01.025 10.1002/rnc.4884 10.1016/j.jfranklin.2019.11.003 10.1016/j.neucom.2004.11.018 10.1016/0005-1098(77)90051-6 10.1111/j.2517-6161.1977.tb01600.x 10.1002/acs.3089 10.3390/math10224337 10.1002/rnc.5190 10.1002/acs.3166 10.1002/rnc.6236 10.1109/TCSI.2022.3193444 10.1016/j.jfranklin.2019.03.041 |
ContentType | Journal Article |
Copyright | 2023 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/acs.3657 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1115 |
EndPage | 2724 |
ExternalDocumentID | 10_1002_acs_3657 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3EH 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYOK AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WJL WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT 7SC 7SP 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c255t-bd5378be660edea234d4c5b5d6ac0218561e7a9f25acd131f86c9a12a5eacfa13 |
ISSN | 0890-6327 |
IngestDate | Sun Jul 13 04:33:13 EDT 2025 Tue Jul 01 03:39:34 EDT 2025 Thu Apr 24 22:59:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c255t-bd5378be660edea234d4c5b5d6ac0218561e7a9f25acd131f86c9a12a5eacfa13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0151-3188 0000-0002-9958-2463 |
PQID | 2870855528 |
PQPubID | 996374 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2870855528 crossref_primary_10_1002_acs_3657 crossref_citationtrail_10_1002_acs_3657 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-00 20231001 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-00 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal of adaptive control and signal processing |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Dempster AP (e_1_2_8_34_1) 1977; 39 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Mohler RR (e_1_2_8_6_1) 1970 Boyles RA (e_1_2_8_36_1) 1983; 45 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – ident: e_1_2_8_25_1 doi: 10.1016/j.jfranklin.2020.06.003 – ident: e_1_2_8_22_1 doi: 10.1109/TSMC.2017.2689920 – ident: e_1_2_8_3_1 doi: 10.1002/acs.3296 – ident: e_1_2_8_39_1 doi: 10.1021/ie0601753 – volume: 45 start-page: 47 issue: 1 year: 1983 ident: e_1_2_8_36_1 article-title: On the convergence of the EM algorithm publication-title: J R Stat Soc doi: 10.1111/j.2517-6161.1983.tb01229.x – ident: e_1_2_8_17_1 doi: 10.1016/j.dsp.2017.11.009 – ident: e_1_2_8_16_1 doi: 10.1109/TIM.2021.3067242 – ident: e_1_2_8_32_1 doi: 10.1109/TCYB.2022.3183104 – ident: e_1_2_8_26_1 doi: 10.1109/TII.2018.2829167 – ident: e_1_2_8_8_1 doi: 10.1007/s11071-017-3594-y – ident: e_1_2_8_18_1 doi: 10.1109/TCST.2019.2947868 – ident: e_1_2_8_38_1 doi: 10.1016/j.cam.2019.112575 – ident: e_1_2_8_41_1 doi: 10.1109/TIE.2019.2924876 – ident: e_1_2_8_4_1 doi: 10.1109/TNNLS.2019.2904952 – ident: e_1_2_8_12_1 doi: 10.1002/acs.3308 – ident: e_1_2_8_13_1 doi: 10.1016/j.cam.2022.114794 – ident: e_1_2_8_19_1 doi: 10.1016/j.neucom.2020.01.088 – ident: e_1_2_8_5_1 doi: 10.1016/S0304-3800(96)00069-5 – ident: e_1_2_8_31_1 doi: 10.1016/j.ins.2022.05.105 – ident: e_1_2_8_35_1 doi: 10.1016/j.jfranklin.2019.01.054 – ident: e_1_2_8_40_1 doi: 10.1109/TSMC.2017.2692273 – ident: e_1_2_8_2_1 doi: 10.1016/j.jfranklin.2021.05.003 – ident: e_1_2_8_14_1 doi: 10.1109/TCST.2023.3249042 – ident: e_1_2_8_21_1 doi: 10.1109/TSMC.2019.2949087 – ident: e_1_2_8_23_1 doi: 10.1109/TII.2018.2871194 – ident: e_1_2_8_20_1 doi: 10.1016/j.ast.2021.106995 – ident: e_1_2_8_24_1 doi: 10.1016/j.neucom.2019.01.025 – ident: e_1_2_8_11_1 doi: 10.1002/rnc.4884 – ident: e_1_2_8_28_1 doi: 10.1016/j.jfranklin.2019.11.003 – volume-title: Optimal Control of Nuclear Reactors year: 1970 ident: e_1_2_8_6_1 – ident: e_1_2_8_33_1 doi: 10.1016/j.neucom.2004.11.018 – ident: e_1_2_8_7_1 doi: 10.1016/0005-1098(77)90051-6 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: e_1_2_8_34_1 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_2_8_30_1 doi: 10.1002/acs.3089 – ident: e_1_2_8_37_1 doi: 10.3390/math10224337 – ident: e_1_2_8_9_1 doi: 10.1002/rnc.5190 – ident: e_1_2_8_27_1 doi: 10.1002/acs.3166 – ident: e_1_2_8_10_1 doi: 10.1002/rnc.6236 – ident: e_1_2_8_15_1 doi: 10.1109/TCSI.2022.3193444 – ident: e_1_2_8_29_1 doi: 10.1016/j.jfranklin.2019.03.041 |
SSID | ssj0009913 |
Score | 2.5675972 |
Snippet | In this paper, the parameter identification of bilinear state‐space model (SSM) in the presence of random outliers and time‐varying delays is investigated.... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 2706 |
SubjectTerms | Algorithms Canonical forms Continuously stirred tank reactors Markov chains Mathematical models Maximization Noise measurement Optimization Outliers (statistics) Parameter estimation Parameter identification Random noise State observers Transition probabilities |
Title | Expectation‐maximization algorithm for bilinear state‐space models with time‐varying delays under non‐Gaussian noise |
URI | https://www.proquest.com/docview/2870855528 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKuIELxK8YDGQkJC6qlMSJneYSwcaEpiGhVuQuOnHcLdKaVU2LNsQFj8CT8RA8Ccd2nLpiQoObqIrdJPX5cnyO-53PhLwUEtM1DLwDCHVJDouSAKKZDDB3FhkvBVrdsHyPxeE0-ZDzfDD46bGW1qtyJL9eWVfyP1bFc2hXXSX7D5btL4on8DPaF49oYTxey8Zap1ja_9J70sIcLup5V1w5hLOTc8z-T-eWlVnrmBKWQ6tX4b6BPgVfbrMlTlfrpjec75u_wNKUQmk5ycvW7Ju7HDbeHd_DujWlmM153W4xi7aXGz2RCqhgYThLjilvlu_rE928sKULbko1i_3WIeV1c7n2uLq2qqS5qPupJa87hvFnhb_VX9FgG27cdf2m7yMzzH5jKy8wUtaHa9FRdOHcd_JWWcaBOfRddhoKb_pnqa3p_mNqsVK1INtRLHi6mT4dZeD4Y3EwPToqJvv55Aa5yTBt0TtqvPu0kTPDWNwwHtxDOzHkkL12190Oj7ajAxPyTO6SO12uQt9Y4N0jA9XcJ7c9BcsH5JsHwV_ff_jgoz34KIKPOvBRAz7sa2BHLeyohh3VsMOGDnDUAo4awNHGXN9BjRqoPSTTg_3J28Og29AjkJi5roKy4nE6LpUQoaoUsDipEslLXgmQOtbEWF6lkM0YB1lFcTQbC5lBxIBjeDCDKH5EdvB26jGhcVyqWYbdMLhKBI9K3bcKQZRGwRJ2ySs3joXs1O71pitnhdXpZgWOeKFHfJe86HsurMLLFX32nCmK7mVpC00RGHPO2fjJ35ufklsbmO-RndVyrZ5hKLsqnxt8_AYtsKsA |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expectation%E2%80%90maximization+algorithm+for+bilinear+state%E2%80%90space+models+with+time%E2%80%90varying+delays+under+non%E2%80%90Gaussian+noise&rft.jtitle=International+journal+of+adaptive+control+and+signal+processing&rft.au=Wang%2C+Xinyue&rft.au=Ma%2C+Junxia&rft.au=Xiong%2C+Weili&rft.date=2023-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0890-6327&rft.eissn=1099-1115&rft.volume=37&rft.issue=10&rft.spage=2706&rft.epage=2724&rft_id=info:doi/10.1002%2Facs.3657&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6327&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6327&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6327&client=summon |