Expectation‐maximization algorithm for bilinear state‐space models with time‐varying delays under non‐Gaussian noise

In this paper, the parameter identification of bilinear state‐space model (SSM) in the presence of random outliers and time‐varying delays is investigated. Under the basis of the observable canonical form of the bilinear model, the system output can be written as a regressive form, and a bilinear st...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of adaptive control and signal processing Vol. 37; no. 10; pp. 2706 - 2724
Main Authors Wang, Xinyue, Ma, Junxia, Xiong, Weili
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, the parameter identification of bilinear state‐space model (SSM) in the presence of random outliers and time‐varying delays is investigated. Under the basis of the observable canonical form of the bilinear model, the system output can be written as a regressive form, and a bilinear state observer is applied to estimate the unknown states. To eliminate the influence of outliers and time‐varying delays on parameter estimation, we employ the Student's distribution to deal with the measurement noise and use a first‐order Markov chain to model the delays. In the framework of expectation‐maximization (EM) algorithm, the unknown parameters, delays, noise variance, states and transition probability matrix can be estimated iteratively. A numerical simulation and a continuous stirred tank reactor (CSTR) process demonstrate that the proposed algorithm has good immunity against outliers and time‐varying delays and offers good estimation accuracy for the bilinear SSM.
AbstractList In this paper, the parameter identification of bilinear state‐space model (SSM) in the presence of random outliers and time‐varying delays is investigated. Under the basis of the observable canonical form of the bilinear model, the system output can be written as a regressive form, and a bilinear state observer is applied to estimate the unknown states. To eliminate the influence of outliers and time‐varying delays on parameter estimation, we employ the Student's t$$ t $$ distribution to deal with the measurement noise and use a first‐order Markov chain to model the delays. In the framework of expectation‐maximization (EM) algorithm, the unknown parameters, delays, noise variance, states and transition probability matrix can be estimated iteratively. A numerical simulation and a continuous stirred tank reactor (CSTR) process demonstrate that the proposed algorithm has good immunity against outliers and time‐varying delays and offers good estimation accuracy for the bilinear SSM.
In this paper, the parameter identification of bilinear state‐space model (SSM) in the presence of random outliers and time‐varying delays is investigated. Under the basis of the observable canonical form of the bilinear model, the system output can be written as a regressive form, and a bilinear state observer is applied to estimate the unknown states. To eliminate the influence of outliers and time‐varying delays on parameter estimation, we employ the Student's distribution to deal with the measurement noise and use a first‐order Markov chain to model the delays. In the framework of expectation‐maximization (EM) algorithm, the unknown parameters, delays, noise variance, states and transition probability matrix can be estimated iteratively. A numerical simulation and a continuous stirred tank reactor (CSTR) process demonstrate that the proposed algorithm has good immunity against outliers and time‐varying delays and offers good estimation accuracy for the bilinear SSM.
Author Xiong, Weili
Wang, Xinyue
Ma, Junxia
Author_xml – sequence: 1
  givenname: Xinyue
  orcidid: 0000-0002-9958-2463
  surname: Wang
  fullname: Wang, Xinyue
  organization: Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering Jiangnan University Wuxi People's Republic of China
– sequence: 2
  givenname: Junxia
  orcidid: 0000-0002-0151-3188
  surname: Ma
  fullname: Ma, Junxia
  organization: Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering Jiangnan University Wuxi People's Republic of China
– sequence: 3
  givenname: Weili
  surname: Xiong
  fullname: Xiong, Weili
  organization: Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering Jiangnan University Wuxi People's Republic of China
BookMark eNplkE1OwzAQhS1UJNqCxBEssWGTYjt1fpaoKgWpEhtYRxNnUlwldrBTKIgFR-CMnAS3ZQWr0dP75o3mjcjAWIOEnHM24YyJK1B-EicyPSJDzvI84pzLARmyLGdREov0hIy8XzMWPB4Pycd826HqodfWfH9-tbDVrX7fSwrNyjrdP7W0to6WutEGwVEfaAys70AhbW2FjaevgaO9bnfGC7g3bVY0GPDm6cZU6KjZ5y9g470GE6T2eEqOa2g8nv3OMXm8mT_MbqPl_eJudr2MlJCyj8pKxmlWYpIwrBBEPK2mSpaySkAxwTOZcEwhr4UEVfGY11micuACJIKqgcdjcnHI7Zx93qDvi7XdOBNOFiJLWSalFFmgLg-UctZ7h3XROd2GXwrOil23Rei22HUb0MkfVOlDh70D3fxf-AFqs4Wj
CitedBy_id crossref_primary_10_1016_j_dsp_2024_104445
crossref_primary_10_1002_acs_3963
crossref_primary_10_1016_j_cam_2024_115976
crossref_primary_10_1002_oca_3210
crossref_primary_10_1016_j_cnsns_2023_107759
crossref_primary_10_1002_acs_3923
crossref_primary_10_1177_09596518241256145
crossref_primary_10_1002_oca_3257
crossref_primary_10_1007_s11071_024_10613_y
crossref_primary_10_1002_acs_3884
crossref_primary_10_1016_j_sysconle_2024_105762
crossref_primary_10_1002_rnc_7323
crossref_primary_10_1007_s11071_024_10186_w
crossref_primary_10_1016_j_dsp_2024_104951
crossref_primary_10_1002_acs_3931
crossref_primary_10_1002_rnc_7705
crossref_primary_10_1002_rnc_7307
crossref_primary_10_1002_acs_3891
crossref_primary_10_1007_s00034_024_02730_1
crossref_primary_10_1007_s00034_024_02776_1
crossref_primary_10_1016_j_jfranklin_2024_107352
crossref_primary_10_3390_jmse12010142
crossref_primary_10_1007_s11071_024_10763_z
crossref_primary_10_1002_acs_3865
crossref_primary_10_1002_acs_3904
crossref_primary_10_1002_rnc_7338
crossref_primary_10_1002_oca_3158
crossref_primary_10_1002_oca_3279
crossref_primary_10_1016_j_chaos_2024_115181
crossref_primary_10_1007_s00034_025_03068_y
crossref_primary_10_3390_en17092145
crossref_primary_10_1016_j_isatra_2024_01_035
crossref_primary_10_1016_j_isatra_2024_11_048
crossref_primary_10_1002_rnc_7344
crossref_primary_10_1007_s12555_024_0430_2
crossref_primary_10_1016_j_apm_2023_10_038
crossref_primary_10_1177_09596518241280323
crossref_primary_10_1002_acs_3712
crossref_primary_10_1016_j_amc_2024_129102
crossref_primary_10_1016_j_cam_2023_115724
crossref_primary_10_1177_09596518241309132
crossref_primary_10_1002_acs_3792
crossref_primary_10_1007_s00034_024_02777_0
crossref_primary_10_1002_acs_3753
crossref_primary_10_1002_acs_3874
crossref_primary_10_1002_acs_3871
crossref_primary_10_1007_s00034_024_02627_z
crossref_primary_10_1016_j_cam_2023_115687
crossref_primary_10_1016_j_arcontrol_2024_100942
crossref_primary_10_1016_j_sysconle_2024_105774
crossref_primary_10_1007_s13369_024_09313_x
Cites_doi 10.1016/j.jfranklin.2020.06.003
10.1109/TSMC.2017.2689920
10.1002/acs.3296
10.1021/ie0601753
10.1111/j.2517-6161.1983.tb01229.x
10.1016/j.dsp.2017.11.009
10.1109/TIM.2021.3067242
10.1109/TCYB.2022.3183104
10.1109/TII.2018.2829167
10.1007/s11071-017-3594-y
10.1109/TCST.2019.2947868
10.1016/j.cam.2019.112575
10.1109/TIE.2019.2924876
10.1109/TNNLS.2019.2904952
10.1002/acs.3308
10.1016/j.cam.2022.114794
10.1016/j.neucom.2020.01.088
10.1016/S0304-3800(96)00069-5
10.1016/j.ins.2022.05.105
10.1016/j.jfranklin.2019.01.054
10.1109/TSMC.2017.2692273
10.1016/j.jfranklin.2021.05.003
10.1109/TCST.2023.3249042
10.1109/TSMC.2019.2949087
10.1109/TII.2018.2871194
10.1016/j.ast.2021.106995
10.1016/j.neucom.2019.01.025
10.1002/rnc.4884
10.1016/j.jfranklin.2019.11.003
10.1016/j.neucom.2004.11.018
10.1016/0005-1098(77)90051-6
10.1111/j.2517-6161.1977.tb01600.x
10.1002/acs.3089
10.3390/math10224337
10.1002/rnc.5190
10.1002/acs.3166
10.1002/rnc.6236
10.1109/TCSI.2022.3193444
10.1016/j.jfranklin.2019.03.041
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/acs.3657
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1115
EndPage 2724
ExternalDocumentID 10_1002_acs_3657
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3EH
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYOK
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
7SC
7SP
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c255t-bd5378be660edea234d4c5b5d6ac0218561e7a9f25acd131f86c9a12a5eacfa13
ISSN 0890-6327
IngestDate Sun Jul 13 04:33:13 EDT 2025
Tue Jul 01 03:39:34 EDT 2025
Thu Apr 24 22:59:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-bd5378be660edea234d4c5b5d6ac0218561e7a9f25acd131f86c9a12a5eacfa13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0151-3188
0000-0002-9958-2463
PQID 2870855528
PQPubID 996374
PageCount 19
ParticipantIDs proquest_journals_2870855528
crossref_primary_10_1002_acs_3657
crossref_citationtrail_10_1002_acs_3657
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-00
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of adaptive control and signal processing
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Dempster AP (e_1_2_8_34_1) 1977; 39
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Mohler RR (e_1_2_8_6_1) 1970
Boyles RA (e_1_2_8_36_1) 1983; 45
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – ident: e_1_2_8_25_1
  doi: 10.1016/j.jfranklin.2020.06.003
– ident: e_1_2_8_22_1
  doi: 10.1109/TSMC.2017.2689920
– ident: e_1_2_8_3_1
  doi: 10.1002/acs.3296
– ident: e_1_2_8_39_1
  doi: 10.1021/ie0601753
– volume: 45
  start-page: 47
  issue: 1
  year: 1983
  ident: e_1_2_8_36_1
  article-title: On the convergence of the EM algorithm
  publication-title: J R Stat Soc
  doi: 10.1111/j.2517-6161.1983.tb01229.x
– ident: e_1_2_8_17_1
  doi: 10.1016/j.dsp.2017.11.009
– ident: e_1_2_8_16_1
  doi: 10.1109/TIM.2021.3067242
– ident: e_1_2_8_32_1
  doi: 10.1109/TCYB.2022.3183104
– ident: e_1_2_8_26_1
  doi: 10.1109/TII.2018.2829167
– ident: e_1_2_8_8_1
  doi: 10.1007/s11071-017-3594-y
– ident: e_1_2_8_18_1
  doi: 10.1109/TCST.2019.2947868
– ident: e_1_2_8_38_1
  doi: 10.1016/j.cam.2019.112575
– ident: e_1_2_8_41_1
  doi: 10.1109/TIE.2019.2924876
– ident: e_1_2_8_4_1
  doi: 10.1109/TNNLS.2019.2904952
– ident: e_1_2_8_12_1
  doi: 10.1002/acs.3308
– ident: e_1_2_8_13_1
  doi: 10.1016/j.cam.2022.114794
– ident: e_1_2_8_19_1
  doi: 10.1016/j.neucom.2020.01.088
– ident: e_1_2_8_5_1
  doi: 10.1016/S0304-3800(96)00069-5
– ident: e_1_2_8_31_1
  doi: 10.1016/j.ins.2022.05.105
– ident: e_1_2_8_35_1
  doi: 10.1016/j.jfranklin.2019.01.054
– ident: e_1_2_8_40_1
  doi: 10.1109/TSMC.2017.2692273
– ident: e_1_2_8_2_1
  doi: 10.1016/j.jfranklin.2021.05.003
– ident: e_1_2_8_14_1
  doi: 10.1109/TCST.2023.3249042
– ident: e_1_2_8_21_1
  doi: 10.1109/TSMC.2019.2949087
– ident: e_1_2_8_23_1
  doi: 10.1109/TII.2018.2871194
– ident: e_1_2_8_20_1
  doi: 10.1016/j.ast.2021.106995
– ident: e_1_2_8_24_1
  doi: 10.1016/j.neucom.2019.01.025
– ident: e_1_2_8_11_1
  doi: 10.1002/rnc.4884
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jfranklin.2019.11.003
– volume-title: Optimal Control of Nuclear Reactors
  year: 1970
  ident: e_1_2_8_6_1
– ident: e_1_2_8_33_1
  doi: 10.1016/j.neucom.2004.11.018
– ident: e_1_2_8_7_1
  doi: 10.1016/0005-1098(77)90051-6
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: e_1_2_8_34_1
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_8_30_1
  doi: 10.1002/acs.3089
– ident: e_1_2_8_37_1
  doi: 10.3390/math10224337
– ident: e_1_2_8_9_1
  doi: 10.1002/rnc.5190
– ident: e_1_2_8_27_1
  doi: 10.1002/acs.3166
– ident: e_1_2_8_10_1
  doi: 10.1002/rnc.6236
– ident: e_1_2_8_15_1
  doi: 10.1109/TCSI.2022.3193444
– ident: e_1_2_8_29_1
  doi: 10.1016/j.jfranklin.2019.03.041
SSID ssj0009913
Score 2.5675972
Snippet In this paper, the parameter identification of bilinear state‐space model (SSM) in the presence of random outliers and time‐varying delays is investigated....
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2706
SubjectTerms Algorithms
Canonical forms
Continuously stirred tank reactors
Markov chains
Mathematical models
Maximization
Noise measurement
Optimization
Outliers (statistics)
Parameter estimation
Parameter identification
Random noise
State observers
Transition probabilities
Title Expectation‐maximization algorithm for bilinear state‐space models with time‐varying delays under non‐Gaussian noise
URI https://www.proquest.com/docview/2870855528
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKuIELxK8YDGQkJC6qlMSJneYSwcaEpiGhVuQuOnHcLdKaVU2LNsQFj8CT8RA8Ccd2nLpiQoObqIrdJPX5cnyO-53PhLwUEtM1DLwDCHVJDouSAKKZDDB3FhkvBVrdsHyPxeE0-ZDzfDD46bGW1qtyJL9eWVfyP1bFc2hXXSX7D5btL4on8DPaF49oYTxey8Zap1ja_9J70sIcLup5V1w5hLOTc8z-T-eWlVnrmBKWQ6tX4b6BPgVfbrMlTlfrpjec75u_wNKUQmk5ycvW7Ju7HDbeHd_DujWlmM153W4xi7aXGz2RCqhgYThLjilvlu_rE928sKULbko1i_3WIeV1c7n2uLq2qqS5qPupJa87hvFnhb_VX9FgG27cdf2m7yMzzH5jKy8wUtaHa9FRdOHcd_JWWcaBOfRddhoKb_pnqa3p_mNqsVK1INtRLHi6mT4dZeD4Y3EwPToqJvv55Aa5yTBt0TtqvPu0kTPDWNwwHtxDOzHkkL12190Oj7ajAxPyTO6SO12uQt9Y4N0jA9XcJ7c9BcsH5JsHwV_ff_jgoz34KIKPOvBRAz7sa2BHLeyohh3VsMOGDnDUAo4awNHGXN9BjRqoPSTTg_3J28Og29AjkJi5roKy4nE6LpUQoaoUsDipEslLXgmQOtbEWF6lkM0YB1lFcTQbC5lBxIBjeDCDKH5EdvB26jGhcVyqWYbdMLhKBI9K3bcKQZRGwRJ2ySs3joXs1O71pitnhdXpZgWOeKFHfJe86HsurMLLFX32nCmK7mVpC00RGHPO2fjJ35ufklsbmO-RndVyrZ5hKLsqnxt8_AYtsKsA
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expectation%E2%80%90maximization+algorithm+for+bilinear+state%E2%80%90space+models+with+time%E2%80%90varying+delays+under+non%E2%80%90Gaussian+noise&rft.jtitle=International+journal+of+adaptive+control+and+signal+processing&rft.au=Wang%2C+Xinyue&rft.au=Ma%2C+Junxia&rft.au=Xiong%2C+Weili&rft.date=2023-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0890-6327&rft.eissn=1099-1115&rft.volume=37&rft.issue=10&rft.spage=2706&rft.epage=2724&rft_id=info:doi/10.1002%2Facs.3657&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6327&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6327&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6327&client=summon