Communication-Aware Formation Control of AUVs With Model Uncertainty and Fading Channel via Integral Reinforcement Learning

Most formation approaches of autonomous underwater vehicles (AUVs) focus on the control techniques, ignoring the influence of underwater channel. This paper is concerned with a communication-aware formation issue for AUVs, subject to model uncertainty and fading channel. An integral reinforcement le...

Full description

Saved in:
Bibliographic Details
Published inIEEE/CAA journal of automatica sinica Vol. 10; no. 1; pp. 159 - 176
Main Authors Cao, Wenqiang, Yan, Jing, Yang, Xian, Luo, Xiaoyuan, Guan, Xinping
Format Journal Article
LanguageEnglish
Published Piscataway Chinese Association of Automation (CAA) 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical Engineering,Yanshan University,Qinhuangdao 066004,China%Institute of Information Science and Engineering,Yanshan University,Qinhuangdao 066004,China%Department of Automation,Shanghai Jiao Tong University,Shanghai 200240,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most formation approaches of autonomous underwater vehicles (AUVs) focus on the control techniques, ignoring the influence of underwater channel. This paper is concerned with a communication-aware formation issue for AUVs, subject to model uncertainty and fading channel. An integral reinforcement learning (IRL) based estimator is designed to calculate the probabilistic channel parameters, wherein the multivariate probabilistic collocation method with orthogonal fractional factorial design (M-PCM-OFFD) is employed to evaluate the uncertain channel measurements. With the estimated signal-to-noise ratio (SNR), we employ the IRL and M-PCM-OFFD to develop a saturated formation controller for AUVs, dealing with uncertain dynamics and current parameters. For the proposed formation approach, an integrated optimization solution is presented to make a balance between formation stability and communication efficiency. Main innovations lie in three aspects: 1) Construct an integrated communication and control optimization framework; 2) Design an IRL-based channel prediction estimator; 3) Develop an IRL-based formation controller with M-PCM-OFFD. Finally, simulation results show that the formation approach can avoid local optimum estimation, improve the channel efficiency, and relax the dependence of AUV model parameters.
AbstractList Most formation approaches of autonomous under-water vehicles (AUVs) focus on the control techniques, ignoring the influence of underwater channel. This paper is concerned with a communication-aware formation issue for AUVs, subject to model uncertainty and fading channel. An integral reinforce-ment learning (IRL) based estimator is designed to calculate the probabilistic channel parameters, wherein the multivariate prob-abilistic collocation method with orthogonal fractional factorial design (M-PCM-OFFD) is employed to evaluate the uncertain channel measurements. With the estimated signal-to-noise ratio (SNR), we employ the IRL and M-PCM-OFFD to develop a satu-rated formation controller for AUVs, dealing with uncertain dynamics and current parameters. For the proposed formation approach, an integrated optimization solution is presented to make a balance between formation stability and communication efficiency. Main innovations lie in three aspects: 1) Construct an integrated communication and control optimization framework;2) Design an IRL-based channel prediction estimator; 3) Develop an IRL-based formation controller with M-PCM-OFFD. Finally, simulation results show that the formation approach can avoid local optimum estimation, improve the channel efficiency, and relax the dependence of AUV model parameters.
Most formation approaches of autonomous underwater vehicles (AUVs) focus on the control techniques, ignoring the influence of underwater channel. This paper is concerned with a communication-aware formation issue for AUVs, subject to model uncertainty and fading channel. An integral reinforcement learning (IRL) based estimator is designed to calculate the probabilistic channel parameters, wherein the multivariate probabilistic collocation method with orthogonal fractional factorial design (M-PCM-OFFD) is employed to evaluate the uncertain channel measurements. With the estimated signal-to-noise ratio (SNR), we employ the IRL and M-PCM-OFFD to develop a saturated formation controller for AUVs, dealing with uncertain dynamics and current parameters. For the proposed formation approach, an integrated optimization solution is presented to make a balance between formation stability and communication efficiency. Main innovations lie in three aspects: 1) Construct an integrated communication and control optimization framework; 2) Design an IRL-based channel prediction estimator; 3) Develop an IRL-based formation controller with M-PCM-OFFD. Finally, simulation results show that the formation approach can avoid local optimum estimation, improve the channel efficiency, and relax the dependence of AUV model parameters.
Author Yang, Xian
Guan, Xinping
Cao, Wenqiang
Luo, Xiaoyuan
Yan, Jing
AuthorAffiliation Institute of Electrical Engineering,Yanshan University,Qinhuangdao 066004,China%Institute of Information Science and Engineering,Yanshan University,Qinhuangdao 066004,China%Department of Automation,Shanghai Jiao Tong University,Shanghai 200240,China
AuthorAffiliation_xml – name: Institute of Electrical Engineering,Yanshan University,Qinhuangdao 066004,China%Institute of Information Science and Engineering,Yanshan University,Qinhuangdao 066004,China%Department of Automation,Shanghai Jiao Tong University,Shanghai 200240,China
Author_xml – sequence: 1
  givenname: Wenqiang
  surname: Cao
  fullname: Cao, Wenqiang
  email: cwq@stumail.ysu.edu.cn
  organization: Institute of Electrical Engineering, Yanshan University,Qinhuangdao,China,066004
– sequence: 2
  givenname: Jing
  surname: Yan
  fullname: Yan, Jing
  email: jyan@ysu.edu.cn
  organization: Institute of Electrical Engineering, Yanshan University,Qinhuangdao,China,066004
– sequence: 3
  givenname: Xian
  surname: Yang
  fullname: Yang, Xian
  email: xyang@ysu.edu.cn
  organization: Institute of Electrical Engineering, Yanshan University,Qinhuangdao,China,066004
– sequence: 4
  givenname: Xiaoyuan
  surname: Luo
  fullname: Luo, Xiaoyuan
  email: xyluo@ysu.edu.cn
  organization: Institute of Electrical Engineering, Yanshan University,Qinhuangdao,China,066004
– sequence: 5
  givenname: Xinping
  surname: Guan
  fullname: Guan, Xinping
  email: xpguan@sjtu.edu.cn
  organization: Institute of Electrical Engineering, Yanshan University,Qinhuangdao,China,066004
BookMark eNp9kUFv1DAQhS1UJErpmQsHS9yQsrUdO1kfVxELRVshURaO1iQZ77pK7OJ4Wbb982QbVBCHnmZG870Z6b2X5MQHj4S85mzGOdMXnxbXM8FEPuMiZ4I_I6ciFzrTopQnj31RvCDnw3DDGONClYWWp-S-Cn2_866B5ILPFnuISJch9g8zrYJPMXQ0WLpYfxvod5e29Cq02NG1bzAmcD4dKPiWLqF1fkOrLXg_rn86oJc-4SZCR7-g8zbEBnv0ia4Qoh_ZV-S5hW7A8z_1jKyX779WH7PV5w-X1WKVNUKplNW6thatkk1Z1FLKua2xFcCYaMtCgi5A6Pm8rVGAAixQKVTI8ty2imtpMT8j76a7e_AW_MbchF3040dz125_1eawr4_eMT7aMsJvJ_g2hh87HNJfWpQFz0s5Z2qkLiaqiWEYIlpzG10P8WA4M8dEzJiIOV41UyKjQv2naFx6MDlFcN0TujeTziHiP18YKzVn-W8rPpsQ
CODEN IJASJC
CitedBy_id crossref_primary_10_1109_LRA_2024_3451361
crossref_primary_10_1007_s10846_024_02088_1
crossref_primary_10_1109_TVT_2024_3491430
crossref_primary_10_1016_j_isatra_2025_01_045
crossref_primary_10_1109_JAS_2023_124095
crossref_primary_10_1109_TITS_2023_3296415
crossref_primary_10_1109_TIE_2024_3454429
crossref_primary_10_1109_TNNLS_2022_3226776
crossref_primary_10_1109_TIV_2023_3321884
crossref_primary_10_1007_s11071_024_10530_0
crossref_primary_10_1109_TITS_2023_3292967
crossref_primary_10_1109_ACCESS_2023_3313176
crossref_primary_10_1016_j_oceaneng_2024_117091
crossref_primary_10_1016_j_neucom_2024_129185
crossref_primary_10_1016_j_ejcon_2024_101062
crossref_primary_10_1109_JIOT_2025_3525482
crossref_primary_10_1109_TAC_2024_3447976
Cites_doi 10.1109/TIE.2018.2807368
10.1109/MCOM.2009.4752682
10.1016/j.oceaneng.2019.01.025
10.1109/TRO.2012.2188163
10.1109/TSMC.2016.2645699
10.1109/TCYB.2017.2708321
10.1109/TCYB.2021.3061588
10.1109/TIE.2019.2941132
10.1109/JAS.2014.7004622
10.1016/j.automatica.2004.11.034
10.1109/TNNLS.2018.2832025
10.1109/MCS.2016.2621461
10.1109/JAS.2020.1003441
10.1109/TSMC.2021.3129534
10.1109/JAS.2021.1004269
10.1109/TCST.2013.2262768
10.1109/TCNS.2018.2863048
10.1109/TSMC.2014.2310712
10.1049/iet-cta.2018.6122
10.1109/JAS.2020.1003312
10.1109/TCYB.2017.2752458
10.1109/TCNS.2020.3029155
10.1109/TCSII.2020.2976955
10.1016/j.automatica.2021.109733
10.1109/TIE.2016.2589921
10.1109/TNNLS.2020.2969215
10.1109/JAS.2020.1003057
10.1109/TVT.2021.3058282
10.1017/CBO9780511841224
10.1016/j.jfranklin.2015.04.008
10.1109/TSMC.2019.2895499
10.1109/TSMC.2020.3019504
10.1109/TCST.2019.2928488
10.1109/TMECH.2020.3017816
10.1109/LCSYS.2017.2708598
10.1016/j.oceaneng.2020.107150
10.1109/TSMC.2021.3095975
10.1109/TAC.2020.3008125
10.1109/TRO.2019.2948801
10.1016/j.neucom.2022.01.038
10.1109/COMST.2021.3059998
10.1109/TMECH.2017.2684423
10.1109/TSMCA.2010.2044172
10.1109/TIE.2017.2694410
10.1109/TNNLS.2021.3068762
10.1016/j.matcom.2018.10.010
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1109/JAS.2023.123021
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2329-9274
EndPage 176
ExternalDocumentID zdhxb_ywb202301012
10_1109_JAS_2023_123021
10007910
Genre orig-research
GroupedDBID -0I
-0Y
-SI
-S~
0R~
4.4
5VR
6IK
92M
97E
9D9
9DI
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AFUIB
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
Q--
RIA
RIE
RT9
T8Y
TCJ
TGT
U1F
U1G
U5I
U5S
AAYXX
CITATION
R-I
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
ID FETCH-LOGICAL-c255t-b9bffef54c76b4448fbed2a002d764a96a2988dbe2a5ae6e55e5e033fd5194fe3
IEDL.DBID RIE
ISSN 2329-9266
IngestDate Thu May 29 04:10:31 EDT 2025
Fri Jul 25 05:28:39 EDT 2025
Tue Jul 01 02:11:56 EDT 2025
Thu Apr 24 22:52:28 EDT 2025
Wed Aug 27 02:54:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords commu-nication-aware
formation
uncertainty
Autonomous underwater vehicles (AUVs)
reinforcement learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-b9bffef54c76b4448fbed2a002d764a96a2988dbe2a5ae6e55e5e033fd5194fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2761374805
PQPubID 2040495
PageCount 18
ParticipantIDs crossref_primary_10_1109_JAS_2023_123021
wanfang_journals_zdhxb_ywb202301012
proquest_journals_2761374805
crossref_citationtrail_10_1109_JAS_2023_123021
ieee_primary_10007910
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-January
2023-1-00
20230101
2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-January
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE/CAA journal of automatica sinica
PublicationTitleAbbrev JAS
PublicationTitle_FL IEEE/CAA Journal of Automatica Sinica
PublicationYear 2023
Publisher Chinese Association of Automation (CAA)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical Engineering,Yanshan University,Qinhuangdao 066004,China%Institute of Information Science and Engineering,Yanshan University,Qinhuangdao 066004,China%Department of Automation,Shanghai Jiao Tong University,Shanghai 200240,China
Publisher_xml – name: Chinese Association of Automation (CAA)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical Engineering,Yanshan University,Qinhuangdao 066004,China%Institute of Information Science and Engineering,Yanshan University,Qinhuangdao 066004,China%Department of Automation,Shanghai Jiao Tong University,Shanghai 200240,China
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
Goldsmith (ref37) 2005
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref8
  doi: 10.1109/TIE.2018.2807368
– ident: ref25
  doi: 10.1109/MCOM.2009.4752682
– ident: ref30
  doi: 10.1016/j.oceaneng.2019.01.025
– ident: ref28
  doi: 10.1109/TRO.2012.2188163
– ident: ref32
  doi: 10.1109/TSMC.2016.2645699
– ident: ref23
  doi: 10.1109/TCYB.2017.2708321
– ident: ref16
  doi: 10.1109/TCYB.2021.3061588
– ident: ref33
  doi: 10.1109/TIE.2019.2941132
– ident: ref2
  doi: 10.1109/JAS.2014.7004622
– ident: ref44
  doi: 10.1016/j.automatica.2004.11.034
– ident: ref34
  doi: 10.1109/TNNLS.2018.2832025
– ident: ref38
  doi: 10.1109/MCS.2016.2621461
– ident: ref43
  doi: 10.1109/JAS.2020.1003441
– ident: ref45
  doi: 10.1109/TSMC.2021.3129534
– ident: ref5
  doi: 10.1109/JAS.2021.1004269
– ident: ref13
  doi: 10.1109/TCST.2013.2262768
– ident: ref29
  doi: 10.1109/TCNS.2018.2863048
– ident: ref17
  doi: 10.1109/TSMC.2014.2310712
– ident: ref20
  doi: 10.1049/iet-cta.2018.6122
– ident: ref3
  doi: 10.1109/JAS.2020.1003312
– ident: ref15
  doi: 10.1109/TCYB.2017.2752458
– ident: ref41
  doi: 10.1109/TCNS.2020.3029155
– ident: ref7
  doi: 10.1109/TCSII.2020.2976955
– ident: ref42
  doi: 10.1016/j.automatica.2021.109733
– ident: ref6
  doi: 10.1109/TIE.2016.2589921
– ident: ref18
  doi: 10.1109/TNNLS.2020.2969215
– ident: ref11
  doi: 10.1109/JAS.2020.1003057
– ident: ref36
  doi: 10.1109/TVT.2021.3058282
– volume-title: Wireless Communication
  year: 2005
  ident: ref37
  doi: 10.1017/CBO9780511841224
– ident: ref27
  doi: 10.1016/j.jfranklin.2015.04.008
– ident: ref10
  doi: 10.1109/TSMC.2019.2895499
– ident: ref22
  doi: 10.1109/TSMC.2020.3019504
– ident: ref46
  doi: 10.1109/TCST.2019.2928488
– ident: ref40
  doi: 10.1109/TMECH.2020.3017816
– ident: ref19
  doi: 10.1109/LCSYS.2017.2708598
– ident: ref14
  doi: 10.1016/j.oceaneng.2020.107150
– ident: ref1
  doi: 10.1109/TSMC.2021.3095975
– ident: ref24
  doi: 10.1109/TAC.2020.3008125
– ident: ref35
  doi: 10.1109/TRO.2019.2948801
– ident: ref12
  doi: 10.1016/j.neucom.2022.01.038
– ident: ref26
  doi: 10.1109/COMST.2021.3059998
– ident: ref4
  doi: 10.1109/TMECH.2017.2684423
– ident: ref21
  doi: 10.1109/TSMCA.2010.2044172
– ident: ref31
  doi: 10.1109/TIE.2017.2694410
– ident: ref9
  doi: 10.1109/TNNLS.2021.3068762
– ident: ref39
  doi: 10.1016/j.matcom.2018.10.010
SSID ssj0001257694
Score 2.3511953
Snippet Most formation approaches of autonomous underwater vehicles (AUVs) focus on the control techniques, ignoring the influence of underwater channel. This paper is...
Most formation approaches of autonomous under-water vehicles (AUVs) focus on the control techniques, ignoring the influence of underwater channel. This paper...
SourceID wanfang
proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 159
SubjectTerms Autonomous underwater vehicles
Autonomous underwater vehicles (AUVs)
Channel estimation
Collocation methods
Communication
communication-aware
Controllers
Design optimization
Fading
Fading channels
formation
Fractional factorial design
Machine learning
Mathematical models
Parameters
Probabilistic logic
Reinforcement learning
Signal to noise ratio
Technological innovation
Uncertainty
Title Communication-Aware Formation Control of AUVs With Model Uncertainty and Fading Channel via Integral Reinforcement Learning
URI https://ieeexplore.ieee.org/document/10007910
https://www.proquest.com/docview/2761374805
https://d.wanfangdata.com.cn/periodical/zdhxb-ywb202301012
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELYYEtL2sA3GtG5ssjQe9uKQxnFcP1aICpDgga0bb5F_nAGtSidI18H-ec52OtpJSLxFsmMluovv8-W-7wjZ9R76AirOZK4KhvHWsQFuCcwHd9LW8X4ZCM4np9XhuDw-F-cdWT1yYQAgFp9BFi7jv3w3tbOQKtsLuWipAqHqGZ7cEllrKaGC0Dk2PkSQoJjCyNNJ-fRztXc8_JqFTuEZ7tR50V-JQrGtygrC3JjrxuvmYinUjF6R08VDpgqTn9msNZm9-0-_8clv8Zq87EAnHSYv2SRr0GyRF0tShG_I3xWmCBvO9TXQ0YLZSPdTRTudejocf7-hP67aSxr6qE3oGN0mlhW0t1Q3jo5iVT4NtIUGh39faXqUNCkm9AyiUKuNOUnaabtebJPx6ODb_iHrGjMwiyeQlhll0MZelFZWpsQDnjfgCo2bq5NVqVWlCzUYOAOFFhoqEAIE5Jx7h3ix9MDfkvVm2sA7QhF9GqFV7ri0peFBCie30nEOpgLpix7JFoaqbadaHppnTOp4eslVjZatg2XrZNke-fLvhl9JsOPxqdvBOkvTkmF6ZGfhCnX3Rd_UhUTgI8tBLnrkc-ceD6N37vKPqW_nJiwfZPuK948s_oE8D3NSFmeHrLfXM_iIuKY1n6I_3wMc1fRA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQEQIOPItYWoolOHBxmsRxvD6uKlbb0u4ButCb5ce4rVhlUZtlafvn8SNLd5EqcYtkx0o0E8_nyXzfIPTBOSgY1JTwXJTEx1tL-n5LIC64kzKWFlUgOB-N69GkOjhhJx1ZPXJhACAWn0EWLuO_fDsz85Aq2w25aC4Coeq-D_ysSHStlZSKB8-x9aGHCYIIH3s6MZ8iF7sHg69Z6BWe-b06L4u1OBQbq6xhzAcL1TjVnK4Em-FTNF4-Zqox-ZHNW52Z638UHP_7PZ6hJx3sxIPkJ8_RPWheoMcrYoQv0c0aV4QMFuoC8HDJbcR7qaYdzxweTL5d4u_n7RkOndSmeOIdJxYWtFdYNRYPY10-DsSFxg__Old4P6lSTPEXiFKtJmYlcafuerqJJsNPx3sj0rVmIMafQVqihfZWdqwyvNaVP-I5DbZUfnu1vK6UqFUp-n2roVRMQQ2MAYOcUmc9Yqwc0Fdoo5k18Bphjz81UyK3lJtK0yCGkxtuKQVdA3dlD2VLQ0nT6ZaH9hlTGc8vuZDesjJYVibL9tDHvzf8TJIdd0_dDNZZmZYM00PbS1eQ3Td9KUvuoQ-v-jnrofede9yOXtuz31peLXRYPgj3lW_uWPwdejg6PjqUh_vjz1voUZifcjrbaKO9mMNbj3JavRN9-w_9h_eJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Communication-Aware+Formation+Control+of+AUVs+With+Model+Uncertainty+and+Fading+Channel+via+Integral+Reinforcement+Learning&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Wenqiang+Cao&rft.au=Jing+Yan&rft.au=Xian+Yang&rft.au=Xiaoyuan+Luo&rft.date=2023&rft.pub=Institute+of+Electrical+Engineering%2CYanshan+University%2CQinhuangdao+066004%2CChina%25Institute+of+Information+Science+and+Engineering%2CYanshan+University%2CQinhuangdao+066004%2CChina%25Department+of+Automation%2CShanghai+Jiao+Tong+University%2CShanghai+200240%2CChina&rft.issn=2329-9266&rft.volume=10&rft.issue=1&rft.spage=159&rft.epage=176&rft_id=info:doi/10.1109%2FJAS.2023.123021&rft.externalDocID=zdhxb_ywb202301012
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb-ywb%2Fzdhxb-ywb.jpg