Communication-Aware Formation Control of AUVs With Model Uncertainty and Fading Channel via Integral Reinforcement Learning
Most formation approaches of autonomous underwater vehicles (AUVs) focus on the control techniques, ignoring the influence of underwater channel. This paper is concerned with a communication-aware formation issue for AUVs, subject to model uncertainty and fading channel. An integral reinforcement le...
Saved in:
Published in | IEEE/CAA journal of automatica sinica Vol. 10; no. 1; pp. 159 - 176 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
Chinese Association of Automation (CAA)
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical Engineering,Yanshan University,Qinhuangdao 066004,China%Institute of Information Science and Engineering,Yanshan University,Qinhuangdao 066004,China%Department of Automation,Shanghai Jiao Tong University,Shanghai 200240,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most formation approaches of autonomous underwater vehicles (AUVs) focus on the control techniques, ignoring the influence of underwater channel. This paper is concerned with a communication-aware formation issue for AUVs, subject to model uncertainty and fading channel. An integral reinforcement learning (IRL) based estimator is designed to calculate the probabilistic channel parameters, wherein the multivariate probabilistic collocation method with orthogonal fractional factorial design (M-PCM-OFFD) is employed to evaluate the uncertain channel measurements. With the estimated signal-to-noise ratio (SNR), we employ the IRL and M-PCM-OFFD to develop a saturated formation controller for AUVs, dealing with uncertain dynamics and current parameters. For the proposed formation approach, an integrated optimization solution is presented to make a balance between formation stability and communication efficiency. Main innovations lie in three aspects: 1) Construct an integrated communication and control optimization framework; 2) Design an IRL-based channel prediction estimator; 3) Develop an IRL-based formation controller with M-PCM-OFFD. Finally, simulation results show that the formation approach can avoid local optimum estimation, improve the channel efficiency, and relax the dependence of AUV model parameters. |
---|---|
AbstractList | Most formation approaches of autonomous under-water vehicles (AUVs) focus on the control techniques, ignoring the influence of underwater channel. This paper is concerned with a communication-aware formation issue for AUVs, subject to model uncertainty and fading channel. An integral reinforce-ment learning (IRL) based estimator is designed to calculate the probabilistic channel parameters, wherein the multivariate prob-abilistic collocation method with orthogonal fractional factorial design (M-PCM-OFFD) is employed to evaluate the uncertain channel measurements. With the estimated signal-to-noise ratio (SNR), we employ the IRL and M-PCM-OFFD to develop a satu-rated formation controller for AUVs, dealing with uncertain dynamics and current parameters. For the proposed formation approach, an integrated optimization solution is presented to make a balance between formation stability and communication efficiency. Main innovations lie in three aspects: 1) Construct an integrated communication and control optimization framework;2) Design an IRL-based channel prediction estimator; 3) Develop an IRL-based formation controller with M-PCM-OFFD. Finally, simulation results show that the formation approach can avoid local optimum estimation, improve the channel efficiency, and relax the dependence of AUV model parameters. Most formation approaches of autonomous underwater vehicles (AUVs) focus on the control techniques, ignoring the influence of underwater channel. This paper is concerned with a communication-aware formation issue for AUVs, subject to model uncertainty and fading channel. An integral reinforcement learning (IRL) based estimator is designed to calculate the probabilistic channel parameters, wherein the multivariate probabilistic collocation method with orthogonal fractional factorial design (M-PCM-OFFD) is employed to evaluate the uncertain channel measurements. With the estimated signal-to-noise ratio (SNR), we employ the IRL and M-PCM-OFFD to develop a saturated formation controller for AUVs, dealing with uncertain dynamics and current parameters. For the proposed formation approach, an integrated optimization solution is presented to make a balance between formation stability and communication efficiency. Main innovations lie in three aspects: 1) Construct an integrated communication and control optimization framework; 2) Design an IRL-based channel prediction estimator; 3) Develop an IRL-based formation controller with M-PCM-OFFD. Finally, simulation results show that the formation approach can avoid local optimum estimation, improve the channel efficiency, and relax the dependence of AUV model parameters. |
Author | Yang, Xian Guan, Xinping Cao, Wenqiang Luo, Xiaoyuan Yan, Jing |
AuthorAffiliation | Institute of Electrical Engineering,Yanshan University,Qinhuangdao 066004,China%Institute of Information Science and Engineering,Yanshan University,Qinhuangdao 066004,China%Department of Automation,Shanghai Jiao Tong University,Shanghai 200240,China |
AuthorAffiliation_xml | – name: Institute of Electrical Engineering,Yanshan University,Qinhuangdao 066004,China%Institute of Information Science and Engineering,Yanshan University,Qinhuangdao 066004,China%Department of Automation,Shanghai Jiao Tong University,Shanghai 200240,China |
Author_xml | – sequence: 1 givenname: Wenqiang surname: Cao fullname: Cao, Wenqiang email: cwq@stumail.ysu.edu.cn organization: Institute of Electrical Engineering, Yanshan University,Qinhuangdao,China,066004 – sequence: 2 givenname: Jing surname: Yan fullname: Yan, Jing email: jyan@ysu.edu.cn organization: Institute of Electrical Engineering, Yanshan University,Qinhuangdao,China,066004 – sequence: 3 givenname: Xian surname: Yang fullname: Yang, Xian email: xyang@ysu.edu.cn organization: Institute of Electrical Engineering, Yanshan University,Qinhuangdao,China,066004 – sequence: 4 givenname: Xiaoyuan surname: Luo fullname: Luo, Xiaoyuan email: xyluo@ysu.edu.cn organization: Institute of Electrical Engineering, Yanshan University,Qinhuangdao,China,066004 – sequence: 5 givenname: Xinping surname: Guan fullname: Guan, Xinping email: xpguan@sjtu.edu.cn organization: Institute of Electrical Engineering, Yanshan University,Qinhuangdao,China,066004 |
BookMark | eNp9kUFv1DAQhS1UJErpmQsHS9yQsrUdO1kfVxELRVshURaO1iQZ77pK7OJ4Wbb982QbVBCHnmZG870Z6b2X5MQHj4S85mzGOdMXnxbXM8FEPuMiZ4I_I6ciFzrTopQnj31RvCDnw3DDGONClYWWp-S-Cn2_866B5ILPFnuISJch9g8zrYJPMXQ0WLpYfxvod5e29Cq02NG1bzAmcD4dKPiWLqF1fkOrLXg_rn86oJc-4SZCR7-g8zbEBnv0ia4Qoh_ZV-S5hW7A8z_1jKyX779WH7PV5w-X1WKVNUKplNW6thatkk1Z1FLKua2xFcCYaMtCgi5A6Pm8rVGAAixQKVTI8ty2imtpMT8j76a7e_AW_MbchF3040dz125_1eawr4_eMT7aMsJvJ_g2hh87HNJfWpQFz0s5Z2qkLiaqiWEYIlpzG10P8WA4M8dEzJiIOV41UyKjQv2naFx6MDlFcN0TujeTziHiP18YKzVn-W8rPpsQ |
CODEN | IJASJC |
CitedBy_id | crossref_primary_10_1109_LRA_2024_3451361 crossref_primary_10_1007_s10846_024_02088_1 crossref_primary_10_1109_TVT_2024_3491430 crossref_primary_10_1016_j_isatra_2025_01_045 crossref_primary_10_1109_JAS_2023_124095 crossref_primary_10_1109_TITS_2023_3296415 crossref_primary_10_1109_TIE_2024_3454429 crossref_primary_10_1109_TNNLS_2022_3226776 crossref_primary_10_1109_TIV_2023_3321884 crossref_primary_10_1007_s11071_024_10530_0 crossref_primary_10_1109_TITS_2023_3292967 crossref_primary_10_1109_ACCESS_2023_3313176 crossref_primary_10_1016_j_oceaneng_2024_117091 crossref_primary_10_1016_j_neucom_2024_129185 crossref_primary_10_1016_j_ejcon_2024_101062 crossref_primary_10_1109_JIOT_2025_3525482 crossref_primary_10_1109_TAC_2024_3447976 |
Cites_doi | 10.1109/TIE.2018.2807368 10.1109/MCOM.2009.4752682 10.1016/j.oceaneng.2019.01.025 10.1109/TRO.2012.2188163 10.1109/TSMC.2016.2645699 10.1109/TCYB.2017.2708321 10.1109/TCYB.2021.3061588 10.1109/TIE.2019.2941132 10.1109/JAS.2014.7004622 10.1016/j.automatica.2004.11.034 10.1109/TNNLS.2018.2832025 10.1109/MCS.2016.2621461 10.1109/JAS.2020.1003441 10.1109/TSMC.2021.3129534 10.1109/JAS.2021.1004269 10.1109/TCST.2013.2262768 10.1109/TCNS.2018.2863048 10.1109/TSMC.2014.2310712 10.1049/iet-cta.2018.6122 10.1109/JAS.2020.1003312 10.1109/TCYB.2017.2752458 10.1109/TCNS.2020.3029155 10.1109/TCSII.2020.2976955 10.1016/j.automatica.2021.109733 10.1109/TIE.2016.2589921 10.1109/TNNLS.2020.2969215 10.1109/JAS.2020.1003057 10.1109/TVT.2021.3058282 10.1017/CBO9780511841224 10.1016/j.jfranklin.2015.04.008 10.1109/TSMC.2019.2895499 10.1109/TSMC.2020.3019504 10.1109/TCST.2019.2928488 10.1109/TMECH.2020.3017816 10.1109/LCSYS.2017.2708598 10.1016/j.oceaneng.2020.107150 10.1109/TSMC.2021.3095975 10.1109/TAC.2020.3008125 10.1109/TRO.2019.2948801 10.1016/j.neucom.2022.01.038 10.1109/COMST.2021.3059998 10.1109/TMECH.2017.2684423 10.1109/TSMCA.2010.2044172 10.1109/TIE.2017.2694410 10.1109/TNNLS.2021.3068762 10.1016/j.matcom.2018.10.010 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1109/JAS.2023.123021 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2329-9274 |
EndPage | 176 |
ExternalDocumentID | zdhxb_ywb202301012 10_1109_JAS_2023_123021 10007910 |
Genre | orig-research |
GroupedDBID | -0I -0Y -SI -S~ 0R~ 4.4 5VR 6IK 92M 97E 9D9 9DI AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AFUIB AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CAJEI EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ Q-- RIA RIE RT9 T8Y TCJ TGT U1F U1G U5I U5S AAYXX CITATION R-I RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 2B. 4A8 92I 93N PSX |
ID | FETCH-LOGICAL-c255t-b9bffef54c76b4448fbed2a002d764a96a2988dbe2a5ae6e55e5e033fd5194fe3 |
IEDL.DBID | RIE |
ISSN | 2329-9266 |
IngestDate | Thu May 29 04:10:31 EDT 2025 Fri Jul 25 05:28:39 EDT 2025 Tue Jul 01 02:11:56 EDT 2025 Thu Apr 24 22:52:28 EDT 2025 Wed Aug 27 02:54:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | commu-nication-aware formation uncertainty Autonomous underwater vehicles (AUVs) reinforcement learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-b9bffef54c76b4448fbed2a002d764a96a2988dbe2a5ae6e55e5e033fd5194fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2761374805 |
PQPubID | 2040495 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1109_JAS_2023_123021 wanfang_journals_zdhxb_ywb202301012 proquest_journals_2761374805 crossref_citationtrail_10_1109_JAS_2023_123021 ieee_primary_10007910 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-January 2023-1-00 20230101 2023 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-January |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE/CAA journal of automatica sinica |
PublicationTitleAbbrev | JAS |
PublicationTitle_FL | IEEE/CAA Journal of Automatica Sinica |
PublicationYear | 2023 |
Publisher | Chinese Association of Automation (CAA) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical Engineering,Yanshan University,Qinhuangdao 066004,China%Institute of Information Science and Engineering,Yanshan University,Qinhuangdao 066004,China%Department of Automation,Shanghai Jiao Tong University,Shanghai 200240,China |
Publisher_xml | – name: Chinese Association of Automation (CAA) – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical Engineering,Yanshan University,Qinhuangdao 066004,China%Institute of Information Science and Engineering,Yanshan University,Qinhuangdao 066004,China%Department of Automation,Shanghai Jiao Tong University,Shanghai 200240,China |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 Goldsmith (ref37) 2005 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref8 doi: 10.1109/TIE.2018.2807368 – ident: ref25 doi: 10.1109/MCOM.2009.4752682 – ident: ref30 doi: 10.1016/j.oceaneng.2019.01.025 – ident: ref28 doi: 10.1109/TRO.2012.2188163 – ident: ref32 doi: 10.1109/TSMC.2016.2645699 – ident: ref23 doi: 10.1109/TCYB.2017.2708321 – ident: ref16 doi: 10.1109/TCYB.2021.3061588 – ident: ref33 doi: 10.1109/TIE.2019.2941132 – ident: ref2 doi: 10.1109/JAS.2014.7004622 – ident: ref44 doi: 10.1016/j.automatica.2004.11.034 – ident: ref34 doi: 10.1109/TNNLS.2018.2832025 – ident: ref38 doi: 10.1109/MCS.2016.2621461 – ident: ref43 doi: 10.1109/JAS.2020.1003441 – ident: ref45 doi: 10.1109/TSMC.2021.3129534 – ident: ref5 doi: 10.1109/JAS.2021.1004269 – ident: ref13 doi: 10.1109/TCST.2013.2262768 – ident: ref29 doi: 10.1109/TCNS.2018.2863048 – ident: ref17 doi: 10.1109/TSMC.2014.2310712 – ident: ref20 doi: 10.1049/iet-cta.2018.6122 – ident: ref3 doi: 10.1109/JAS.2020.1003312 – ident: ref15 doi: 10.1109/TCYB.2017.2752458 – ident: ref41 doi: 10.1109/TCNS.2020.3029155 – ident: ref7 doi: 10.1109/TCSII.2020.2976955 – ident: ref42 doi: 10.1016/j.automatica.2021.109733 – ident: ref6 doi: 10.1109/TIE.2016.2589921 – ident: ref18 doi: 10.1109/TNNLS.2020.2969215 – ident: ref11 doi: 10.1109/JAS.2020.1003057 – ident: ref36 doi: 10.1109/TVT.2021.3058282 – volume-title: Wireless Communication year: 2005 ident: ref37 doi: 10.1017/CBO9780511841224 – ident: ref27 doi: 10.1016/j.jfranklin.2015.04.008 – ident: ref10 doi: 10.1109/TSMC.2019.2895499 – ident: ref22 doi: 10.1109/TSMC.2020.3019504 – ident: ref46 doi: 10.1109/TCST.2019.2928488 – ident: ref40 doi: 10.1109/TMECH.2020.3017816 – ident: ref19 doi: 10.1109/LCSYS.2017.2708598 – ident: ref14 doi: 10.1016/j.oceaneng.2020.107150 – ident: ref1 doi: 10.1109/TSMC.2021.3095975 – ident: ref24 doi: 10.1109/TAC.2020.3008125 – ident: ref35 doi: 10.1109/TRO.2019.2948801 – ident: ref12 doi: 10.1016/j.neucom.2022.01.038 – ident: ref26 doi: 10.1109/COMST.2021.3059998 – ident: ref4 doi: 10.1109/TMECH.2017.2684423 – ident: ref21 doi: 10.1109/TSMCA.2010.2044172 – ident: ref31 doi: 10.1109/TIE.2017.2694410 – ident: ref9 doi: 10.1109/TNNLS.2021.3068762 – ident: ref39 doi: 10.1016/j.matcom.2018.10.010 |
SSID | ssj0001257694 |
Score | 2.3511953 |
Snippet | Most formation approaches of autonomous underwater vehicles (AUVs) focus on the control techniques, ignoring the influence of underwater channel. This paper is... Most formation approaches of autonomous under-water vehicles (AUVs) focus on the control techniques, ignoring the influence of underwater channel. This paper... |
SourceID | wanfang proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 159 |
SubjectTerms | Autonomous underwater vehicles Autonomous underwater vehicles (AUVs) Channel estimation Collocation methods Communication communication-aware Controllers Design optimization Fading Fading channels formation Fractional factorial design Machine learning Mathematical models Parameters Probabilistic logic Reinforcement learning Signal to noise ratio Technological innovation Uncertainty |
Title | Communication-Aware Formation Control of AUVs With Model Uncertainty and Fading Channel via Integral Reinforcement Learning |
URI | https://ieeexplore.ieee.org/document/10007910 https://www.proquest.com/docview/2761374805 https://d.wanfangdata.com.cn/periodical/zdhxb-ywb202301012 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELYYEtL2sA3GtG5ssjQe9uKQxnFcP1aICpDgga0bb5F_nAGtSidI18H-ec52OtpJSLxFsmMluovv8-W-7wjZ9R76AirOZK4KhvHWsQFuCcwHd9LW8X4ZCM4np9XhuDw-F-cdWT1yYQAgFp9BFi7jv3w3tbOQKtsLuWipAqHqGZ7cEllrKaGC0Dk2PkSQoJjCyNNJ-fRztXc8_JqFTuEZ7tR50V-JQrGtygrC3JjrxuvmYinUjF6R08VDpgqTn9msNZm9-0-_8clv8Zq87EAnHSYv2SRr0GyRF0tShG_I3xWmCBvO9TXQ0YLZSPdTRTudejocf7-hP67aSxr6qE3oGN0mlhW0t1Q3jo5iVT4NtIUGh39faXqUNCkm9AyiUKuNOUnaabtebJPx6ODb_iHrGjMwiyeQlhll0MZelFZWpsQDnjfgCo2bq5NVqVWlCzUYOAOFFhoqEAIE5Jx7h3ix9MDfkvVm2sA7QhF9GqFV7ri0peFBCie30nEOpgLpix7JFoaqbadaHppnTOp4eslVjZatg2XrZNke-fLvhl9JsOPxqdvBOkvTkmF6ZGfhCnX3Rd_UhUTgI8tBLnrkc-ceD6N37vKPqW_nJiwfZPuK948s_oE8D3NSFmeHrLfXM_iIuKY1n6I_3wMc1fRA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQEQIOPItYWoolOHBxmsRxvD6uKlbb0u4ButCb5ce4rVhlUZtlafvn8SNLd5EqcYtkx0o0E8_nyXzfIPTBOSgY1JTwXJTEx1tL-n5LIC64kzKWFlUgOB-N69GkOjhhJx1ZPXJhACAWn0EWLuO_fDsz85Aq2w25aC4Coeq-D_ysSHStlZSKB8-x9aGHCYIIH3s6MZ8iF7sHg69Z6BWe-b06L4u1OBQbq6xhzAcL1TjVnK4Em-FTNF4-Zqox-ZHNW52Z638UHP_7PZ6hJx3sxIPkJ8_RPWheoMcrYoQv0c0aV4QMFuoC8HDJbcR7qaYdzxweTL5d4u_n7RkOndSmeOIdJxYWtFdYNRYPY10-DsSFxg__Old4P6lSTPEXiFKtJmYlcafuerqJJsNPx3sj0rVmIMafQVqihfZWdqwyvNaVP-I5DbZUfnu1vK6UqFUp-n2roVRMQQ2MAYOcUmc9Yqwc0Fdoo5k18Bphjz81UyK3lJtK0yCGkxtuKQVdA3dlD2VLQ0nT6ZaH9hlTGc8vuZDesjJYVibL9tDHvzf8TJIdd0_dDNZZmZYM00PbS1eQ3Td9KUvuoQ-v-jnrofede9yOXtuz31peLXRYPgj3lW_uWPwdejg6PjqUh_vjz1voUZifcjrbaKO9mMNbj3JavRN9-w_9h_eJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Communication-Aware+Formation+Control+of+AUVs+With+Model+Uncertainty+and+Fading+Channel+via+Integral+Reinforcement+Learning&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Wenqiang+Cao&rft.au=Jing+Yan&rft.au=Xian+Yang&rft.au=Xiaoyuan+Luo&rft.date=2023&rft.pub=Institute+of+Electrical+Engineering%2CYanshan+University%2CQinhuangdao+066004%2CChina%25Institute+of+Information+Science+and+Engineering%2CYanshan+University%2CQinhuangdao+066004%2CChina%25Department+of+Automation%2CShanghai+Jiao+Tong+University%2CShanghai+200240%2CChina&rft.issn=2329-9266&rft.volume=10&rft.issue=1&rft.spage=159&rft.epage=176&rft_id=info:doi/10.1109%2FJAS.2023.123021&rft.externalDocID=zdhxb_ywb202301012 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb-ywb%2Fzdhxb-ywb.jpg |