Interpersonal trust modelling through multi-agent Reinforcement Learning
Many existing approaches to model and compute trust in a quantitative way rely on ranking, rating or assessments of agents by other agents. Even though reputation is related with trust, it does not capture all its characteristics. In parallel, many works in neuroscience shows evidence about interper...
Saved in:
Published in | Cognitive systems research Vol. 83; p. 101157 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1389-0417 1389-0417 |
DOI | 10.1016/j.cogsys.2023.101157 |
Cover
Loading…
Abstract | Many existing approaches to model and compute trust in a quantitative way rely on ranking, rating or assessments of agents by other agents. Even though reputation is related with trust, it does not capture all its characteristics. In parallel, many works in neuroscience shows evidence about interpersonal trust being an associative learning process encoded in the human brain. Inspired by other subjects such as Cognitive Processing/Dopamine, where Reinforcement Learning algorithms have served to model those phenomena, we propose a model for trust dynamics based on a multi-agent RL algorithm. We corroborate some trust concepts developed in social sciences within a quantitative framework. We do also propose and assess some metrics for a better understanding about the relation between the trust behaviour and the performance of the agents. Finally, we show that Trust, as described by our proposal, can serve to accelerate learning. |
---|---|
AbstractList | Many existing approaches to model and compute trust in a quantitative way rely on ranking, rating or assessments of agents by other agents. Even though reputation is related with trust, it does not capture all its characteristics. In parallel, many works in neuroscience shows evidence about interpersonal trust being an associative learning process encoded in the human brain. Inspired by other subjects such as Cognitive Processing/Dopamine, where Reinforcement Learning algorithms have served to model those phenomena, we propose a model for trust dynamics based on a multi-agent RL algorithm. We corroborate some trust concepts developed in social sciences within a quantitative framework. We do also propose and assess some metrics for a better understanding about the relation between the trust behaviour and the performance of the agents. Finally, we show that Trust, as described by our proposal, can serve to accelerate learning. |
ArticleNumber | 101157 |
Author | Frey, Vincent Martinez, Julian |
Author_xml | – sequence: 1 givenname: Vincent surname: Frey fullname: Frey, Vincent email: vincent.frey@orange.com – sequence: 2 givenname: Julian surname: Martinez fullname: Martinez, Julian email: jfmartinez@fi.uba.ar |
BookMark | eNp9kF9LwzAUxYNMcJt-Ax_6BTpv0qbpXgQZ6oSBIPoc0uS2y-iSkWTCvr0t9cEnn-4fzjkcfgsyc94hIfcUVhRo9XBYad_FS1wxYMX4olxckTkt6nUOJRWzP_sNWcR4gMG25mxOtm8uYThhiN6pPkvhHFN29Ab73rouS_vgz90-O577ZHPVoUvZB1rX-qDxOF47VMEN0lty3ao-4t3vXJKvl-fPzTbfvb--bZ52uWacp7zhFROGirpSJWsbA9QIU2tTKwBoGlyzWvB2EBhg0ChqKsGhKAsYFIJjUSxJOeXq4GMM2MpTsEcVLpKCHGnIg5xoyJGGnGgMtsfJhkO3b4tBRm3RaTQ2oE7SePt_wA_HEW1y |
Cites_doi | 10.25080/Majora-92bf1922-00a 10.1613/jair.1.11396 10.1109/MCSE.2007.55 10.1038/s41586-019-1924-6 10.1007/s10462-004-0041-5 10.1016/j.tics.2021.09.002 10.1145/2815595 10.1006/game.1995.1027 10.1037/0033-295X.88.2.135 10.1109/ACCESS.2019.2917999 10.1016/j.chb.2014.08.013 10.1038/nn.4239 10.1016/j.dss.2005.05.019 10.21105/joss.03021 10.1152/jn.1998.80.1.1 10.1111/1468-0297.00609 10.1017/S0269888904000116 10.1038/s41586-020-2649-2 10.1371/journal.pcbi.1004305 10.3389/neuro.01.014.2008 10.1073/pnas.1715227115 10.1038/nature14855 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cogsys.2023.101157 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Psychology |
EISSN | 1389-0417 |
ExternalDocumentID | 10_1016_j_cogsys_2023_101157 S1389041723000918 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AACTN AADFP AADPK AAEDT AAEDW AAGJA AAGUQ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFRF ABIVO ABJNI ABMAC ABOYX ABXDB ABYKQ ACDAQ ACGFO ACGFS ACHQT ACNNM ACRLP ACXNI ACZNC ADEZE ADJOM AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AFYLN AGHFR AGUBO AGWIK AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OKEIE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSB SSN SST SSV SSY SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX AEIPS AFJKZ AGCQF AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c255t-b5627d1786a42fbd01d7d8cd8a000bbe92875fd17d020ba1d67503430d8a75e33 |
IEDL.DBID | .~1 |
ISSN | 1389-0417 |
IngestDate | Tue Jul 01 02:11:48 EDT 2025 Fri Feb 23 02:35:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Reinforcement Learning Multi-agent RL Trust Cognitive system |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-b5627d1786a42fbd01d7d8cd8a000bbe92875fd17d020ba1d67503430d8a75e33 |
ParticipantIDs | crossref_primary_10_1016_j_cogsys_2023_101157 elsevier_sciencedirect_doi_10_1016_j_cogsys_2023_101157 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2024 2024-01-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
PublicationDecade | 2020 |
PublicationTitle | Cognitive systems research |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dearden, Friedman, Russell (b10) 1998 Jøsang, Presti (b27) 2004 Sutton, Barto (b42) 2018 Sabater, Sierra (b38) 2005; 24 Esfandiari, B., & Chandrasekharan, S. (2001). On how agents make friends: Mechanisms for trust acquisition. In Patel, Teacy, Jennings, Luck (b34) 2005 Sutton, Barto (b41) 1981; 88 Lien, Cao (b29) 2014; 41 Wang, Cahill, Gray, Harris, Liao (b45) 2006 Russell (b37) 2010 Dabney, Kurth-Nelson, Uchida, Starkweather, Hassabis, Munos (b9) 2020; 577 Wang, Jing, Yan, Fu, Pedrycz, Yang (b47) 2020; 53 Houk, Adams (b21) 1995 FeldmanHall, Nassar (b17) 2021; 25 Waskom (b48) 2021; 6 Wes McKinney (b49) 2010 Cho, Chan, Adali (b7) 2015; 48 FeldmanHall, Dunsmoor, Tompary, Hunter, Todorov, Phelps (b16) 2018; 115 Demolombe (b11) 2004 Takahashi, Schoenbaum, Niv (b43) 2008; 2 Xiong, Liu (b50) 2003 Ramchurn, Huynh, Jennings (b35) 2004; 19 Hunter (b22) 2007; 9 Tribus (b44) 2016 Asadi, Littman (b2) 2017 Hunyadi (b23) 2020 Gambetta (b18) 1988 Wang, Du, Yang, Zhu, Shen, Zhang (b46) 2016 Ben-Naim, Longin, Lorini (b4) 2020 (pp. 27–34). Brockman, Cheung, Pettersson, Schneider, Schulman, Tang (b6) 2016 Marsh (b32) 1994 Luhmann (b31) 2000; 6 Meyniel, Schlunegger, Dehaene (b33) 2015; 11 Da Silva, Costa (b8) 2019; 64 Berg, Dickhaut, McCabe (b5) 1995; 10 Jøsang, Ismail, Boyd (b26) 2007; 43 Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau (b20) 2020; 585 Ludvig, Bellemare, Pearson (b30) 2011 Eshel, Tian, Bukwich, Uchida (b15) 2016; 19 Gambetta (b19) 2000; 13 Rescorla (b36) 1972 D’Eramo, Tateo, Bonarini, Restelli, Peters (b12) 2021; 22 Schultz (b39) 1998; 80 Bellemare, Dabney, Munos (b3) 2017 Alsheikh, Shaalan, Meziane (b1) 2019; 7 Josang, Ismail (b25) 2002 Jøsang (b24) 2007 Shah (b40) 2012 Zak, Knack (b51) 2001; 111 Eshel, Bukwich, Rao, Hemmelder, Tian, Uchida (b14) 2015; 525 Levallois-Barth (b28) 2018 Patel (10.1016/j.cogsys.2023.101157_b34) 2005 FeldmanHall (10.1016/j.cogsys.2023.101157_b17) 2021; 25 Da Silva (10.1016/j.cogsys.2023.101157_b8) 2019; 64 Eshel (10.1016/j.cogsys.2023.101157_b15) 2016; 19 Berg (10.1016/j.cogsys.2023.101157_b5) 1995; 10 FeldmanHall (10.1016/j.cogsys.2023.101157_b16) 2018; 115 Zak (10.1016/j.cogsys.2023.101157_b51) 2001; 111 Hunter (10.1016/j.cogsys.2023.101157_b22) 2007; 9 Rescorla (10.1016/j.cogsys.2023.101157_b36) 1972 D’Eramo (10.1016/j.cogsys.2023.101157_b12) 2021; 22 Shah (10.1016/j.cogsys.2023.101157_b40) 2012 Demolombe (10.1016/j.cogsys.2023.101157_b11) 2004 10.1016/j.cogsys.2023.101157_b13 Schultz (10.1016/j.cogsys.2023.101157_b39) 1998; 80 Bellemare (10.1016/j.cogsys.2023.101157_b3) 2017 Dabney (10.1016/j.cogsys.2023.101157_b9) 2020; 577 Wang (10.1016/j.cogsys.2023.101157_b47) 2020; 53 Jøsang (10.1016/j.cogsys.2023.101157_b26) 2007; 43 Sutton (10.1016/j.cogsys.2023.101157_b41) 1981; 88 Ludvig (10.1016/j.cogsys.2023.101157_b30) 2011 Jøsang (10.1016/j.cogsys.2023.101157_b27) 2004 Ramchurn (10.1016/j.cogsys.2023.101157_b35) 2004; 19 Wang (10.1016/j.cogsys.2023.101157_b46) 2016 Cho (10.1016/j.cogsys.2023.101157_b7) 2015; 48 Marsh (10.1016/j.cogsys.2023.101157_b32) 1994 Asadi (10.1016/j.cogsys.2023.101157_b2) 2017 Gambetta (10.1016/j.cogsys.2023.101157_b18) 1988 Lien (10.1016/j.cogsys.2023.101157_b29) 2014; 41 Houk (10.1016/j.cogsys.2023.101157_b21) 1995 Gambetta (10.1016/j.cogsys.2023.101157_b19) 2000; 13 Brockman (10.1016/j.cogsys.2023.101157_b6) 2016 Dearden (10.1016/j.cogsys.2023.101157_b10) 1998 Sabater (10.1016/j.cogsys.2023.101157_b38) 2005; 24 Jøsang (10.1016/j.cogsys.2023.101157_b24) 2007 Tribus (10.1016/j.cogsys.2023.101157_b44) 2016 Ben-Naim (10.1016/j.cogsys.2023.101157_b4) 2020 Levallois-Barth (10.1016/j.cogsys.2023.101157_b28) 2018 Waskom (10.1016/j.cogsys.2023.101157_b48) 2021; 6 Luhmann (10.1016/j.cogsys.2023.101157_b31) 2000; 6 Sutton (10.1016/j.cogsys.2023.101157_b42) 2018 Josang (10.1016/j.cogsys.2023.101157_b25) 2002 Eshel (10.1016/j.cogsys.2023.101157_b14) 2015; 525 Wes McKinney (10.1016/j.cogsys.2023.101157_b49) 2010 Harris (10.1016/j.cogsys.2023.101157_b20) 2020; 585 Xiong (10.1016/j.cogsys.2023.101157_b50) 2003 Meyniel (10.1016/j.cogsys.2023.101157_b33) 2015; 11 Wang (10.1016/j.cogsys.2023.101157_b45) 2006 Russell (10.1016/j.cogsys.2023.101157_b37) 2010 Takahashi (10.1016/j.cogsys.2023.101157_b43) 2008; 2 Hunyadi (10.1016/j.cogsys.2023.101157_b23) 2020 Alsheikh (10.1016/j.cogsys.2023.101157_b1) 2019; 7 |
References_xml | – volume: 19 start-page: 1 year: 2004 end-page: 25 ident: b35 article-title: Trust in multi-agent systems publication-title: The Knowledge Engineering Review – start-page: 243 year: 2017 end-page: 252 ident: b2 article-title: An alternative softmax operator for reinforcement learning publication-title: International conference on machine learning – volume: 48 start-page: 1 year: 2015 end-page: 40 ident: b7 article-title: A survey on trust modeling publication-title: ACM Computing Surveys – volume: 88 start-page: 135 year: 1981 ident: b41 article-title: Toward a modern theory of adaptive networks: Expectation and prediction publication-title: Psychological Review – volume: 7 start-page: 73357 year: 2019 end-page: 73372 ident: b1 article-title: Exploring the effects of consumers’ trust: A predictive model for satisfying buyers’ expectations based on sellers’ behavior in the marketplace publication-title: IEEE Access – year: 2020 ident: b23 article-title: Au Début Est la Confiance [in the Beginning Is Trust] – start-page: 2502 year: 2002 end-page: 2511 ident: b25 article-title: The beta reputation system publication-title: Proceedings of the 15th bled electronic commerce conference. Vol. 5 – volume: 13 start-page: 213 year: 2000 end-page: 237 ident: b19 article-title: Can we trust trust publication-title: Trust: Making and breaking cooperative relations – start-page: 64 year: 1972 end-page: 99 ident: b36 article-title: A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement publication-title: Current Research and Theory – start-page: 209 year: 2007 end-page: 245 ident: b24 article-title: Trust and reputation systems publication-title: Foundations of security analysis and design IV – volume: 577 start-page: 671 year: 2020 end-page: 675 ident: b9 article-title: A distributional code for value in dopamine-based reinforcement learning publication-title: Nature – start-page: 761 year: 1998 end-page: 768 ident: b10 article-title: Bayesian Q-learning publication-title: AAAI/IAAI, Vol. 1998 – year: 2018 ident: b42 article-title: Reinforcement learning: An introduction – start-page: 449 year: 2017 end-page: 458 ident: b3 article-title: A distributional perspective on reinforcement learning publication-title: International conference on machine learning – start-page: 249 year: 1995 ident: b21 article-title: 13 A model of how the basal ganglia generate and use neural signals that publication-title: Models of information processing in the basal Ganglia – volume: 53 start-page: 1 year: 2020 end-page: 36 ident: b47 article-title: A survey on trust evaluation based on machine learning publication-title: ACM Computing Surveys – start-page: 111 year: 2011 end-page: 144 ident: b30 article-title: A primer on reinforcement learning in the brain: Psychological, computational, and neural perspectives publication-title: Computational neuroscience for advancing artificial intelligence: Models, methods and applications – volume: 80 start-page: 1 year: 1998 end-page: 27 ident: b39 article-title: Predictive reward signal of dopamine neurons publication-title: Journal of Neurophysiology – volume: 24 start-page: 33 year: 2005 end-page: 60 ident: b38 article-title: Review on computational trust and reputation models publication-title: Artificial Intelligence Review – start-page: 291 year: 2004 end-page: 303 ident: b11 article-title: Reasoning about trust: A formal logical framework publication-title: International conference on trust management – volume: 585 start-page: 357 year: 2020 end-page: 362 ident: b20 article-title: Array programming with NumPy publication-title: Nature – volume: 111 start-page: 295 year: 2001 end-page: 321 ident: b51 article-title: Trust and growth publication-title: The Economic Journal – year: 1994 ident: b32 article-title: Formalising trust as a computational concept – volume: 41 start-page: 104 year: 2014 end-page: 111 ident: b29 article-title: Examining WeChat users’ motivations, trust, attitudes, and positive word-of-mouth: Evidence from China publication-title: Computers in Human Behavior – start-page: 135 year: 2004 end-page: 145 ident: b27 article-title: Analysing the relationship between risk and trust publication-title: International conference on trust management – year: 2016 ident: b46 article-title: Game-theory-based active defense for intrusion detection in cyber-physical embedded systems – start-page: 56 year: 2010 end-page: 61 ident: b49 article-title: Data structures for statistical computing in python publication-title: Proceedings of the 9th python in science conference – year: 1988 ident: b18 article-title: Trust: Making and breaking cooperative relations – year: 2020 ident: b4 article-title: Formalization of cognitive-agent systems, trust, and emotions – start-page: 246 year: 2006 end-page: 257 ident: b45 article-title: Bayesian network based trust management publication-title: International conference on autonomic and trusted computing – volume: 19 start-page: 479 year: 2016 end-page: 486 ident: b15 article-title: Dopamine neurons share common response function for reward prediction error publication-title: Nature Neuroscience – start-page: 507 year: 2012 end-page: 537 ident: b40 article-title: Psychological and neuroscientific connections with reinforcement learning publication-title: Reinforcement learning – volume: 2 start-page: 282 year: 2008 ident: b43 article-title: Silencing the critics: understanding the effects of cocaine sensitization on dorsolateral and ventral striatum in the context of an actor/critic model publication-title: Frontiers in Neuroscience – reference: (pp. 27–34). – year: 2016 ident: b44 article-title: Rational descriptions, decisions and designs: Pergamon unified engineering series – volume: 22 start-page: 1 year: 2021 end-page: 5 ident: b12 article-title: MushroomRL: Simplifying reinforcement learning research publication-title: Journal of Machine Learning Research – volume: 115 start-page: E1690 year: 2018 end-page: E1697 ident: b16 article-title: Stimulus generalization as a mechanism for learning to trust publication-title: Proceedings of the National Academy of Sciences – start-page: 193 year: 2005 end-page: 209 ident: b34 article-title: A probabilistic trust model for handling inaccurate reputation sources publication-title: International conference on trust management – year: 2010 ident: b37 article-title: Artificial intelligence a modern approach – start-page: 275 year: 2003 end-page: 284 ident: b50 article-title: A reputation-based trust model for peer-to-peer e-commerce communities publication-title: EEE international conference on E-commerce, 2003 – volume: 25 start-page: 1045 year: 2021 end-page: 1057 ident: b17 article-title: The computational challenge of social learning publication-title: Trends in Cognitive Sciences – year: 2016 ident: b6 article-title: OpenAI Gym – reference: Esfandiari, B., & Chandrasekharan, S. (2001). On how agents make friends: Mechanisms for trust acquisition. In – volume: 11 year: 2015 ident: b33 article-title: The sense of confidence during probabilistic learning: A normative account publication-title: PLoS Computational Biology – volume: 6 start-page: 3021 year: 2021 ident: b48 article-title: Seaborn: Statistical data visualization publication-title: Journal of Open Source Software – volume: 9 start-page: 90 year: 2007 end-page: 95 ident: b22 article-title: Matplotlib: A 2D graphics environment publication-title: Computing in Science & Engineering – volume: 43 start-page: 618 year: 2007 end-page: 644 ident: b26 article-title: A survey of trust and reputation systems for online service provision publication-title: Decision Support Systems – volume: 64 start-page: 645 year: 2019 end-page: 703 ident: b8 article-title: A survey on transfer learning for multiagent reinforcement learning systems publication-title: Journal of Artificial Intelligence Research – year: 2018 ident: b28 article-title: Signs of trust – volume: 6 start-page: 94 year: 2000 end-page: 107 ident: b31 article-title: Familiarity, confidence, trust: Problems and alternatives publication-title: Trust: Making and Breaking Cooperative Relations – volume: 525 start-page: 243 year: 2015 end-page: 246 ident: b14 article-title: Arithmetic and local circuitry underlying dopamine prediction errors publication-title: Nature – volume: 10 start-page: 122 year: 1995 end-page: 142 ident: b5 article-title: Trust, reciprocity, and social history publication-title: Games and Economic Behavior – start-page: 2502 year: 2002 ident: 10.1016/j.cogsys.2023.101157_b25 article-title: The beta reputation system – start-page: 64 year: 1972 ident: 10.1016/j.cogsys.2023.101157_b36 article-title: A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement publication-title: Current Research and Theory – start-page: 111 year: 2011 ident: 10.1016/j.cogsys.2023.101157_b30 article-title: A primer on reinforcement learning in the brain: Psychological, computational, and neural perspectives – start-page: 56 year: 2010 ident: 10.1016/j.cogsys.2023.101157_b49 article-title: Data structures for statistical computing in python doi: 10.25080/Majora-92bf1922-00a – volume: 64 start-page: 645 year: 2019 ident: 10.1016/j.cogsys.2023.101157_b8 article-title: A survey on transfer learning for multiagent reinforcement learning systems publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.1.11396 – volume: 9 start-page: 90 issue: 3 year: 2007 ident: 10.1016/j.cogsys.2023.101157_b22 article-title: Matplotlib: A 2D graphics environment publication-title: Computing in Science & Engineering doi: 10.1109/MCSE.2007.55 – volume: 577 start-page: 671 issue: 7792 year: 2020 ident: 10.1016/j.cogsys.2023.101157_b9 article-title: A distributional code for value in dopamine-based reinforcement learning publication-title: Nature doi: 10.1038/s41586-019-1924-6 – volume: 24 start-page: 33 issue: 1 year: 2005 ident: 10.1016/j.cogsys.2023.101157_b38 article-title: Review on computational trust and reputation models publication-title: Artificial Intelligence Review doi: 10.1007/s10462-004-0041-5 – volume: 25 start-page: 1045 issue: 12 year: 2021 ident: 10.1016/j.cogsys.2023.101157_b17 article-title: The computational challenge of social learning publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2021.09.002 – year: 1988 ident: 10.1016/j.cogsys.2023.101157_b18 – volume: 13 start-page: 213 year: 2000 ident: 10.1016/j.cogsys.2023.101157_b19 article-title: Can we trust trust publication-title: Trust: Making and breaking cooperative relations – volume: 48 start-page: 1 issue: 2 year: 2015 ident: 10.1016/j.cogsys.2023.101157_b7 article-title: A survey on trust modeling publication-title: ACM Computing Surveys doi: 10.1145/2815595 – year: 2018 ident: 10.1016/j.cogsys.2023.101157_b28 – year: 2010 ident: 10.1016/j.cogsys.2023.101157_b37 – start-page: 507 year: 2012 ident: 10.1016/j.cogsys.2023.101157_b40 article-title: Psychological and neuroscientific connections with reinforcement learning – volume: 10 start-page: 122 issue: 1 year: 1995 ident: 10.1016/j.cogsys.2023.101157_b5 article-title: Trust, reciprocity, and social history publication-title: Games and Economic Behavior doi: 10.1006/game.1995.1027 – volume: 53 start-page: 1 issue: 5 year: 2020 ident: 10.1016/j.cogsys.2023.101157_b47 article-title: A survey on trust evaluation based on machine learning publication-title: ACM Computing Surveys – start-page: 249 year: 1995 ident: 10.1016/j.cogsys.2023.101157_b21 article-title: 13 A model of how the basal ganglia generate and use neural signals that – volume: 88 start-page: 135 issue: 2 year: 1981 ident: 10.1016/j.cogsys.2023.101157_b41 article-title: Toward a modern theory of adaptive networks: Expectation and prediction publication-title: Psychological Review doi: 10.1037/0033-295X.88.2.135 – start-page: 243 year: 2017 ident: 10.1016/j.cogsys.2023.101157_b2 article-title: An alternative softmax operator for reinforcement learning – volume: 7 start-page: 73357 year: 2019 ident: 10.1016/j.cogsys.2023.101157_b1 article-title: Exploring the effects of consumers’ trust: A predictive model for satisfying buyers’ expectations based on sellers’ behavior in the marketplace publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2917999 – year: 2016 ident: 10.1016/j.cogsys.2023.101157_b6 – year: 2016 ident: 10.1016/j.cogsys.2023.101157_b46 – start-page: 193 year: 2005 ident: 10.1016/j.cogsys.2023.101157_b34 article-title: A probabilistic trust model for handling inaccurate reputation sources – start-page: 246 year: 2006 ident: 10.1016/j.cogsys.2023.101157_b45 article-title: Bayesian network based trust management – start-page: 449 year: 2017 ident: 10.1016/j.cogsys.2023.101157_b3 article-title: A distributional perspective on reinforcement learning – volume: 41 start-page: 104 year: 2014 ident: 10.1016/j.cogsys.2023.101157_b29 article-title: Examining WeChat users’ motivations, trust, attitudes, and positive word-of-mouth: Evidence from China publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2014.08.013 – start-page: 135 year: 2004 ident: 10.1016/j.cogsys.2023.101157_b27 article-title: Analysing the relationship between risk and trust – year: 1994 ident: 10.1016/j.cogsys.2023.101157_b32 – year: 2016 ident: 10.1016/j.cogsys.2023.101157_b44 – volume: 19 start-page: 479 issue: 3 year: 2016 ident: 10.1016/j.cogsys.2023.101157_b15 article-title: Dopamine neurons share common response function for reward prediction error publication-title: Nature Neuroscience doi: 10.1038/nn.4239 – volume: 43 start-page: 618 issue: 2 year: 2007 ident: 10.1016/j.cogsys.2023.101157_b26 article-title: A survey of trust and reputation systems for online service provision publication-title: Decision Support Systems doi: 10.1016/j.dss.2005.05.019 – volume: 22 start-page: 1 issue: 131 year: 2021 ident: 10.1016/j.cogsys.2023.101157_b12 article-title: MushroomRL: Simplifying reinforcement learning research publication-title: Journal of Machine Learning Research – volume: 6 start-page: 3021 issue: 60 year: 2021 ident: 10.1016/j.cogsys.2023.101157_b48 article-title: Seaborn: Statistical data visualization publication-title: Journal of Open Source Software doi: 10.21105/joss.03021 – year: 2020 ident: 10.1016/j.cogsys.2023.101157_b4 – volume: 80 start-page: 1 issue: 1 year: 1998 ident: 10.1016/j.cogsys.2023.101157_b39 article-title: Predictive reward signal of dopamine neurons publication-title: Journal of Neurophysiology doi: 10.1152/jn.1998.80.1.1 – volume: 111 start-page: 295 issue: 470 year: 2001 ident: 10.1016/j.cogsys.2023.101157_b51 article-title: Trust and growth publication-title: The Economic Journal doi: 10.1111/1468-0297.00609 – volume: 19 start-page: 1 issue: 1 year: 2004 ident: 10.1016/j.cogsys.2023.101157_b35 article-title: Trust in multi-agent systems publication-title: The Knowledge Engineering Review doi: 10.1017/S0269888904000116 – start-page: 761 year: 1998 ident: 10.1016/j.cogsys.2023.101157_b10 article-title: Bayesian Q-learning – volume: 585 start-page: 357 issue: 7825 year: 2020 ident: 10.1016/j.cogsys.2023.101157_b20 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 11 issue: 6 year: 2015 ident: 10.1016/j.cogsys.2023.101157_b33 article-title: The sense of confidence during probabilistic learning: A normative account publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1004305 – ident: 10.1016/j.cogsys.2023.101157_b13 – year: 2018 ident: 10.1016/j.cogsys.2023.101157_b42 – volume: 2 start-page: 282 year: 2008 ident: 10.1016/j.cogsys.2023.101157_b43 article-title: Silencing the critics: understanding the effects of cocaine sensitization on dorsolateral and ventral striatum in the context of an actor/critic model publication-title: Frontiers in Neuroscience doi: 10.3389/neuro.01.014.2008 – volume: 115 start-page: E1690 issue: 7 year: 2018 ident: 10.1016/j.cogsys.2023.101157_b16 article-title: Stimulus generalization as a mechanism for learning to trust publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1715227115 – volume: 525 start-page: 243 issue: 7568 year: 2015 ident: 10.1016/j.cogsys.2023.101157_b14 article-title: Arithmetic and local circuitry underlying dopamine prediction errors publication-title: Nature doi: 10.1038/nature14855 – year: 2020 ident: 10.1016/j.cogsys.2023.101157_b23 – volume: 6 start-page: 94 issue: 1 year: 2000 ident: 10.1016/j.cogsys.2023.101157_b31 article-title: Familiarity, confidence, trust: Problems and alternatives publication-title: Trust: Making and Breaking Cooperative Relations – start-page: 209 year: 2007 ident: 10.1016/j.cogsys.2023.101157_b24 article-title: Trust and reputation systems – start-page: 291 year: 2004 ident: 10.1016/j.cogsys.2023.101157_b11 article-title: Reasoning about trust: A formal logical framework – start-page: 275 year: 2003 ident: 10.1016/j.cogsys.2023.101157_b50 article-title: A reputation-based trust model for peer-to-peer e-commerce communities |
SSID | ssj0016952 |
Score | 2.3389072 |
Snippet | Many existing approaches to model and compute trust in a quantitative way rely on ranking, rating or assessments of agents by other agents. Even though... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 101157 |
SubjectTerms | Cognitive system Multi-agent RL Reinforcement Learning Trust |
Title | Interpersonal trust modelling through multi-agent Reinforcement Learning |
URI | https://dx.doi.org/10.1016/j.cogsys.2023.101157 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KvfQiPrE-Sg5e4z6SzWaPpVhWxR7UQm9LsklLPbQFe-nF324mmy0K4sHjhgmEb8O8Mt8MwC2TiteCcaqkKig3ssYxLzFNrBJaybmzipjveJ6IcsofZ9msA6OWC4NllUH3Nzrda-uwEgU0o81yGb3iE1vMnQFm6CgkSPjlPMdbfve5L_NIROGn7qAwRemWPudrvOr14mOHTbtThksJGqnfzNM3kzM-gsPgK5Jhc5xj6NjVCfT2Kmt3CmVTMxgcauIJFMQPt0GWOQlDeIivGqQKWVTkxfpeqbVPC5LQXnVxBtPx_duopGE2Aq1dELCl2vktuUlyKRRP59rEiclxEJFUDgytbeEioWzuBIzzB7VKjMAHS85iJ5FnlrFz6K7WK3sBRMSpUikTUsSK61oXNjMZVxbj5liYog-0haTaNC0wqrY27L1qIKwQwqqBsA95i1v141dWTkv_ufPy3zuvoOe-eJMbuYauw9veOG9hqwf-OgzgYPjwVE6-ACkiv6s |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwED5RGMpS9anSp4euFnk4jjMiVBTKY2hBYrPs2CA6AFJZ-Pf1JU7VSlWHro5Pir5Ed9-9AZ5ioVjBY0aVUBllRhS45iWgoVVcK7F0VhHjHZMpz-fsZZEsGtCve2GwrNLr_kqnl9ran3Q9mt3det19wxRbwJwBjpEohOIIWjidKmlCqzcc5dOvZALPysU7eJ-iQN1BV5Z5FdvVxwHndkcxHoVop36zUN-szuAUTjxdJL3qjc6gYTfn0P7SWocLyKuyQc-pSdlDQcr9NthoTvweHlIWDlKFjVTk1ZbjUosyMkj8hNXVJcwHz7N-Tv16BFo4P2BPtaMuqQlTwRWLltoEoUlxF5FQDg-tbeacoWTpLhhHCbUKDcecJYsDdyNNbBxfQXOz3dhrIDyIlIpiLnigmC50ZhOTMGXRdQ64yTpAa0jkrpqCIevysHdZQSgRQllB2IG0xk3--JrSKeo_JW_-LfkIx_lsMpbj4XR0C233hFWhkjtoOuztvSMPe_3gf45P0S7CXA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpersonal+trust+modelling+through+multi-agent+Reinforcement+Learning&rft.jtitle=Cognitive+systems+research&rft.au=Frey%2C+Vincent&rft.au=Martinez%2C+Julian&rft.date=2024-01-01&rft.issn=1389-0417&rft.volume=83&rft.spage=101157&rft_id=info:doi/10.1016%2Fj.cogsys.2023.101157&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cogsys_2023_101157 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-0417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-0417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-0417&client=summon |