Interpersonal trust modelling through multi-agent Reinforcement Learning

Many existing approaches to model and compute trust in a quantitative way rely on ranking, rating or assessments of agents by other agents. Even though reputation is related with trust, it does not capture all its characteristics. In parallel, many works in neuroscience shows evidence about interper...

Full description

Saved in:
Bibliographic Details
Published inCognitive systems research Vol. 83; p. 101157
Main Authors Frey, Vincent, Martinez, Julian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2024
Subjects
Online AccessGet full text
ISSN1389-0417
1389-0417
DOI10.1016/j.cogsys.2023.101157

Cover

Loading…
Abstract Many existing approaches to model and compute trust in a quantitative way rely on ranking, rating or assessments of agents by other agents. Even though reputation is related with trust, it does not capture all its characteristics. In parallel, many works in neuroscience shows evidence about interpersonal trust being an associative learning process encoded in the human brain. Inspired by other subjects such as Cognitive Processing/Dopamine, where Reinforcement Learning algorithms have served to model those phenomena, we propose a model for trust dynamics based on a multi-agent RL algorithm. We corroborate some trust concepts developed in social sciences within a quantitative framework. We do also propose and assess some metrics for a better understanding about the relation between the trust behaviour and the performance of the agents. Finally, we show that Trust, as described by our proposal, can serve to accelerate learning.
AbstractList Many existing approaches to model and compute trust in a quantitative way rely on ranking, rating or assessments of agents by other agents. Even though reputation is related with trust, it does not capture all its characteristics. In parallel, many works in neuroscience shows evidence about interpersonal trust being an associative learning process encoded in the human brain. Inspired by other subjects such as Cognitive Processing/Dopamine, where Reinforcement Learning algorithms have served to model those phenomena, we propose a model for trust dynamics based on a multi-agent RL algorithm. We corroborate some trust concepts developed in social sciences within a quantitative framework. We do also propose and assess some metrics for a better understanding about the relation between the trust behaviour and the performance of the agents. Finally, we show that Trust, as described by our proposal, can serve to accelerate learning.
ArticleNumber 101157
Author Frey, Vincent
Martinez, Julian
Author_xml – sequence: 1
  givenname: Vincent
  surname: Frey
  fullname: Frey, Vincent
  email: vincent.frey@orange.com
– sequence: 2
  givenname: Julian
  surname: Martinez
  fullname: Martinez, Julian
  email: jfmartinez@fi.uba.ar
BookMark eNp9kF9LwzAUxYNMcJt-Ax_6BTpv0qbpXgQZ6oSBIPoc0uS2y-iSkWTCvr0t9cEnn-4fzjkcfgsyc94hIfcUVhRo9XBYad_FS1wxYMX4olxckTkt6nUOJRWzP_sNWcR4gMG25mxOtm8uYThhiN6pPkvhHFN29Ab73rouS_vgz90-O577ZHPVoUvZB1rX-qDxOF47VMEN0lty3ao-4t3vXJKvl-fPzTbfvb--bZ52uWacp7zhFROGirpSJWsbA9QIU2tTKwBoGlyzWvB2EBhg0ChqKsGhKAsYFIJjUSxJOeXq4GMM2MpTsEcVLpKCHGnIg5xoyJGGnGgMtsfJhkO3b4tBRm3RaTQ2oE7SePt_wA_HEW1y
Cites_doi 10.25080/Majora-92bf1922-00a
10.1613/jair.1.11396
10.1109/MCSE.2007.55
10.1038/s41586-019-1924-6
10.1007/s10462-004-0041-5
10.1016/j.tics.2021.09.002
10.1145/2815595
10.1006/game.1995.1027
10.1037/0033-295X.88.2.135
10.1109/ACCESS.2019.2917999
10.1016/j.chb.2014.08.013
10.1038/nn.4239
10.1016/j.dss.2005.05.019
10.21105/joss.03021
10.1152/jn.1998.80.1.1
10.1111/1468-0297.00609
10.1017/S0269888904000116
10.1038/s41586-020-2649-2
10.1371/journal.pcbi.1004305
10.3389/neuro.01.014.2008
10.1073/pnas.1715227115
10.1038/nature14855
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cogsys.2023.101157
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1389-0417
ExternalDocumentID 10_1016_j_cogsys_2023_101157
S1389041723000918
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AADFP
AADPK
AAEDT
AAEDW
AAGJA
AAGUQ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFRF
ABIVO
ABJNI
ABMAC
ABOYX
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACHQT
ACNNM
ACRLP
ACXNI
ACZNC
ADEZE
ADJOM
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFYLN
AGHFR
AGUBO
AGWIK
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OKEIE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSN
SST
SSV
SSY
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
AEIPS
AFJKZ
AGCQF
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c255t-b5627d1786a42fbd01d7d8cd8a000bbe92875fd17d020ba1d67503430d8a75e33
IEDL.DBID .~1
ISSN 1389-0417
IngestDate Tue Jul 01 02:11:48 EDT 2025
Fri Feb 23 02:35:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Reinforcement Learning
Multi-agent RL
Trust
Cognitive system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-b5627d1786a42fbd01d7d8cd8a000bbe92875fd17d020ba1d67503430d8a75e33
ParticipantIDs crossref_primary_10_1016_j_cogsys_2023_101157
elsevier_sciencedirect_doi_10_1016_j_cogsys_2023_101157
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationTitle Cognitive systems research
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dearden, Friedman, Russell (b10) 1998
Jøsang, Presti (b27) 2004
Sutton, Barto (b42) 2018
Sabater, Sierra (b38) 2005; 24
Esfandiari, B., & Chandrasekharan, S. (2001). On how agents make friends: Mechanisms for trust acquisition. In
Patel, Teacy, Jennings, Luck (b34) 2005
Sutton, Barto (b41) 1981; 88
Lien, Cao (b29) 2014; 41
Wang, Cahill, Gray, Harris, Liao (b45) 2006
Russell (b37) 2010
Dabney, Kurth-Nelson, Uchida, Starkweather, Hassabis, Munos (b9) 2020; 577
Wang, Jing, Yan, Fu, Pedrycz, Yang (b47) 2020; 53
Houk, Adams (b21) 1995
FeldmanHall, Nassar (b17) 2021; 25
Waskom (b48) 2021; 6
Wes McKinney (b49) 2010
Cho, Chan, Adali (b7) 2015; 48
FeldmanHall, Dunsmoor, Tompary, Hunter, Todorov, Phelps (b16) 2018; 115
Demolombe (b11) 2004
Takahashi, Schoenbaum, Niv (b43) 2008; 2
Xiong, Liu (b50) 2003
Ramchurn, Huynh, Jennings (b35) 2004; 19
Hunter (b22) 2007; 9
Tribus (b44) 2016
Asadi, Littman (b2) 2017
Hunyadi (b23) 2020
Gambetta (b18) 1988
Wang, Du, Yang, Zhu, Shen, Zhang (b46) 2016
Ben-Naim, Longin, Lorini (b4) 2020
(pp. 27–34).
Brockman, Cheung, Pettersson, Schneider, Schulman, Tang (b6) 2016
Marsh (b32) 1994
Luhmann (b31) 2000; 6
Meyniel, Schlunegger, Dehaene (b33) 2015; 11
Da Silva, Costa (b8) 2019; 64
Berg, Dickhaut, McCabe (b5) 1995; 10
Jøsang, Ismail, Boyd (b26) 2007; 43
Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau (b20) 2020; 585
Ludvig, Bellemare, Pearson (b30) 2011
Eshel, Tian, Bukwich, Uchida (b15) 2016; 19
Gambetta (b19) 2000; 13
Rescorla (b36) 1972
D’Eramo, Tateo, Bonarini, Restelli, Peters (b12) 2021; 22
Schultz (b39) 1998; 80
Bellemare, Dabney, Munos (b3) 2017
Alsheikh, Shaalan, Meziane (b1) 2019; 7
Josang, Ismail (b25) 2002
Jøsang (b24) 2007
Shah (b40) 2012
Zak, Knack (b51) 2001; 111
Eshel, Bukwich, Rao, Hemmelder, Tian, Uchida (b14) 2015; 525
Levallois-Barth (b28) 2018
Patel (10.1016/j.cogsys.2023.101157_b34) 2005
FeldmanHall (10.1016/j.cogsys.2023.101157_b17) 2021; 25
Da Silva (10.1016/j.cogsys.2023.101157_b8) 2019; 64
Eshel (10.1016/j.cogsys.2023.101157_b15) 2016; 19
Berg (10.1016/j.cogsys.2023.101157_b5) 1995; 10
FeldmanHall (10.1016/j.cogsys.2023.101157_b16) 2018; 115
Zak (10.1016/j.cogsys.2023.101157_b51) 2001; 111
Hunter (10.1016/j.cogsys.2023.101157_b22) 2007; 9
Rescorla (10.1016/j.cogsys.2023.101157_b36) 1972
D’Eramo (10.1016/j.cogsys.2023.101157_b12) 2021; 22
Shah (10.1016/j.cogsys.2023.101157_b40) 2012
Demolombe (10.1016/j.cogsys.2023.101157_b11) 2004
10.1016/j.cogsys.2023.101157_b13
Schultz (10.1016/j.cogsys.2023.101157_b39) 1998; 80
Bellemare (10.1016/j.cogsys.2023.101157_b3) 2017
Dabney (10.1016/j.cogsys.2023.101157_b9) 2020; 577
Wang (10.1016/j.cogsys.2023.101157_b47) 2020; 53
Jøsang (10.1016/j.cogsys.2023.101157_b26) 2007; 43
Sutton (10.1016/j.cogsys.2023.101157_b41) 1981; 88
Ludvig (10.1016/j.cogsys.2023.101157_b30) 2011
Jøsang (10.1016/j.cogsys.2023.101157_b27) 2004
Ramchurn (10.1016/j.cogsys.2023.101157_b35) 2004; 19
Wang (10.1016/j.cogsys.2023.101157_b46) 2016
Cho (10.1016/j.cogsys.2023.101157_b7) 2015; 48
Marsh (10.1016/j.cogsys.2023.101157_b32) 1994
Asadi (10.1016/j.cogsys.2023.101157_b2) 2017
Gambetta (10.1016/j.cogsys.2023.101157_b18) 1988
Lien (10.1016/j.cogsys.2023.101157_b29) 2014; 41
Houk (10.1016/j.cogsys.2023.101157_b21) 1995
Gambetta (10.1016/j.cogsys.2023.101157_b19) 2000; 13
Brockman (10.1016/j.cogsys.2023.101157_b6) 2016
Dearden (10.1016/j.cogsys.2023.101157_b10) 1998
Sabater (10.1016/j.cogsys.2023.101157_b38) 2005; 24
Jøsang (10.1016/j.cogsys.2023.101157_b24) 2007
Tribus (10.1016/j.cogsys.2023.101157_b44) 2016
Ben-Naim (10.1016/j.cogsys.2023.101157_b4) 2020
Levallois-Barth (10.1016/j.cogsys.2023.101157_b28) 2018
Waskom (10.1016/j.cogsys.2023.101157_b48) 2021; 6
Luhmann (10.1016/j.cogsys.2023.101157_b31) 2000; 6
Sutton (10.1016/j.cogsys.2023.101157_b42) 2018
Josang (10.1016/j.cogsys.2023.101157_b25) 2002
Eshel (10.1016/j.cogsys.2023.101157_b14) 2015; 525
Wes McKinney (10.1016/j.cogsys.2023.101157_b49) 2010
Harris (10.1016/j.cogsys.2023.101157_b20) 2020; 585
Xiong (10.1016/j.cogsys.2023.101157_b50) 2003
Meyniel (10.1016/j.cogsys.2023.101157_b33) 2015; 11
Wang (10.1016/j.cogsys.2023.101157_b45) 2006
Russell (10.1016/j.cogsys.2023.101157_b37) 2010
Takahashi (10.1016/j.cogsys.2023.101157_b43) 2008; 2
Hunyadi (10.1016/j.cogsys.2023.101157_b23) 2020
Alsheikh (10.1016/j.cogsys.2023.101157_b1) 2019; 7
References_xml – volume: 19
  start-page: 1
  year: 2004
  end-page: 25
  ident: b35
  article-title: Trust in multi-agent systems
  publication-title: The Knowledge Engineering Review
– start-page: 243
  year: 2017
  end-page: 252
  ident: b2
  article-title: An alternative softmax operator for reinforcement learning
  publication-title: International conference on machine learning
– volume: 48
  start-page: 1
  year: 2015
  end-page: 40
  ident: b7
  article-title: A survey on trust modeling
  publication-title: ACM Computing Surveys
– volume: 88
  start-page: 135
  year: 1981
  ident: b41
  article-title: Toward a modern theory of adaptive networks: Expectation and prediction
  publication-title: Psychological Review
– volume: 7
  start-page: 73357
  year: 2019
  end-page: 73372
  ident: b1
  article-title: Exploring the effects of consumers’ trust: A predictive model for satisfying buyers’ expectations based on sellers’ behavior in the marketplace
  publication-title: IEEE Access
– year: 2020
  ident: b23
  article-title: Au Début Est la Confiance [in the Beginning Is Trust]
– start-page: 2502
  year: 2002
  end-page: 2511
  ident: b25
  article-title: The beta reputation system
  publication-title: Proceedings of the 15th bled electronic commerce conference. Vol. 5
– volume: 13
  start-page: 213
  year: 2000
  end-page: 237
  ident: b19
  article-title: Can we trust trust
  publication-title: Trust: Making and breaking cooperative relations
– start-page: 64
  year: 1972
  end-page: 99
  ident: b36
  article-title: A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement
  publication-title: Current Research and Theory
– start-page: 209
  year: 2007
  end-page: 245
  ident: b24
  article-title: Trust and reputation systems
  publication-title: Foundations of security analysis and design IV
– volume: 577
  start-page: 671
  year: 2020
  end-page: 675
  ident: b9
  article-title: A distributional code for value in dopamine-based reinforcement learning
  publication-title: Nature
– start-page: 761
  year: 1998
  end-page: 768
  ident: b10
  article-title: Bayesian Q-learning
  publication-title: AAAI/IAAI, Vol. 1998
– year: 2018
  ident: b42
  article-title: Reinforcement learning: An introduction
– start-page: 449
  year: 2017
  end-page: 458
  ident: b3
  article-title: A distributional perspective on reinforcement learning
  publication-title: International conference on machine learning
– start-page: 249
  year: 1995
  ident: b21
  article-title: 13 A model of how the basal ganglia generate and use neural signals that
  publication-title: Models of information processing in the basal Ganglia
– volume: 53
  start-page: 1
  year: 2020
  end-page: 36
  ident: b47
  article-title: A survey on trust evaluation based on machine learning
  publication-title: ACM Computing Surveys
– start-page: 111
  year: 2011
  end-page: 144
  ident: b30
  article-title: A primer on reinforcement learning in the brain: Psychological, computational, and neural perspectives
  publication-title: Computational neuroscience for advancing artificial intelligence: Models, methods and applications
– volume: 80
  start-page: 1
  year: 1998
  end-page: 27
  ident: b39
  article-title: Predictive reward signal of dopamine neurons
  publication-title: Journal of Neurophysiology
– volume: 24
  start-page: 33
  year: 2005
  end-page: 60
  ident: b38
  article-title: Review on computational trust and reputation models
  publication-title: Artificial Intelligence Review
– start-page: 291
  year: 2004
  end-page: 303
  ident: b11
  article-title: Reasoning about trust: A formal logical framework
  publication-title: International conference on trust management
– volume: 585
  start-page: 357
  year: 2020
  end-page: 362
  ident: b20
  article-title: Array programming with NumPy
  publication-title: Nature
– volume: 111
  start-page: 295
  year: 2001
  end-page: 321
  ident: b51
  article-title: Trust and growth
  publication-title: The Economic Journal
– year: 1994
  ident: b32
  article-title: Formalising trust as a computational concept
– volume: 41
  start-page: 104
  year: 2014
  end-page: 111
  ident: b29
  article-title: Examining WeChat users’ motivations, trust, attitudes, and positive word-of-mouth: Evidence from China
  publication-title: Computers in Human Behavior
– start-page: 135
  year: 2004
  end-page: 145
  ident: b27
  article-title: Analysing the relationship between risk and trust
  publication-title: International conference on trust management
– year: 2016
  ident: b46
  article-title: Game-theory-based active defense for intrusion detection in cyber-physical embedded systems
– start-page: 56
  year: 2010
  end-page: 61
  ident: b49
  article-title: Data structures for statistical computing in python
  publication-title: Proceedings of the 9th python in science conference
– year: 1988
  ident: b18
  article-title: Trust: Making and breaking cooperative relations
– year: 2020
  ident: b4
  article-title: Formalization of cognitive-agent systems, trust, and emotions
– start-page: 246
  year: 2006
  end-page: 257
  ident: b45
  article-title: Bayesian network based trust management
  publication-title: International conference on autonomic and trusted computing
– volume: 19
  start-page: 479
  year: 2016
  end-page: 486
  ident: b15
  article-title: Dopamine neurons share common response function for reward prediction error
  publication-title: Nature Neuroscience
– start-page: 507
  year: 2012
  end-page: 537
  ident: b40
  article-title: Psychological and neuroscientific connections with reinforcement learning
  publication-title: Reinforcement learning
– volume: 2
  start-page: 282
  year: 2008
  ident: b43
  article-title: Silencing the critics: understanding the effects of cocaine sensitization on dorsolateral and ventral striatum in the context of an actor/critic model
  publication-title: Frontiers in Neuroscience
– reference: (pp. 27–34).
– year: 2016
  ident: b44
  article-title: Rational descriptions, decisions and designs: Pergamon unified engineering series
– volume: 22
  start-page: 1
  year: 2021
  end-page: 5
  ident: b12
  article-title: MushroomRL: Simplifying reinforcement learning research
  publication-title: Journal of Machine Learning Research
– volume: 115
  start-page: E1690
  year: 2018
  end-page: E1697
  ident: b16
  article-title: Stimulus generalization as a mechanism for learning to trust
  publication-title: Proceedings of the National Academy of Sciences
– start-page: 193
  year: 2005
  end-page: 209
  ident: b34
  article-title: A probabilistic trust model for handling inaccurate reputation sources
  publication-title: International conference on trust management
– year: 2010
  ident: b37
  article-title: Artificial intelligence a modern approach
– start-page: 275
  year: 2003
  end-page: 284
  ident: b50
  article-title: A reputation-based trust model for peer-to-peer e-commerce communities
  publication-title: EEE international conference on E-commerce, 2003
– volume: 25
  start-page: 1045
  year: 2021
  end-page: 1057
  ident: b17
  article-title: The computational challenge of social learning
  publication-title: Trends in Cognitive Sciences
– year: 2016
  ident: b6
  article-title: OpenAI Gym
– reference: Esfandiari, B., & Chandrasekharan, S. (2001). On how agents make friends: Mechanisms for trust acquisition. In
– volume: 11
  year: 2015
  ident: b33
  article-title: The sense of confidence during probabilistic learning: A normative account
  publication-title: PLoS Computational Biology
– volume: 6
  start-page: 3021
  year: 2021
  ident: b48
  article-title: Seaborn: Statistical data visualization
  publication-title: Journal of Open Source Software
– volume: 9
  start-page: 90
  year: 2007
  end-page: 95
  ident: b22
  article-title: Matplotlib: A 2D graphics environment
  publication-title: Computing in Science & Engineering
– volume: 43
  start-page: 618
  year: 2007
  end-page: 644
  ident: b26
  article-title: A survey of trust and reputation systems for online service provision
  publication-title: Decision Support Systems
– volume: 64
  start-page: 645
  year: 2019
  end-page: 703
  ident: b8
  article-title: A survey on transfer learning for multiagent reinforcement learning systems
  publication-title: Journal of Artificial Intelligence Research
– year: 2018
  ident: b28
  article-title: Signs of trust
– volume: 6
  start-page: 94
  year: 2000
  end-page: 107
  ident: b31
  article-title: Familiarity, confidence, trust: Problems and alternatives
  publication-title: Trust: Making and Breaking Cooperative Relations
– volume: 525
  start-page: 243
  year: 2015
  end-page: 246
  ident: b14
  article-title: Arithmetic and local circuitry underlying dopamine prediction errors
  publication-title: Nature
– volume: 10
  start-page: 122
  year: 1995
  end-page: 142
  ident: b5
  article-title: Trust, reciprocity, and social history
  publication-title: Games and Economic Behavior
– start-page: 2502
  year: 2002
  ident: 10.1016/j.cogsys.2023.101157_b25
  article-title: The beta reputation system
– start-page: 64
  year: 1972
  ident: 10.1016/j.cogsys.2023.101157_b36
  article-title: A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement
  publication-title: Current Research and Theory
– start-page: 111
  year: 2011
  ident: 10.1016/j.cogsys.2023.101157_b30
  article-title: A primer on reinforcement learning in the brain: Psychological, computational, and neural perspectives
– start-page: 56
  year: 2010
  ident: 10.1016/j.cogsys.2023.101157_b49
  article-title: Data structures for statistical computing in python
  doi: 10.25080/Majora-92bf1922-00a
– volume: 64
  start-page: 645
  year: 2019
  ident: 10.1016/j.cogsys.2023.101157_b8
  article-title: A survey on transfer learning for multiagent reinforcement learning systems
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.1.11396
– volume: 9
  start-page: 90
  issue: 3
  year: 2007
  ident: 10.1016/j.cogsys.2023.101157_b22
  article-title: Matplotlib: A 2D graphics environment
  publication-title: Computing in Science & Engineering
  doi: 10.1109/MCSE.2007.55
– volume: 577
  start-page: 671
  issue: 7792
  year: 2020
  ident: 10.1016/j.cogsys.2023.101157_b9
  article-title: A distributional code for value in dopamine-based reinforcement learning
  publication-title: Nature
  doi: 10.1038/s41586-019-1924-6
– volume: 24
  start-page: 33
  issue: 1
  year: 2005
  ident: 10.1016/j.cogsys.2023.101157_b38
  article-title: Review on computational trust and reputation models
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-004-0041-5
– volume: 25
  start-page: 1045
  issue: 12
  year: 2021
  ident: 10.1016/j.cogsys.2023.101157_b17
  article-title: The computational challenge of social learning
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2021.09.002
– year: 1988
  ident: 10.1016/j.cogsys.2023.101157_b18
– volume: 13
  start-page: 213
  year: 2000
  ident: 10.1016/j.cogsys.2023.101157_b19
  article-title: Can we trust trust
  publication-title: Trust: Making and breaking cooperative relations
– volume: 48
  start-page: 1
  issue: 2
  year: 2015
  ident: 10.1016/j.cogsys.2023.101157_b7
  article-title: A survey on trust modeling
  publication-title: ACM Computing Surveys
  doi: 10.1145/2815595
– year: 2018
  ident: 10.1016/j.cogsys.2023.101157_b28
– year: 2010
  ident: 10.1016/j.cogsys.2023.101157_b37
– start-page: 507
  year: 2012
  ident: 10.1016/j.cogsys.2023.101157_b40
  article-title: Psychological and neuroscientific connections with reinforcement learning
– volume: 10
  start-page: 122
  issue: 1
  year: 1995
  ident: 10.1016/j.cogsys.2023.101157_b5
  article-title: Trust, reciprocity, and social history
  publication-title: Games and Economic Behavior
  doi: 10.1006/game.1995.1027
– volume: 53
  start-page: 1
  issue: 5
  year: 2020
  ident: 10.1016/j.cogsys.2023.101157_b47
  article-title: A survey on trust evaluation based on machine learning
  publication-title: ACM Computing Surveys
– start-page: 249
  year: 1995
  ident: 10.1016/j.cogsys.2023.101157_b21
  article-title: 13 A model of how the basal ganglia generate and use neural signals that
– volume: 88
  start-page: 135
  issue: 2
  year: 1981
  ident: 10.1016/j.cogsys.2023.101157_b41
  article-title: Toward a modern theory of adaptive networks: Expectation and prediction
  publication-title: Psychological Review
  doi: 10.1037/0033-295X.88.2.135
– start-page: 243
  year: 2017
  ident: 10.1016/j.cogsys.2023.101157_b2
  article-title: An alternative softmax operator for reinforcement learning
– volume: 7
  start-page: 73357
  year: 2019
  ident: 10.1016/j.cogsys.2023.101157_b1
  article-title: Exploring the effects of consumers’ trust: A predictive model for satisfying buyers’ expectations based on sellers’ behavior in the marketplace
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917999
– year: 2016
  ident: 10.1016/j.cogsys.2023.101157_b6
– year: 2016
  ident: 10.1016/j.cogsys.2023.101157_b46
– start-page: 193
  year: 2005
  ident: 10.1016/j.cogsys.2023.101157_b34
  article-title: A probabilistic trust model for handling inaccurate reputation sources
– start-page: 246
  year: 2006
  ident: 10.1016/j.cogsys.2023.101157_b45
  article-title: Bayesian network based trust management
– start-page: 449
  year: 2017
  ident: 10.1016/j.cogsys.2023.101157_b3
  article-title: A distributional perspective on reinforcement learning
– volume: 41
  start-page: 104
  year: 2014
  ident: 10.1016/j.cogsys.2023.101157_b29
  article-title: Examining WeChat users’ motivations, trust, attitudes, and positive word-of-mouth: Evidence from China
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2014.08.013
– start-page: 135
  year: 2004
  ident: 10.1016/j.cogsys.2023.101157_b27
  article-title: Analysing the relationship between risk and trust
– year: 1994
  ident: 10.1016/j.cogsys.2023.101157_b32
– year: 2016
  ident: 10.1016/j.cogsys.2023.101157_b44
– volume: 19
  start-page: 479
  issue: 3
  year: 2016
  ident: 10.1016/j.cogsys.2023.101157_b15
  article-title: Dopamine neurons share common response function for reward prediction error
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4239
– volume: 43
  start-page: 618
  issue: 2
  year: 2007
  ident: 10.1016/j.cogsys.2023.101157_b26
  article-title: A survey of trust and reputation systems for online service provision
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2005.05.019
– volume: 22
  start-page: 1
  issue: 131
  year: 2021
  ident: 10.1016/j.cogsys.2023.101157_b12
  article-title: MushroomRL: Simplifying reinforcement learning research
  publication-title: Journal of Machine Learning Research
– volume: 6
  start-page: 3021
  issue: 60
  year: 2021
  ident: 10.1016/j.cogsys.2023.101157_b48
  article-title: Seaborn: Statistical data visualization
  publication-title: Journal of Open Source Software
  doi: 10.21105/joss.03021
– year: 2020
  ident: 10.1016/j.cogsys.2023.101157_b4
– volume: 80
  start-page: 1
  issue: 1
  year: 1998
  ident: 10.1016/j.cogsys.2023.101157_b39
  article-title: Predictive reward signal of dopamine neurons
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1998.80.1.1
– volume: 111
  start-page: 295
  issue: 470
  year: 2001
  ident: 10.1016/j.cogsys.2023.101157_b51
  article-title: Trust and growth
  publication-title: The Economic Journal
  doi: 10.1111/1468-0297.00609
– volume: 19
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.cogsys.2023.101157_b35
  article-title: Trust in multi-agent systems
  publication-title: The Knowledge Engineering Review
  doi: 10.1017/S0269888904000116
– start-page: 761
  year: 1998
  ident: 10.1016/j.cogsys.2023.101157_b10
  article-title: Bayesian Q-learning
– volume: 585
  start-page: 357
  issue: 7825
  year: 2020
  ident: 10.1016/j.cogsys.2023.101157_b20
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 11
  issue: 6
  year: 2015
  ident: 10.1016/j.cogsys.2023.101157_b33
  article-title: The sense of confidence during probabilistic learning: A normative account
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1004305
– ident: 10.1016/j.cogsys.2023.101157_b13
– year: 2018
  ident: 10.1016/j.cogsys.2023.101157_b42
– volume: 2
  start-page: 282
  year: 2008
  ident: 10.1016/j.cogsys.2023.101157_b43
  article-title: Silencing the critics: understanding the effects of cocaine sensitization on dorsolateral and ventral striatum in the context of an actor/critic model
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/neuro.01.014.2008
– volume: 115
  start-page: E1690
  issue: 7
  year: 2018
  ident: 10.1016/j.cogsys.2023.101157_b16
  article-title: Stimulus generalization as a mechanism for learning to trust
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1715227115
– volume: 525
  start-page: 243
  issue: 7568
  year: 2015
  ident: 10.1016/j.cogsys.2023.101157_b14
  article-title: Arithmetic and local circuitry underlying dopamine prediction errors
  publication-title: Nature
  doi: 10.1038/nature14855
– year: 2020
  ident: 10.1016/j.cogsys.2023.101157_b23
– volume: 6
  start-page: 94
  issue: 1
  year: 2000
  ident: 10.1016/j.cogsys.2023.101157_b31
  article-title: Familiarity, confidence, trust: Problems and alternatives
  publication-title: Trust: Making and Breaking Cooperative Relations
– start-page: 209
  year: 2007
  ident: 10.1016/j.cogsys.2023.101157_b24
  article-title: Trust and reputation systems
– start-page: 291
  year: 2004
  ident: 10.1016/j.cogsys.2023.101157_b11
  article-title: Reasoning about trust: A formal logical framework
– start-page: 275
  year: 2003
  ident: 10.1016/j.cogsys.2023.101157_b50
  article-title: A reputation-based trust model for peer-to-peer e-commerce communities
SSID ssj0016952
Score 2.3389072
Snippet Many existing approaches to model and compute trust in a quantitative way rely on ranking, rating or assessments of agents by other agents. Even though...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 101157
SubjectTerms Cognitive system
Multi-agent RL
Reinforcement Learning
Trust
Title Interpersonal trust modelling through multi-agent Reinforcement Learning
URI https://dx.doi.org/10.1016/j.cogsys.2023.101157
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KvfQiPrE-Sg5e4z6SzWaPpVhWxR7UQm9LsklLPbQFe-nF324mmy0K4sHjhgmEb8O8Mt8MwC2TiteCcaqkKig3ssYxLzFNrBJaybmzipjveJ6IcsofZ9msA6OWC4NllUH3Nzrda-uwEgU0o81yGb3iE1vMnQFm6CgkSPjlPMdbfve5L_NIROGn7qAwRemWPudrvOr14mOHTbtThksJGqnfzNM3kzM-gsPgK5Jhc5xj6NjVCfT2Kmt3CmVTMxgcauIJFMQPt0GWOQlDeIivGqQKWVTkxfpeqbVPC5LQXnVxBtPx_duopGE2Aq1dELCl2vktuUlyKRRP59rEiclxEJFUDgytbeEioWzuBIzzB7VKjMAHS85iJ5FnlrFz6K7WK3sBRMSpUikTUsSK61oXNjMZVxbj5liYog-0haTaNC0wqrY27L1qIKwQwqqBsA95i1v141dWTkv_ufPy3zuvoOe-eJMbuYauw9veOG9hqwf-OgzgYPjwVE6-ACkiv6s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwED5RGMpS9anSp4euFnk4jjMiVBTKY2hBYrPs2CA6AFJZ-Pf1JU7VSlWHro5Pir5Ed9-9AZ5ioVjBY0aVUBllRhS45iWgoVVcK7F0VhHjHZMpz-fsZZEsGtCve2GwrNLr_kqnl9ran3Q9mt3det19wxRbwJwBjpEohOIIWjidKmlCqzcc5dOvZALPysU7eJ-iQN1BV5Z5FdvVxwHndkcxHoVop36zUN-szuAUTjxdJL3qjc6gYTfn0P7SWocLyKuyQc-pSdlDQcr9NthoTvweHlIWDlKFjVTk1ZbjUosyMkj8hNXVJcwHz7N-Tv16BFo4P2BPtaMuqQlTwRWLltoEoUlxF5FQDg-tbeacoWTpLhhHCbUKDcecJYsDdyNNbBxfQXOz3dhrIDyIlIpiLnigmC50ZhOTMGXRdQ64yTpAa0jkrpqCIevysHdZQSgRQllB2IG0xk3--JrSKeo_JW_-LfkIx_lsMpbj4XR0C233hFWhkjtoOuztvSMPe_3gf45P0S7CXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpersonal+trust+modelling+through+multi-agent+Reinforcement+Learning&rft.jtitle=Cognitive+systems+research&rft.au=Frey%2C+Vincent&rft.au=Martinez%2C+Julian&rft.date=2024-01-01&rft.issn=1389-0417&rft.volume=83&rft.spage=101157&rft_id=info:doi/10.1016%2Fj.cogsys.2023.101157&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cogsys_2023_101157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-0417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-0417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-0417&client=summon