Impact of blue-shifted effective joint density of electronic states on the photoluminescence of nanostructured silicon

Light emission from nanostructured silicon has triggered tremendous research interest for three decades. Yet, the exact mechanism of photoluminescence from silicon-based nano-systems is still not completely understood. It is generally believed that quantum confinement and surface chemistry play a co...

Full description

Saved in:
Bibliographic Details
Published inJournal of luminescence Vol. 273; p. 120658
Main Authors Basu, Shayari, Ghanta, Ujjwal, Roy Chowdhury, Subhajit, Pramanik, Manotosh, Roy, Samrat, Das, Ashok, Bandyopadhyay, Sudipta, pal, Bipul, Hossain, Syed Minhaz
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2024
Subjects
Online AccessGet full text
ISSN0022-2313
1872-7883
DOI10.1016/j.jlumin.2024.120658

Cover

Loading…
Abstract Light emission from nanostructured silicon has triggered tremendous research interest for three decades. Yet, the exact mechanism of photoluminescence from silicon-based nano-systems is still not completely understood. It is generally believed that quantum confinement and surface chemistry play a combined role in determining the luminescence characteristics of nano silicon. In this work, we show that the evolution of electron-hole effective joint density of states, resulting from the relaxation of k-selection rule, can account for the much-observed temperature dependent shift of the luminescence spectra of nanostructured silicon. Deconvolution of the emission characteristics reveals three distinct radiative recombination channels those can be attributed to band-to-band, band-to-trap and trap-to-trap transitions. At temperatures below ∼200 K, the peak due to band-to-band transition exhibit a nearly linear blue shift with increasing temperature while at higher temperatures, this trend is reversed. The rate of variation of emission peak energy with temperature is also found to be dependent on the effective crystallite size. These results are explained in terms of shift in the effective joint density of state function of photogenerated electron-hole pairs. The shift provides experimental evidence of the pseudo-direct transitions in the quantum-confined nanostructure of silicon. [Display omitted] •Broad PL spectrum from nanostructured Silicon obtained as a convolution of multiple radiative decay channels at different temperatures.•Effective joint density of states of photoexcited e-h pair gets broadened and blue shifted for nanostructured silicon.•This study provides a means of estimating the temperature coefficient for the shift in peak energy related to band-to-band transitions.•The work demonstrates the relaxation of the k-selection rule in quantum-confined silicon structure.
AbstractList Light emission from nanostructured silicon has triggered tremendous research interest for three decades. Yet, the exact mechanism of photoluminescence from silicon-based nano-systems is still not completely understood. It is generally believed that quantum confinement and surface chemistry play a combined role in determining the luminescence characteristics of nano silicon. In this work, we show that the evolution of electron-hole effective joint density of states, resulting from the relaxation of k-selection rule, can account for the much-observed temperature dependent shift of the luminescence spectra of nanostructured silicon. Deconvolution of the emission characteristics reveals three distinct radiative recombination channels those can be attributed to band-to-band, band-to-trap and trap-to-trap transitions. At temperatures below ∼200 K, the peak due to band-to-band transition exhibit a nearly linear blue shift with increasing temperature while at higher temperatures, this trend is reversed. The rate of variation of emission peak energy with temperature is also found to be dependent on the effective crystallite size. These results are explained in terms of shift in the effective joint density of state function of photogenerated electron-hole pairs. The shift provides experimental evidence of the pseudo-direct transitions in the quantum-confined nanostructure of silicon. [Display omitted] •Broad PL spectrum from nanostructured Silicon obtained as a convolution of multiple radiative decay channels at different temperatures.•Effective joint density of states of photoexcited e-h pair gets broadened and blue shifted for nanostructured silicon.•This study provides a means of estimating the temperature coefficient for the shift in peak energy related to band-to-band transitions.•The work demonstrates the relaxation of the k-selection rule in quantum-confined silicon structure.
ArticleNumber 120658
Author Bandyopadhyay, Sudipta
Roy Chowdhury, Subhajit
Pramanik, Manotosh
Das, Ashok
Hossain, Syed Minhaz
Ghanta, Ujjwal
pal, Bipul
Basu, Shayari
Roy, Samrat
Author_xml – sequence: 1
  givenname: Shayari
  surname: Basu
  fullname: Basu, Shayari
  organization: Department of Physics, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah, 711103, West Bengal, India
– sequence: 2
  givenname: Ujjwal
  surname: Ghanta
  fullname: Ghanta, Ujjwal
  organization: Department of Basic Science, NIET, NSHM Knowledge Campus, Durgapur, West Bengal, India
– sequence: 3
  givenname: Subhajit
  surname: Roy Chowdhury
  fullname: Roy Chowdhury, Subhajit
  organization: Department of Physics, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah, 711103, West Bengal, India
– sequence: 4
  givenname: Manotosh
  surname: Pramanik
  fullname: Pramanik, Manotosh
  organization: Department of Physical Science, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India
– sequence: 5
  givenname: Samrat
  surname: Roy
  fullname: Roy, Samrat
  organization: Department of Physical Science, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India
– sequence: 6
  givenname: Ashok
  surname: Das
  fullname: Das, Ashok
  organization: Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
– sequence: 7
  givenname: Sudipta
  surname: Bandyopadhyay
  fullname: Bandyopadhyay, Sudipta
  organization: Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
– sequence: 8
  givenname: Bipul
  surname: pal
  fullname: pal, Bipul
  organization: Department of Physical Science, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India
– sequence: 9
  givenname: Syed Minhaz
  orcidid: 0000-0002-7517-2785
  surname: Hossain
  fullname: Hossain, Syed Minhaz
  email: shminhaz@physics.iiests.ac.in
  organization: Department of Physics, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah, 711103, West Bengal, India
BookMark eNp9kM1qwzAQhEVJoUnaN-hBL2BXkv8vhRL6Ewj00p6FvVoRGUcKkhzI29eue-5pDzszzDcbsrLOIiGPnKWc8fKpT_thPBmbCibylAtWFvUNWfO6EklV19mKrBkTIhEZz-7IJoSeMZY1dbMml_3p3EKkTtNuGDEJR6MjKopaI0RzQdo7YyNVaIOJ11mHw_TxzhqgIbYRA3WWxiPS89FF91sEA6AFnNW2tS5EP0Ic_ZQbzGDA2Xtyq9sh4MPf3ZLvt9ev3Udy-Hzf714OCYiiiEnb5aByVgFUGtRE1XDo6iyHUrcZa1CrrkbFykYXwLnICsEm6IYVleiUmmi3JF9ywbsQPGp59ubU-qvkTM7byV4u28l5O7lsN9meFxtO3S4GvQxgZiJl_AQvlTP_B_wAY09_Hw
Cites_doi 10.1016/j.physe.2008.11.008
10.1103/PhysRevLett.84.2457
10.1016/S0022-2313(00)00225-8
10.1103/PhysRevB.72.075423
10.1063/1.3330658
10.1016/0031-8914(67)90062-6
10.3390/cryst10030143
10.1109/5.248958
10.1103/PhysRevApplied.11.024054
10.1088/0268-1242/3/5/011
10.1016/j.rinp.2018.03.008
10.1063/1.4799402
10.1063/1.119797
10.1103/PhysRevLett.82.197
10.1103/PhysRevB.75.033312
10.1063/1.99309
10.1063/1.107295
10.1016/j.ijleo.2018.09.176
10.1002/(SICI)1521-3951(199912)216:2<975::AID-PSSB975>3.0.CO;2-N
10.1038/nnano.2017.190
10.1016/j.saa.2015.07.055
10.1143/JJAP.35.L276
10.1103/PhysRevB.73.033307
10.1021/cm0403762
10.1021/nl0486259
10.1063/1.362807
10.1016/S0021-9673(01)00524-6
10.1021/acs.jpcc.1c01450
10.1016/S0167-5729(99)00012-6
10.1063/1.109660
10.1016/0022-2313(93)90124-6
10.1039/c3tc32354d
10.1103/PhysRevB.86.125302
10.1088/1361-6641/ab3536
10.1063/1.3169513
10.1038/srep27727
10.1063/1.4824178
10.1103/PhysRevB.85.165306
10.1016/j.matlet.2011.12.046
10.1103/PhysRevB.62.16820
10.1007/978-3-540-85859-1_7
10.1063/1.4810208
10.1063/1.106482
10.1016/j.mser.2019.06.001
10.1063/5.0047226
10.1016/0040-6090(94)05666-2
10.1016/j.solidstatesciences.2010.11.024
10.1002/pssb.200301752
10.1103/PhysRevB.69.195309
10.1088/2053-1591/aa81da
10.1021/j100065a007
10.1088/0957-4484/23/47/475707
10.1063/1.117371
10.1038/nnano.2011.145
10.1063/1.3100045
10.3390/s21041336
10.1063/1.1485302
10.1016/j.jlumin.2018.04.052
10.1063/1.4828730
10.1103/PhysRevB.62.5109
10.1016/j.jlumin.2022.119607
10.1063/1.3657771
10.1088/0256-307X/9/8/013
10.1007/s12633-022-01999-8
10.1557/S0883769400030220
10.1007/s40094-014-0141-9
10.1364/OE.17.017227
10.1021/jp963322r
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jlumin.2024.120658
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
Physics
EISSN 1872-7883
ExternalDocumentID 10_1016_j_jlumin_2024_120658
S0022231324002229
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
NDZJH
NEJ
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSK
SSM
SSQ
SSZ
T5K
UHS
UNMZH
UQL
WH7
WUQ
XFK
XPP
YQT
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c255t-ab4cd407cc7fcd65891cb834c6fa309efdb8ed069f5c112352018790572bdd313
IEDL.DBID .~1
ISSN 0022-2313
IngestDate Tue Jul 01 03:44:34 EDT 2025
Tue Jun 18 08:50:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Silicon nanostructure
Transition mechanism
Density of states
Intrinsic transition
Temperature dependent PL
Photoluminescence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-ab4cd407cc7fcd65891cb834c6fa309efdb8ed069f5c112352018790572bdd313
ORCID 0000-0002-7517-2785
ParticipantIDs crossref_primary_10_1016_j_jlumin_2024_120658
elsevier_sciencedirect_doi_10_1016_j_jlumin_2024_120658
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Journal of luminescence
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References O'Connor, van Spronsen, Karatok, Boscoboinik, Friend, Montemore (bib53) 2021; 125
Ray, Sarkar, Bandyopadhyay, Hossain, Pramanick (bib50) 2009; 105
Ogata (bib55) 2014
Pässler (bib79) 1999; 216
Rückschloss, Landkammer, Vepřek (bib10) 1993; 63
Weibel, Bouchet, Boulc, Knauth (bib60) 2005; 17
Takeoka, Fujii, Hayashi (bib66) 2000; 62
Salah (bib18) 2020
Ray, Ratan Bandyopadhyay, Ghanta, Klie, Kumar Pramanick, Das, Minhaz Hossain (bib26) 2011; 110
Xu, Gal, Gross (bib27) 1992; 60
Ghanta, Ray, Biswas, Sardar, Maji, Pal, Hossain (bib36) 2018; 201
Rosenbauer, Stutzmann, Fuchs, Finkbeiner, Weber (bib24) 1993; 57
Ghanta, Ray, Hossain (bib14) 2013, June
Pavesi (bib22) 1996; 80
Niquet, Delerue, Allan, Lannoo (bib67) 2000; 62
Meier, Lüttjohann, Offer, Wiggers, Orke (bib6) 2009
Soref (bib1) 1993; 81
Doany, Grischkowsky (bib73) 1988; 52
Hartel, Gutsch, Hiller, Zacharias (bib77) 2012; 85
Ray, Basu, Jana, Bandyopadhyay, Hossain, Pramanick, Klie (bib13) 2010; 107
Piprek (bib76) 2003
Singh (bib7) 1993
Shimizu, Yamada, Izutsu, Yano, Kasuga (bib25) 1996; 35
Zheng, Wang, Chen (bib45) 1992; 60
Mitra, Švrček, Macias-Montero, Velusamy, Mariotti (bib46) 2016; 6
Jabbar, Fakhri, AbdulRazzaq (bib19) 2022; 14
Praveenkumar, Lingaraja, Mathi, Ram (bib16) 2019; 178
Balanta, da Silva Filho, Souza, De Assunção, Champi, Cuevas (bib51) 2023; 255
Nikitas, Pappa-Louisi, Papageorgiou (bib52) 2001; 912
Finkbeiner, Weber (bib23) 1995; 255
Bhattacharya (bib5) 1997
Hong, Ahn, Wu, Gwo (bib30) 2009; 17
Kibasomba, Dhlamini, Maaza, Liu, Rashad, Rayan, Mwakikunga (bib58) 2018; 9
Heitmann, Müller, Yi, Zacharias, Kovalev, Eichhorn (bib33) 2004; 69
Trani, Ninno, Iadonisi (bib70) 2007; 75
Pässler (bib80) 2003; 236
Soref (bib2) 1998; 23
Biswas, Nandi, Ghanta, Jana, Mukhopadhyay, Saha, Hossain (bib39) 2021; 130
Green (bib71) 2013; 3
Luo, Li, Sychugov, Pevere, Linnros, Zunger (bib38) 2017; 12
Ledoux, Gong, Huisken, Guillois, Reynaud (bib9) 2002; 80
Doğan, van de Sanden (bib44) 2013; 114
Zak, Majid, Abrishami, Yousefi (bib61) 2011; 13
Schmidt, Chizhik, Chizhik, Potrick, Meixner, Huisken (bib15) 2012; 86
Rinnert, Jambois, Vergnat (bib32) 2009; 106
Delerue, Lannoo, Allan (bib68) 2000; 84
Holzwarth, Gibson (bib43) 2011; 6
Doğan, Kramer, Westermann, Dohnalová, Smets, Verheijen, van de Sanden (bib8) 2013; 113
Gan, Sun, He, Ye (bib11) 2014; 2
Águila Rodríguez, García-Salgado, Romero-Paredes, Peña-Sierra (bib56) 2007; 53
Moretta, De Stefano, Terracciano, Rea (bib20) 2021; 21
Mawhinney, Glass, Yates (bib42) 1997; 101
Falcao, Leitão, Soares, Ricardo, Águas, Martins, Pereira (bib49) 2019; 11
Gonçalves, Carvalho, Lima, Sasaki (bib57) 2012; 72
Kulathuraan, Mohanraj, Natarajan (bib48) 2016; 152
Kumar (bib12) 2011; 2011
Varshni (bib31) 1967; 34
Hossain, Chakraborty, Dutta, Das, Saha (bib82) 2000; 91
Ghosh, Shirahata (bib78) 2020; 10
Eliseev, Perlin, Lee, Osiński (bib29) 1997; 71
Nayef, Muayad (bib40) 2013; 13
Pavesi (bib3) 2004
Trani, Cantele, Ninno, Iadonisi (bib69) 2005; 72
Brunner, Pincik, Kučera, Vojtek, Zábudlá (bib28) 2018; 12
Bisi, Ossicini, Pavesi (bib47) 2000; 38
Zi, Büscher, Falter, Ludwig, Zhang, Xie (bib62) 1996; 69
Schmidt, Chizhik, Chizhik, Potrick, Meixner, Huisken (bib37) 2012; 86
Wu, Cheng, Wang (bib72) 2017; 4
Faraci, Gibilisco, Russo, Pennisi, La Rosa (bib63) 2006; 73
Adu, Gutierrez, Kim, Sumanasekera, Eklund (bib74) 2005; 5
Wolkin, Jorne, Fauchet, Allan, Delerue (bib34) 1999; 82
Podhorodecki, Zatryb, Misiewicz, Wojcik, Wilson, Mascher (bib17) 2012; 23
Rongchuan, Qingshan, Jingbiao (bib21) 1992; 9
Köthemann, Weber, Lindner, Meier (bib54) 2019; 34
Goodes, Jenkins, Beale, Benjamin, Pickering (bib64) 1988; 3
Bindu, Thomas (bib59) 2014; 8
Derr, Dunn, Riabinina, Martin, Chaker, Rosei (bib65) 2009; 41
Brus (bib75) 1994; 98
Alfeel, Awad, Alghoraibi, Qamar (bib41) 2012
Ni, Zhou, Zhao, Peng, Yang, Pi (bib4) 2019; 138
Moretta (10.1016/j.jlumin.2024.120658_bib20) 2021; 21
O'Connor (10.1016/j.jlumin.2024.120658_bib53) 2021; 125
Kumar (10.1016/j.jlumin.2024.120658_bib12) 2011; 2011
Brunner (10.1016/j.jlumin.2024.120658_bib28) 2018; 12
Eliseev (10.1016/j.jlumin.2024.120658_bib29) 1997; 71
Derr (10.1016/j.jlumin.2024.120658_bib65) 2009; 41
Doğan (10.1016/j.jlumin.2024.120658_bib44) 2013; 114
Trani (10.1016/j.jlumin.2024.120658_bib70) 2007; 75
Rongchuan (10.1016/j.jlumin.2024.120658_bib21) 1992; 9
Hong (10.1016/j.jlumin.2024.120658_bib30) 2009; 17
Singh (10.1016/j.jlumin.2024.120658_bib7) 1993
Rückschloss (10.1016/j.jlumin.2024.120658_bib10) 1993; 63
Doany (10.1016/j.jlumin.2024.120658_bib73) 1988; 52
Ghanta (10.1016/j.jlumin.2024.120658_bib14) 2013
Pavesi (10.1016/j.jlumin.2024.120658_bib3) 2004
Biswas (10.1016/j.jlumin.2024.120658_bib39) 2021; 130
Faraci (10.1016/j.jlumin.2024.120658_bib63) 2006; 73
Mitra (10.1016/j.jlumin.2024.120658_bib46) 2016; 6
Falcao (10.1016/j.jlumin.2024.120658_bib49) 2019; 11
Zak (10.1016/j.jlumin.2024.120658_bib61) 2011; 13
Ray (10.1016/j.jlumin.2024.120658_bib50) 2009; 105
Trani (10.1016/j.jlumin.2024.120658_bib69) 2005; 72
Ghosh (10.1016/j.jlumin.2024.120658_bib78) 2020; 10
Weibel (10.1016/j.jlumin.2024.120658_bib60) 2005; 17
Niquet (10.1016/j.jlumin.2024.120658_bib67) 2000; 62
Rinnert (10.1016/j.jlumin.2024.120658_bib32) 2009; 106
Kibasomba (10.1016/j.jlumin.2024.120658_bib58) 2018; 9
Adu (10.1016/j.jlumin.2024.120658_bib74) 2005; 5
Shimizu (10.1016/j.jlumin.2024.120658_bib25) 1996; 35
Varshni (10.1016/j.jlumin.2024.120658_bib31) 1967; 34
Wolkin (10.1016/j.jlumin.2024.120658_bib34) 1999; 82
Kulathuraan (10.1016/j.jlumin.2024.120658_bib48) 2016; 152
Schmidt (10.1016/j.jlumin.2024.120658_bib15) 2012; 86
Podhorodecki (10.1016/j.jlumin.2024.120658_bib17) 2012; 23
Finkbeiner (10.1016/j.jlumin.2024.120658_bib23) 1995; 255
Balanta (10.1016/j.jlumin.2024.120658_bib51) 2023; 255
Green (10.1016/j.jlumin.2024.120658_bib71) 2013; 3
Nikitas (10.1016/j.jlumin.2024.120658_bib52) 2001; 912
Wu (10.1016/j.jlumin.2024.120658_bib72) 2017; 4
Hartel (10.1016/j.jlumin.2024.120658_bib77) 2012; 85
Xu (10.1016/j.jlumin.2024.120658_bib27) 1992; 60
Piprek (10.1016/j.jlumin.2024.120658_bib76) 2003
Soref (10.1016/j.jlumin.2024.120658_bib1) 1993; 81
Schmidt (10.1016/j.jlumin.2024.120658_bib37) 2012; 86
Pässler (10.1016/j.jlumin.2024.120658_bib80) 2003; 236
Gonçalves (10.1016/j.jlumin.2024.120658_bib57) 2012; 72
Águila Rodríguez (10.1016/j.jlumin.2024.120658_bib56) 2007; 53
Meier (10.1016/j.jlumin.2024.120658_bib6) 2009
Bisi (10.1016/j.jlumin.2024.120658_bib47) 2000; 38
Bindu (10.1016/j.jlumin.2024.120658_bib59) 2014; 8
Luo (10.1016/j.jlumin.2024.120658_bib38) 2017; 12
Ray (10.1016/j.jlumin.2024.120658_bib26) 2011; 110
Köthemann (10.1016/j.jlumin.2024.120658_bib54) 2019; 34
Ni (10.1016/j.jlumin.2024.120658_bib4) 2019; 138
Zheng (10.1016/j.jlumin.2024.120658_bib45) 1992; 60
Ledoux (10.1016/j.jlumin.2024.120658_bib9) 2002; 80
Takeoka (10.1016/j.jlumin.2024.120658_bib66) 2000; 62
Salah (10.1016/j.jlumin.2024.120658_bib18) 2020
Ghanta (10.1016/j.jlumin.2024.120658_bib36) 2018; 201
Soref (10.1016/j.jlumin.2024.120658_bib2) 1998; 23
Doğan (10.1016/j.jlumin.2024.120658_bib8) 2013; 113
Alfeel (10.1016/j.jlumin.2024.120658_bib41) 2012
Zi (10.1016/j.jlumin.2024.120658_bib62) 1996; 69
Gan (10.1016/j.jlumin.2024.120658_bib11) 2014; 2
Nayef (10.1016/j.jlumin.2024.120658_bib40) 2013; 13
Holzwarth (10.1016/j.jlumin.2024.120658_bib43) 2011; 6
Ray (10.1016/j.jlumin.2024.120658_bib13) 2010; 107
Heitmann (10.1016/j.jlumin.2024.120658_bib33) 2004; 69
Goodes (10.1016/j.jlumin.2024.120658_bib64) 1988; 3
Jabbar (10.1016/j.jlumin.2024.120658_bib19) 2022; 14
Delerue (10.1016/j.jlumin.2024.120658_bib68) 2000; 84
Praveenkumar (10.1016/j.jlumin.2024.120658_bib16) 2019; 178
Pavesi (10.1016/j.jlumin.2024.120658_bib22) 1996; 80
Ogata (10.1016/j.jlumin.2024.120658_bib55) 2014
Hossain (10.1016/j.jlumin.2024.120658_bib82) 2000; 91
Bhattacharya (10.1016/j.jlumin.2024.120658_bib5) 1997
Pässler (10.1016/j.jlumin.2024.120658_bib79) 1999; 216
Rosenbauer (10.1016/j.jlumin.2024.120658_bib24) 1993; 57
Mawhinney (10.1016/j.jlumin.2024.120658_bib42) 1997; 101
Brus (10.1016/j.jlumin.2024.120658_bib75) 1994; 98
References_xml – volume: 255
  start-page: 254
  year: 1995
  end-page: 257
  ident: bib23
  article-title: Interpretation of the temperature dependence of the strong visible photoluminescence of porous silicon
  publication-title: Thin Solid Films
– volume: 12
  start-page: 340
  year: 2018
  end-page: 345
  ident: bib28
  article-title: Temperature dependence of photoluminescence of porous silicon
  publication-title: J. Energy Power Eng.
– volume: 2011
  year: 2011
  ident: bib12
  article-title: Effect of silicon crystal size on photoluminescence appearance in porous silicon
  publication-title: Int. Sch. Res. Notices
– volume: 21
  start-page: 1336
  year: 2021
  ident: bib20
  article-title: Porous silicon optical devices: recent advances in biosensing applications
  publication-title: Sensors
– volume: 82
  start-page: 197
  year: 1999
  ident: bib34
  article-title: Electronic states and luminescence in porous silicon quantum dots: the role of oxygen
  publication-title: Phys. Rev. Lett.
– volume: 63
  start-page: 1474
  year: 1993
  end-page: 1476
  ident: bib10
  article-title: Light emitting nanocrystalline silicon prepared by dry processing: the effect of crystallite size
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: 930
  year: 2017
  end-page: 932
  ident: bib38
  article-title: Absence of redshift in the direct bandgap of silicon nanocrystals with reduced size
  publication-title: Nat. Nanotechnol.
– start-page: 579
  year: 2012
  ident: bib41
  article-title: Using AFM to determine the porosity in porous silicon
  publication-title: J. Mater. Sci. Eng.
– volume: 98
  start-page: 3575
  year: 1994
  end-page: 3581
  ident: bib75
  article-title: Luminescence of silicon materials: chains, sheets, nanocrystals, nanowires, microcrystals, and porous silicon
  publication-title: J. Phys. Chem.
– volume: 105
  year: 2009
  ident: bib50
  article-title: Silicon and silicon oxide core-shell nanoparticles: structural and photoluminescence characteristics
  publication-title: J. Appl. Phys.
– volume: 9
  start-page: 628
  year: 2018
  end-page: 635
  ident: bib58
  article-title: Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: the revisiting of the Williamson-Hall plot method
  publication-title: Results Phys.
– start-page: 277
  year: 2013, June
  end-page: 278
  ident: bib14
  article-title: Photoluminescence mechanism in silicon quantum rods studied by time-resolved spectroscopy
  publication-title: AIP Conference Proceedings
– volume: 91
  start-page: 195
  year: 2000
  end-page: 202
  ident: bib82
  article-title: Stability in photoluminescence of porous silicon
  publication-title: J. Lumin.
– volume: 152
  start-page: 51
  year: 2016
  end-page: 57
  ident: bib48
  article-title: Structural, optical and electrical characterization of nanostructured porous silicon: effect of current density
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
– volume: 912
  start-page: 13
  year: 2001
  end-page: 29
  ident: bib52
  article-title: On the equations describing chromatographic peaks and the problem of the deconvolution of overlapped peaks
  publication-title: J. Chromatogr. A
– volume: 75
  year: 2007
  ident: bib70
  article-title: Role of local fields in the optical properties of silicon nanocrystals using the tight binding approach
  publication-title: Phys. Rev. B
– volume: 138
  start-page: 85
  year: 2019
  end-page: 117
  ident: bib4
  article-title: Silicon nanocrystals: unfading silicon materials for optoelectronics
  publication-title: Mater. Sci. Eng. R Rep.
– volume: 80
  start-page: 4834
  year: 2002
  end-page: 4836
  ident: bib9
  article-title: Photoluminescence of size-separated silicon nanocrystals: confirmation of quantum confinement
  publication-title: Appl. Phys. Lett.
– volume: 2
  start-page: 2668
  year: 2014
  end-page: 2673
  ident: bib11
  article-title: Tuning the photoluminescence of porous silicon nanowires by morphology control
  publication-title: J. Mater. Chem. C
– volume: 41
  start-page: 668
  year: 2009
  end-page: 670
  ident: bib65
  article-title: Quantum confinement regime in silicon nanocrystals
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
– volume: 14
  start-page: 12837
  year: 2022
  end-page: 12853
  ident: bib19
  article-title: Synthesis gallium nitride on porous silicon nano-structure for optoelectronics devices
  publication-title: Silicon
– volume: 73
  year: 2006
  ident: bib63
  article-title: Modified Raman confinement model for Si nanocrystals
  publication-title: Phys. Rev. B
– volume: 113
  year: 2013
  ident: bib8
  article-title: Ultrahigh throughput plasma processing of free standing silicon nanocrystals with lognormal size distribution
  publication-title: J. Appl. Phys.
– volume: 57
  start-page: 153
  year: 1993
  end-page: 157
  ident: bib24
  article-title: Temperature dependence of luminescence in porous silicon and related materials
  publication-title: J. Lumin.
– volume: 201
  start-page: 338
  year: 2018
  end-page: 344
  ident: bib36
  article-title: Effect of phonon confinement on photoluminescence from colloidal silicon nanostructures
  publication-title: J. Lumin.
– volume: 85
  year: 2012
  ident: bib77
  article-title: Fundamental temperature-dependent properties of the Si nanocrystal band gap
  publication-title: Phys. Rev. B
– volume: 17
  start-page: 17227
  year: 2009
  end-page: 17233
  ident: bib30
  article-title: Strong green photoluminescence from InxGa 1-xN/GaN nanorod arrays
  publication-title: Opt Express
– volume: 34
  start-page: 149
  year: 1967
  end-page: 154
  ident: bib31
  article-title: Temperature dependence of the energy gap in semiconductors
  publication-title: Physica
– volume: 110
  year: 2011
  ident: bib26
  article-title: Temperature dependent photoluminescence from porous silicon nanostructures: quantum confinement and oxide related transitions
  publication-title: J. Appl. Phys.
– volume: 114
  year: 2013
  ident: bib44
  article-title: Direct characterization of nanocrystal size distribution using Raman spectroscopy
  publication-title: J. Appl. Phys.
– volume: 53
  start-page: 431
  year: 2007
  end-page: 435
  ident: bib56
  article-title: FTIR and photoluminescence studies of porous silicon layers oxidized in controlled water vapor conditions
  publication-title: Rev. Mexic. Fisica
– volume: 13
  start-page: 251
  year: 2011
  end-page: 256
  ident: bib61
  article-title: X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods
  publication-title: Solid State Sci.
– volume: 23
  start-page: 20
  year: 1998
  end-page: 24
  ident: bib2
  article-title: Applications of silicon-based optoelectronics
  publication-title: MRS Bull.
– volume: 60
  start-page: 1375
  year: 1992
  end-page: 1377
  ident: bib27
  article-title: Photoluminescence studies on porous silicon
  publication-title: Appl. Phys. Lett.
– volume: 72
  start-page: 36
  year: 2012
  end-page: 38
  ident: bib57
  article-title: Size–strain study of NiO nanoparticles by X-ray powder diffraction line broadening
  publication-title: Mater. Lett.
– start-page: 473
  year: 2014
  end-page: 480
  ident: bib55
  article-title: Characterization of porous silicon by infrared spectroscopy
  publication-title: Handbook of Porous Silicon
– volume: 125
  start-page: 10685
  year: 2021
  end-page: 10692
  ident: bib53
  article-title: Predicting X-ray photoelectron peak shapes: the effect of electronic structure
  publication-title: J. Phys. Chem. C
– volume: 216
  start-page: 975
  year: 1999
  end-page: 1007
  ident: bib79
  article-title: Parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors
  publication-title: physica status solidi (b)
– volume: 5
  start-page: 409
  year: 2005
  end-page: 414
  ident: bib74
  article-title: Confined phonons in Si nanowires
  publication-title: Nano Lett.
– volume: 62
  year: 2000
  ident: bib66
  article-title: Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime
  publication-title: Phys. Rev. B
– volume: 3
  year: 2013
  ident: bib71
  article-title: Improved value for the silicon free exciton binding energy
  publication-title: AIP Adv.
– volume: 255
  year: 2023
  ident: bib51
  article-title: Deconvolution of photoluminescence spectra and electronic transition in carbon dots nanoparticles from microcrystalline cellulose
  publication-title: J. Lumin.
– volume: 101
  start-page: 1202
  year: 1997
  end-page: 1206
  ident: bib42
  article-title: FTIR study of the oxidation of porous silicon
  publication-title: J. Phys. Chem. B
– volume: 80
  start-page: 216
  year: 1996
  end-page: 225
  ident: bib22
  article-title: Influence of dispersive exciton motion on the recombination dynamics in porous silicon
  publication-title: J. Appl. Phys.
– volume: 86
  year: 2012
  ident: bib15
  article-title: Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals
  publication-title: Phys. Rev. B
– volume: 69
  start-page: 200
  year: 1996
  end-page: 202
  ident: bib62
  article-title: Raman shifts in Si nanocrystals
  publication-title: Appl. Phys. Lett.
– volume: 62
  start-page: 5109
  year: 2000
  ident: bib67
  article-title: Method for tight-binding parametrization: application to silicon nanostructures
  publication-title: Phys. Rev. B
– volume: 4
  year: 2017
  ident: bib72
  article-title: Excitonic effects and related properties in semiconductor nanostructures: roles of size and dimensionality
  publication-title: Mater. Res. Express
– volume: 236
  start-page: 710
  year: 2003
  end-page: 728
  ident: bib80
  article-title: Semi‐empirical descriptions of temperature dependences of band gaps in semiconductors
  publication-title: physica status solidi (b)
– volume: 69
  year: 2004
  ident: bib33
  article-title: Excitons in Si nanocrystals: confinement and migration effects
  publication-title: Phys. Rev. B
– volume: 107
  year: 2010
  ident: bib13
  article-title: Luminescent core-shell nanostructures of silicon and silicon oxide: nanodots and nanorods
  publication-title: J. Appl. Phys.
– volume: 130
  year: 2021
  ident: bib39
  article-title: Hot-carrier radiative recombination through phonon confinement in silicon nanocrystals embedded in colloidal xerogel matrix
  publication-title: J. Appl. Phys.
– volume: 84
  start-page: 2457
  year: 2000
  ident: bib68
  article-title: Excitonic and quasiparticle gaps in Si nanocrystals
  publication-title: Phys. Rev. Lett.
– volume: 71
  start-page: 569
  year: 1997
  end-page: 571
  ident: bib29
  article-title: “Blue” temperature-induced shift and band-tail emission in InGaN-based light sources
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 483
  year: 1988
  ident: bib64
  article-title: The characterisation of porous silicon by Raman spectroscopy
  publication-title: Semicond. Sci. Technol.
– start-page: 79
  year: 2009
  end-page: 90
  ident: bib6
  article-title: Silicon nanoparticles: excitonic fine structure and oscillator strength
  publication-title: Adv. Solid State Phys.
– volume: 60
  start-page: 986
  year: 1992
  end-page: 988
  ident: bib45
  article-title: Anomalous temperature dependencies of photoluminescence for visible‐light‐emitting porous Si
  publication-title: Appl. Phys. Lett.
– volume: 34
  year: 2019
  ident: bib54
  article-title: High-precision determination of silicon nanocrystals: optical spectroscopy versus electron microscopy
  publication-title: Semicond. Sci. Technol.
– volume: 8
  start-page: 123
  year: 2014
  end-page: 134
  ident: bib59
  article-title: Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis
  publication-title: Journal of Theoretical and Applied Physics
– volume: 81
  start-page: 1687
  year: 1993
  end-page: 1706
  ident: bib1
  article-title: Silicon-based optoelectronics
  publication-title: Proc. IEEE
– start-page: 1
  year: 2004
  end-page: 50
  ident: bib3
  article-title: Silicon Fundamentals for Photonics Applications
– volume: 106
  year: 2009
  ident: bib32
  article-title: Photoluminescence properties of size-controlled silicon nanocrystals at low temperatures
  publication-title: J. Appl. Phys.
– volume: 13
  year: 2013
  ident: bib40
  article-title: Typical of morphological properties of porous silicon
  publication-title: International Journal of Basic and Applied Sciences IJBAS-IJENS
– volume: 38
  start-page: 1
  year: 2000
  end-page: 126
  ident: bib47
  article-title: Porous silicon: a quantum sponge structure for silicon based optoelectronics
  publication-title: Surf. Sci. Rep.
– volume: 17
  start-page: 2378
  year: 2005
  end-page: 2385
  ident: bib60
  article-title: The big problem of small particles: a comparison of methods for determination of particle size in nanocrystalline anatase powders
  publication-title: Chem. Mater.
– year: 2020
  ident: bib18
  article-title: Optical study of porous silicon layers produced electrochemically for photovoltaic application
  publication-title: Solar Cells-Theory, Materials and Recent Advances
– volume: 9
  start-page: 438
  year: 1992
  ident: bib21
  article-title: Temperature dependence of photoluminescence in porous silicon
  publication-title: Chin. Phys. Lett.
– volume: 10
  start-page: 143
  year: 2020
  ident: bib78
  article-title: Influence of oxidation on temperature-dependent photoluminescence properties of hydrogen-terminated silicon nanocrystals
  publication-title: Crystals
– year: 2003
  ident: bib76
  article-title: Semiconductor Optoelectronic Devices Introduction to Physics and Simulation
– volume: 86
  year: 2012
  ident: bib37
  article-title: Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals
  publication-title: Phys. Rev. B
– volume: 35
  start-page: L276
  year: 1996
  ident: bib25
  article-title: Temperature dependence of the photoluminescence of porous silicon
  publication-title: Jpn. J. Appl. Phys.
– year: 1993
  ident: bib7
  article-title: Semiconductor Optoelectronics Physics and Technology
– volume: 11
  year: 2019
  ident: bib49
  article-title: Oxidation and strain in free-standing silicon nanocrystals
  publication-title: Phys. Rev. Appl.
– volume: 6
  year: 2011
  ident: bib43
  article-title: The Scherrer equation versus the'Debye-Scherrer equation'
  publication-title: Nat. Nanotechnol.
– year: 1997
  ident: bib5
  article-title: Semiconductor Optoelectronic Devices
– volume: 23
  year: 2012
  ident: bib17
  article-title: Green light emission from terbium doped silicon rich silicon oxide films obtained by plasma enhanced chemical vapor deposition
  publication-title: Nanotechnology
– volume: 6
  year: 2016
  ident: bib46
  article-title: Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals
  publication-title: Sci. Rep.
– volume: 72
  year: 2005
  ident: bib69
  article-title: Tight-binding calculation of the optical absorption cross section of spherical and ellipsoidal silicon nanocrystals
  publication-title: Phys. Rev. B
– volume: 52
  start-page: 36
  year: 1988
  end-page: 38
  ident: bib73
  article-title: Measurement of ultrafast hot‐carrier relaxation in silicon by thin‐film‐enhanced, time‐resolved reflectivity
  publication-title: Appl. Phys. Lett.
– volume: 178
  start-page: 216
  year: 2019
  end-page: 223
  ident: bib16
  article-title: An experimental study of optoelectronic properties of porous silicon for solar cell application
  publication-title: Optik
– volume: 41
  start-page: 668
  issue: 4
  year: 2009
  ident: 10.1016/j.jlumin.2024.120658_bib65
  article-title: Quantum confinement regime in silicon nanocrystals
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
  doi: 10.1016/j.physe.2008.11.008
– volume: 84
  start-page: 2457
  issue: 11
  year: 2000
  ident: 10.1016/j.jlumin.2024.120658_bib68
  article-title: Excitonic and quasiparticle gaps in Si nanocrystals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.2457
– year: 1993
  ident: 10.1016/j.jlumin.2024.120658_bib7
– volume: 91
  start-page: 195
  issue: 3–4
  year: 2000
  ident: 10.1016/j.jlumin.2024.120658_bib82
  article-title: Stability in photoluminescence of porous silicon
  publication-title: J. Lumin.
  doi: 10.1016/S0022-2313(00)00225-8
– volume: 72
  issue: 7
  year: 2005
  ident: 10.1016/j.jlumin.2024.120658_bib69
  article-title: Tight-binding calculation of the optical absorption cross section of spherical and ellipsoidal silicon nanocrystals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.075423
– volume: 107
  issue: 6
  year: 2010
  ident: 10.1016/j.jlumin.2024.120658_bib13
  article-title: Luminescent core-shell nanostructures of silicon and silicon oxide: nanodots and nanorods
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3330658
– volume: 34
  start-page: 149
  issue: 1
  year: 1967
  ident: 10.1016/j.jlumin.2024.120658_bib31
  article-title: Temperature dependence of the energy gap in semiconductors
  publication-title: Physica
  doi: 10.1016/0031-8914(67)90062-6
– volume: 10
  start-page: 143
  issue: 3
  year: 2020
  ident: 10.1016/j.jlumin.2024.120658_bib78
  article-title: Influence of oxidation on temperature-dependent photoluminescence properties of hydrogen-terminated silicon nanocrystals
  publication-title: Crystals
  doi: 10.3390/cryst10030143
– volume: 81
  start-page: 1687
  issue: 12
  year: 1993
  ident: 10.1016/j.jlumin.2024.120658_bib1
  article-title: Silicon-based optoelectronics
  publication-title: Proc. IEEE
  doi: 10.1109/5.248958
– volume: 11
  issue: 2
  year: 2019
  ident: 10.1016/j.jlumin.2024.120658_bib49
  article-title: Oxidation and strain in free-standing silicon nanocrystals
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.11.024054
– volume: 3
  start-page: 483
  issue: 5
  year: 1988
  ident: 10.1016/j.jlumin.2024.120658_bib64
  article-title: The characterisation of porous silicon by Raman spectroscopy
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/3/5/011
– volume: 9
  start-page: 628
  year: 2018
  ident: 10.1016/j.jlumin.2024.120658_bib58
  article-title: Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: the revisiting of the Williamson-Hall plot method
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2018.03.008
– volume: 113
  issue: 13
  year: 2013
  ident: 10.1016/j.jlumin.2024.120658_bib8
  article-title: Ultrahigh throughput plasma processing of free standing silicon nanocrystals with lognormal size distribution
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4799402
– volume: 71
  start-page: 569
  issue: 5
  year: 1997
  ident: 10.1016/j.jlumin.2024.120658_bib29
  article-title: “Blue” temperature-induced shift and band-tail emission in InGaN-based light sources
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.119797
– start-page: 473
  year: 2014
  ident: 10.1016/j.jlumin.2024.120658_bib55
  article-title: Characterization of porous silicon by infrared spectroscopy
– volume: 82
  start-page: 197
  issue: 1
  year: 1999
  ident: 10.1016/j.jlumin.2024.120658_bib34
  article-title: Electronic states and luminescence in porous silicon quantum dots: the role of oxygen
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.197
– volume: 75
  issue: 3
  year: 2007
  ident: 10.1016/j.jlumin.2024.120658_bib70
  article-title: Role of local fields in the optical properties of silicon nanocrystals using the tight binding approach
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.033312
– volume: 52
  start-page: 36
  issue: 1
  year: 1988
  ident: 10.1016/j.jlumin.2024.120658_bib73
  article-title: Measurement of ultrafast hot‐carrier relaxation in silicon by thin‐film‐enhanced, time‐resolved reflectivity
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.99309
– start-page: 1
  year: 2004
  ident: 10.1016/j.jlumin.2024.120658_bib3
– year: 1997
  ident: 10.1016/j.jlumin.2024.120658_bib5
– volume: 60
  start-page: 1375
  issue: 11
  year: 1992
  ident: 10.1016/j.jlumin.2024.120658_bib27
  article-title: Photoluminescence studies on porous silicon
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.107295
– volume: 178
  start-page: 216
  year: 2019
  ident: 10.1016/j.jlumin.2024.120658_bib16
  article-title: An experimental study of optoelectronic properties of porous silicon for solar cell application
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.09.176
– start-page: 579
  issue: 9A
  year: 2012
  ident: 10.1016/j.jlumin.2024.120658_bib41
  article-title: Using AFM to determine the porosity in porous silicon
  publication-title: J. Mater. Sci. Eng.
– volume: 2011
  year: 2011
  ident: 10.1016/j.jlumin.2024.120658_bib12
  article-title: Effect of silicon crystal size on photoluminescence appearance in porous silicon
  publication-title: Int. Sch. Res. Notices
– volume: 216
  start-page: 975
  issue: 2
  year: 1999
  ident: 10.1016/j.jlumin.2024.120658_bib79
  article-title: Parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors
  publication-title: physica status solidi (b)
  doi: 10.1002/(SICI)1521-3951(199912)216:2<975::AID-PSSB975>3.0.CO;2-N
– volume: 12
  start-page: 930
  issue: 10
  year: 2017
  ident: 10.1016/j.jlumin.2024.120658_bib38
  article-title: Absence of redshift in the direct bandgap of silicon nanocrystals with reduced size
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.190
– volume: 152
  start-page: 51
  year: 2016
  ident: 10.1016/j.jlumin.2024.120658_bib48
  article-title: Structural, optical and electrical characterization of nanostructured porous silicon: effect of current density
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2015.07.055
– volume: 35
  start-page: L276
  issue: 3A
  year: 1996
  ident: 10.1016/j.jlumin.2024.120658_bib25
  article-title: Temperature dependence of the photoluminescence of porous silicon
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.35.L276
– volume: 73
  issue: 3
  year: 2006
  ident: 10.1016/j.jlumin.2024.120658_bib63
  article-title: Modified Raman confinement model for Si nanocrystals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.033307
– volume: 17
  start-page: 2378
  issue: 9
  year: 2005
  ident: 10.1016/j.jlumin.2024.120658_bib60
  article-title: The big problem of small particles: a comparison of methods for determination of particle size in nanocrystalline anatase powders
  publication-title: Chem. Mater.
  doi: 10.1021/cm0403762
– volume: 5
  start-page: 409
  issue: 3
  year: 2005
  ident: 10.1016/j.jlumin.2024.120658_bib74
  article-title: Confined phonons in Si nanowires
  publication-title: Nano Lett.
  doi: 10.1021/nl0486259
– volume: 80
  start-page: 216
  issue: 1
  year: 1996
  ident: 10.1016/j.jlumin.2024.120658_bib22
  article-title: Influence of dispersive exciton motion on the recombination dynamics in porous silicon
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.362807
– volume: 912
  start-page: 13
  issue: 1
  year: 2001
  ident: 10.1016/j.jlumin.2024.120658_bib52
  article-title: On the equations describing chromatographic peaks and the problem of the deconvolution of overlapped peaks
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(01)00524-6
– volume: 125
  start-page: 10685
  issue: 19
  year: 2021
  ident: 10.1016/j.jlumin.2024.120658_bib53
  article-title: Predicting X-ray photoelectron peak shapes: the effect of electronic structure
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c01450
– volume: 38
  start-page: 1
  issue: 1–3
  year: 2000
  ident: 10.1016/j.jlumin.2024.120658_bib47
  article-title: Porous silicon: a quantum sponge structure for silicon based optoelectronics
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/S0167-5729(99)00012-6
– volume: 63
  start-page: 1474
  issue: 11
  year: 1993
  ident: 10.1016/j.jlumin.2024.120658_bib10
  article-title: Light emitting nanocrystalline silicon prepared by dry processing: the effect of crystallite size
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.109660
– volume: 57
  start-page: 153
  issue: 1–6
  year: 1993
  ident: 10.1016/j.jlumin.2024.120658_bib24
  article-title: Temperature dependence of luminescence in porous silicon and related materials
  publication-title: J. Lumin.
  doi: 10.1016/0022-2313(93)90124-6
– volume: 2
  start-page: 2668
  issue: 15
  year: 2014
  ident: 10.1016/j.jlumin.2024.120658_bib11
  article-title: Tuning the photoluminescence of porous silicon nanowires by morphology control
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c3tc32354d
– volume: 86
  issue: 12
  year: 2012
  ident: 10.1016/j.jlumin.2024.120658_bib15
  article-title: Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.125302
– volume: 34
  issue: 9
  year: 2019
  ident: 10.1016/j.jlumin.2024.120658_bib54
  article-title: High-precision determination of silicon nanocrystals: optical spectroscopy versus electron microscopy
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/ab3536
– volume: 106
  issue: 2
  year: 2009
  ident: 10.1016/j.jlumin.2024.120658_bib32
  article-title: Photoluminescence properties of size-controlled silicon nanocrystals at low temperatures
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3169513
– volume: 6
  issue: 1
  year: 2016
  ident: 10.1016/j.jlumin.2024.120658_bib46
  article-title: Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals
  publication-title: Sci. Rep.
  doi: 10.1038/srep27727
– volume: 114
  issue: 13
  year: 2013
  ident: 10.1016/j.jlumin.2024.120658_bib44
  article-title: Direct characterization of nanocrystal size distribution using Raman spectroscopy
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4824178
– volume: 85
  issue: 16
  year: 2012
  ident: 10.1016/j.jlumin.2024.120658_bib77
  article-title: Fundamental temperature-dependent properties of the Si nanocrystal band gap
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.165306
– volume: 12
  start-page: 340
  year: 2018
  ident: 10.1016/j.jlumin.2024.120658_bib28
  article-title: Temperature dependence of photoluminescence of porous silicon
  publication-title: J. Energy Power Eng.
– volume: 72
  start-page: 36
  year: 2012
  ident: 10.1016/j.jlumin.2024.120658_bib57
  article-title: Size–strain study of NiO nanoparticles by X-ray powder diffraction line broadening
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2011.12.046
– volume: 62
  issue: 24
  year: 2000
  ident: 10.1016/j.jlumin.2024.120658_bib66
  article-title: Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.16820
– start-page: 79
  year: 2009
  ident: 10.1016/j.jlumin.2024.120658_bib6
  article-title: Silicon nanoparticles: excitonic fine structure and oscillator strength
  publication-title: Adv. Solid State Phys.
  doi: 10.1007/978-3-540-85859-1_7
– start-page: 277
  year: 2013
  ident: 10.1016/j.jlumin.2024.120658_bib14
  article-title: Photoluminescence mechanism in silicon quantum rods studied by time-resolved spectroscopy
  doi: 10.1063/1.4810208
– volume: 60
  start-page: 986
  issue: 8
  year: 1992
  ident: 10.1016/j.jlumin.2024.120658_bib45
  article-title: Anomalous temperature dependencies of photoluminescence for visible‐light‐emitting porous Si
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.106482
– volume: 138
  start-page: 85
  year: 2019
  ident: 10.1016/j.jlumin.2024.120658_bib4
  article-title: Silicon nanocrystals: unfading silicon materials for optoelectronics
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/j.mser.2019.06.001
– volume: 130
  issue: 3
  year: 2021
  ident: 10.1016/j.jlumin.2024.120658_bib39
  article-title: Hot-carrier radiative recombination through phonon confinement in silicon nanocrystals embedded in colloidal xerogel matrix
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0047226
– volume: 255
  start-page: 254
  issue: 1–2
  year: 1995
  ident: 10.1016/j.jlumin.2024.120658_bib23
  article-title: Interpretation of the temperature dependence of the strong visible photoluminescence of porous silicon
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(94)05666-2
– volume: 13
  start-page: 251
  issue: 1
  year: 2011
  ident: 10.1016/j.jlumin.2024.120658_bib61
  article-title: X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2010.11.024
– year: 2003
  ident: 10.1016/j.jlumin.2024.120658_bib76
– volume: 236
  start-page: 710
  issue: 3
  year: 2003
  ident: 10.1016/j.jlumin.2024.120658_bib80
  article-title: Semi‐empirical descriptions of temperature dependences of band gaps in semiconductors
  publication-title: physica status solidi (b)
  doi: 10.1002/pssb.200301752
– volume: 69
  issue: 19
  year: 2004
  ident: 10.1016/j.jlumin.2024.120658_bib33
  article-title: Excitons in Si nanocrystals: confinement and migration effects
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.195309
– volume: 53
  start-page: 431
  issue: 6
  year: 2007
  ident: 10.1016/j.jlumin.2024.120658_bib56
  article-title: FTIR and photoluminescence studies of porous silicon layers oxidized in controlled water vapor conditions
  publication-title: Rev. Mexic. Fisica
– volume: 4
  issue: 8
  year: 2017
  ident: 10.1016/j.jlumin.2024.120658_bib72
  article-title: Excitonic effects and related properties in semiconductor nanostructures: roles of size and dimensionality
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aa81da
– volume: 98
  start-page: 3575
  issue: 14
  year: 1994
  ident: 10.1016/j.jlumin.2024.120658_bib75
  article-title: Luminescence of silicon materials: chains, sheets, nanocrystals, nanowires, microcrystals, and porous silicon
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100065a007
– volume: 23
  issue: 47
  year: 2012
  ident: 10.1016/j.jlumin.2024.120658_bib17
  article-title: Green light emission from terbium doped silicon rich silicon oxide films obtained by plasma enhanced chemical vapor deposition
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/47/475707
– volume: 69
  start-page: 200
  issue: 2
  year: 1996
  ident: 10.1016/j.jlumin.2024.120658_bib62
  article-title: Raman shifts in Si nanocrystals
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.117371
– volume: 6
  issue: 9
  year: 2011
  ident: 10.1016/j.jlumin.2024.120658_bib43
  article-title: The Scherrer equation versus the'Debye-Scherrer equation'
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.145
– volume: 105
  issue: 7
  year: 2009
  ident: 10.1016/j.jlumin.2024.120658_bib50
  article-title: Silicon and silicon oxide core-shell nanoparticles: structural and photoluminescence characteristics
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3100045
– volume: 21
  start-page: 1336
  issue: 4
  year: 2021
  ident: 10.1016/j.jlumin.2024.120658_bib20
  article-title: Porous silicon optical devices: recent advances in biosensing applications
  publication-title: Sensors
  doi: 10.3390/s21041336
– volume: 80
  start-page: 4834
  issue: 25
  year: 2002
  ident: 10.1016/j.jlumin.2024.120658_bib9
  article-title: Photoluminescence of size-separated silicon nanocrystals: confirmation of quantum confinement
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1485302
– volume: 201
  start-page: 338
  year: 2018
  ident: 10.1016/j.jlumin.2024.120658_bib36
  article-title: Effect of phonon confinement on photoluminescence from colloidal silicon nanostructures
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2018.04.052
– volume: 3
  issue: 11
  year: 2013
  ident: 10.1016/j.jlumin.2024.120658_bib71
  article-title: Improved value for the silicon free exciton binding energy
  publication-title: AIP Adv.
  doi: 10.1063/1.4828730
– volume: 86
  issue: 12
  year: 2012
  ident: 10.1016/j.jlumin.2024.120658_bib37
  article-title: Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.125302
– volume: 62
  start-page: 5109
  issue: 8
  year: 2000
  ident: 10.1016/j.jlumin.2024.120658_bib67
  article-title: Method for tight-binding parametrization: application to silicon nanostructures
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.5109
– volume: 255
  year: 2023
  ident: 10.1016/j.jlumin.2024.120658_bib51
  article-title: Deconvolution of photoluminescence spectra and electronic transition in carbon dots nanoparticles from microcrystalline cellulose
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2022.119607
– volume: 110
  issue: 9
  year: 2011
  ident: 10.1016/j.jlumin.2024.120658_bib26
  article-title: Temperature dependent photoluminescence from porous silicon nanostructures: quantum confinement and oxide related transitions
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3657771
– volume: 13
  issue: 2
  year: 2013
  ident: 10.1016/j.jlumin.2024.120658_bib40
  article-title: Typical of morphological properties of porous silicon
  publication-title: International Journal of Basic and Applied Sciences IJBAS-IJENS
– volume: 9
  start-page: 438
  issue: 8
  year: 1992
  ident: 10.1016/j.jlumin.2024.120658_bib21
  article-title: Temperature dependence of photoluminescence in porous silicon
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/9/8/013
– volume: 14
  start-page: 12837
  issue: 18
  year: 2022
  ident: 10.1016/j.jlumin.2024.120658_bib19
  article-title: Synthesis gallium nitride on porous silicon nano-structure for optoelectronics devices
  publication-title: Silicon
  doi: 10.1007/s12633-022-01999-8
– volume: 23
  start-page: 20
  issue: 4
  year: 1998
  ident: 10.1016/j.jlumin.2024.120658_bib2
  article-title: Applications of silicon-based optoelectronics
  publication-title: MRS Bull.
  doi: 10.1557/S0883769400030220
– volume: 8
  start-page: 123
  year: 2014
  ident: 10.1016/j.jlumin.2024.120658_bib59
  article-title: Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis
  publication-title: Journal of Theoretical and Applied Physics
  doi: 10.1007/s40094-014-0141-9
– volume: 17
  start-page: 17227
  issue: 20
  year: 2009
  ident: 10.1016/j.jlumin.2024.120658_bib30
  article-title: Strong green photoluminescence from InxGa 1-xN/GaN nanorod arrays
  publication-title: Opt Express
  doi: 10.1364/OE.17.017227
– volume: 101
  start-page: 1202
  issue: 7
  year: 1997
  ident: 10.1016/j.jlumin.2024.120658_bib42
  article-title: FTIR study of the oxidation of porous silicon
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp963322r
– year: 2020
  ident: 10.1016/j.jlumin.2024.120658_bib18
  article-title: Optical study of porous silicon layers produced electrochemically for photovoltaic application
SSID ssj0003989
Score 2.4504385
Snippet Light emission from nanostructured silicon has triggered tremendous research interest for three decades. Yet, the exact mechanism of photoluminescence from...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 120658
SubjectTerms Density of states
Intrinsic transition
Photoluminescence
Silicon nanostructure
Temperature dependent PL
Transition mechanism
Title Impact of blue-shifted effective joint density of electronic states on the photoluminescence of nanostructured silicon
URI https://dx.doi.org/10.1016/j.jlumin.2024.120658
Volume 273
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfQiWhXro-zB67bNO3ssxdIq9mSht5Dsg6aUpJhU6MXf7kw2oQriwVt22Q3L7DAzC9_3DSGPoasEdyVn8PoRzJU2Z4mXKBZoqNa19J1YIlH4de5PF-7z0lu2yLjhwiCsso79JqZX0bqeGdTWHGzTFDm-mNssVJTDLyTxoXod-HT_8wDzcHjIG8VwXN3Q5yqM1xoCQIoqqLbbt2zMxr-np28pZ3JOzupakY7McS5IS2Udcmy6R-475GTcNGuD2QrJKYpL8jGreI801zTZ7BQrVqmGqpIa4AbENrrO06ykEpHr5R7XHVrh0IpfVNA8o1AY0u0qL_Pq8JXok1C4Oouz3KjO7t7hv0W6AWfKrshi8vQ2nrK6uQIT8IooWZy4QsJrTohAC-ljc0GRhI4rfB07Q660TEIlhz7XnrCQUGtj-z4O5Z2dSAmGvCbtLM_UDaGQ4pQVCFupkLtiGMRaIl83QAwpF57oEtbYNNoaDY2oAZetI3MHEd5BZO6gS4LG8NEPX4ggzP-58_bfO-_IKY4MeuyetMGM6gHKjTLpVf7UI0ej2ct0_gWXJ9cO
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60RepFfOLbPXhdbdNtkj1KsbTa9lSht5DsA1NKUmwU_PfOZBMfIB68hc1uCLPLN7Pwfd8AXIfCKCm05Hj7UVxoT_KklxgeWKzWrfa7sSah8GTqD5_Ew7w334B-rYUhWmWF_Q7TS7SuRm6raN6u0pQ0vpTbOuQoR09yE5rkTiUa0LwbPQ6nn4DclaGsTcNpQa2gK2leC8SAlIxQPXHT8Sgh_56hvmWdwS7sVOUiu3N_tAcbJtuHLddA8n0fWv26XxuOlmROtT6At1EpfWS5Zcny1fD1c2qxsGSOu4HwxhZ5mhVME3m9eKd5X91wWCkxWrM8Y1gbstVzXuTlz5e-T8rQ7CzOcmc8-_qC312nSzxP2SE8De5n_SGv-itwhReJgseJUBovdEoFVmmf-guqJOwK5du425bG6iQ0uu1L21Md0tR61MFPYoXnJVpjII-gkeWZOQaGWc50AuUZE0qh2kFsNUl2A6KRStVTJ8DrmEYrZ6MR1fyyReT2IKI9iNwenEBQBz76cRwiRPo_V57-e-UVtIazyTgaj6aPZ7BNbxyZ7BwaGFJzgdVHkVxWp-sD_oHZvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+blue-shifted+effective+joint+density+of+electronic+states+on+the+photoluminescence+of+nanostructured+silicon&rft.jtitle=Journal+of+luminescence&rft.au=Basu%2C+Shayari&rft.au=Ghanta%2C+Ujjwal&rft.au=Roy+Chowdhury%2C+Subhajit&rft.au=Pramanik%2C+Manotosh&rft.date=2024-09-01&rft.issn=0022-2313&rft.volume=273&rft.spage=120658&rft_id=info:doi/10.1016%2Fj.jlumin.2024.120658&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jlumin_2024_120658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2313&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2313&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2313&client=summon