Impact of blue-shifted effective joint density of electronic states on the photoluminescence of nanostructured silicon
Light emission from nanostructured silicon has triggered tremendous research interest for three decades. Yet, the exact mechanism of photoluminescence from silicon-based nano-systems is still not completely understood. It is generally believed that quantum confinement and surface chemistry play a co...
Saved in:
Published in | Journal of luminescence Vol. 273; p. 120658 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-2313 1872-7883 |
DOI | 10.1016/j.jlumin.2024.120658 |
Cover
Loading…
Abstract | Light emission from nanostructured silicon has triggered tremendous research interest for three decades. Yet, the exact mechanism of photoluminescence from silicon-based nano-systems is still not completely understood. It is generally believed that quantum confinement and surface chemistry play a combined role in determining the luminescence characteristics of nano silicon. In this work, we show that the evolution of electron-hole effective joint density of states, resulting from the relaxation of k-selection rule, can account for the much-observed temperature dependent shift of the luminescence spectra of nanostructured silicon. Deconvolution of the emission characteristics reveals three distinct radiative recombination channels those can be attributed to band-to-band, band-to-trap and trap-to-trap transitions. At temperatures below ∼200 K, the peak due to band-to-band transition exhibit a nearly linear blue shift with increasing temperature while at higher temperatures, this trend is reversed. The rate of variation of emission peak energy with temperature is also found to be dependent on the effective crystallite size. These results are explained in terms of shift in the effective joint density of state function of photogenerated electron-hole pairs. The shift provides experimental evidence of the pseudo-direct transitions in the quantum-confined nanostructure of silicon.
[Display omitted]
•Broad PL spectrum from nanostructured Silicon obtained as a convolution of multiple radiative decay channels at different temperatures.•Effective joint density of states of photoexcited e-h pair gets broadened and blue shifted for nanostructured silicon.•This study provides a means of estimating the temperature coefficient for the shift in peak energy related to band-to-band transitions.•The work demonstrates the relaxation of the k-selection rule in quantum-confined silicon structure. |
---|---|
AbstractList | Light emission from nanostructured silicon has triggered tremendous research interest for three decades. Yet, the exact mechanism of photoluminescence from silicon-based nano-systems is still not completely understood. It is generally believed that quantum confinement and surface chemistry play a combined role in determining the luminescence characteristics of nano silicon. In this work, we show that the evolution of electron-hole effective joint density of states, resulting from the relaxation of k-selection rule, can account for the much-observed temperature dependent shift of the luminescence spectra of nanostructured silicon. Deconvolution of the emission characteristics reveals three distinct radiative recombination channels those can be attributed to band-to-band, band-to-trap and trap-to-trap transitions. At temperatures below ∼200 K, the peak due to band-to-band transition exhibit a nearly linear blue shift with increasing temperature while at higher temperatures, this trend is reversed. The rate of variation of emission peak energy with temperature is also found to be dependent on the effective crystallite size. These results are explained in terms of shift in the effective joint density of state function of photogenerated electron-hole pairs. The shift provides experimental evidence of the pseudo-direct transitions in the quantum-confined nanostructure of silicon.
[Display omitted]
•Broad PL spectrum from nanostructured Silicon obtained as a convolution of multiple radiative decay channels at different temperatures.•Effective joint density of states of photoexcited e-h pair gets broadened and blue shifted for nanostructured silicon.•This study provides a means of estimating the temperature coefficient for the shift in peak energy related to band-to-band transitions.•The work demonstrates the relaxation of the k-selection rule in quantum-confined silicon structure. |
ArticleNumber | 120658 |
Author | Bandyopadhyay, Sudipta Roy Chowdhury, Subhajit Pramanik, Manotosh Das, Ashok Hossain, Syed Minhaz Ghanta, Ujjwal pal, Bipul Basu, Shayari Roy, Samrat |
Author_xml | – sequence: 1 givenname: Shayari surname: Basu fullname: Basu, Shayari organization: Department of Physics, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah, 711103, West Bengal, India – sequence: 2 givenname: Ujjwal surname: Ghanta fullname: Ghanta, Ujjwal organization: Department of Basic Science, NIET, NSHM Knowledge Campus, Durgapur, West Bengal, India – sequence: 3 givenname: Subhajit surname: Roy Chowdhury fullname: Roy Chowdhury, Subhajit organization: Department of Physics, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah, 711103, West Bengal, India – sequence: 4 givenname: Manotosh surname: Pramanik fullname: Pramanik, Manotosh organization: Department of Physical Science, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India – sequence: 5 givenname: Samrat surname: Roy fullname: Roy, Samrat organization: Department of Physical Science, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India – sequence: 6 givenname: Ashok surname: Das fullname: Das, Ashok organization: Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India – sequence: 7 givenname: Sudipta surname: Bandyopadhyay fullname: Bandyopadhyay, Sudipta organization: Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India – sequence: 8 givenname: Bipul surname: pal fullname: pal, Bipul organization: Department of Physical Science, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India – sequence: 9 givenname: Syed Minhaz orcidid: 0000-0002-7517-2785 surname: Hossain fullname: Hossain, Syed Minhaz email: shminhaz@physics.iiests.ac.in organization: Department of Physics, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah, 711103, West Bengal, India |
BookMark | eNp9kM1qwzAQhEVJoUnaN-hBL2BXkv8vhRL6Ewj00p6FvVoRGUcKkhzI29eue-5pDzszzDcbsrLOIiGPnKWc8fKpT_thPBmbCibylAtWFvUNWfO6EklV19mKrBkTIhEZz-7IJoSeMZY1dbMml_3p3EKkTtNuGDEJR6MjKopaI0RzQdo7YyNVaIOJ11mHw_TxzhqgIbYRA3WWxiPS89FF91sEA6AFnNW2tS5EP0Ic_ZQbzGDA2Xtyq9sh4MPf3ZLvt9ev3Udy-Hzf714OCYiiiEnb5aByVgFUGtRE1XDo6iyHUrcZa1CrrkbFykYXwLnICsEm6IYVleiUmmi3JF9ywbsQPGp59ubU-qvkTM7byV4u28l5O7lsN9meFxtO3S4GvQxgZiJl_AQvlTP_B_wAY09_Hw |
Cites_doi | 10.1016/j.physe.2008.11.008 10.1103/PhysRevLett.84.2457 10.1016/S0022-2313(00)00225-8 10.1103/PhysRevB.72.075423 10.1063/1.3330658 10.1016/0031-8914(67)90062-6 10.3390/cryst10030143 10.1109/5.248958 10.1103/PhysRevApplied.11.024054 10.1088/0268-1242/3/5/011 10.1016/j.rinp.2018.03.008 10.1063/1.4799402 10.1063/1.119797 10.1103/PhysRevLett.82.197 10.1103/PhysRevB.75.033312 10.1063/1.99309 10.1063/1.107295 10.1016/j.ijleo.2018.09.176 10.1002/(SICI)1521-3951(199912)216:2<975::AID-PSSB975>3.0.CO;2-N 10.1038/nnano.2017.190 10.1016/j.saa.2015.07.055 10.1143/JJAP.35.L276 10.1103/PhysRevB.73.033307 10.1021/cm0403762 10.1021/nl0486259 10.1063/1.362807 10.1016/S0021-9673(01)00524-6 10.1021/acs.jpcc.1c01450 10.1016/S0167-5729(99)00012-6 10.1063/1.109660 10.1016/0022-2313(93)90124-6 10.1039/c3tc32354d 10.1103/PhysRevB.86.125302 10.1088/1361-6641/ab3536 10.1063/1.3169513 10.1038/srep27727 10.1063/1.4824178 10.1103/PhysRevB.85.165306 10.1016/j.matlet.2011.12.046 10.1103/PhysRevB.62.16820 10.1007/978-3-540-85859-1_7 10.1063/1.4810208 10.1063/1.106482 10.1016/j.mser.2019.06.001 10.1063/5.0047226 10.1016/0040-6090(94)05666-2 10.1016/j.solidstatesciences.2010.11.024 10.1002/pssb.200301752 10.1103/PhysRevB.69.195309 10.1088/2053-1591/aa81da 10.1021/j100065a007 10.1088/0957-4484/23/47/475707 10.1063/1.117371 10.1038/nnano.2011.145 10.1063/1.3100045 10.3390/s21041336 10.1063/1.1485302 10.1016/j.jlumin.2018.04.052 10.1063/1.4828730 10.1103/PhysRevB.62.5109 10.1016/j.jlumin.2022.119607 10.1063/1.3657771 10.1088/0256-307X/9/8/013 10.1007/s12633-022-01999-8 10.1557/S0883769400030220 10.1007/s40094-014-0141-9 10.1364/OE.17.017227 10.1021/jp963322r |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jlumin.2024.120658 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology Physics |
EISSN | 1872-7883 |
ExternalDocumentID | 10_1016_j_jlumin_2024_120658 S0022231324002229 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABEFU ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ABXRA ACDAQ ACFVG ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADECG ADEZE ADIYS ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A NDZJH NEJ O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSK SSM SSQ SSZ T5K UHS UNMZH UQL WH7 WUQ XFK XPP YQT ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c255t-ab4cd407cc7fcd65891cb834c6fa309efdb8ed069f5c112352018790572bdd313 |
IEDL.DBID | .~1 |
ISSN | 0022-2313 |
IngestDate | Tue Jul 01 03:44:34 EDT 2025 Tue Jun 18 08:50:55 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Silicon nanostructure Transition mechanism Density of states Intrinsic transition Temperature dependent PL Photoluminescence |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-ab4cd407cc7fcd65891cb834c6fa309efdb8ed069f5c112352018790572bdd313 |
ORCID | 0000-0002-7517-2785 |
ParticipantIDs | crossref_primary_10_1016_j_jlumin_2024_120658 elsevier_sciencedirect_doi_10_1016_j_jlumin_2024_120658 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2024 2024-09-00 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of luminescence |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | O'Connor, van Spronsen, Karatok, Boscoboinik, Friend, Montemore (bib53) 2021; 125 Ray, Sarkar, Bandyopadhyay, Hossain, Pramanick (bib50) 2009; 105 Ogata (bib55) 2014 Pässler (bib79) 1999; 216 Rückschloss, Landkammer, Vepřek (bib10) 1993; 63 Weibel, Bouchet, Boulc, Knauth (bib60) 2005; 17 Takeoka, Fujii, Hayashi (bib66) 2000; 62 Salah (bib18) 2020 Ray, Ratan Bandyopadhyay, Ghanta, Klie, Kumar Pramanick, Das, Minhaz Hossain (bib26) 2011; 110 Xu, Gal, Gross (bib27) 1992; 60 Ghanta, Ray, Biswas, Sardar, Maji, Pal, Hossain (bib36) 2018; 201 Rosenbauer, Stutzmann, Fuchs, Finkbeiner, Weber (bib24) 1993; 57 Ghanta, Ray, Hossain (bib14) 2013, June Pavesi (bib22) 1996; 80 Niquet, Delerue, Allan, Lannoo (bib67) 2000; 62 Meier, Lüttjohann, Offer, Wiggers, Orke (bib6) 2009 Soref (bib1) 1993; 81 Doany, Grischkowsky (bib73) 1988; 52 Hartel, Gutsch, Hiller, Zacharias (bib77) 2012; 85 Ray, Basu, Jana, Bandyopadhyay, Hossain, Pramanick, Klie (bib13) 2010; 107 Piprek (bib76) 2003 Singh (bib7) 1993 Shimizu, Yamada, Izutsu, Yano, Kasuga (bib25) 1996; 35 Zheng, Wang, Chen (bib45) 1992; 60 Mitra, Švrček, Macias-Montero, Velusamy, Mariotti (bib46) 2016; 6 Jabbar, Fakhri, AbdulRazzaq (bib19) 2022; 14 Praveenkumar, Lingaraja, Mathi, Ram (bib16) 2019; 178 Balanta, da Silva Filho, Souza, De Assunção, Champi, Cuevas (bib51) 2023; 255 Nikitas, Pappa-Louisi, Papageorgiou (bib52) 2001; 912 Finkbeiner, Weber (bib23) 1995; 255 Bhattacharya (bib5) 1997 Hong, Ahn, Wu, Gwo (bib30) 2009; 17 Kibasomba, Dhlamini, Maaza, Liu, Rashad, Rayan, Mwakikunga (bib58) 2018; 9 Heitmann, Müller, Yi, Zacharias, Kovalev, Eichhorn (bib33) 2004; 69 Trani, Ninno, Iadonisi (bib70) 2007; 75 Pässler (bib80) 2003; 236 Soref (bib2) 1998; 23 Biswas, Nandi, Ghanta, Jana, Mukhopadhyay, Saha, Hossain (bib39) 2021; 130 Green (bib71) 2013; 3 Luo, Li, Sychugov, Pevere, Linnros, Zunger (bib38) 2017; 12 Ledoux, Gong, Huisken, Guillois, Reynaud (bib9) 2002; 80 Doğan, van de Sanden (bib44) 2013; 114 Zak, Majid, Abrishami, Yousefi (bib61) 2011; 13 Schmidt, Chizhik, Chizhik, Potrick, Meixner, Huisken (bib15) 2012; 86 Rinnert, Jambois, Vergnat (bib32) 2009; 106 Delerue, Lannoo, Allan (bib68) 2000; 84 Holzwarth, Gibson (bib43) 2011; 6 Doğan, Kramer, Westermann, Dohnalová, Smets, Verheijen, van de Sanden (bib8) 2013; 113 Gan, Sun, He, Ye (bib11) 2014; 2 Águila Rodríguez, García-Salgado, Romero-Paredes, Peña-Sierra (bib56) 2007; 53 Moretta, De Stefano, Terracciano, Rea (bib20) 2021; 21 Mawhinney, Glass, Yates (bib42) 1997; 101 Falcao, Leitão, Soares, Ricardo, Águas, Martins, Pereira (bib49) 2019; 11 Gonçalves, Carvalho, Lima, Sasaki (bib57) 2012; 72 Kulathuraan, Mohanraj, Natarajan (bib48) 2016; 152 Kumar (bib12) 2011; 2011 Varshni (bib31) 1967; 34 Hossain, Chakraborty, Dutta, Das, Saha (bib82) 2000; 91 Ghosh, Shirahata (bib78) 2020; 10 Eliseev, Perlin, Lee, Osiński (bib29) 1997; 71 Nayef, Muayad (bib40) 2013; 13 Pavesi (bib3) 2004 Trani, Cantele, Ninno, Iadonisi (bib69) 2005; 72 Brunner, Pincik, Kučera, Vojtek, Zábudlá (bib28) 2018; 12 Bisi, Ossicini, Pavesi (bib47) 2000; 38 Zi, Büscher, Falter, Ludwig, Zhang, Xie (bib62) 1996; 69 Schmidt, Chizhik, Chizhik, Potrick, Meixner, Huisken (bib37) 2012; 86 Wu, Cheng, Wang (bib72) 2017; 4 Faraci, Gibilisco, Russo, Pennisi, La Rosa (bib63) 2006; 73 Adu, Gutierrez, Kim, Sumanasekera, Eklund (bib74) 2005; 5 Wolkin, Jorne, Fauchet, Allan, Delerue (bib34) 1999; 82 Podhorodecki, Zatryb, Misiewicz, Wojcik, Wilson, Mascher (bib17) 2012; 23 Rongchuan, Qingshan, Jingbiao (bib21) 1992; 9 Köthemann, Weber, Lindner, Meier (bib54) 2019; 34 Goodes, Jenkins, Beale, Benjamin, Pickering (bib64) 1988; 3 Bindu, Thomas (bib59) 2014; 8 Derr, Dunn, Riabinina, Martin, Chaker, Rosei (bib65) 2009; 41 Brus (bib75) 1994; 98 Alfeel, Awad, Alghoraibi, Qamar (bib41) 2012 Ni, Zhou, Zhao, Peng, Yang, Pi (bib4) 2019; 138 Moretta (10.1016/j.jlumin.2024.120658_bib20) 2021; 21 O'Connor (10.1016/j.jlumin.2024.120658_bib53) 2021; 125 Kumar (10.1016/j.jlumin.2024.120658_bib12) 2011; 2011 Brunner (10.1016/j.jlumin.2024.120658_bib28) 2018; 12 Eliseev (10.1016/j.jlumin.2024.120658_bib29) 1997; 71 Derr (10.1016/j.jlumin.2024.120658_bib65) 2009; 41 Doğan (10.1016/j.jlumin.2024.120658_bib44) 2013; 114 Trani (10.1016/j.jlumin.2024.120658_bib70) 2007; 75 Rongchuan (10.1016/j.jlumin.2024.120658_bib21) 1992; 9 Hong (10.1016/j.jlumin.2024.120658_bib30) 2009; 17 Singh (10.1016/j.jlumin.2024.120658_bib7) 1993 Rückschloss (10.1016/j.jlumin.2024.120658_bib10) 1993; 63 Doany (10.1016/j.jlumin.2024.120658_bib73) 1988; 52 Ghanta (10.1016/j.jlumin.2024.120658_bib14) 2013 Pavesi (10.1016/j.jlumin.2024.120658_bib3) 2004 Biswas (10.1016/j.jlumin.2024.120658_bib39) 2021; 130 Faraci (10.1016/j.jlumin.2024.120658_bib63) 2006; 73 Mitra (10.1016/j.jlumin.2024.120658_bib46) 2016; 6 Falcao (10.1016/j.jlumin.2024.120658_bib49) 2019; 11 Zak (10.1016/j.jlumin.2024.120658_bib61) 2011; 13 Ray (10.1016/j.jlumin.2024.120658_bib50) 2009; 105 Trani (10.1016/j.jlumin.2024.120658_bib69) 2005; 72 Ghosh (10.1016/j.jlumin.2024.120658_bib78) 2020; 10 Weibel (10.1016/j.jlumin.2024.120658_bib60) 2005; 17 Niquet (10.1016/j.jlumin.2024.120658_bib67) 2000; 62 Rinnert (10.1016/j.jlumin.2024.120658_bib32) 2009; 106 Kibasomba (10.1016/j.jlumin.2024.120658_bib58) 2018; 9 Adu (10.1016/j.jlumin.2024.120658_bib74) 2005; 5 Shimizu (10.1016/j.jlumin.2024.120658_bib25) 1996; 35 Varshni (10.1016/j.jlumin.2024.120658_bib31) 1967; 34 Wolkin (10.1016/j.jlumin.2024.120658_bib34) 1999; 82 Kulathuraan (10.1016/j.jlumin.2024.120658_bib48) 2016; 152 Schmidt (10.1016/j.jlumin.2024.120658_bib15) 2012; 86 Podhorodecki (10.1016/j.jlumin.2024.120658_bib17) 2012; 23 Finkbeiner (10.1016/j.jlumin.2024.120658_bib23) 1995; 255 Balanta (10.1016/j.jlumin.2024.120658_bib51) 2023; 255 Green (10.1016/j.jlumin.2024.120658_bib71) 2013; 3 Nikitas (10.1016/j.jlumin.2024.120658_bib52) 2001; 912 Wu (10.1016/j.jlumin.2024.120658_bib72) 2017; 4 Hartel (10.1016/j.jlumin.2024.120658_bib77) 2012; 85 Xu (10.1016/j.jlumin.2024.120658_bib27) 1992; 60 Piprek (10.1016/j.jlumin.2024.120658_bib76) 2003 Soref (10.1016/j.jlumin.2024.120658_bib1) 1993; 81 Schmidt (10.1016/j.jlumin.2024.120658_bib37) 2012; 86 Pässler (10.1016/j.jlumin.2024.120658_bib80) 2003; 236 Gonçalves (10.1016/j.jlumin.2024.120658_bib57) 2012; 72 Águila Rodríguez (10.1016/j.jlumin.2024.120658_bib56) 2007; 53 Meier (10.1016/j.jlumin.2024.120658_bib6) 2009 Bisi (10.1016/j.jlumin.2024.120658_bib47) 2000; 38 Bindu (10.1016/j.jlumin.2024.120658_bib59) 2014; 8 Luo (10.1016/j.jlumin.2024.120658_bib38) 2017; 12 Ray (10.1016/j.jlumin.2024.120658_bib26) 2011; 110 Köthemann (10.1016/j.jlumin.2024.120658_bib54) 2019; 34 Ni (10.1016/j.jlumin.2024.120658_bib4) 2019; 138 Zheng (10.1016/j.jlumin.2024.120658_bib45) 1992; 60 Ledoux (10.1016/j.jlumin.2024.120658_bib9) 2002; 80 Takeoka (10.1016/j.jlumin.2024.120658_bib66) 2000; 62 Salah (10.1016/j.jlumin.2024.120658_bib18) 2020 Ghanta (10.1016/j.jlumin.2024.120658_bib36) 2018; 201 Soref (10.1016/j.jlumin.2024.120658_bib2) 1998; 23 Doğan (10.1016/j.jlumin.2024.120658_bib8) 2013; 113 Alfeel (10.1016/j.jlumin.2024.120658_bib41) 2012 Zi (10.1016/j.jlumin.2024.120658_bib62) 1996; 69 Gan (10.1016/j.jlumin.2024.120658_bib11) 2014; 2 Nayef (10.1016/j.jlumin.2024.120658_bib40) 2013; 13 Holzwarth (10.1016/j.jlumin.2024.120658_bib43) 2011; 6 Ray (10.1016/j.jlumin.2024.120658_bib13) 2010; 107 Heitmann (10.1016/j.jlumin.2024.120658_bib33) 2004; 69 Goodes (10.1016/j.jlumin.2024.120658_bib64) 1988; 3 Jabbar (10.1016/j.jlumin.2024.120658_bib19) 2022; 14 Delerue (10.1016/j.jlumin.2024.120658_bib68) 2000; 84 Praveenkumar (10.1016/j.jlumin.2024.120658_bib16) 2019; 178 Pavesi (10.1016/j.jlumin.2024.120658_bib22) 1996; 80 Ogata (10.1016/j.jlumin.2024.120658_bib55) 2014 Hossain (10.1016/j.jlumin.2024.120658_bib82) 2000; 91 Bhattacharya (10.1016/j.jlumin.2024.120658_bib5) 1997 Pässler (10.1016/j.jlumin.2024.120658_bib79) 1999; 216 Rosenbauer (10.1016/j.jlumin.2024.120658_bib24) 1993; 57 Mawhinney (10.1016/j.jlumin.2024.120658_bib42) 1997; 101 Brus (10.1016/j.jlumin.2024.120658_bib75) 1994; 98 |
References_xml | – volume: 255 start-page: 254 year: 1995 end-page: 257 ident: bib23 article-title: Interpretation of the temperature dependence of the strong visible photoluminescence of porous silicon publication-title: Thin Solid Films – volume: 12 start-page: 340 year: 2018 end-page: 345 ident: bib28 article-title: Temperature dependence of photoluminescence of porous silicon publication-title: J. Energy Power Eng. – volume: 2011 year: 2011 ident: bib12 article-title: Effect of silicon crystal size on photoluminescence appearance in porous silicon publication-title: Int. Sch. Res. Notices – volume: 21 start-page: 1336 year: 2021 ident: bib20 article-title: Porous silicon optical devices: recent advances in biosensing applications publication-title: Sensors – volume: 82 start-page: 197 year: 1999 ident: bib34 article-title: Electronic states and luminescence in porous silicon quantum dots: the role of oxygen publication-title: Phys. Rev. Lett. – volume: 63 start-page: 1474 year: 1993 end-page: 1476 ident: bib10 article-title: Light emitting nanocrystalline silicon prepared by dry processing: the effect of crystallite size publication-title: Appl. Phys. Lett. – volume: 12 start-page: 930 year: 2017 end-page: 932 ident: bib38 article-title: Absence of redshift in the direct bandgap of silicon nanocrystals with reduced size publication-title: Nat. Nanotechnol. – start-page: 579 year: 2012 ident: bib41 article-title: Using AFM to determine the porosity in porous silicon publication-title: J. Mater. Sci. Eng. – volume: 98 start-page: 3575 year: 1994 end-page: 3581 ident: bib75 article-title: Luminescence of silicon materials: chains, sheets, nanocrystals, nanowires, microcrystals, and porous silicon publication-title: J. Phys. Chem. – volume: 105 year: 2009 ident: bib50 article-title: Silicon and silicon oxide core-shell nanoparticles: structural and photoluminescence characteristics publication-title: J. Appl. Phys. – volume: 9 start-page: 628 year: 2018 end-page: 635 ident: bib58 article-title: Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: the revisiting of the Williamson-Hall plot method publication-title: Results Phys. – start-page: 277 year: 2013, June end-page: 278 ident: bib14 article-title: Photoluminescence mechanism in silicon quantum rods studied by time-resolved spectroscopy publication-title: AIP Conference Proceedings – volume: 91 start-page: 195 year: 2000 end-page: 202 ident: bib82 article-title: Stability in photoluminescence of porous silicon publication-title: J. Lumin. – volume: 152 start-page: 51 year: 2016 end-page: 57 ident: bib48 article-title: Structural, optical and electrical characterization of nanostructured porous silicon: effect of current density publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc. – volume: 912 start-page: 13 year: 2001 end-page: 29 ident: bib52 article-title: On the equations describing chromatographic peaks and the problem of the deconvolution of overlapped peaks publication-title: J. Chromatogr. A – volume: 75 year: 2007 ident: bib70 article-title: Role of local fields in the optical properties of silicon nanocrystals using the tight binding approach publication-title: Phys. Rev. B – volume: 138 start-page: 85 year: 2019 end-page: 117 ident: bib4 article-title: Silicon nanocrystals: unfading silicon materials for optoelectronics publication-title: Mater. Sci. Eng. R Rep. – volume: 80 start-page: 4834 year: 2002 end-page: 4836 ident: bib9 article-title: Photoluminescence of size-separated silicon nanocrystals: confirmation of quantum confinement publication-title: Appl. Phys. Lett. – volume: 2 start-page: 2668 year: 2014 end-page: 2673 ident: bib11 article-title: Tuning the photoluminescence of porous silicon nanowires by morphology control publication-title: J. Mater. Chem. C – volume: 41 start-page: 668 year: 2009 end-page: 670 ident: bib65 article-title: Quantum confinement regime in silicon nanocrystals publication-title: Phys. E Low-dimens. Syst. Nanostruct. – volume: 14 start-page: 12837 year: 2022 end-page: 12853 ident: bib19 article-title: Synthesis gallium nitride on porous silicon nano-structure for optoelectronics devices publication-title: Silicon – volume: 73 year: 2006 ident: bib63 article-title: Modified Raman confinement model for Si nanocrystals publication-title: Phys. Rev. B – volume: 113 year: 2013 ident: bib8 article-title: Ultrahigh throughput plasma processing of free standing silicon nanocrystals with lognormal size distribution publication-title: J. Appl. Phys. – volume: 57 start-page: 153 year: 1993 end-page: 157 ident: bib24 article-title: Temperature dependence of luminescence in porous silicon and related materials publication-title: J. Lumin. – volume: 201 start-page: 338 year: 2018 end-page: 344 ident: bib36 article-title: Effect of phonon confinement on photoluminescence from colloidal silicon nanostructures publication-title: J. Lumin. – volume: 85 year: 2012 ident: bib77 article-title: Fundamental temperature-dependent properties of the Si nanocrystal band gap publication-title: Phys. Rev. B – volume: 17 start-page: 17227 year: 2009 end-page: 17233 ident: bib30 article-title: Strong green photoluminescence from InxGa 1-xN/GaN nanorod arrays publication-title: Opt Express – volume: 34 start-page: 149 year: 1967 end-page: 154 ident: bib31 article-title: Temperature dependence of the energy gap in semiconductors publication-title: Physica – volume: 110 year: 2011 ident: bib26 article-title: Temperature dependent photoluminescence from porous silicon nanostructures: quantum confinement and oxide related transitions publication-title: J. Appl. Phys. – volume: 114 year: 2013 ident: bib44 article-title: Direct characterization of nanocrystal size distribution using Raman spectroscopy publication-title: J. Appl. Phys. – volume: 53 start-page: 431 year: 2007 end-page: 435 ident: bib56 article-title: FTIR and photoluminescence studies of porous silicon layers oxidized in controlled water vapor conditions publication-title: Rev. Mexic. Fisica – volume: 13 start-page: 251 year: 2011 end-page: 256 ident: bib61 article-title: X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods publication-title: Solid State Sci. – volume: 23 start-page: 20 year: 1998 end-page: 24 ident: bib2 article-title: Applications of silicon-based optoelectronics publication-title: MRS Bull. – volume: 60 start-page: 1375 year: 1992 end-page: 1377 ident: bib27 article-title: Photoluminescence studies on porous silicon publication-title: Appl. Phys. Lett. – volume: 72 start-page: 36 year: 2012 end-page: 38 ident: bib57 article-title: Size–strain study of NiO nanoparticles by X-ray powder diffraction line broadening publication-title: Mater. Lett. – start-page: 473 year: 2014 end-page: 480 ident: bib55 article-title: Characterization of porous silicon by infrared spectroscopy publication-title: Handbook of Porous Silicon – volume: 125 start-page: 10685 year: 2021 end-page: 10692 ident: bib53 article-title: Predicting X-ray photoelectron peak shapes: the effect of electronic structure publication-title: J. Phys. Chem. C – volume: 216 start-page: 975 year: 1999 end-page: 1007 ident: bib79 article-title: Parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors publication-title: physica status solidi (b) – volume: 5 start-page: 409 year: 2005 end-page: 414 ident: bib74 article-title: Confined phonons in Si nanowires publication-title: Nano Lett. – volume: 62 year: 2000 ident: bib66 article-title: Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime publication-title: Phys. Rev. B – volume: 3 year: 2013 ident: bib71 article-title: Improved value for the silicon free exciton binding energy publication-title: AIP Adv. – volume: 255 year: 2023 ident: bib51 article-title: Deconvolution of photoluminescence spectra and electronic transition in carbon dots nanoparticles from microcrystalline cellulose publication-title: J. Lumin. – volume: 101 start-page: 1202 year: 1997 end-page: 1206 ident: bib42 article-title: FTIR study of the oxidation of porous silicon publication-title: J. Phys. Chem. B – volume: 80 start-page: 216 year: 1996 end-page: 225 ident: bib22 article-title: Influence of dispersive exciton motion on the recombination dynamics in porous silicon publication-title: J. Appl. Phys. – volume: 86 year: 2012 ident: bib15 article-title: Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals publication-title: Phys. Rev. B – volume: 69 start-page: 200 year: 1996 end-page: 202 ident: bib62 article-title: Raman shifts in Si nanocrystals publication-title: Appl. Phys. Lett. – volume: 62 start-page: 5109 year: 2000 ident: bib67 article-title: Method for tight-binding parametrization: application to silicon nanostructures publication-title: Phys. Rev. B – volume: 4 year: 2017 ident: bib72 article-title: Excitonic effects and related properties in semiconductor nanostructures: roles of size and dimensionality publication-title: Mater. Res. Express – volume: 236 start-page: 710 year: 2003 end-page: 728 ident: bib80 article-title: Semi‐empirical descriptions of temperature dependences of band gaps in semiconductors publication-title: physica status solidi (b) – volume: 69 year: 2004 ident: bib33 article-title: Excitons in Si nanocrystals: confinement and migration effects publication-title: Phys. Rev. B – volume: 107 year: 2010 ident: bib13 article-title: Luminescent core-shell nanostructures of silicon and silicon oxide: nanodots and nanorods publication-title: J. Appl. Phys. – volume: 130 year: 2021 ident: bib39 article-title: Hot-carrier radiative recombination through phonon confinement in silicon nanocrystals embedded in colloidal xerogel matrix publication-title: J. Appl. Phys. – volume: 84 start-page: 2457 year: 2000 ident: bib68 article-title: Excitonic and quasiparticle gaps in Si nanocrystals publication-title: Phys. Rev. Lett. – volume: 71 start-page: 569 year: 1997 end-page: 571 ident: bib29 article-title: “Blue” temperature-induced shift and band-tail emission in InGaN-based light sources publication-title: Appl. Phys. Lett. – volume: 3 start-page: 483 year: 1988 ident: bib64 article-title: The characterisation of porous silicon by Raman spectroscopy publication-title: Semicond. Sci. Technol. – start-page: 79 year: 2009 end-page: 90 ident: bib6 article-title: Silicon nanoparticles: excitonic fine structure and oscillator strength publication-title: Adv. Solid State Phys. – volume: 60 start-page: 986 year: 1992 end-page: 988 ident: bib45 article-title: Anomalous temperature dependencies of photoluminescence for visible‐light‐emitting porous Si publication-title: Appl. Phys. Lett. – volume: 34 year: 2019 ident: bib54 article-title: High-precision determination of silicon nanocrystals: optical spectroscopy versus electron microscopy publication-title: Semicond. Sci. Technol. – volume: 8 start-page: 123 year: 2014 end-page: 134 ident: bib59 article-title: Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis publication-title: Journal of Theoretical and Applied Physics – volume: 81 start-page: 1687 year: 1993 end-page: 1706 ident: bib1 article-title: Silicon-based optoelectronics publication-title: Proc. IEEE – start-page: 1 year: 2004 end-page: 50 ident: bib3 article-title: Silicon Fundamentals for Photonics Applications – volume: 106 year: 2009 ident: bib32 article-title: Photoluminescence properties of size-controlled silicon nanocrystals at low temperatures publication-title: J. Appl. Phys. – volume: 13 year: 2013 ident: bib40 article-title: Typical of morphological properties of porous silicon publication-title: International Journal of Basic and Applied Sciences IJBAS-IJENS – volume: 38 start-page: 1 year: 2000 end-page: 126 ident: bib47 article-title: Porous silicon: a quantum sponge structure for silicon based optoelectronics publication-title: Surf. Sci. Rep. – volume: 17 start-page: 2378 year: 2005 end-page: 2385 ident: bib60 article-title: The big problem of small particles: a comparison of methods for determination of particle size in nanocrystalline anatase powders publication-title: Chem. Mater. – year: 2020 ident: bib18 article-title: Optical study of porous silicon layers produced electrochemically for photovoltaic application publication-title: Solar Cells-Theory, Materials and Recent Advances – volume: 9 start-page: 438 year: 1992 ident: bib21 article-title: Temperature dependence of photoluminescence in porous silicon publication-title: Chin. Phys. Lett. – volume: 10 start-page: 143 year: 2020 ident: bib78 article-title: Influence of oxidation on temperature-dependent photoluminescence properties of hydrogen-terminated silicon nanocrystals publication-title: Crystals – year: 2003 ident: bib76 article-title: Semiconductor Optoelectronic Devices Introduction to Physics and Simulation – volume: 86 year: 2012 ident: bib37 article-title: Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals publication-title: Phys. Rev. B – volume: 35 start-page: L276 year: 1996 ident: bib25 article-title: Temperature dependence of the photoluminescence of porous silicon publication-title: Jpn. J. Appl. Phys. – year: 1993 ident: bib7 article-title: Semiconductor Optoelectronics Physics and Technology – volume: 11 year: 2019 ident: bib49 article-title: Oxidation and strain in free-standing silicon nanocrystals publication-title: Phys. Rev. Appl. – volume: 6 year: 2011 ident: bib43 article-title: The Scherrer equation versus the'Debye-Scherrer equation' publication-title: Nat. Nanotechnol. – year: 1997 ident: bib5 article-title: Semiconductor Optoelectronic Devices – volume: 23 year: 2012 ident: bib17 article-title: Green light emission from terbium doped silicon rich silicon oxide films obtained by plasma enhanced chemical vapor deposition publication-title: Nanotechnology – volume: 6 year: 2016 ident: bib46 article-title: Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals publication-title: Sci. Rep. – volume: 72 year: 2005 ident: bib69 article-title: Tight-binding calculation of the optical absorption cross section of spherical and ellipsoidal silicon nanocrystals publication-title: Phys. Rev. B – volume: 52 start-page: 36 year: 1988 end-page: 38 ident: bib73 article-title: Measurement of ultrafast hot‐carrier relaxation in silicon by thin‐film‐enhanced, time‐resolved reflectivity publication-title: Appl. Phys. Lett. – volume: 178 start-page: 216 year: 2019 end-page: 223 ident: bib16 article-title: An experimental study of optoelectronic properties of porous silicon for solar cell application publication-title: Optik – volume: 41 start-page: 668 issue: 4 year: 2009 ident: 10.1016/j.jlumin.2024.120658_bib65 article-title: Quantum confinement regime in silicon nanocrystals publication-title: Phys. E Low-dimens. Syst. Nanostruct. doi: 10.1016/j.physe.2008.11.008 – volume: 84 start-page: 2457 issue: 11 year: 2000 ident: 10.1016/j.jlumin.2024.120658_bib68 article-title: Excitonic and quasiparticle gaps in Si nanocrystals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.2457 – year: 1993 ident: 10.1016/j.jlumin.2024.120658_bib7 – volume: 91 start-page: 195 issue: 3–4 year: 2000 ident: 10.1016/j.jlumin.2024.120658_bib82 article-title: Stability in photoluminescence of porous silicon publication-title: J. Lumin. doi: 10.1016/S0022-2313(00)00225-8 – volume: 72 issue: 7 year: 2005 ident: 10.1016/j.jlumin.2024.120658_bib69 article-title: Tight-binding calculation of the optical absorption cross section of spherical and ellipsoidal silicon nanocrystals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.075423 – volume: 107 issue: 6 year: 2010 ident: 10.1016/j.jlumin.2024.120658_bib13 article-title: Luminescent core-shell nanostructures of silicon and silicon oxide: nanodots and nanorods publication-title: J. Appl. Phys. doi: 10.1063/1.3330658 – volume: 34 start-page: 149 issue: 1 year: 1967 ident: 10.1016/j.jlumin.2024.120658_bib31 article-title: Temperature dependence of the energy gap in semiconductors publication-title: Physica doi: 10.1016/0031-8914(67)90062-6 – volume: 10 start-page: 143 issue: 3 year: 2020 ident: 10.1016/j.jlumin.2024.120658_bib78 article-title: Influence of oxidation on temperature-dependent photoluminescence properties of hydrogen-terminated silicon nanocrystals publication-title: Crystals doi: 10.3390/cryst10030143 – volume: 81 start-page: 1687 issue: 12 year: 1993 ident: 10.1016/j.jlumin.2024.120658_bib1 article-title: Silicon-based optoelectronics publication-title: Proc. IEEE doi: 10.1109/5.248958 – volume: 11 issue: 2 year: 2019 ident: 10.1016/j.jlumin.2024.120658_bib49 article-title: Oxidation and strain in free-standing silicon nanocrystals publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.024054 – volume: 3 start-page: 483 issue: 5 year: 1988 ident: 10.1016/j.jlumin.2024.120658_bib64 article-title: The characterisation of porous silicon by Raman spectroscopy publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/3/5/011 – volume: 9 start-page: 628 year: 2018 ident: 10.1016/j.jlumin.2024.120658_bib58 article-title: Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: the revisiting of the Williamson-Hall plot method publication-title: Results Phys. doi: 10.1016/j.rinp.2018.03.008 – volume: 113 issue: 13 year: 2013 ident: 10.1016/j.jlumin.2024.120658_bib8 article-title: Ultrahigh throughput plasma processing of free standing silicon nanocrystals with lognormal size distribution publication-title: J. Appl. Phys. doi: 10.1063/1.4799402 – volume: 71 start-page: 569 issue: 5 year: 1997 ident: 10.1016/j.jlumin.2024.120658_bib29 article-title: “Blue” temperature-induced shift and band-tail emission in InGaN-based light sources publication-title: Appl. Phys. Lett. doi: 10.1063/1.119797 – start-page: 473 year: 2014 ident: 10.1016/j.jlumin.2024.120658_bib55 article-title: Characterization of porous silicon by infrared spectroscopy – volume: 82 start-page: 197 issue: 1 year: 1999 ident: 10.1016/j.jlumin.2024.120658_bib34 article-title: Electronic states and luminescence in porous silicon quantum dots: the role of oxygen publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.197 – volume: 75 issue: 3 year: 2007 ident: 10.1016/j.jlumin.2024.120658_bib70 article-title: Role of local fields in the optical properties of silicon nanocrystals using the tight binding approach publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.033312 – volume: 52 start-page: 36 issue: 1 year: 1988 ident: 10.1016/j.jlumin.2024.120658_bib73 article-title: Measurement of ultrafast hot‐carrier relaxation in silicon by thin‐film‐enhanced, time‐resolved reflectivity publication-title: Appl. Phys. Lett. doi: 10.1063/1.99309 – start-page: 1 year: 2004 ident: 10.1016/j.jlumin.2024.120658_bib3 – year: 1997 ident: 10.1016/j.jlumin.2024.120658_bib5 – volume: 60 start-page: 1375 issue: 11 year: 1992 ident: 10.1016/j.jlumin.2024.120658_bib27 article-title: Photoluminescence studies on porous silicon publication-title: Appl. Phys. Lett. doi: 10.1063/1.107295 – volume: 178 start-page: 216 year: 2019 ident: 10.1016/j.jlumin.2024.120658_bib16 article-title: An experimental study of optoelectronic properties of porous silicon for solar cell application publication-title: Optik doi: 10.1016/j.ijleo.2018.09.176 – start-page: 579 issue: 9A year: 2012 ident: 10.1016/j.jlumin.2024.120658_bib41 article-title: Using AFM to determine the porosity in porous silicon publication-title: J. Mater. Sci. Eng. – volume: 2011 year: 2011 ident: 10.1016/j.jlumin.2024.120658_bib12 article-title: Effect of silicon crystal size on photoluminescence appearance in porous silicon publication-title: Int. Sch. Res. Notices – volume: 216 start-page: 975 issue: 2 year: 1999 ident: 10.1016/j.jlumin.2024.120658_bib79 article-title: Parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors publication-title: physica status solidi (b) doi: 10.1002/(SICI)1521-3951(199912)216:2<975::AID-PSSB975>3.0.CO;2-N – volume: 12 start-page: 930 issue: 10 year: 2017 ident: 10.1016/j.jlumin.2024.120658_bib38 article-title: Absence of redshift in the direct bandgap of silicon nanocrystals with reduced size publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.190 – volume: 152 start-page: 51 year: 2016 ident: 10.1016/j.jlumin.2024.120658_bib48 article-title: Structural, optical and electrical characterization of nanostructured porous silicon: effect of current density publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2015.07.055 – volume: 35 start-page: L276 issue: 3A year: 1996 ident: 10.1016/j.jlumin.2024.120658_bib25 article-title: Temperature dependence of the photoluminescence of porous silicon publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.35.L276 – volume: 73 issue: 3 year: 2006 ident: 10.1016/j.jlumin.2024.120658_bib63 article-title: Modified Raman confinement model for Si nanocrystals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.033307 – volume: 17 start-page: 2378 issue: 9 year: 2005 ident: 10.1016/j.jlumin.2024.120658_bib60 article-title: The big problem of small particles: a comparison of methods for determination of particle size in nanocrystalline anatase powders publication-title: Chem. Mater. doi: 10.1021/cm0403762 – volume: 5 start-page: 409 issue: 3 year: 2005 ident: 10.1016/j.jlumin.2024.120658_bib74 article-title: Confined phonons in Si nanowires publication-title: Nano Lett. doi: 10.1021/nl0486259 – volume: 80 start-page: 216 issue: 1 year: 1996 ident: 10.1016/j.jlumin.2024.120658_bib22 article-title: Influence of dispersive exciton motion on the recombination dynamics in porous silicon publication-title: J. Appl. Phys. doi: 10.1063/1.362807 – volume: 912 start-page: 13 issue: 1 year: 2001 ident: 10.1016/j.jlumin.2024.120658_bib52 article-title: On the equations describing chromatographic peaks and the problem of the deconvolution of overlapped peaks publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(01)00524-6 – volume: 125 start-page: 10685 issue: 19 year: 2021 ident: 10.1016/j.jlumin.2024.120658_bib53 article-title: Predicting X-ray photoelectron peak shapes: the effect of electronic structure publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c01450 – volume: 38 start-page: 1 issue: 1–3 year: 2000 ident: 10.1016/j.jlumin.2024.120658_bib47 article-title: Porous silicon: a quantum sponge structure for silicon based optoelectronics publication-title: Surf. Sci. Rep. doi: 10.1016/S0167-5729(99)00012-6 – volume: 63 start-page: 1474 issue: 11 year: 1993 ident: 10.1016/j.jlumin.2024.120658_bib10 article-title: Light emitting nanocrystalline silicon prepared by dry processing: the effect of crystallite size publication-title: Appl. Phys. Lett. doi: 10.1063/1.109660 – volume: 57 start-page: 153 issue: 1–6 year: 1993 ident: 10.1016/j.jlumin.2024.120658_bib24 article-title: Temperature dependence of luminescence in porous silicon and related materials publication-title: J. Lumin. doi: 10.1016/0022-2313(93)90124-6 – volume: 2 start-page: 2668 issue: 15 year: 2014 ident: 10.1016/j.jlumin.2024.120658_bib11 article-title: Tuning the photoluminescence of porous silicon nanowires by morphology control publication-title: J. Mater. Chem. C doi: 10.1039/c3tc32354d – volume: 86 issue: 12 year: 2012 ident: 10.1016/j.jlumin.2024.120658_bib15 article-title: Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.125302 – volume: 34 issue: 9 year: 2019 ident: 10.1016/j.jlumin.2024.120658_bib54 article-title: High-precision determination of silicon nanocrystals: optical spectroscopy versus electron microscopy publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/ab3536 – volume: 106 issue: 2 year: 2009 ident: 10.1016/j.jlumin.2024.120658_bib32 article-title: Photoluminescence properties of size-controlled silicon nanocrystals at low temperatures publication-title: J. Appl. Phys. doi: 10.1063/1.3169513 – volume: 6 issue: 1 year: 2016 ident: 10.1016/j.jlumin.2024.120658_bib46 article-title: Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals publication-title: Sci. Rep. doi: 10.1038/srep27727 – volume: 114 issue: 13 year: 2013 ident: 10.1016/j.jlumin.2024.120658_bib44 article-title: Direct characterization of nanocrystal size distribution using Raman spectroscopy publication-title: J. Appl. Phys. doi: 10.1063/1.4824178 – volume: 85 issue: 16 year: 2012 ident: 10.1016/j.jlumin.2024.120658_bib77 article-title: Fundamental temperature-dependent properties of the Si nanocrystal band gap publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.165306 – volume: 12 start-page: 340 year: 2018 ident: 10.1016/j.jlumin.2024.120658_bib28 article-title: Temperature dependence of photoluminescence of porous silicon publication-title: J. Energy Power Eng. – volume: 72 start-page: 36 year: 2012 ident: 10.1016/j.jlumin.2024.120658_bib57 article-title: Size–strain study of NiO nanoparticles by X-ray powder diffraction line broadening publication-title: Mater. Lett. doi: 10.1016/j.matlet.2011.12.046 – volume: 62 issue: 24 year: 2000 ident: 10.1016/j.jlumin.2024.120658_bib66 article-title: Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.16820 – start-page: 79 year: 2009 ident: 10.1016/j.jlumin.2024.120658_bib6 article-title: Silicon nanoparticles: excitonic fine structure and oscillator strength publication-title: Adv. Solid State Phys. doi: 10.1007/978-3-540-85859-1_7 – start-page: 277 year: 2013 ident: 10.1016/j.jlumin.2024.120658_bib14 article-title: Photoluminescence mechanism in silicon quantum rods studied by time-resolved spectroscopy doi: 10.1063/1.4810208 – volume: 60 start-page: 986 issue: 8 year: 1992 ident: 10.1016/j.jlumin.2024.120658_bib45 article-title: Anomalous temperature dependencies of photoluminescence for visible‐light‐emitting porous Si publication-title: Appl. Phys. Lett. doi: 10.1063/1.106482 – volume: 138 start-page: 85 year: 2019 ident: 10.1016/j.jlumin.2024.120658_bib4 article-title: Silicon nanocrystals: unfading silicon materials for optoelectronics publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/j.mser.2019.06.001 – volume: 130 issue: 3 year: 2021 ident: 10.1016/j.jlumin.2024.120658_bib39 article-title: Hot-carrier radiative recombination through phonon confinement in silicon nanocrystals embedded in colloidal xerogel matrix publication-title: J. Appl. Phys. doi: 10.1063/5.0047226 – volume: 255 start-page: 254 issue: 1–2 year: 1995 ident: 10.1016/j.jlumin.2024.120658_bib23 article-title: Interpretation of the temperature dependence of the strong visible photoluminescence of porous silicon publication-title: Thin Solid Films doi: 10.1016/0040-6090(94)05666-2 – volume: 13 start-page: 251 issue: 1 year: 2011 ident: 10.1016/j.jlumin.2024.120658_bib61 article-title: X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2010.11.024 – year: 2003 ident: 10.1016/j.jlumin.2024.120658_bib76 – volume: 236 start-page: 710 issue: 3 year: 2003 ident: 10.1016/j.jlumin.2024.120658_bib80 article-title: Semi‐empirical descriptions of temperature dependences of band gaps in semiconductors publication-title: physica status solidi (b) doi: 10.1002/pssb.200301752 – volume: 69 issue: 19 year: 2004 ident: 10.1016/j.jlumin.2024.120658_bib33 article-title: Excitons in Si nanocrystals: confinement and migration effects publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.195309 – volume: 53 start-page: 431 issue: 6 year: 2007 ident: 10.1016/j.jlumin.2024.120658_bib56 article-title: FTIR and photoluminescence studies of porous silicon layers oxidized in controlled water vapor conditions publication-title: Rev. Mexic. Fisica – volume: 4 issue: 8 year: 2017 ident: 10.1016/j.jlumin.2024.120658_bib72 article-title: Excitonic effects and related properties in semiconductor nanostructures: roles of size and dimensionality publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aa81da – volume: 98 start-page: 3575 issue: 14 year: 1994 ident: 10.1016/j.jlumin.2024.120658_bib75 article-title: Luminescence of silicon materials: chains, sheets, nanocrystals, nanowires, microcrystals, and porous silicon publication-title: J. Phys. Chem. doi: 10.1021/j100065a007 – volume: 23 issue: 47 year: 2012 ident: 10.1016/j.jlumin.2024.120658_bib17 article-title: Green light emission from terbium doped silicon rich silicon oxide films obtained by plasma enhanced chemical vapor deposition publication-title: Nanotechnology doi: 10.1088/0957-4484/23/47/475707 – volume: 69 start-page: 200 issue: 2 year: 1996 ident: 10.1016/j.jlumin.2024.120658_bib62 article-title: Raman shifts in Si nanocrystals publication-title: Appl. Phys. Lett. doi: 10.1063/1.117371 – volume: 6 issue: 9 year: 2011 ident: 10.1016/j.jlumin.2024.120658_bib43 article-title: The Scherrer equation versus the'Debye-Scherrer equation' publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.145 – volume: 105 issue: 7 year: 2009 ident: 10.1016/j.jlumin.2024.120658_bib50 article-title: Silicon and silicon oxide core-shell nanoparticles: structural and photoluminescence characteristics publication-title: J. Appl. Phys. doi: 10.1063/1.3100045 – volume: 21 start-page: 1336 issue: 4 year: 2021 ident: 10.1016/j.jlumin.2024.120658_bib20 article-title: Porous silicon optical devices: recent advances in biosensing applications publication-title: Sensors doi: 10.3390/s21041336 – volume: 80 start-page: 4834 issue: 25 year: 2002 ident: 10.1016/j.jlumin.2024.120658_bib9 article-title: Photoluminescence of size-separated silicon nanocrystals: confirmation of quantum confinement publication-title: Appl. Phys. Lett. doi: 10.1063/1.1485302 – volume: 201 start-page: 338 year: 2018 ident: 10.1016/j.jlumin.2024.120658_bib36 article-title: Effect of phonon confinement on photoluminescence from colloidal silicon nanostructures publication-title: J. Lumin. doi: 10.1016/j.jlumin.2018.04.052 – volume: 3 issue: 11 year: 2013 ident: 10.1016/j.jlumin.2024.120658_bib71 article-title: Improved value for the silicon free exciton binding energy publication-title: AIP Adv. doi: 10.1063/1.4828730 – volume: 86 issue: 12 year: 2012 ident: 10.1016/j.jlumin.2024.120658_bib37 article-title: Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.125302 – volume: 62 start-page: 5109 issue: 8 year: 2000 ident: 10.1016/j.jlumin.2024.120658_bib67 article-title: Method for tight-binding parametrization: application to silicon nanostructures publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.5109 – volume: 255 year: 2023 ident: 10.1016/j.jlumin.2024.120658_bib51 article-title: Deconvolution of photoluminescence spectra and electronic transition in carbon dots nanoparticles from microcrystalline cellulose publication-title: J. Lumin. doi: 10.1016/j.jlumin.2022.119607 – volume: 110 issue: 9 year: 2011 ident: 10.1016/j.jlumin.2024.120658_bib26 article-title: Temperature dependent photoluminescence from porous silicon nanostructures: quantum confinement and oxide related transitions publication-title: J. Appl. Phys. doi: 10.1063/1.3657771 – volume: 13 issue: 2 year: 2013 ident: 10.1016/j.jlumin.2024.120658_bib40 article-title: Typical of morphological properties of porous silicon publication-title: International Journal of Basic and Applied Sciences IJBAS-IJENS – volume: 9 start-page: 438 issue: 8 year: 1992 ident: 10.1016/j.jlumin.2024.120658_bib21 article-title: Temperature dependence of photoluminescence in porous silicon publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/9/8/013 – volume: 14 start-page: 12837 issue: 18 year: 2022 ident: 10.1016/j.jlumin.2024.120658_bib19 article-title: Synthesis gallium nitride on porous silicon nano-structure for optoelectronics devices publication-title: Silicon doi: 10.1007/s12633-022-01999-8 – volume: 23 start-page: 20 issue: 4 year: 1998 ident: 10.1016/j.jlumin.2024.120658_bib2 article-title: Applications of silicon-based optoelectronics publication-title: MRS Bull. doi: 10.1557/S0883769400030220 – volume: 8 start-page: 123 year: 2014 ident: 10.1016/j.jlumin.2024.120658_bib59 article-title: Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis publication-title: Journal of Theoretical and Applied Physics doi: 10.1007/s40094-014-0141-9 – volume: 17 start-page: 17227 issue: 20 year: 2009 ident: 10.1016/j.jlumin.2024.120658_bib30 article-title: Strong green photoluminescence from InxGa 1-xN/GaN nanorod arrays publication-title: Opt Express doi: 10.1364/OE.17.017227 – volume: 101 start-page: 1202 issue: 7 year: 1997 ident: 10.1016/j.jlumin.2024.120658_bib42 article-title: FTIR study of the oxidation of porous silicon publication-title: J. Phys. Chem. B doi: 10.1021/jp963322r – year: 2020 ident: 10.1016/j.jlumin.2024.120658_bib18 article-title: Optical study of porous silicon layers produced electrochemically for photovoltaic application |
SSID | ssj0003989 |
Score | 2.4504385 |
Snippet | Light emission from nanostructured silicon has triggered tremendous research interest for three decades. Yet, the exact mechanism of photoluminescence from... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 120658 |
SubjectTerms | Density of states Intrinsic transition Photoluminescence Silicon nanostructure Temperature dependent PL Transition mechanism |
Title | Impact of blue-shifted effective joint density of electronic states on the photoluminescence of nanostructured silicon |
URI | https://dx.doi.org/10.1016/j.jlumin.2024.120658 |
Volume | 273 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfQiWhXro-zB67bNO3ssxdIq9mSht5Dsg6aUpJhU6MXf7kw2oQriwVt22Q3L7DAzC9_3DSGPoasEdyVn8PoRzJU2Z4mXKBZoqNa19J1YIlH4de5PF-7z0lu2yLjhwiCsso79JqZX0bqeGdTWHGzTFDm-mNssVJTDLyTxoXod-HT_8wDzcHjIG8VwXN3Q5yqM1xoCQIoqqLbbt2zMxr-np28pZ3JOzupakY7McS5IS2Udcmy6R-475GTcNGuD2QrJKYpL8jGreI801zTZ7BQrVqmGqpIa4AbENrrO06ykEpHr5R7XHVrh0IpfVNA8o1AY0u0qL_Pq8JXok1C4Oouz3KjO7t7hv0W6AWfKrshi8vQ2nrK6uQIT8IooWZy4QsJrTohAC-ljc0GRhI4rfB07Q660TEIlhz7XnrCQUGtj-z4O5Z2dSAmGvCbtLM_UDaGQ4pQVCFupkLtiGMRaIl83QAwpF57oEtbYNNoaDY2oAZetI3MHEd5BZO6gS4LG8NEPX4ggzP-58_bfO-_IKY4MeuyetMGM6gHKjTLpVf7UI0ej2ct0_gWXJ9cO |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60RepFfOLbPXhdbdNtkj1KsbTa9lSht5DsA1NKUmwU_PfOZBMfIB68hc1uCLPLN7Pwfd8AXIfCKCm05Hj7UVxoT_KklxgeWKzWrfa7sSah8GTqD5_Ew7w334B-rYUhWmWF_Q7TS7SuRm6raN6u0pQ0vpTbOuQoR09yE5rkTiUa0LwbPQ6nn4DclaGsTcNpQa2gK2leC8SAlIxQPXHT8Sgh_56hvmWdwS7sVOUiu3N_tAcbJtuHLddA8n0fWv26XxuOlmROtT6At1EpfWS5Zcny1fD1c2qxsGSOu4HwxhZ5mhVME3m9eKd5X91wWCkxWrM8Y1gbstVzXuTlz5e-T8rQ7CzOcmc8-_qC312nSzxP2SE8De5n_SGv-itwhReJgseJUBovdEoFVmmf-guqJOwK5du425bG6iQ0uu1L21Md0tR61MFPYoXnJVpjII-gkeWZOQaGWc50AuUZE0qh2kFsNUl2A6KRStVTJ8DrmEYrZ6MR1fyyReT2IKI9iNwenEBQBz76cRwiRPo_V57-e-UVtIazyTgaj6aPZ7BNbxyZ7BwaGFJzgdVHkVxWp-sD_oHZvw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+blue-shifted+effective+joint+density+of+electronic+states+on+the+photoluminescence+of+nanostructured+silicon&rft.jtitle=Journal+of+luminescence&rft.au=Basu%2C+Shayari&rft.au=Ghanta%2C+Ujjwal&rft.au=Roy+Chowdhury%2C+Subhajit&rft.au=Pramanik%2C+Manotosh&rft.date=2024-09-01&rft.issn=0022-2313&rft.volume=273&rft.spage=120658&rft_id=info:doi/10.1016%2Fj.jlumin.2024.120658&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jlumin_2024_120658 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2313&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2313&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2313&client=summon |