Aptamer-guided luminous microsphere for anchoring and lightening Salmonella enterica serovar Typhimurium
Aptamers are recognition elements that are easy to synthesize and store, but their softness makes their stability and affinity subject to the influence of the environment. Herein, by taking advantage of the aptamer-specific ability to recognize targets and the fluorescence of nontoxic carbon dots (C...
Saved in:
Published in | Sensors and actuators. B, Chemical Vol. 366; p. 131938 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.09.2022
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aptamers are recognition elements that are easy to synthesize and store, but their softness makes their stability and affinity subject to the influence of the environment. Herein, by taking advantage of the aptamer-specific ability to recognize targets and the fluorescence of nontoxic carbon dots (CDs), we constructed aptamer-guided luminous microspheres (~200 nm in size). These microspheres, with tetrahedral DNA (Td) as the skeleton, can actively recognize Salmonella enterica serovar Typhimurium (S. Typhimurium) and fluoresce after sensitively binding to the target. The fluorescence intensity emitted by the microspheres increased 3.05 times. The limitation of detection was 9 CFU/mL, with a detection range of 10–108 CFU/mL, and the recovery rate in qualified pasteurized milk and drinking water samples was 95.35–103.01%. Additionally, this presented fluorescence signal amplification strategy provides novel insights into the analysis of various food threat factors and other fluorescence imaging applications.
[Display omitted]
•Tetrahedron-aptamer DNA fluorescent microspheres are first prepared.•A signal amplification system for non-toxic quantum dot was constructed.•This strategy provides new insights for other fluorescence imaging. |
---|---|
AbstractList | Aptamers are recognition elements that are easy to synthesize and store, but their softness makes their stability and affinity subject to the influence of the environment. Herein, by taking advantage of the aptamer-specific ability to recognize targets and the fluorescence of nontoxic carbon dots (CDs), we constructed aptamer-guided luminous microspheres (~200 nm in size). These microspheres, with tetrahedral DNA (Td) as the skeleton, can actively recognize Salmonella enterica serovar Typhimurium (S. Typhimurium) and fluoresce after sensitively binding to the target. The fluorescence intensity emitted by the microspheres increased 3.05 times. The limitation of detection was 9 CFU/mL, with a detection range of 10–108 CFU/mL, and the recovery rate in qualified pasteurized milk and drinking water samples was 95.35–103.01%. Additionally, this presented fluorescence signal amplification strategy provides novel insights into the analysis of various food threat factors and other fluorescence imaging applications.
[Display omitted]
•Tetrahedron-aptamer DNA fluorescent microspheres are first prepared.•A signal amplification system for non-toxic quantum dot was constructed.•This strategy provides new insights for other fluorescence imaging. Aptamers are recognition elements that are easy to synthesize and store, but their softness makes their stability and affinity subject to the influence of the environment. Herein, by taking advantage of the aptamer-specific ability to recognize targets and the fluorescence of nontoxic carbon dots (CDs), we constructed aptamer-guided luminous microspheres (~200 nm in size). These microspheres, with tetrahedral DNA (Td) as the skeleton, can actively recognize Salmonella enterica serovar Typhimurium (S. Typhimurium) and fluoresce after sensitively binding to the target. The fluorescence intensity emitted by the microspheres increased 3.05 times. The limitation of detection was 9 CFU/mL, with a detection range of 10–108 CFU/mL, and the recovery rate in qualified pasteurized milk and drinking water samples was 95.35–103.01%. Additionally, this presented fluorescence signal amplification strategy provides novel insights into the analysis of various food threat factors and other fluorescence imaging applications. |
ArticleNumber | 131938 |
Author | Wu, Wei Du, Han Yang, Qingli Yao, Mingru Zhang, Xu |
Author_xml | – sequence: 1 givenname: Han surname: Du fullname: Du, Han organization: College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China – sequence: 2 givenname: Xu surname: Zhang fullname: Zhang, Xu organization: State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China – sequence: 3 givenname: Mingru surname: Yao fullname: Yao, Mingru organization: College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China – sequence: 4 givenname: Qingli surname: Yang fullname: Yang, Qingli email: rice407@163.com organization: College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China – sequence: 5 givenname: Wei surname: Wu fullname: Wu, Wei email: wuweiouc@126.com organization: College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China |
BookMark | eNp9kE9r3DAQxUVJoZttP0Bvhp691T9bu_S0LE1aCOSQ9CxkabzWYkvuSA7k20dme-ohp5mB95uZ927JTYgBCPnK6I5R1n6_7FLodpxyvmOCHcT-A9mwvRK1oErdkA098KaWlDafyG1KF0qpFC3dkOE4ZzMB1ufFO3DVuEw-xCVVk7cY0zwAQtVHrEywQ0QfzqUrMn8eMoR1fDLjVH4ZR1NByIDemioBxheD1fPrPPhpQb9Mn8nH3owJvvyrW_Ln7ufz6Vf98Hj_-3R8qC1vmlwb7hjjjrcgQdDe9tR1tuEdBdVK5g693IvetYo2ZbKmUx2XB6a6jkruZCPElny77p0x_l0gZX2JC4ZyUnO1aqVSrKjUVbWaTAi9tj6b7GPIaPyoGdVrrPqiS6x6jVVfYy0k-4-c0U8GX99lflwZKMZfPKBO1kOw4DyCzdpF_w79BtCTlBA |
CitedBy_id | crossref_primary_10_1016_j_snb_2024_136733 crossref_primary_10_1021_acs_analchem_4c05947 crossref_primary_10_1016_j_saa_2024_124794 crossref_primary_10_1016_j_biotechadv_2024_108436 crossref_primary_10_3390_bios13030401 crossref_primary_10_1016_j_sna_2022_113925 crossref_primary_10_1016_j_jgeb_2024_100400 crossref_primary_10_1007_s41664_022_00239_7 crossref_primary_10_1016_j_ccr_2025_216457 crossref_primary_10_1016_j_snb_2023_133679 |
Cites_doi | 10.1016/j.talanta.2019.01.001 10.1016/j.ijfoodmicro.2017.09.002 10.1016/j.bios.2021.113288 10.1016/j.foodcont.2017.07.016 10.1021/jacs.9b09292 10.1038/s41467-020-16112-z 10.1016/j.bios.2016.05.079 10.1016/j.ijfoodmicro.2015.11.006 10.1021/jacs.9b06450 10.1371/journal.pone.0206316 10.1016/j.bios.2016.07.105 10.1021/acs.analchem.5b03320 10.1002/adma.201200164 10.1007/s40820-021-00753-w 10.1016/j.bios.2021.113057 10.1021/am503517s 10.1021/jacs.9b04725 10.1007/s00604-019-3827-5 10.1126/sciadv.aba9381 10.1021/acs.langmuir.8b01818 10.1039/c3ob41837e 10.1016/j.aca.2019.09.015 10.1021/jf101778t 10.1021/jacs.7b09789 10.1021/acsami.1c02612 10.1021/acsnano.9b00728 10.1007/978-1-4939-6454-3_12 10.1021/acsnano.7b00373 10.1016/j.foodchem.2019.125359 10.1021/acsami.1c21528 10.1002/anie.201300519 10.1021/acs.analchem.0c03405 10.1016/j.jhazmat.2020.123942 10.1016/j.tifs.2021.01.065 10.1126/sciadv.abb0695 10.1126/sciadv.abb6772 10.1016/j.jphotobiol.2019.01.004 10.1016/j.trac.2021.116371 10.7150/thno.8007 10.1007/s00604-019-3277-0 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. Copyright Elsevier Science Ltd. Sep 1, 2022 |
Copyright_xml | – notice: 2023 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Sep 1, 2022 |
DBID | AAYXX CITATION 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
DOI | 10.1016/j.snb.2022.131938 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3077 |
ExternalDocumentID | 10_1016_j_snb_2022_131938 S0925400522005809 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSK SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ R2- RIG SCB SCH SEW SSH WUQ 7SP 7SR 7TB 7U5 8BQ 8FD EFKBS FR3 JG9 L7M |
ID | FETCH-LOGICAL-c255t-a2d112d26e4e30fcf0dbc52b0e7641d9f483fd670541dcab7b24917bb042d4533 |
IEDL.DBID | .~1 |
ISSN | 0925-4005 |
IngestDate | Fri Jul 25 07:35:39 EDT 2025 Thu Apr 24 23:12:38 EDT 2025 Tue Jul 01 01:28:05 EDT 2025 Fri Feb 23 02:39:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Carbon dot DNA tetrahedron Salmonella enterica serovar Typhimurium Aptamer Sandwich biosensor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-a2d112d26e4e30fcf0dbc52b0e7641d9f483fd670541dcab7b24917bb042d4533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2724914771 |
PQPubID | 2047454 |
ParticipantIDs | proquest_journals_2724914771 crossref_citationtrail_10_1016_j_snb_2022_131938 crossref_primary_10_1016_j_snb_2022_131938 elsevier_sciencedirect_doi_10_1016_j_snb_2022_131938 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 2022-09-00 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. B, Chemical |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Carrillo-Carrion, Bocanegra, Arnaiz, Feliu, Zhu, Parak (bib38) 2019; 13 Ma, Li, Qiao, Huang, Liu, Shen, Geng, Xu, Sun (bib21) 2020; 302 Liu, Tian, Wang, Zhang, Qin, Luo, Asiri, Al-Youbi, Sun (bib13) 2012; 24 Li, Dai, Jiang, Xie, Zhai, Guo, Cao, Xing, Qu, Zhao, Wang, Yang, Liu, Zuo, Wang, Yan, Fan (bib36) 2020; 11 Yi, Wu, Li, Xiao, Li, He, He, Ding, Chen (bib41) 2019; 186 Fang, Song, Zhuo, Chen, Zhu, Long (bib44) 2021; 185 Jiang, Fu, Liu, Shu, Davis, Tofaris (bib7) 2022; 14 Cheng, Yu, Fu, Han, Li, Xie, Song, Swihart, Song (bib5) 2016; 88 Zhang, Lu, Chen, Han, Ma (bib17) 2014; 4 Zhao, Qi, Yan, Huang, Liang, Zhang, Wang, Tan (bib22) 2019; 141 Mutreja, Jariyal, Pathania, Sharma, Sahoo, Suri (bib2) 2016; 85 Li, Xun, Pei, Liu, Peng, Du, Qiu, Tan (bib28) 2019; 141 Zhu, Meng, Wang, Zhang, Song, Jin, Zhang, Sun, Wang, Yang (bib33) 2013; 52 Moutsiopoulou, Broyles, Dikici, Daunert, Deo (bib24) 2019; 15 Germeroth, Hanna, Karim, Kundel, Lowther, Neate, Blackburn, Wear, Campopiano, Hulme (bib32) 2013; 11 Xu, Gao, Zhou, Lin, Lu, Tang (bib10) 2016; 86 Heymans, Vila, van Heerwaarden, Jansen, Castelijn, van der Voort, Biesta-Peters (bib39) 2018; 13 Tang, Yu, Bui, Wang, Xing, Wang, Chen, Hu, Chen (bib14) 2021; 6 Zhao, Li, Zhang, Yan, Zhou, Du, Qu, Song, Zhou, Qu, Yang (bib18) 2021; 179 Wang, Li, Yin, Liu, Guo, Lai, Han, Li, Li, Zhang, Vajtai, Ajayan, Wu (bib11) 2020; 6 Wu, Chen, Zhao, Yu, Wei, Zhao (bib27) 2018; 34 Ge, Hu, Deng, Li, Zhang, Shi, Yang, Cai, Tan (bib8) 2020; 92 Ebrahimi, Samanta, Cheng, Nathan, Mirkin (bib25) 2019; 141 Wu, Duan, Qiu, Li, Wang (bib40) 2017; 261 Chen, Ling Ren, Liu, Sai, Liu, Liu, Gao, an Ning (bib31) 2010; 58 WHO, Food safety, 2020. Du, Wang, Yang, Wu (bib3) 2021; 110 Ren, Xu, Huang, Kuang, Xiong, Xu, Xu, Chen, Wang (bib16) 2014; 6 Qin, Liu, Zhang, Li, Yuan, Zhang, Chen (bib6) 2021; 143 (accessed October 21, 2020). Hong, Zhang, Ye, Yang, Huang, Yang, Cai, Tan (bib29) 2021; 13 Chapman (bib4) 2018 Di, Liu, Zhao, Gu, Zhao, Li (bib20) 2020; 6 Li, Luo, Jin, Zhang, Yang, Cai, Tan (bib23) 2022; 14 Perrault, Shih (bib19) 2017 Wang, Zhang, Wan, Cansiz, Cui, Liu, Cai, Hong, Teng, Shi, Wu, Dong, Tan (bib26) 2017; 11 Dong, Li, Sun, Li, Mari, Yu, Yu, Wen, Shen, Wang (bib15) 2021; 402 Duan, Chang, Zhang, Wang, Wu (bib42) 2016; 218 Tammina, Yang, Koppala, Cheng, Yang (bib30) 2019; 194 Wu, Chen, Lin, Chen, Chen, Chang, Tseng (bib9) 2019; 186 He, Lu, Liang, Xie, Zhang, Liu, Yuan, Tan (bib34) 2018; 140 Ma, Xu, Xia, Wang (bib43) 2018; 84 Ma, Chen, Xie, Wang, Wang, Wang, Li, Yang, Li (bib37) 2019; 196 Zhou, Gao, Fu, Wang, Luo, Chang, Chen (bib35) 2020; 6 Liu, Luo, Wu, Ma, Wu, Xu, Li, Liu (bib12) 2019; 1090 Hong (10.1016/j.snb.2022.131938_bib29) 2021; 13 Di (10.1016/j.snb.2022.131938_bib20) 2020; 6 Tammina (10.1016/j.snb.2022.131938_bib30) 2019; 194 Jiang (10.1016/j.snb.2022.131938_bib7) 2022; 14 Zhao (10.1016/j.snb.2022.131938_bib18) 2021; 179 Perrault (10.1016/j.snb.2022.131938_bib19) 2017 Zhang (10.1016/j.snb.2022.131938_bib17) 2014; 4 Zhou (10.1016/j.snb.2022.131938_bib35) 2020; 6 Ma (10.1016/j.snb.2022.131938_bib37) 2019; 196 Tang (10.1016/j.snb.2022.131938_bib14) 2021; 6 Wang (10.1016/j.snb.2022.131938_bib26) 2017; 11 Cheng (10.1016/j.snb.2022.131938_bib5) 2016; 88 Zhu (10.1016/j.snb.2022.131938_bib33) 2013; 52 Fang (10.1016/j.snb.2022.131938_bib44) 2021; 185 Ma (10.1016/j.snb.2022.131938_bib21) 2020; 302 Xu (10.1016/j.snb.2022.131938_bib10) 2016; 86 Li (10.1016/j.snb.2022.131938_bib36) 2020; 11 Dong (10.1016/j.snb.2022.131938_bib15) 2021; 402 Ge (10.1016/j.snb.2022.131938_bib8) 2020; 92 He (10.1016/j.snb.2022.131938_bib34) 2018; 140 Germeroth (10.1016/j.snb.2022.131938_bib32) 2013; 11 Chapman (10.1016/j.snb.2022.131938_bib4) 2018 Liu (10.1016/j.snb.2022.131938_bib13) 2012; 24 Li (10.1016/j.snb.2022.131938_bib23) 2022; 14 10.1016/j.snb.2022.131938_bib1 Liu (10.1016/j.snb.2022.131938_bib12) 2019; 1090 Qin (10.1016/j.snb.2022.131938_bib6) 2021; 143 Heymans (10.1016/j.snb.2022.131938_bib39) 2018; 13 Ebrahimi (10.1016/j.snb.2022.131938_bib25) 2019; 141 Wu (10.1016/j.snb.2022.131938_bib27) 2018; 34 Li (10.1016/j.snb.2022.131938_bib28) 2019; 141 Yi (10.1016/j.snb.2022.131938_bib41) 2019; 186 Mutreja (10.1016/j.snb.2022.131938_bib2) 2016; 85 Wu (10.1016/j.snb.2022.131938_bib40) 2017; 261 Chen (10.1016/j.snb.2022.131938_bib31) 2010; 58 Wu (10.1016/j.snb.2022.131938_bib9) 2019; 186 Ma (10.1016/j.snb.2022.131938_bib43) 2018; 84 Wang (10.1016/j.snb.2022.131938_bib11) 2020; 6 Ren (10.1016/j.snb.2022.131938_bib16) 2014; 6 Duan (10.1016/j.snb.2022.131938_bib42) 2016; 218 Du (10.1016/j.snb.2022.131938_bib3) 2021; 110 Zhao (10.1016/j.snb.2022.131938_bib22) 2019; 141 Moutsiopoulou (10.1016/j.snb.2022.131938_bib24) 2019; 15 Carrillo-Carrion (10.1016/j.snb.2022.131938_bib38) 2019; 13 |
References_xml | – volume: 141 start-page: 17493 year: 2019 end-page: 17497 ident: bib22 article-title: Engineering aptamer with enhanced affinity by triple helix-based terminal fixation publication-title: J. Am. Chem. Soc. – volume: 88 start-page: 820 year: 2016 end-page: 825 ident: bib5 article-title: Dual recognition strategy for specific and sensitive detection of bacteria using aptamer-coated magnetic beads and antibiotic-capped gold nanoclusters publication-title: Anal. Chem. – volume: 13 start-page: 4631 year: 2019 end-page: 4639 ident: bib38 article-title: Triple-labeling of polymer-coated quantum dots and adsorbed proteins for tracing their fate in cell cultures publication-title: ACS Nano – volume: 14 start-page: 3 year: 2022 ident: bib7 article-title: Multiplexed profiling of extracellular vesicles for biomarker development publication-title: Nano-Micro Lett. – reference: (accessed October 21, 2020). – volume: 11 start-page: 2185 year: 2020 ident: bib36 article-title: Encoding quantized fluorescence states with fractal DNA frameworks publication-title: Nat. Commun. – volume: 141 start-page: 13744 year: 2019 end-page: 13748 ident: bib25 article-title: Forced intercalation (FIT)-aptamers publication-title: J. Am. Chem. Soc. – volume: 1090 start-page: 133 year: 2019 end-page: 142 ident: bib12 article-title: Hydrothermal synthesis of green fluorescent nitrogen doped carbon dots for the detection of nitrite and multicolor cellular imaging publication-title: Anal. Chim. Acta – volume: 11 start-page: 3943 year: 2017 end-page: 3949 ident: bib26 article-title: Aptasensor with expanded nucleotide using DNA nanotetrahedra for electrochemical detection of cancerous exosomes publication-title: ACS Nano – volume: 13 start-page: 19695 year: 2021 end-page: 19700 ident: bib29 article-title: Aptamer-pendant DNA tetrahedron nanostructure probe for ultrasensitive detection of tetracycline by coupling target-triggered rolling circle amplification publication-title: ACS Appl. Mater. Interfaces – volume: 261 start-page: 42 year: 2017 end-page: 48 ident: bib40 article-title: Colorimetric aptasensor for the detection of Salmonella enterica serovar typhimurium using ZnFe 2 O 4 -reduced graphene oxide nanostructures as an effective peroxidase mimetics publication-title: Int. J. Food Microbiol. – volume: 186 start-page: 166 year: 2019 ident: bib9 article-title: Nitrogen-doped carbon nanodots prepared from polyethylenimine for fluorometric determination of salivary uric acid publication-title: Microchim. Acta – volume: 11 start-page: 7700 year: 2013 ident: bib32 article-title: Triazole biotin: a tight-binding biotinidase-resistant conjugate publication-title: Org. Biomol. Chem. – volume: 6 year: 2020 ident: bib20 article-title: An orthogonally regulatable DNA nanodevice for spatiotemporally controlled biorecognition and tumor treatment publication-title: Sci. Adv. – volume: 194 start-page: 61 year: 2019 end-page: 70 ident: bib30 article-title: Highly photoluminescent N, P doped carbon quantum dots as a fluorescent sensor for the detection of dopamine and temperature publication-title: J. Photochem. Photobiol. B: Biol. – volume: 185 year: 2021 ident: bib44 article-title: Simultaneous and sensitive determination of Escherichia coli O157:H7 and Salmonella Typhimurium using evanescent wave dual-color fluorescence aptasensor based on micro/nano size effect publication-title: Biosens. Bioelectron. – volume: 143 year: 2021 ident: bib6 article-title: Microfluidic paper-based chips in rapid detection: current status, challenges, and perspectives publication-title: Trends Anal. Chem. – volume: 84 start-page: 232 year: 2018 end-page: 237 ident: bib43 article-title: SERS aptasensor for Salmonella typhimurium detection based on spiny gold nanoparticles publication-title: Food Control – volume: 4 start-page: 307 year: 2014 end-page: 315 ident: bib17 article-title: Simple and sensitive detection of HBsAg by using a quantum dots nanobeads based dot-blot immunoassay publication-title: Theranostics – volume: 15 year: 2019 ident: bib24 article-title: Molecular aptamer beacons and their applications in sensing, imaging, and diagnostics publication-title: Small – volume: 92 start-page: 13588 year: 2020 end-page: 13594 ident: bib8 article-title: Highly sensitive MicroRNA detection by coupling nicking-enhanced rolling circle amplification with MoS 2 quantum dots publication-title: Anal. Chem. – volume: 218 start-page: 38 year: 2016 end-page: 43 ident: bib42 article-title: Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor publication-title: Int. J. Food Microbiol. – volume: 58 start-page: 8895 year: 2010 end-page: 8903 ident: bib31 article-title: A fluoroimmunoassay based on quantum dot−streptavidin conjugate for the detection of chlorpyrifos publication-title: J. Agric. Food Chem. – start-page: 249 year: 2018 end-page: 260 ident: bib4 article-title: Local food systems food safety concerns publication-title: Preharvest Food Safety – volume: 140 start-page: 258 year: 2018 end-page: 263 ident: bib34 article-title: mRNA-initiated, three-dimensional DNA amplifier able to function inside living cells publication-title: J. Am. Chem. Soc. – volume: 86 start-page: 978 year: 2016 end-page: 984 ident: bib10 article-title: Terbium ion-coordinated carbon dots for fluorescent aptasensing of adenosine 5′-triphosphate with unmodified gold nanoparticles publication-title: Biosens. Bioelectron. – volume: 302 year: 2020 ident: bib21 article-title: A simple and rapid sensing strategy based on structure-switching signaling aptamers for the sensitive detection of chloramphenicol publication-title: Food Chem. – reference: WHO, Food safety, 2020. – volume: 6 year: 2020 ident: bib11 article-title: Full-color fluorescent carbon quantum dots publication-title: Sci. Adv. – volume: 6 year: 2020 ident: bib35 article-title: Three-dimensional DNA tweezers serve as modular DNA intelligent machines for detection and regulation of intracellular microRNA publication-title: Sci. Adv. – volume: 13 year: 2018 ident: bib39 article-title: Rapid detection and differentiation of Salmonella species, Salmonella Typhimurium and Salmonella Enteritidis by multiplex quantitative PCR publication-title: PLOS One – volume: 85 start-page: 707 year: 2016 end-page: 713 ident: bib2 article-title: Novel surface antigen based impedimetric immunosensor for detection of Salmonella typhimurium in water and juice samples publication-title: Biosens. Bioelectron. – volume: 34 start-page: 14721 year: 2018 end-page: 14730 ident: bib27 article-title: Functional and biomimetic DNA nanostructures on lipid membranes publication-title: Langmuir – volume: 196 start-page: 563 year: 2019 end-page: 571 ident: bib37 article-title: Doping effect and fluorescence quenching mechanism of N-doped graphene quantum dots in the detection of dopamine publication-title: Talanta – volume: 24 start-page: 2037 year: 2012 end-page: 2041 ident: bib13 article-title: Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions publication-title: Adv. Mater. – volume: 6 start-page: 1541 year: 2021 end-page: 1554 ident: bib14 article-title: Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples publication-title: Bioact. Mater. – volume: 110 start-page: 1 year: 2021 end-page: 12 ident: bib3 article-title: Quantum dot: lightning invisible foodborne pathogens publication-title: Trends Food Sci. Technol. – volume: 402 year: 2021 ident: bib15 article-title: Magnetic assisted fluorescence immunoassay for sensitive chloramphenicol detection using carbon dots@CaCO3 nanocomposites publication-title: J. Hazard. Mater. – volume: 141 start-page: 18013 year: 2019 end-page: 18020 ident: bib28 article-title: Cell-membrane-anchored DNA nanoplatform for programming cellular interactions publication-title: J. Am. Chem. Soc. – volume: 186 start-page: 711 year: 2019 ident: bib41 article-title: A composite prepared from carboxymethyl chitosan and aptamer-modified gold nanoparticles for the colorimetric determination of Salmonella typhimurium publication-title: Microchim. Acta – volume: 6 start-page: 14215 year: 2014 end-page: 14222 ident: bib16 article-title: Immunochromatographic assay for ultrasensitive detection of aflatoxin B 1 in maize by highly luminescent quantum dot beads publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 383 year: 2022 end-page: 389 ident: bib23 article-title: Plasmon-enhanced electrochemiluminescence of PTP-decorated Eu MOF-Based Pt-tipped Au bimetallic nanorods for the lincomycin assay publication-title: ACS Appl. Mater. Interfaces – start-page: 165 year: 2017 end-page: 184 ident: bib19 article-title: Lipid membrane encapsulation of a 3D DNA nano octahedron publication-title: 3D DNA Nanostruct. – volume: 179 year: 2021 ident: bib18 article-title: Cell-based fluorescent microsphere incorporated with carbon dots as a sensitive immunosensor for the rapid detection of Escherichia coli O157 in milk publication-title: Biosens. Bioelectron. – volume: 52 start-page: 3953 year: 2013 end-page: 3957 ident: bib33 article-title: Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging publication-title: Angew. Chem. Int. Ed. – volume: 196 start-page: 563 year: 2019 ident: 10.1016/j.snb.2022.131938_bib37 article-title: Doping effect and fluorescence quenching mechanism of N-doped graphene quantum dots in the detection of dopamine publication-title: Talanta doi: 10.1016/j.talanta.2019.01.001 – volume: 261 start-page: 42 year: 2017 ident: 10.1016/j.snb.2022.131938_bib40 article-title: Colorimetric aptasensor for the detection of Salmonella enterica serovar typhimurium using ZnFe 2 O 4 -reduced graphene oxide nanostructures as an effective peroxidase mimetics publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2017.09.002 – volume: 185 year: 2021 ident: 10.1016/j.snb.2022.131938_bib44 article-title: Simultaneous and sensitive determination of Escherichia coli O157:H7 and Salmonella Typhimurium using evanescent wave dual-color fluorescence aptasensor based on micro/nano size effect publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113288 – volume: 84 start-page: 232 year: 2018 ident: 10.1016/j.snb.2022.131938_bib43 article-title: SERS aptasensor for Salmonella typhimurium detection based on spiny gold nanoparticles publication-title: Food Control doi: 10.1016/j.foodcont.2017.07.016 – volume: 6 start-page: 1541 year: 2021 ident: 10.1016/j.snb.2022.131938_bib14 article-title: Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples publication-title: Bioact. Mater. – volume: 141 start-page: 17493 year: 2019 ident: 10.1016/j.snb.2022.131938_bib22 article-title: Engineering aptamer with enhanced affinity by triple helix-based terminal fixation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09292 – volume: 11 start-page: 2185 year: 2020 ident: 10.1016/j.snb.2022.131938_bib36 article-title: Encoding quantized fluorescence states with fractal DNA frameworks publication-title: Nat. Commun. doi: 10.1038/s41467-020-16112-z – volume: 85 start-page: 707 year: 2016 ident: 10.1016/j.snb.2022.131938_bib2 article-title: Novel surface antigen based impedimetric immunosensor for detection of Salmonella typhimurium in water and juice samples publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.05.079 – volume: 218 start-page: 38 year: 2016 ident: 10.1016/j.snb.2022.131938_bib42 article-title: Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2015.11.006 – volume: 141 start-page: 13744 year: 2019 ident: 10.1016/j.snb.2022.131938_bib25 article-title: Forced intercalation (FIT)-aptamers publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b06450 – volume: 13 year: 2018 ident: 10.1016/j.snb.2022.131938_bib39 article-title: Rapid detection and differentiation of Salmonella species, Salmonella Typhimurium and Salmonella Enteritidis by multiplex quantitative PCR publication-title: PLOS One doi: 10.1371/journal.pone.0206316 – volume: 86 start-page: 978 year: 2016 ident: 10.1016/j.snb.2022.131938_bib10 article-title: Terbium ion-coordinated carbon dots for fluorescent aptasensing of adenosine 5′-triphosphate with unmodified gold nanoparticles publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.07.105 – volume: 88 start-page: 820 year: 2016 ident: 10.1016/j.snb.2022.131938_bib5 article-title: Dual recognition strategy for specific and sensitive detection of bacteria using aptamer-coated magnetic beads and antibiotic-capped gold nanoclusters publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b03320 – ident: 10.1016/j.snb.2022.131938_bib1 – volume: 24 start-page: 2037 year: 2012 ident: 10.1016/j.snb.2022.131938_bib13 article-title: Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions publication-title: Adv. Mater. doi: 10.1002/adma.201200164 – start-page: 249 year: 2018 ident: 10.1016/j.snb.2022.131938_bib4 article-title: Local food systems food safety concerns – volume: 14 start-page: 3 year: 2022 ident: 10.1016/j.snb.2022.131938_bib7 article-title: Multiplexed profiling of extracellular vesicles for biomarker development publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00753-w – volume: 179 year: 2021 ident: 10.1016/j.snb.2022.131938_bib18 article-title: Cell-based fluorescent microsphere incorporated with carbon dots as a sensitive immunosensor for the rapid detection of Escherichia coli O157 in milk publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113057 – volume: 6 start-page: 14215 year: 2014 ident: 10.1016/j.snb.2022.131938_bib16 article-title: Immunochromatographic assay for ultrasensitive detection of aflatoxin B 1 in maize by highly luminescent quantum dot beads publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am503517s – volume: 141 start-page: 18013 year: 2019 ident: 10.1016/j.snb.2022.131938_bib28 article-title: Cell-membrane-anchored DNA nanoplatform for programming cellular interactions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04725 – volume: 186 start-page: 711 year: 2019 ident: 10.1016/j.snb.2022.131938_bib41 article-title: A composite prepared from carboxymethyl chitosan and aptamer-modified gold nanoparticles for the colorimetric determination of Salmonella typhimurium publication-title: Microchim. Acta doi: 10.1007/s00604-019-3827-5 – volume: 6 year: 2020 ident: 10.1016/j.snb.2022.131938_bib20 article-title: An orthogonally regulatable DNA nanodevice for spatiotemporally controlled biorecognition and tumor treatment publication-title: Sci. Adv. doi: 10.1126/sciadv.aba9381 – volume: 34 start-page: 14721 year: 2018 ident: 10.1016/j.snb.2022.131938_bib27 article-title: Functional and biomimetic DNA nanostructures on lipid membranes publication-title: Langmuir doi: 10.1021/acs.langmuir.8b01818 – volume: 11 start-page: 7700 year: 2013 ident: 10.1016/j.snb.2022.131938_bib32 article-title: Triazole biotin: a tight-binding biotinidase-resistant conjugate publication-title: Org. Biomol. Chem. doi: 10.1039/c3ob41837e – volume: 1090 start-page: 133 year: 2019 ident: 10.1016/j.snb.2022.131938_bib12 article-title: Hydrothermal synthesis of green fluorescent nitrogen doped carbon dots for the detection of nitrite and multicolor cellular imaging publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2019.09.015 – volume: 58 start-page: 8895 year: 2010 ident: 10.1016/j.snb.2022.131938_bib31 article-title: A fluoroimmunoassay based on quantum dot−streptavidin conjugate for the detection of chlorpyrifos publication-title: J. Agric. Food Chem. doi: 10.1021/jf101778t – volume: 140 start-page: 258 year: 2018 ident: 10.1016/j.snb.2022.131938_bib34 article-title: mRNA-initiated, three-dimensional DNA amplifier able to function inside living cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09789 – volume: 13 start-page: 19695 year: 2021 ident: 10.1016/j.snb.2022.131938_bib29 article-title: Aptamer-pendant DNA tetrahedron nanostructure probe for ultrasensitive detection of tetracycline by coupling target-triggered rolling circle amplification publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c02612 – volume: 13 start-page: 4631 year: 2019 ident: 10.1016/j.snb.2022.131938_bib38 article-title: Triple-labeling of polymer-coated quantum dots and adsorbed proteins for tracing their fate in cell cultures publication-title: ACS Nano doi: 10.1021/acsnano.9b00728 – start-page: 165 year: 2017 ident: 10.1016/j.snb.2022.131938_bib19 article-title: Lipid membrane encapsulation of a 3D DNA nano octahedron publication-title: 3D DNA Nanostruct. doi: 10.1007/978-1-4939-6454-3_12 – volume: 11 start-page: 3943 year: 2017 ident: 10.1016/j.snb.2022.131938_bib26 article-title: Aptasensor with expanded nucleotide using DNA nanotetrahedra for electrochemical detection of cancerous exosomes publication-title: ACS Nano doi: 10.1021/acsnano.7b00373 – volume: 302 year: 2020 ident: 10.1016/j.snb.2022.131938_bib21 article-title: A simple and rapid sensing strategy based on structure-switching signaling aptamers for the sensitive detection of chloramphenicol publication-title: Food Chem. doi: 10.1016/j.foodchem.2019.125359 – volume: 14 start-page: 383 year: 2022 ident: 10.1016/j.snb.2022.131938_bib23 article-title: Plasmon-enhanced electrochemiluminescence of PTP-decorated Eu MOF-Based Pt-tipped Au bimetallic nanorods for the lincomycin assay publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c21528 – volume: 52 start-page: 3953 year: 2013 ident: 10.1016/j.snb.2022.131938_bib33 article-title: Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201300519 – volume: 92 start-page: 13588 year: 2020 ident: 10.1016/j.snb.2022.131938_bib8 article-title: Highly sensitive MicroRNA detection by coupling nicking-enhanced rolling circle amplification with MoS 2 quantum dots publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c03405 – volume: 402 year: 2021 ident: 10.1016/j.snb.2022.131938_bib15 article-title: Magnetic assisted fluorescence immunoassay for sensitive chloramphenicol detection using carbon dots@CaCO3 nanocomposites publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123942 – volume: 110 start-page: 1 year: 2021 ident: 10.1016/j.snb.2022.131938_bib3 article-title: Quantum dot: lightning invisible foodborne pathogens publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2021.01.065 – volume: 6 year: 2020 ident: 10.1016/j.snb.2022.131938_bib35 article-title: Three-dimensional DNA tweezers serve as modular DNA intelligent machines for detection and regulation of intracellular microRNA publication-title: Sci. Adv. doi: 10.1126/sciadv.abb0695 – volume: 6 year: 2020 ident: 10.1016/j.snb.2022.131938_bib11 article-title: Full-color fluorescent carbon quantum dots publication-title: Sci. Adv. doi: 10.1126/sciadv.abb6772 – volume: 194 start-page: 61 year: 2019 ident: 10.1016/j.snb.2022.131938_bib30 article-title: Highly photoluminescent N, P doped carbon quantum dots as a fluorescent sensor for the detection of dopamine and temperature publication-title: J. Photochem. Photobiol. B: Biol. doi: 10.1016/j.jphotobiol.2019.01.004 – volume: 143 year: 2021 ident: 10.1016/j.snb.2022.131938_bib6 article-title: Microfluidic paper-based chips in rapid detection: current status, challenges, and perspectives publication-title: Trends Anal. Chem. doi: 10.1016/j.trac.2021.116371 – volume: 15 year: 2019 ident: 10.1016/j.snb.2022.131938_bib24 article-title: Molecular aptamer beacons and their applications in sensing, imaging, and diagnostics publication-title: Small – volume: 4 start-page: 307 year: 2014 ident: 10.1016/j.snb.2022.131938_bib17 article-title: Simple and sensitive detection of HBsAg by using a quantum dots nanobeads based dot-blot immunoassay publication-title: Theranostics doi: 10.7150/thno.8007 – volume: 186 start-page: 166 year: 2019 ident: 10.1016/j.snb.2022.131938_bib9 article-title: Nitrogen-doped carbon nanodots prepared from polyethylenimine for fluorometric determination of salivary uric acid publication-title: Microchim. Acta doi: 10.1007/s00604-019-3277-0 |
SSID | ssj0004360 |
Score | 2.4510956 |
Snippet | Aptamers are recognition elements that are easy to synthesize and store, but their softness makes their stability and affinity subject to the influence of the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 131938 |
SubjectTerms | Aptamer Carbon dot DNA tetrahedron Drinking water Fluorescence Microspheres Salmonella Salmonella enterica serovar Typhimurium Sandwich biosensor Softness Target recognition Water sampling |
Title | Aptamer-guided luminous microsphere for anchoring and lightening Salmonella enterica serovar Typhimurium |
URI | https://dx.doi.org/10.1016/j.snb.2022.131938 https://www.proquest.com/docview/2724914771 |
Volume | 366 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEWhVB6YkNwmqROnY1VRFRBdSqVuVvyiQW2p-mDkt3OXBy-hDmxJZOdxdz5_53x3JuTaqZAbmKhZCGicccCsLNFKs1Bo5dnQ1y7bvu1xEPVH_H4cjiukW-bCIK2y8P25T8-8dXGlWUizuUjT5tBrQ3CDy5q4MBJnSXycC7TyxvsXzYO3skxhbMywdflnM-N4reYKQsQgaPhgiZii8vfc9MtLZ1NP75AcFJiRdvLXOiIVOz8m-98qCZ6QSWexTmZ2yZ43qbGGgstJsfgqnSHhboW1AywFfEpByZOMcwdH0AxDc4tLI3SYTMEikQtFsUwnukcK5vn6liwpBKuTdLZZppvZKRn1bp-6fVZsosA0RAtrlgQGIJUJIstty3PaeUbpMABFiIj7pu143HImEgDdfKMTJRQEZL5QCkaz4QAGz8jOHB5_TiiCoXYcORdqCKKMp2JfGxBbJFo6Fm1XJV4pPqmLCuO40cVUllSyFwkSlyhxmUu8Sm4-uyzy8hrbGvNSJ_KHjUhw_9u61Ur9yWKArmQg8DO5EP7F_-56SfbwLKeb1cjOermxV4BP1qqeGWCd7HbuHvqDD7l75RQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcgAOiFXs-MAJyW0WJ06PVQUqULhApd6seKNBbam6cOTbmcnCJsSBW5SMs8yMx2-cWQg5dyriBhZqFgEaZxwwK0u10iwSWnk28rXL27fd3cfdPr8ZRIMa6VS5MBhWWdr-wqbn1ro80yy52ZxmWfPBa4Fzg9uauDGSYBLfCofpi20MGm-fcR48zFOFkZohefVrMw_ymk8U-IhB0PBBFTFH5ffF6YeZzteeq02yUYJG2i7ea4vU7GSbrH8pJbhDhu3pIh3bGXtaZsYaCjYnw-qrdIwRd3MsHmApAFQKUh7mQXdwBGTom1vcG6EP6QhUEoOhKNbpRPtIQT9fXtMZBW91mI2Xs2w53iX9q8vHTpeVXRSYBndhwdLAAKYyQWy5DT2nnWeUjgKQhIi5b1qOJ6EzsQDs5hudKqHAI_OFUjCdDTA03CP1CTx-n1BEQ60kdi7S4EUZTyW-NsC2WIQ6ES13QLyKfVKXJcax08VIVrFkzxI4LpHjsuD4Abn4GDIt6mv8RcwrmchvSiLB_v817LiSnyxn6FwGAj-TC-Ef_u-uZ2S1-3jXk73r-9sjsoZXitizY1JfzJb2BMDKQp3myvgOCFTmog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aptamer-guided+luminous+microsphere+for+anchoring+and+lightening+Salmonella+enterica+serovar+Typhimurium&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Du%2C+Han&rft.au=Zhang%2C+Xu&rft.au=Yao%2C+Mingru&rft.au=Yang%2C+Qingli&rft.date=2022-09-01&rft.pub=Elsevier+B.V&rft.issn=0925-4005&rft.eissn=1873-3077&rft.volume=366&rft_id=info:doi/10.1016%2Fj.snb.2022.131938&rft.externalDocID=S0925400522005809 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon |