Crafting and analyzing nonwovens enhanced with antimicrobial metal particles and diverse mechanisms via substitution reaction
Bacterial infections result in serious impacts on human health. Non-toxic, potent, and flexible antimicrobial particles loaded onto nonwoven materials offer a promising solution. Metallic antimicrobial particles have achieved significant attention and application; however, common materials such as s...
Saved in:
Published in | Materials today chemistry Vol. 40; p. 102260 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bacterial infections result in serious impacts on human health. Non-toxic, potent, and flexible antimicrobial particles loaded onto nonwoven materials offer a promising solution. Metallic antimicrobial particles have achieved significant attention and application; however, common materials such as silver and copper exhibit potential toxicity and typically employ a singular antimicrobial mechanism. This limitation can diminish their effectiveness over the service cycle. In our research gallium (Ga), known for its activity and versatile antimicrobial mechanisms, was employed with ferrous ions (Fe2+), which offer broad-spectrum antimicrobial properties and lower potential toxicity compared to silver and copper. Through spontaneous substitution reaction. Ga and Fe2+ can generate Ga–Fe alloys and various antimicrobial particles. In this study, we developed antimicrobial nonwovens by loading them with multiple types of metal antimicrobial particles through a simple soaking and surface treatment process. The multifaceted antimicrobial mechanisms introduced by these multiple particles provide the nonwoven materials with exceptional antimicrobial performance, achieving an effectiveness of up to 99.99 % against Escherichia coli and Staphylococcus aureus. The feasibility of the substitution reaction between Ga and Fe2+ was thoroughly verified through theoretical calculations, X-ray photoelectron spectroscopy (XPS) characterization, and experimental observations. This research offers valuable insights for advancing and exploring antimicrobial nonwoven materials.
[Display omitted]
•Improvement of adhesion fastness by electrosubstitution and phase separation.•No toxic organic solvents are used in the preparation process.•The nonwovens are loaded with various antimicrobial particles.•The nonwovens have excellent contact and dissolution antimicrobial effects.•High antimicrobial resistance after conventional autoclave sterilization. |
---|---|
AbstractList | Bacterial infections result in serious impacts on human health. Non-toxic, potent, and flexible antimicrobial particles loaded onto nonwoven materials offer a promising solution. Metallic antimicrobial particles have achieved significant attention and application; however, common materials such as silver and copper exhibit potential toxicity and typically employ a singular antimicrobial mechanism. This limitation can diminish their effectiveness over the service cycle. In our research gallium (Ga), known for its activity and versatile antimicrobial mechanisms, was employed with ferrous ions (Fe2+), which offer broad-spectrum antimicrobial properties and lower potential toxicity compared to silver and copper. Through spontaneous substitution reaction. Ga and Fe2+ can generate Ga–Fe alloys and various antimicrobial particles. In this study, we developed antimicrobial nonwovens by loading them with multiple types of metal antimicrobial particles through a simple soaking and surface treatment process. The multifaceted antimicrobial mechanisms introduced by these multiple particles provide the nonwoven materials with exceptional antimicrobial performance, achieving an effectiveness of up to 99.99 % against Escherichia coli and Staphylococcus aureus. The feasibility of the substitution reaction between Ga and Fe2+ was thoroughly verified through theoretical calculations, X-ray photoelectron spectroscopy (XPS) characterization, and experimental observations. This research offers valuable insights for advancing and exploring antimicrobial nonwoven materials.
[Display omitted]
•Improvement of adhesion fastness by electrosubstitution and phase separation.•No toxic organic solvents are used in the preparation process.•The nonwovens are loaded with various antimicrobial particles.•The nonwovens have excellent contact and dissolution antimicrobial effects.•High antimicrobial resistance after conventional autoclave sterilization. |
ArticleNumber | 102260 |
Author | Xie, Jingwei Liu, Li-Yan Lou, Ching-Wen Hu, Xian-Jin Lin, Jia-Horng Shou, Bing-Bing Liu, Guo-Hua Ren, Hai-Tao Li, Ting-Ting |
Author_xml | – sequence: 1 givenname: Bing-Bing surname: Shou fullname: Shou, Bing-Bing organization: Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China – sequence: 2 givenname: Ting-Ting orcidid: 0000-0003-4586-2598 surname: Li fullname: Li, Ting-Ting email: tingtingli@tiangong.edu.cn organization: Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China – sequence: 3 givenname: Xian-Jin surname: Hu fullname: Hu, Xian-Jin organization: Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China – sequence: 4 givenname: Guo-Hua surname: Liu fullname: Liu, Guo-Hua organization: Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China – sequence: 5 givenname: Hai-Tao surname: Ren fullname: Ren, Hai-Tao organization: Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China – sequence: 6 givenname: Jia-Horng surname: Lin fullname: Lin, Jia-Horng organization: Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China – sequence: 7 givenname: Jingwei surname: Xie fullname: Xie, Jingwei organization: Tianjin TEDA Filters Co., Ltd, Tianjin, 300387, China – sequence: 8 givenname: Li-Yan surname: Liu fullname: Liu, Li-Yan email: liuliyan@tiangong.edu.cn organization: Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China – sequence: 9 givenname: Ching-Wen surname: Lou fullname: Lou, Ching-Wen email: cwlou@asia.edu.tw organization: Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China |
BookMark | eNp9kMtOwzAQRS0EEqX0D1jkB1Jsx3bSDRKqeEmV2MDamjgT6iqPynZTFYl_xyEsWLEYz9iee2d0rsh513dIyA2jS0aZut0t22C22C455SI-ca7oGZlxoYpUspU4_1NfkoX3O0oppywTUs3I19pBHWz3kUBXxYDm9Dne4pBjP2DnE-y20BmskqMN29gRbGuN60sLTdJiiOceXLCmQf_jUdkBncf4Z6LQ-tYng4XEH0ofbDgE23eJQzBjcU0uamg8Ln7znLw_Prytn9PN69PL-n6TGi5lSIFSkCWti1Wh6hxYURikucG8FlxJlmdVTYtS8CyvVGVyKSQqQCVyKlcFZJDNiZh84-LeO6z13tkW3EkzqkeKeqcninqkqCeKUXY3yTDuNlh02huLIwzr0ARd9fZ_g29mkoH5 |
Cites_doi | 10.1021/acsnano.9b07861 10.1039/C7RA10916D 10.1007/s12221-022-4786-8 10.1039/D1CS00647A 10.1021/acs.chemmater.0c03969 10.1134/S1063776115040160 10.1021/acsomega.1c00791 10.1016/j.intermet.2023.107887 10.1021/acs.nanolett.2c02693 10.1002/smll.202370365 10.1016/j.colcom.2018.01.002 10.1080/00222348.2011.598098 10.1021/acsnano.2c08894 10.1016/j.seppur.2023.125404 10.1016/S0140-6736(21)02724-0 10.1080/15583724.2019.1599391 10.1039/D0TB00174K 10.1002/admi.202201952 10.1016/j.msec.2020.110855 10.3389/fmicb.2023.1270245 10.1128/AAC.01240-15 10.1021/acsnano.1c10981 10.1016/j.apsusc.2018.07.135 10.1007/s12221-019-1091-2 10.1186/s12916-018-1073-z 10.1016/j.jallcom.2023.170166 10.2147/IJN.S328767 10.1039/D2RA08274H 10.1016/j.jinorgbio.2023.112203 10.1021/acsami.1c19579 10.1021/acschembio.0c00842 10.1016/j.cej.2022.134975 10.1038/s41422-020-00434-0 10.1016/j.biomaterials.2022.121842 10.1016/j.chemosphere.2023.139103 10.1016/j.cclet.2022.03.076 10.1021/acsnano.3c06486 10.1186/s11671-023-03861-1 10.1016/j.jclepro.2021.126395 10.1016/j.ejmech.2020.112907 10.1016/j.carbpol.2023.121057 10.1016/S0140-6736(22)02185-7 10.1016/j.surfcoat.2023.130016 10.1016/j.cej.2022.138129 10.1016/j.cej.2023.146773 10.1002/adma.202070138 10.1021/acs.macromol.3c01970 10.1021/acsami.3c15497 10.1016/S0022-3093(02)00970-5 10.1016/j.ijbiomac.2023.126737 10.1126/sciadv.aar5931 10.1016/j.apsusc.2010.10.051 10.1016/j.colsurfb.2022.112977 10.1295/polymj.PJ2006250 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mtchem.2024.102260 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2468-5194 |
ExternalDocumentID | 10_1016_j_mtchem_2024_102260 S2468519424003665 |
GroupedDBID | --M 0R~ AABXZ AACTN AAEDT AAEDW AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABMAC ACDAQ ACGFS ACRLP ADBBV AEBSH AEZYN AFKWA AFRZQ AFTJW AGUBO AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK EBS EFJIC EJD FDB FIRID FYGXN KOM M41 O9- RIG ROL SPC SPCBC SSM SSZ T5K ~G- AATTM AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c255t-a00a5b0f8986f7a188ce07ce7f4265173df08b4237d6dc7545e6ae6470598a3a3 |
IEDL.DBID | AIKHN |
ISSN | 2468-5194 |
IngestDate | Tue Jul 01 04:29:53 EDT 2025 Sat Sep 07 15:50:42 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Antimicrobial Multiple antimicrobial particles Gallium Ferrous Substitution reaction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-a00a5b0f8986f7a188ce07ce7f4265173df08b4237d6dc7545e6ae6470598a3a3 |
ORCID | 0000-0003-4586-2598 |
ParticipantIDs | crossref_primary_10_1016_j_mtchem_2024_102260 elsevier_sciencedirect_doi_10_1016_j_mtchem_2024_102260 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2024 2024-09-00 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationTitle | Materials today chemistry |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Zhen, Liu (bib8) 2019; 14 Li, Zhang, Gao (bib45) 2021; 296 Wang, Yang, Shi (bib34) 2020; 32 Zhang, Liu, Zhang (bib9) 2018; 8 Li, Chang, Yong (bib39) 2021; 9 Murray, Ikuta, Sharara (bib3) 2022; 399 Troyanchuk, Bushinsky, Tereshko (bib57) 2015; 120 Zhang, Zhai, Guan (bib11) 2023 Biesinger, Payne, Grosvenor (bib52) 2011; 257 Shchukarev, Korolkov (bib49) 2004; 2 Elbourne, Cheeseman, Atkin (bib41) 2020; 14 Baecker, Sesli, Knabl (bib61) 2021; 209 Zhu, Hua, Zhong (bib5) 2018; 23 Zhang, Yang, Biazik (bib42) 2022; 16 Chen, Hu, Wang (bib7) 2024; 330 Hu, Zhang, Wang (bib16) 2022; 450 Fu, Liu, Touhid (bib12) 2023 Zhang, Gu, Liu (bib20) 2020; 111 Kwon, Cheeseman, Frias-De-Diego (bib37) 2021; 33 Hu, Yang, Zhang (bib17) 2023; 253 Lindgren, Sjöstedt (bib56) 2016; 60 Han, He, Kong (bib47) 2022; 23 Cheeseman, Elbourne, Gangadoo (bib33) 2022; 9 Correia, Bundaleski, Teodoro (bib51) 2018; 458 Yougbaré, Mutalik, Okoro (bib30) 2021; 16 Xu, Gao, Lu (bib43) 2023; 221 Wang, Li, Zhou (bib28) 2022; 290 Divakarla, Das, Chatterjee (bib40) 2022; 14 Kamyab, Chelliapan, Hayder (bib27) 2023; 335 Gruber, Kirchmair, Wurster (bib53) 2023; 953 Hu, Shou, Yang (bib21) 2023; 477 Gough, Callaway, Spencer (bib19) 2021; 6 Shin, Jin, Park (bib59) 2021; 16 Ikuta, Swetschinski, Aguilar (bib4) 2022; 400 Li, Chen, Lu (bib18) 2021; 11 Nguyen, Zhao, Tang (bib2) 2022; 51 Aldrovandi, Conrad (bib60) 2020; 30 Gautam, Das, Kaur (bib26) 2023; 18 Rathore, Yadav, Gacem (bib31) 2023; 14 Hay, Rao, Dolecek (bib23) 2018; 16 Yan, Gopal, Kashif (bib25) 2022; 435 Nohira, Tsai, Besling (bib50) 2002; 303 Yang, Jiang, Gao (bib6) 2022; 22 Chen, Xu, Yin (bib55) 2023; 157 Yu, Han, He (bib13) 2012; 51 Falchevskaya, Prilepskii, Tsvetikova (bib35) 2021; 33 Gruber, Wurster, Cordill (bib54) 2023; 473 Liu, Dong, Wei (bib48) 2019; 20 Nguyen, Zhang, Bi (bib36) 2023; 34 Leong, Parker, Shaw (bib38) 2023; 16 Souzandeh, Wang, Netravali (bib15) 2019; 59 Arcana, Bundjali, Yudistira (bib46) 2007; 39 Barhoum, Deshmukh, García-Betancourt (bib1) 2023; 317 Wang, Zhang, Zhang (bib44) 2022; 33 Ren, Li, Cai (bib14) 2023; 56 Godoy-Gallardo, Eckhard, Delgado (bib29) 2021; 6 Si, Zhang, Wu (bib22) 2018; 4 Zhu, Gu, Dong (bib10) 2023; 13 Truong, Hayles, Bright (bib32) 2023; 17 Xia, Yao, Xiong (bib24) 2023; 10 Dzyhovskyi, Stokowa-Soltys (bib58) 2023; 244 Li (10.1016/j.mtchem.2024.102260_bib45) 2021; 296 Hu (10.1016/j.mtchem.2024.102260_bib21) 2023; 477 Xia (10.1016/j.mtchem.2024.102260_bib24) 2023; 10 Nguyen (10.1016/j.mtchem.2024.102260_bib2) 2022; 51 Truong (10.1016/j.mtchem.2024.102260_bib32) 2023; 17 Souzandeh (10.1016/j.mtchem.2024.102260_bib15) 2019; 59 Hay (10.1016/j.mtchem.2024.102260_bib23) 2018; 16 Dzyhovskyi (10.1016/j.mtchem.2024.102260_bib58) 2023; 244 Zhang (10.1016/j.mtchem.2024.102260_bib8) 2019; 14 Kwon (10.1016/j.mtchem.2024.102260_bib37) 2021; 33 Gruber (10.1016/j.mtchem.2024.102260_bib53) 2023; 953 Baecker (10.1016/j.mtchem.2024.102260_bib61) 2021; 209 Murray (10.1016/j.mtchem.2024.102260_bib3) 2022; 399 Nguyen (10.1016/j.mtchem.2024.102260_bib36) 2023; 34 Kamyab (10.1016/j.mtchem.2024.102260_bib27) 2023; 335 Zhang (10.1016/j.mtchem.2024.102260_bib42) 2022; 16 Biesinger (10.1016/j.mtchem.2024.102260_bib52) 2011; 257 Li (10.1016/j.mtchem.2024.102260_bib39) 2021; 9 Divakarla (10.1016/j.mtchem.2024.102260_bib40) 2022; 14 Shchukarev (10.1016/j.mtchem.2024.102260_bib49) 2004; 2 Liu (10.1016/j.mtchem.2024.102260_bib48) 2019; 20 Arcana (10.1016/j.mtchem.2024.102260_bib46) 2007; 39 Lindgren (10.1016/j.mtchem.2024.102260_bib56) 2016; 60 Barhoum (10.1016/j.mtchem.2024.102260_bib1) 2023; 317 Fu (10.1016/j.mtchem.2024.102260_bib12) 2023 Gough (10.1016/j.mtchem.2024.102260_bib19) 2021; 6 Shin (10.1016/j.mtchem.2024.102260_bib59) 2021; 16 Ren (10.1016/j.mtchem.2024.102260_bib14) 2023; 56 Si (10.1016/j.mtchem.2024.102260_bib22) 2018; 4 Troyanchuk (10.1016/j.mtchem.2024.102260_bib57) 2015; 120 Wang (10.1016/j.mtchem.2024.102260_bib28) 2022; 290 Ikuta (10.1016/j.mtchem.2024.102260_bib4) 2022; 400 Nohira (10.1016/j.mtchem.2024.102260_bib50) 2002; 303 Zhang (10.1016/j.mtchem.2024.102260_bib20) 2020; 111 Leong (10.1016/j.mtchem.2024.102260_bib38) 2023; 16 Hu (10.1016/j.mtchem.2024.102260_bib16) 2022; 450 Wang (10.1016/j.mtchem.2024.102260_bib44) 2022; 33 Yan (10.1016/j.mtchem.2024.102260_bib25) 2022; 435 Correia (10.1016/j.mtchem.2024.102260_bib51) 2018; 458 Gruber (10.1016/j.mtchem.2024.102260_bib54) 2023; 473 Hu (10.1016/j.mtchem.2024.102260_bib17) 2023; 253 Cheeseman (10.1016/j.mtchem.2024.102260_bib33) 2022; 9 Gautam (10.1016/j.mtchem.2024.102260_bib26) 2023; 18 Rathore (10.1016/j.mtchem.2024.102260_bib31) 2023; 14 Zhu (10.1016/j.mtchem.2024.102260_bib10) 2023; 13 Wang (10.1016/j.mtchem.2024.102260_bib34) 2020; 32 Li (10.1016/j.mtchem.2024.102260_bib18) 2021; 11 Yang (10.1016/j.mtchem.2024.102260_bib6) 2022; 22 Han (10.1016/j.mtchem.2024.102260_bib47) 2022; 23 Chen (10.1016/j.mtchem.2024.102260_bib7) 2024; 330 Elbourne (10.1016/j.mtchem.2024.102260_bib41) 2020; 14 Falchevskaya (10.1016/j.mtchem.2024.102260_bib35) 2021; 33 Xu (10.1016/j.mtchem.2024.102260_bib43) 2023; 221 Yougbaré (10.1016/j.mtchem.2024.102260_bib30) 2021; 16 Zhang (10.1016/j.mtchem.2024.102260_bib9) 2018; 8 Chen (10.1016/j.mtchem.2024.102260_bib55) 2023; 157 Zhu (10.1016/j.mtchem.2024.102260_bib5) 2018; 23 Zhang (10.1016/j.mtchem.2024.102260_bib11) 2023 Aldrovandi (10.1016/j.mtchem.2024.102260_bib60) 2020; 30 Yu (10.1016/j.mtchem.2024.102260_bib13) 2012; 51 Godoy-Gallardo (10.1016/j.mtchem.2024.102260_bib29) 2021; 6 |
References_xml | – volume: 39 start-page: 1337 year: 2007 end-page: 1344 ident: bib46 article-title: Study on properties of polymer blends from polypropylene with polycaprolactone and their biodegradability publication-title: Polym. J. – volume: 473 year: 2023 ident: bib54 article-title: Refractory high entropy metal sublattice nitride thin films as diffusion barriers in Cu metallizations publication-title: Surf. Coating. Technol. – volume: 17 start-page: 14406 year: 2023 end-page: 14423 ident: bib32 article-title: Gallium liquid metal: nanotoolbox for antimicrobial applications publication-title: ACS Nano – volume: 14 start-page: 802 year: 2020 end-page: 817 ident: bib41 article-title: Antibacterial liquid metals: biofilm treatment magnetic activation publication-title: ACS Nano – volume: 450 year: 2022 ident: bib16 article-title: Synergistic antibacterial strategy based on photodynamic therapy: progress and perspectives publication-title: Chem. Eng. J. – volume: 290 year: 2022 ident: bib28 article-title: Ferrous sulfate-loaded hydrogel cures infection via facilitating a ferroptosis-like bacterial cell death in a mouse keratitis model publication-title: Biomaterials – volume: 2 start-page: 347 year: 2004 end-page: 362 ident: bib49 article-title: XPS study of group IA carbonates publication-title: Cent. Eur. J. Chem. – volume: 20 start-page: 1368 year: 2019 end-page: 1374 ident: bib48 article-title: Multifunctional antibacterial and hydrophobic cotton fabrics treated with cyclic polysiloxane quaternary ammonium salt publication-title: Fibers Polym. – volume: 111 year: 2020 ident: bib20 article-title: Bactericidal and antifouling electrospun PVA nanofibers modified with a quaternary ammonium salt and zwitterionic sulfopropylbetaine publication-title: Mat Sci Eng C-Mater – year: 2023 ident: bib12 article-title: Functional textile materials for blocking COVID-19 transmission publication-title: ACS Nano – volume: 33 year: 2021 ident: bib37 article-title: A liquid metal mediated metallic coating for antimicrobial and antiviral fabrics publication-title: Adv. Mater. – volume: 953 year: 2023 ident: bib53 article-title: A new design rule for high entropy alloy diffusion barriers in Cu metallization publication-title: J. Alloys Compd. – volume: 16 start-page: 136 year: 2021 end-page: 149 ident: bib59 article-title: Characterization of an antibacterial agent targeting ferrous iron transport protein FeoB against and gram-positive bacteria publication-title: ACS Chem. Biol. – volume: 9 year: 2022 ident: bib33 article-title: Interactions between liquid metal droplets and bacterial, fungal, and mammalian cells publication-title: Adv. Mater. Interfac. – volume: 335 year: 2023 ident: bib27 article-title: Exploring the potential of metal and metal oxide nanomaterials for sustainable water and wastewater treatment: a review of their antimicrobial properties publication-title: Chemosphere – year: 2023 ident: bib11 article-title: Tri-layered bicomponent microfilament composite fabric for highly efficient cold protection publication-title: Small – volume: 33 start-page: 1571 year: 2021 end-page: 1580 ident: bib35 article-title: Facile synthesis of a library of hollow metallic particles through the galvanic replacement of liquid gallium publication-title: Chem. Mater. – volume: 59 start-page: 651 year: 2019 end-page: 686 ident: bib15 article-title: Towards sustainable and multifunctional air-filters: a review on biopolymer-based filtration materials publication-title: Polym. Rev. – volume: 8 start-page: 7932 year: 2018 end-page: 7941 ident: bib9 article-title: Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture publication-title: RSC Adv. – volume: 296 year: 2021 ident: bib45 article-title: Daylight-driven photosensitive antibacterial melt-blown membranes for medical use publication-title: J. Clean. Prod. – volume: 30 start-page: 1061 year: 2020 end-page: 1062 ident: bib60 article-title: Ferroptosis: the good, the bad and the ugly publication-title: Cell Res. – volume: 120 start-page: 838 year: 2015 end-page: 843 ident: bib57 article-title: Magnetic properties of manganites doped with gallium, iron, and chromium ions publication-title: J. Exp. Theor. Phys. – volume: 253 year: 2023 ident: bib17 article-title: Biomimetic helical fiber cellulose acetate/thermoplastic polyurethanes photodynamic antibacterial membrane: synthesis, characterization, and antibacterial application publication-title: Int. J. Biol. Macromol. – volume: 14 year: 2019 ident: bib8 article-title: Branched polyethylene glycol/polypropylene micro-nanofiber nonwovens for fast liquid planar transmission publication-title: J Eng Fiber Fabr. – volume: 23 start-page: 52 year: 2018 end-page: 58 ident: bib5 article-title: Antibacterial and effective air filtration membranes by "green" electrospinning and citric acid crosslinking publication-title: Colloid Interface Sci. – volume: 221 year: 2023 ident: bib43 article-title: Ferrous iron-induced formation of glycyrrhizic acid hydrogels for aureus-infected wound healing publication-title: Colloids Surf., B – volume: 477 year: 2023 ident: bib21 article-title: Antimicrobial photodynamic therapy encapsulation technology: frontier exploration and application prospects of novel antimicrobial technology publication-title: Chem. Eng. J. – volume: 244 year: 2023 ident: bib58 article-title: Divalent metal ion binding toFeoB transporter regions publication-title: J. Inorg. Biochem. – volume: 13 start-page: 7857 year: 2023 end-page: 7866 ident: bib10 article-title: Regulation of polylactic acid using irradiation and preparation of PLA-SiO-ZnO melt-blown nonwovens for antibacterial and air filtration publication-title: RSC Adv. – volume: 400 start-page: 2221 year: 2022 end-page: 2248 ident: bib4 article-title: Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019 publication-title: Lancet – volume: 34 year: 2023 ident: bib36 article-title: Silver-gallium nano-amalgamated particles as a novel, biocompatible solution for antibacterial coatings publication-title: Adv. Funct. Mater. – volume: 157 year: 2023 ident: bib55 article-title: Dynamic mechanical relaxation behavior of TiZrHfCu-Ni/Be/NiBe high-entropy metallic glasses publication-title: Intermetallics – volume: 33 start-page: 4605 year: 2022 end-page: 4609 ident: bib44 article-title: A hybrid nano-assembly with synergistically promoting photothermal and catalytic radical activity for antibacterial therapy publication-title: Chin. Chem. Lett. – volume: 257 start-page: 2717 year: 2011 end-page: 2730 ident: bib52 article-title: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni publication-title: Appl. Surf. Sci. – volume: 16 start-page: 332 year: 2023 end-page: 341 ident: bib38 article-title: Metallic gallium droplets exhibit poor antibacterial properties publication-title: Acs Appl Mater Inter – volume: 9 year: 2021 ident: bib39 article-title: Superior antibacterial activity of gallium based liquid metals due to Ga induced intracellular ROS generation publication-title: J. Mater. Chem. B – volume: 51 start-page: 3324 year: 2022 end-page: 3340 ident: bib2 article-title: Organic photosensitizers for antimicrobial phototherapy publication-title: Chem. Soc. Rev. – volume: 14 year: 2023 ident: bib31 article-title: Microbial synthesis of titanium dioxide nanoparticles and their importance in wastewater treatment and antimicrobial activities: a review publication-title: Front. Microbiol. – volume: 6 start-page: 4470 year: 2021 end-page: 4490 ident: bib29 article-title: Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications publication-title: Bioact. Mater. – volume: 23 start-page: 1947 year: 2022 end-page: 1955 ident: bib47 article-title: High-performance electret and antibacterial polypropylene meltblown nonwoven materials doped with boehmite and ZnO nanoparticles for air filtration publication-title: Fibers Polym. – volume: 16 year: 2018 ident: bib23 article-title: Measuring and mapping the global burden of antimicrobial resistance publication-title: BMC Med. – volume: 32 year: 2020 ident: bib34 article-title: Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives publication-title: Adv. Mater. – volume: 4 year: 2018 ident: bib22 article-title: Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications publication-title: Sci. Adv. – volume: 435 year: 2022 ident: bib25 article-title: Metal organic frameworks for antibacterial applications publication-title: Chem. Eng. J. – volume: 10 year: 2023 ident: bib24 article-title: High efficiency antibacterial, moisture permeable, and low temperature comfortable janus nanofiber membranes for high performance air filters and respiration monitoring sensors publication-title: Adv. Mater. Interfac. – volume: 22 start-page: 7212 year: 2022 end-page: 7219 ident: bib6 article-title: Saving 80% polypropylene in facemasks by laser-assisted melt-blown nanofibers publication-title: Nano Lett. – volume: 51 start-page: 619 year: 2012 end-page: 629 ident: bib13 article-title: Effects of tourmaline particles on structure and properties of polypropylene filtration melt-blown nonwoven electrets publication-title: J. Macromol. Sci. B – volume: 18 year: 2023 ident: bib26 article-title: Transition metal-based nanoparticles as potential antimicrobial agents: recent advancements, mechanistic, challenges, and future prospects publication-title: Discov Nano – volume: 303 start-page: 83 year: 2002 end-page: 87 ident: bib50 article-title: Characterization of ALCVD-AlO and ZrO layer using X-ray photoelectron spectroscopy publication-title: J. Non-Cryst. Solids – volume: 209 year: 2021 ident: bib61 article-title: Investigating the antibacterial activity of salen/salophene metal complexes: induction of ferroptosis as part of the mode of action publication-title: Eur. J. Med. Chem. – volume: 399 start-page: 629 year: 2022 end-page: 655 ident: bib3 article-title: Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis publication-title: Lancet – volume: 458 start-page: 1043 year: 2018 end-page: 1049 ident: bib51 article-title: XPS analysis of ZnO:Ga films deposited by magnetron sputtering: substrate bias effect publication-title: Appl. Surf. Sci. – volume: 60 start-page: 288 year: 2016 end-page: 295 ident: bib56 article-title: Gallium potentiates the antibacterial effect of gentamicin against publication-title: Antimicrob. Agents Chemother. – volume: 6 start-page: 11804 year: 2021 end-page: 11812 ident: bib19 article-title: Biopolymer-based filtration materials publication-title: ACS Omega – volume: 11 year: 2021 ident: bib18 article-title: Application of electrospinning in antibacterial field publication-title: Nanomaterials-Basel – volume: 56 start-page: 9509 year: 2023 end-page: 9522 ident: bib14 article-title: Facile photopolymerization of high-molecular-weight polyaniline composites induced by g-C3N4 at room temperature for trace Fe ion sensors publication-title: Macromolecules – volume: 16 start-page: 5831 year: 2021 end-page: 5867 ident: bib30 article-title: Emerging trends in nanomaterials for antibacterial applications publication-title: Int. J. Nanomed. – volume: 16 start-page: 8891 year: 2022 end-page: 8903 ident: bib42 article-title: Gallium nanodroplets are anti-inflammatory without interfering with iron homeostasis publication-title: ACS Nano – volume: 317 year: 2023 ident: bib1 article-title: Nanocelluloses as sustainable membrane materials for separation and filtration technologies: principles, opportunities, and challenges publication-title: Carbohydr. Polym. – volume: 330 year: 2024 ident: bib7 article-title: A review on recent trends of the antibacterial nonwovens air filter materials: classification, fabrication, and application publication-title: Sep. Purif. Technol. – volume: 14 start-page: 9685 year: 2022 end-page: 9696 ident: bib40 article-title: Antimicrobial and anti-inflammatory gallium-defensin surface coatings for implantable devices publication-title: Acs Appl Mater Inter – volume: 14 start-page: 802 issue: 1 year: 2020 ident: 10.1016/j.mtchem.2024.102260_bib41 article-title: Antibacterial liquid metals: biofilm treatment magnetic activation publication-title: ACS Nano doi: 10.1021/acsnano.9b07861 – volume: 8 start-page: 7932 issue: 15 year: 2018 ident: 10.1016/j.mtchem.2024.102260_bib9 article-title: Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture publication-title: RSC Adv. doi: 10.1039/C7RA10916D – volume: 23 start-page: 1947 issue: 7 year: 2022 ident: 10.1016/j.mtchem.2024.102260_bib47 article-title: High-performance electret and antibacterial polypropylene meltblown nonwoven materials doped with boehmite and ZnO nanoparticles for air filtration publication-title: Fibers Polym. doi: 10.1007/s12221-022-4786-8 – volume: 51 start-page: 3324 issue: 9 year: 2022 ident: 10.1016/j.mtchem.2024.102260_bib2 article-title: Organic photosensitizers for antimicrobial phototherapy publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00647A – volume: 33 start-page: 1571 issue: 5 year: 2021 ident: 10.1016/j.mtchem.2024.102260_bib35 article-title: Facile synthesis of a library of hollow metallic particles through the galvanic replacement of liquid gallium publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c03969 – volume: 120 start-page: 838 issue: 5 year: 2015 ident: 10.1016/j.mtchem.2024.102260_bib57 article-title: Magnetic properties of manganites doped with gallium, iron, and chromium ions publication-title: J. Exp. Theor. Phys. doi: 10.1134/S1063776115040160 – volume: 6 start-page: 11804 issue: 18 year: 2021 ident: 10.1016/j.mtchem.2024.102260_bib19 article-title: Biopolymer-based filtration materials publication-title: ACS Omega doi: 10.1021/acsomega.1c00791 – volume: 2 start-page: 347 issue: 2 year: 2004 ident: 10.1016/j.mtchem.2024.102260_bib49 article-title: XPS study of group IA carbonates publication-title: Cent. Eur. J. Chem. – volume: 157 year: 2023 ident: 10.1016/j.mtchem.2024.102260_bib55 article-title: Dynamic mechanical relaxation behavior of TiZrHfCu-Ni/Be/NiBe high-entropy metallic glasses publication-title: Intermetallics doi: 10.1016/j.intermet.2023.107887 – volume: 22 start-page: 7212 issue: 17 year: 2022 ident: 10.1016/j.mtchem.2024.102260_bib6 article-title: Saving 80% polypropylene in facemasks by laser-assisted melt-blown nanofibers publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c02693 – year: 2023 ident: 10.1016/j.mtchem.2024.102260_bib11 article-title: Tri-layered bicomponent microfilament composite fabric for highly efficient cold protection publication-title: Small doi: 10.1002/smll.202370365 – volume: 23 start-page: 52 year: 2018 ident: 10.1016/j.mtchem.2024.102260_bib5 article-title: Antibacterial and effective air filtration membranes by "green" electrospinning and citric acid crosslinking publication-title: Colloid Interface Sci. doi: 10.1016/j.colcom.2018.01.002 – volume: 51 start-page: 619 issue: 4 year: 2012 ident: 10.1016/j.mtchem.2024.102260_bib13 article-title: Effects of tourmaline particles on structure and properties of polypropylene filtration melt-blown nonwoven electrets publication-title: J. Macromol. Sci. B doi: 10.1080/00222348.2011.598098 – volume: 34 issue: 31 year: 2023 ident: 10.1016/j.mtchem.2024.102260_bib36 article-title: Silver-gallium nano-amalgamated particles as a novel, biocompatible solution for antibacterial coatings publication-title: Adv. Funct. Mater. – year: 2023 ident: 10.1016/j.mtchem.2024.102260_bib12 article-title: Functional textile materials for blocking COVID-19 transmission publication-title: ACS Nano doi: 10.1021/acsnano.2c08894 – volume: 330 year: 2024 ident: 10.1016/j.mtchem.2024.102260_bib7 article-title: A review on recent trends of the antibacterial nonwovens air filter materials: classification, fabrication, and application publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2023.125404 – volume: 399 start-page: 629 issue: 10325 year: 2022 ident: 10.1016/j.mtchem.2024.102260_bib3 article-title: Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis publication-title: Lancet doi: 10.1016/S0140-6736(21)02724-0 – volume: 59 start-page: 651 issue: 4 year: 2019 ident: 10.1016/j.mtchem.2024.102260_bib15 article-title: Towards sustainable and multifunctional air-filters: a review on biopolymer-based filtration materials publication-title: Polym. Rev. doi: 10.1080/15583724.2019.1599391 – volume: 9 issue: 1 year: 2021 ident: 10.1016/j.mtchem.2024.102260_bib39 article-title: Superior antibacterial activity of gallium based liquid metals due to Ga induced intracellular ROS generation publication-title: J. Mater. Chem. B doi: 10.1039/D0TB00174K – volume: 11 issue: 7 year: 2021 ident: 10.1016/j.mtchem.2024.102260_bib18 article-title: Application of electrospinning in antibacterial field publication-title: Nanomaterials-Basel – volume: 10 issue: 8 year: 2023 ident: 10.1016/j.mtchem.2024.102260_bib24 article-title: High efficiency antibacterial, moisture permeable, and low temperature comfortable janus nanofiber membranes for high performance air filters and respiration monitoring sensors publication-title: Adv. Mater. Interfac. doi: 10.1002/admi.202201952 – volume: 111 year: 2020 ident: 10.1016/j.mtchem.2024.102260_bib20 article-title: Bactericidal and antifouling electrospun PVA nanofibers modified with a quaternary ammonium salt and zwitterionic sulfopropylbetaine publication-title: Mat Sci Eng C-Mater doi: 10.1016/j.msec.2020.110855 – volume: 6 start-page: 4470 issue: 12 year: 2021 ident: 10.1016/j.mtchem.2024.102260_bib29 article-title: Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications publication-title: Bioact. Mater. – volume: 14 year: 2023 ident: 10.1016/j.mtchem.2024.102260_bib31 article-title: Microbial synthesis of titanium dioxide nanoparticles and their importance in wastewater treatment and antimicrobial activities: a review publication-title: Front. Microbiol. doi: 10.3389/fmicb.2023.1270245 – volume: 14 year: 2019 ident: 10.1016/j.mtchem.2024.102260_bib8 article-title: Branched polyethylene glycol/polypropylene micro-nanofiber nonwovens for fast liquid planar transmission publication-title: J Eng Fiber Fabr. – volume: 60 start-page: 288 issue: 1 year: 2016 ident: 10.1016/j.mtchem.2024.102260_bib56 article-title: Gallium potentiates the antibacterial effect of gentamicin against publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01240-15 – volume: 16 start-page: 8891 issue: 6 year: 2022 ident: 10.1016/j.mtchem.2024.102260_bib42 article-title: Gallium nanodroplets are anti-inflammatory without interfering with iron homeostasis publication-title: ACS Nano doi: 10.1021/acsnano.1c10981 – volume: 33 issue: 45 year: 2021 ident: 10.1016/j.mtchem.2024.102260_bib37 article-title: A liquid metal mediated metallic coating for antimicrobial and antiviral fabrics publication-title: Adv. Mater. – volume: 458 start-page: 1043 year: 2018 ident: 10.1016/j.mtchem.2024.102260_bib51 article-title: XPS analysis of ZnO:Ga films deposited by magnetron sputtering: substrate bias effect publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.07.135 – volume: 20 start-page: 1368 issue: 7 year: 2019 ident: 10.1016/j.mtchem.2024.102260_bib48 article-title: Multifunctional antibacterial and hydrophobic cotton fabrics treated with cyclic polysiloxane quaternary ammonium salt publication-title: Fibers Polym. doi: 10.1007/s12221-019-1091-2 – volume: 16 year: 2018 ident: 10.1016/j.mtchem.2024.102260_bib23 article-title: Measuring and mapping the global burden of antimicrobial resistance publication-title: BMC Med. doi: 10.1186/s12916-018-1073-z – volume: 953 year: 2023 ident: 10.1016/j.mtchem.2024.102260_bib53 article-title: A new design rule for high entropy alloy diffusion barriers in Cu metallization publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2023.170166 – volume: 16 start-page: 5831 year: 2021 ident: 10.1016/j.mtchem.2024.102260_bib30 article-title: Emerging trends in nanomaterials for antibacterial applications publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S328767 – volume: 13 start-page: 7857 issue: 12 year: 2023 ident: 10.1016/j.mtchem.2024.102260_bib10 article-title: Regulation of polylactic acid using irradiation and preparation of PLA-SiO-ZnO melt-blown nonwovens for antibacterial and air filtration publication-title: RSC Adv. doi: 10.1039/D2RA08274H – volume: 244 year: 2023 ident: 10.1016/j.mtchem.2024.102260_bib58 article-title: Divalent metal ion binding toFeoB transporter regions publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2023.112203 – volume: 14 start-page: 9685 issue: 7 year: 2022 ident: 10.1016/j.mtchem.2024.102260_bib40 article-title: Antimicrobial and anti-inflammatory gallium-defensin surface coatings for implantable devices publication-title: Acs Appl Mater Inter doi: 10.1021/acsami.1c19579 – volume: 16 start-page: 136 issue: 1 year: 2021 ident: 10.1016/j.mtchem.2024.102260_bib59 article-title: Characterization of an antibacterial agent targeting ferrous iron transport protein FeoB against and gram-positive bacteria publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.0c00842 – volume: 435 year: 2022 ident: 10.1016/j.mtchem.2024.102260_bib25 article-title: Metal organic frameworks for antibacterial applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.134975 – volume: 30 start-page: 1061 issue: 12 year: 2020 ident: 10.1016/j.mtchem.2024.102260_bib60 article-title: Ferroptosis: the good, the bad and the ugly publication-title: Cell Res. doi: 10.1038/s41422-020-00434-0 – volume: 290 year: 2022 ident: 10.1016/j.mtchem.2024.102260_bib28 article-title: Ferrous sulfate-loaded hydrogel cures infection via facilitating a ferroptosis-like bacterial cell death in a mouse keratitis model publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121842 – volume: 335 year: 2023 ident: 10.1016/j.mtchem.2024.102260_bib27 article-title: Exploring the potential of metal and metal oxide nanomaterials for sustainable water and wastewater treatment: a review of their antimicrobial properties publication-title: Chemosphere doi: 10.1016/j.chemosphere.2023.139103 – volume: 33 start-page: 4605 issue: 10 year: 2022 ident: 10.1016/j.mtchem.2024.102260_bib44 article-title: A hybrid nano-assembly with synergistically promoting photothermal and catalytic radical activity for antibacterial therapy publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2022.03.076 – volume: 17 start-page: 14406 issue: 15 year: 2023 ident: 10.1016/j.mtchem.2024.102260_bib32 article-title: Gallium liquid metal: nanotoolbox for antimicrobial applications publication-title: ACS Nano doi: 10.1021/acsnano.3c06486 – volume: 18 issue: 1 year: 2023 ident: 10.1016/j.mtchem.2024.102260_bib26 article-title: Transition metal-based nanoparticles as potential antimicrobial agents: recent advancements, mechanistic, challenges, and future prospects publication-title: Discov Nano doi: 10.1186/s11671-023-03861-1 – volume: 296 year: 2021 ident: 10.1016/j.mtchem.2024.102260_bib45 article-title: Daylight-driven photosensitive antibacterial melt-blown membranes for medical use publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126395 – volume: 209 year: 2021 ident: 10.1016/j.mtchem.2024.102260_bib61 article-title: Investigating the antibacterial activity of salen/salophene metal complexes: induction of ferroptosis as part of the mode of action publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2020.112907 – volume: 317 year: 2023 ident: 10.1016/j.mtchem.2024.102260_bib1 article-title: Nanocelluloses as sustainable membrane materials for separation and filtration technologies: principles, opportunities, and challenges publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2023.121057 – volume: 400 start-page: 2221 issue: 10369 year: 2022 ident: 10.1016/j.mtchem.2024.102260_bib4 article-title: Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019 publication-title: Lancet doi: 10.1016/S0140-6736(22)02185-7 – volume: 473 year: 2023 ident: 10.1016/j.mtchem.2024.102260_bib54 article-title: Refractory high entropy metal sublattice nitride thin films as diffusion barriers in Cu metallizations publication-title: Surf. Coating. Technol. doi: 10.1016/j.surfcoat.2023.130016 – volume: 450 year: 2022 ident: 10.1016/j.mtchem.2024.102260_bib16 article-title: Synergistic antibacterial strategy based on photodynamic therapy: progress and perspectives publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.138129 – volume: 477 year: 2023 ident: 10.1016/j.mtchem.2024.102260_bib21 article-title: Antimicrobial photodynamic therapy encapsulation technology: frontier exploration and application prospects of novel antimicrobial technology publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.146773 – volume: 9 issue: 7 year: 2022 ident: 10.1016/j.mtchem.2024.102260_bib33 article-title: Interactions between liquid metal droplets and bacterial, fungal, and mammalian cells publication-title: Adv. Mater. Interfac. – volume: 32 issue: 18 year: 2020 ident: 10.1016/j.mtchem.2024.102260_bib34 article-title: Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives publication-title: Adv. Mater. doi: 10.1002/adma.202070138 – volume: 56 start-page: 9509 issue: 23 year: 2023 ident: 10.1016/j.mtchem.2024.102260_bib14 article-title: Facile photopolymerization of high-molecular-weight polyaniline composites induced by g-C3N4 at room temperature for trace Fe ion sensors publication-title: Macromolecules doi: 10.1021/acs.macromol.3c01970 – volume: 16 start-page: 332 issue: 1 year: 2023 ident: 10.1016/j.mtchem.2024.102260_bib38 article-title: Metallic gallium droplets exhibit poor antibacterial properties publication-title: Acs Appl Mater Inter doi: 10.1021/acsami.3c15497 – volume: 303 start-page: 83 issue: 1 year: 2002 ident: 10.1016/j.mtchem.2024.102260_bib50 article-title: Characterization of ALCVD-AlO and ZrO layer using X-ray photoelectron spectroscopy publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(02)00970-5 – volume: 253 year: 2023 ident: 10.1016/j.mtchem.2024.102260_bib17 article-title: Biomimetic helical fiber cellulose acetate/thermoplastic polyurethanes photodynamic antibacterial membrane: synthesis, characterization, and antibacterial application publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2023.126737 – volume: 4 issue: 3 year: 2018 ident: 10.1016/j.mtchem.2024.102260_bib22 article-title: Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications publication-title: Sci. Adv. doi: 10.1126/sciadv.aar5931 – volume: 257 start-page: 2717 issue: 7 year: 2011 ident: 10.1016/j.mtchem.2024.102260_bib52 article-title: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.10.051 – volume: 221 year: 2023 ident: 10.1016/j.mtchem.2024.102260_bib43 article-title: Ferrous iron-induced formation of glycyrrhizic acid hydrogels for aureus-infected wound healing publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2022.112977 – volume: 39 start-page: 1337 issue: 12 year: 2007 ident: 10.1016/j.mtchem.2024.102260_bib46 article-title: Study on properties of polymer blends from polypropylene with polycaprolactone and their biodegradability publication-title: Polym. J. doi: 10.1295/polymj.PJ2006250 |
SSID | ssj0002013456 |
Score | 2.2670693 |
Snippet | Bacterial infections result in serious impacts on human health. Non-toxic, potent, and flexible antimicrobial particles loaded onto nonwoven materials offer a... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 102260 |
SubjectTerms | Antimicrobial Ferrous Gallium Multiple antimicrobial particles Substitution reaction |
Title | Crafting and analyzing nonwovens enhanced with antimicrobial metal particles and diverse mechanisms via substitution reaction |
URI | https://dx.doi.org/10.1016/j.mtchem.2024.102260 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5zO-hF_InzFzl4LUubNEmPYzim4i468FZemxQrbo5tKgr-776krSiIBw89pG1C-zV970vyvRdCziCCjHET4p8mikAYXQSZBhFEKoZEM6uFdSu612M5mojLu_iuRQZNLIyTVda2v7Lp3lrXZ3o1mr15WfZuIiGRLiTCqSC5lPEa6UQ8kdi1O_2Lq9H4a6oFfRwXfh_XyMcZYZ0miM4rvaYOHxeVHgmXySDy6Sp_cVLfHM9wi2zWjJH2q4faJi072yHrg2ajtl3yMVhA4dTLFGYGD3h8e3clHNi_PqEtW1I7u_cL_dTNuuIdq3Ja-gRM2O7UIv2m80Yg59swXqxh8ZqLCy6X0yV9KYEu0ch4ZQF-S4pk04dE7JHJ8Px2MArqXRWCHIcPqwAYgzhjhU60LBSEWueWqdyqAp11HCpuCqYzp5Yx0uQKGZaVYKVQSMQ0cOD7pI0vYA8I1cCk4wh5bkKhBOjIcEg4xEwYSPKwS4IGxnReJc9IG1XZQ1rBnjrY0wr2LlEN1umPTpCiff-z5uG_ax6RDVeqZGPHpL1aPNsT5Bmr7LTuR59LFNN2 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEJ7oetCL8RnXZw9eyRYobTmajWZ97UVNvJGBlohx1427ajTxvzstYDQxHjxwgNIGPsrM1_abKcAhRpjz2IT0p4kyEEaXQa5RBJFKMNXcamHdiu7lUA5uxNltcjsH_TYWxskqG9tf23RvrZsrvQbN3qSqeleRkEQXUuFUkLGUyTwsuOxUSQcWjk7PB8OvqRbycbHw-7hGPs6I6rRBdF7pNXL4uKj0SLhMBpFPV_mLk_rmeE5WYLlhjOyofqhVmLPjNVjstxu1rcNH_wlLp15mODZ04MPbuzujgf3rI9myKbPjO7_Qz9ysK90xq0aVT8BE7Y4s0W82aQVyvg3jxRqWylxccDUdTdlLhWxKRsYrC-hbMiKbPiRiA25Ojq_7g6DZVSEoaPgwC5BzTHJe6lTLUmGodWG5KqwqyVknoYpNyXXu1DJGmkIRw7ISrRSKiJjGGONN6NAL2C1gGrl0HKEoTCiUQB2ZGNMYEy4MpkXYhaCFMZvUyTOyVlV2n9WwZw72rIa9C6rFOvvRCTKy73_W3P53zQNYHFxfXmQXp8PzHVhyJbWEbBc6s6dnu0ecY5bvN33qE0uF1lw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crafting+and+analyzing+nonwovens+enhanced+with+antimicrobial+metal+particles+and+diverse+mechanisms+via+substitution+reaction&rft.jtitle=Materials+today+chemistry&rft.au=Shou%2C+Bing-Bing&rft.au=Li%2C+Ting-Ting&rft.au=Hu%2C+Xian-Jin&rft.au=Liu%2C+Guo-Hua&rft.date=2024-09-01&rft.issn=2468-5194&rft.eissn=2468-5194&rft.volume=40&rft.spage=102260&rft_id=info:doi/10.1016%2Fj.mtchem.2024.102260&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mtchem_2024_102260 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-5194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-5194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-5194&client=summon |