Crafting and analyzing nonwovens enhanced with antimicrobial metal particles and diverse mechanisms via substitution reaction

Bacterial infections result in serious impacts on human health. Non-toxic, potent, and flexible antimicrobial particles loaded onto nonwoven materials offer a promising solution. Metallic antimicrobial particles have achieved significant attention and application; however, common materials such as s...

Full description

Saved in:
Bibliographic Details
Published inMaterials today chemistry Vol. 40; p. 102260
Main Authors Shou, Bing-Bing, Li, Ting-Ting, Hu, Xian-Jin, Liu, Guo-Hua, Ren, Hai-Tao, Lin, Jia-Horng, Xie, Jingwei, Liu, Li-Yan, Lou, Ching-Wen
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bacterial infections result in serious impacts on human health. Non-toxic, potent, and flexible antimicrobial particles loaded onto nonwoven materials offer a promising solution. Metallic antimicrobial particles have achieved significant attention and application; however, common materials such as silver and copper exhibit potential toxicity and typically employ a singular antimicrobial mechanism. This limitation can diminish their effectiveness over the service cycle. In our research gallium (Ga), known for its activity and versatile antimicrobial mechanisms, was employed with ferrous ions (Fe2+), which offer broad-spectrum antimicrobial properties and lower potential toxicity compared to silver and copper. Through spontaneous substitution reaction. Ga and Fe2+ can generate Ga–Fe alloys and various antimicrobial particles. In this study, we developed antimicrobial nonwovens by loading them with multiple types of metal antimicrobial particles through a simple soaking and surface treatment process. The multifaceted antimicrobial mechanisms introduced by these multiple particles provide the nonwoven materials with exceptional antimicrobial performance, achieving an effectiveness of up to 99.99 % against Escherichia coli and Staphylococcus aureus. The feasibility of the substitution reaction between Ga and Fe2+ was thoroughly verified through theoretical calculations, X-ray photoelectron spectroscopy (XPS) characterization, and experimental observations. This research offers valuable insights for advancing and exploring antimicrobial nonwoven materials. [Display omitted] •Improvement of adhesion fastness by electrosubstitution and phase separation.•No toxic organic solvents are used in the preparation process.•The nonwovens are loaded with various antimicrobial particles.•The nonwovens have excellent contact and dissolution antimicrobial effects.•High antimicrobial resistance after conventional autoclave sterilization.
AbstractList Bacterial infections result in serious impacts on human health. Non-toxic, potent, and flexible antimicrobial particles loaded onto nonwoven materials offer a promising solution. Metallic antimicrobial particles have achieved significant attention and application; however, common materials such as silver and copper exhibit potential toxicity and typically employ a singular antimicrobial mechanism. This limitation can diminish their effectiveness over the service cycle. In our research gallium (Ga), known for its activity and versatile antimicrobial mechanisms, was employed with ferrous ions (Fe2+), which offer broad-spectrum antimicrobial properties and lower potential toxicity compared to silver and copper. Through spontaneous substitution reaction. Ga and Fe2+ can generate Ga–Fe alloys and various antimicrobial particles. In this study, we developed antimicrobial nonwovens by loading them with multiple types of metal antimicrobial particles through a simple soaking and surface treatment process. The multifaceted antimicrobial mechanisms introduced by these multiple particles provide the nonwoven materials with exceptional antimicrobial performance, achieving an effectiveness of up to 99.99 % against Escherichia coli and Staphylococcus aureus. The feasibility of the substitution reaction between Ga and Fe2+ was thoroughly verified through theoretical calculations, X-ray photoelectron spectroscopy (XPS) characterization, and experimental observations. This research offers valuable insights for advancing and exploring antimicrobial nonwoven materials. [Display omitted] •Improvement of adhesion fastness by electrosubstitution and phase separation.•No toxic organic solvents are used in the preparation process.•The nonwovens are loaded with various antimicrobial particles.•The nonwovens have excellent contact and dissolution antimicrobial effects.•High antimicrobial resistance after conventional autoclave sterilization.
ArticleNumber 102260
Author Xie, Jingwei
Liu, Li-Yan
Lou, Ching-Wen
Hu, Xian-Jin
Lin, Jia-Horng
Shou, Bing-Bing
Liu, Guo-Hua
Ren, Hai-Tao
Li, Ting-Ting
Author_xml – sequence: 1
  givenname: Bing-Bing
  surname: Shou
  fullname: Shou, Bing-Bing
  organization: Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
– sequence: 2
  givenname: Ting-Ting
  orcidid: 0000-0003-4586-2598
  surname: Li
  fullname: Li, Ting-Ting
  email: tingtingli@tiangong.edu.cn
  organization: Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
– sequence: 3
  givenname: Xian-Jin
  surname: Hu
  fullname: Hu, Xian-Jin
  organization: Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
– sequence: 4
  givenname: Guo-Hua
  surname: Liu
  fullname: Liu, Guo-Hua
  organization: Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
– sequence: 5
  givenname: Hai-Tao
  surname: Ren
  fullname: Ren, Hai-Tao
  organization: Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
– sequence: 6
  givenname: Jia-Horng
  surname: Lin
  fullname: Lin, Jia-Horng
  organization: Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
– sequence: 7
  givenname: Jingwei
  surname: Xie
  fullname: Xie, Jingwei
  organization: Tianjin TEDA Filters Co., Ltd, Tianjin, 300387, China
– sequence: 8
  givenname: Li-Yan
  surname: Liu
  fullname: Liu, Li-Yan
  email: liuliyan@tiangong.edu.cn
  organization: Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
– sequence: 9
  givenname: Ching-Wen
  surname: Lou
  fullname: Lou, Ching-Wen
  email: cwlou@asia.edu.tw
  organization: Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
BookMark eNp9kMtOwzAQRS0EEqX0D1jkB1Jsx3bSDRKqeEmV2MDamjgT6iqPynZTFYl_xyEsWLEYz9iee2d0rsh513dIyA2jS0aZut0t22C22C455SI-ca7oGZlxoYpUspU4_1NfkoX3O0oppywTUs3I19pBHWz3kUBXxYDm9Dne4pBjP2DnE-y20BmskqMN29gRbGuN60sLTdJiiOceXLCmQf_jUdkBncf4Z6LQ-tYng4XEH0ofbDgE23eJQzBjcU0uamg8Ln7znLw_Prytn9PN69PL-n6TGi5lSIFSkCWti1Wh6hxYURikucG8FlxJlmdVTYtS8CyvVGVyKSQqQCVyKlcFZJDNiZh84-LeO6z13tkW3EkzqkeKeqcninqkqCeKUXY3yTDuNlh02huLIwzr0ARd9fZ_g29mkoH5
Cites_doi 10.1021/acsnano.9b07861
10.1039/C7RA10916D
10.1007/s12221-022-4786-8
10.1039/D1CS00647A
10.1021/acs.chemmater.0c03969
10.1134/S1063776115040160
10.1021/acsomega.1c00791
10.1016/j.intermet.2023.107887
10.1021/acs.nanolett.2c02693
10.1002/smll.202370365
10.1016/j.colcom.2018.01.002
10.1080/00222348.2011.598098
10.1021/acsnano.2c08894
10.1016/j.seppur.2023.125404
10.1016/S0140-6736(21)02724-0
10.1080/15583724.2019.1599391
10.1039/D0TB00174K
10.1002/admi.202201952
10.1016/j.msec.2020.110855
10.3389/fmicb.2023.1270245
10.1128/AAC.01240-15
10.1021/acsnano.1c10981
10.1016/j.apsusc.2018.07.135
10.1007/s12221-019-1091-2
10.1186/s12916-018-1073-z
10.1016/j.jallcom.2023.170166
10.2147/IJN.S328767
10.1039/D2RA08274H
10.1016/j.jinorgbio.2023.112203
10.1021/acsami.1c19579
10.1021/acschembio.0c00842
10.1016/j.cej.2022.134975
10.1038/s41422-020-00434-0
10.1016/j.biomaterials.2022.121842
10.1016/j.chemosphere.2023.139103
10.1016/j.cclet.2022.03.076
10.1021/acsnano.3c06486
10.1186/s11671-023-03861-1
10.1016/j.jclepro.2021.126395
10.1016/j.ejmech.2020.112907
10.1016/j.carbpol.2023.121057
10.1016/S0140-6736(22)02185-7
10.1016/j.surfcoat.2023.130016
10.1016/j.cej.2022.138129
10.1016/j.cej.2023.146773
10.1002/adma.202070138
10.1021/acs.macromol.3c01970
10.1021/acsami.3c15497
10.1016/S0022-3093(02)00970-5
10.1016/j.ijbiomac.2023.126737
10.1126/sciadv.aar5931
10.1016/j.apsusc.2010.10.051
10.1016/j.colsurfb.2022.112977
10.1295/polymj.PJ2006250
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mtchem.2024.102260
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2468-5194
ExternalDocumentID 10_1016_j_mtchem_2024_102260
S2468519424003665
GroupedDBID --M
0R~
AABXZ
AACTN
AAEDT
AAEDW
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
EBS
EFJIC
EJD
FDB
FIRID
FYGXN
KOM
M41
O9-
RIG
ROL
SPC
SPCBC
SSM
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c255t-a00a5b0f8986f7a188ce07ce7f4265173df08b4237d6dc7545e6ae6470598a3a3
IEDL.DBID AIKHN
ISSN 2468-5194
IngestDate Tue Jul 01 04:29:53 EDT 2025
Sat Sep 07 15:50:42 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Antimicrobial
Multiple antimicrobial particles
Gallium
Ferrous
Substitution reaction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-a00a5b0f8986f7a188ce07ce7f4265173df08b4237d6dc7545e6ae6470598a3a3
ORCID 0000-0003-4586-2598
ParticipantIDs crossref_primary_10_1016_j_mtchem_2024_102260
elsevier_sciencedirect_doi_10_1016_j_mtchem_2024_102260
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Materials today chemistry
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Zhen, Liu (bib8) 2019; 14
Li, Zhang, Gao (bib45) 2021; 296
Wang, Yang, Shi (bib34) 2020; 32
Zhang, Liu, Zhang (bib9) 2018; 8
Li, Chang, Yong (bib39) 2021; 9
Murray, Ikuta, Sharara (bib3) 2022; 399
Troyanchuk, Bushinsky, Tereshko (bib57) 2015; 120
Zhang, Zhai, Guan (bib11) 2023
Biesinger, Payne, Grosvenor (bib52) 2011; 257
Shchukarev, Korolkov (bib49) 2004; 2
Elbourne, Cheeseman, Atkin (bib41) 2020; 14
Baecker, Sesli, Knabl (bib61) 2021; 209
Zhu, Hua, Zhong (bib5) 2018; 23
Zhang, Yang, Biazik (bib42) 2022; 16
Chen, Hu, Wang (bib7) 2024; 330
Hu, Zhang, Wang (bib16) 2022; 450
Fu, Liu, Touhid (bib12) 2023
Zhang, Gu, Liu (bib20) 2020; 111
Kwon, Cheeseman, Frias-De-Diego (bib37) 2021; 33
Hu, Yang, Zhang (bib17) 2023; 253
Lindgren, Sjöstedt (bib56) 2016; 60
Han, He, Kong (bib47) 2022; 23
Cheeseman, Elbourne, Gangadoo (bib33) 2022; 9
Correia, Bundaleski, Teodoro (bib51) 2018; 458
Yougbaré, Mutalik, Okoro (bib30) 2021; 16
Xu, Gao, Lu (bib43) 2023; 221
Wang, Li, Zhou (bib28) 2022; 290
Divakarla, Das, Chatterjee (bib40) 2022; 14
Kamyab, Chelliapan, Hayder (bib27) 2023; 335
Gruber, Kirchmair, Wurster (bib53) 2023; 953
Hu, Shou, Yang (bib21) 2023; 477
Gough, Callaway, Spencer (bib19) 2021; 6
Shin, Jin, Park (bib59) 2021; 16
Ikuta, Swetschinski, Aguilar (bib4) 2022; 400
Li, Chen, Lu (bib18) 2021; 11
Nguyen, Zhao, Tang (bib2) 2022; 51
Aldrovandi, Conrad (bib60) 2020; 30
Gautam, Das, Kaur (bib26) 2023; 18
Rathore, Yadav, Gacem (bib31) 2023; 14
Hay, Rao, Dolecek (bib23) 2018; 16
Yan, Gopal, Kashif (bib25) 2022; 435
Nohira, Tsai, Besling (bib50) 2002; 303
Yang, Jiang, Gao (bib6) 2022; 22
Chen, Xu, Yin (bib55) 2023; 157
Yu, Han, He (bib13) 2012; 51
Falchevskaya, Prilepskii, Tsvetikova (bib35) 2021; 33
Gruber, Wurster, Cordill (bib54) 2023; 473
Liu, Dong, Wei (bib48) 2019; 20
Nguyen, Zhang, Bi (bib36) 2023; 34
Leong, Parker, Shaw (bib38) 2023; 16
Souzandeh, Wang, Netravali (bib15) 2019; 59
Arcana, Bundjali, Yudistira (bib46) 2007; 39
Barhoum, Deshmukh, García-Betancourt (bib1) 2023; 317
Wang, Zhang, Zhang (bib44) 2022; 33
Ren, Li, Cai (bib14) 2023; 56
Godoy-Gallardo, Eckhard, Delgado (bib29) 2021; 6
Si, Zhang, Wu (bib22) 2018; 4
Zhu, Gu, Dong (bib10) 2023; 13
Truong, Hayles, Bright (bib32) 2023; 17
Xia, Yao, Xiong (bib24) 2023; 10
Dzyhovskyi, Stokowa-Soltys (bib58) 2023; 244
Li (10.1016/j.mtchem.2024.102260_bib45) 2021; 296
Hu (10.1016/j.mtchem.2024.102260_bib21) 2023; 477
Xia (10.1016/j.mtchem.2024.102260_bib24) 2023; 10
Nguyen (10.1016/j.mtchem.2024.102260_bib2) 2022; 51
Truong (10.1016/j.mtchem.2024.102260_bib32) 2023; 17
Souzandeh (10.1016/j.mtchem.2024.102260_bib15) 2019; 59
Hay (10.1016/j.mtchem.2024.102260_bib23) 2018; 16
Dzyhovskyi (10.1016/j.mtchem.2024.102260_bib58) 2023; 244
Zhang (10.1016/j.mtchem.2024.102260_bib8) 2019; 14
Kwon (10.1016/j.mtchem.2024.102260_bib37) 2021; 33
Gruber (10.1016/j.mtchem.2024.102260_bib53) 2023; 953
Baecker (10.1016/j.mtchem.2024.102260_bib61) 2021; 209
Murray (10.1016/j.mtchem.2024.102260_bib3) 2022; 399
Nguyen (10.1016/j.mtchem.2024.102260_bib36) 2023; 34
Kamyab (10.1016/j.mtchem.2024.102260_bib27) 2023; 335
Zhang (10.1016/j.mtchem.2024.102260_bib42) 2022; 16
Biesinger (10.1016/j.mtchem.2024.102260_bib52) 2011; 257
Li (10.1016/j.mtchem.2024.102260_bib39) 2021; 9
Divakarla (10.1016/j.mtchem.2024.102260_bib40) 2022; 14
Shchukarev (10.1016/j.mtchem.2024.102260_bib49) 2004; 2
Liu (10.1016/j.mtchem.2024.102260_bib48) 2019; 20
Arcana (10.1016/j.mtchem.2024.102260_bib46) 2007; 39
Lindgren (10.1016/j.mtchem.2024.102260_bib56) 2016; 60
Barhoum (10.1016/j.mtchem.2024.102260_bib1) 2023; 317
Fu (10.1016/j.mtchem.2024.102260_bib12) 2023
Gough (10.1016/j.mtchem.2024.102260_bib19) 2021; 6
Shin (10.1016/j.mtchem.2024.102260_bib59) 2021; 16
Ren (10.1016/j.mtchem.2024.102260_bib14) 2023; 56
Si (10.1016/j.mtchem.2024.102260_bib22) 2018; 4
Troyanchuk (10.1016/j.mtchem.2024.102260_bib57) 2015; 120
Wang (10.1016/j.mtchem.2024.102260_bib28) 2022; 290
Ikuta (10.1016/j.mtchem.2024.102260_bib4) 2022; 400
Nohira (10.1016/j.mtchem.2024.102260_bib50) 2002; 303
Zhang (10.1016/j.mtchem.2024.102260_bib20) 2020; 111
Leong (10.1016/j.mtchem.2024.102260_bib38) 2023; 16
Hu (10.1016/j.mtchem.2024.102260_bib16) 2022; 450
Wang (10.1016/j.mtchem.2024.102260_bib44) 2022; 33
Yan (10.1016/j.mtchem.2024.102260_bib25) 2022; 435
Correia (10.1016/j.mtchem.2024.102260_bib51) 2018; 458
Gruber (10.1016/j.mtchem.2024.102260_bib54) 2023; 473
Hu (10.1016/j.mtchem.2024.102260_bib17) 2023; 253
Cheeseman (10.1016/j.mtchem.2024.102260_bib33) 2022; 9
Gautam (10.1016/j.mtchem.2024.102260_bib26) 2023; 18
Rathore (10.1016/j.mtchem.2024.102260_bib31) 2023; 14
Zhu (10.1016/j.mtchem.2024.102260_bib10) 2023; 13
Wang (10.1016/j.mtchem.2024.102260_bib34) 2020; 32
Li (10.1016/j.mtchem.2024.102260_bib18) 2021; 11
Yang (10.1016/j.mtchem.2024.102260_bib6) 2022; 22
Han (10.1016/j.mtchem.2024.102260_bib47) 2022; 23
Chen (10.1016/j.mtchem.2024.102260_bib7) 2024; 330
Elbourne (10.1016/j.mtchem.2024.102260_bib41) 2020; 14
Falchevskaya (10.1016/j.mtchem.2024.102260_bib35) 2021; 33
Xu (10.1016/j.mtchem.2024.102260_bib43) 2023; 221
Yougbaré (10.1016/j.mtchem.2024.102260_bib30) 2021; 16
Zhang (10.1016/j.mtchem.2024.102260_bib9) 2018; 8
Chen (10.1016/j.mtchem.2024.102260_bib55) 2023; 157
Zhu (10.1016/j.mtchem.2024.102260_bib5) 2018; 23
Zhang (10.1016/j.mtchem.2024.102260_bib11) 2023
Aldrovandi (10.1016/j.mtchem.2024.102260_bib60) 2020; 30
Yu (10.1016/j.mtchem.2024.102260_bib13) 2012; 51
Godoy-Gallardo (10.1016/j.mtchem.2024.102260_bib29) 2021; 6
References_xml – volume: 39
  start-page: 1337
  year: 2007
  end-page: 1344
  ident: bib46
  article-title: Study on properties of polymer blends from polypropylene with polycaprolactone and their biodegradability
  publication-title: Polym. J.
– volume: 473
  year: 2023
  ident: bib54
  article-title: Refractory high entropy metal sublattice nitride thin films as diffusion barriers in Cu metallizations
  publication-title: Surf. Coating. Technol.
– volume: 17
  start-page: 14406
  year: 2023
  end-page: 14423
  ident: bib32
  article-title: Gallium liquid metal: nanotoolbox for antimicrobial applications
  publication-title: ACS Nano
– volume: 14
  start-page: 802
  year: 2020
  end-page: 817
  ident: bib41
  article-title: Antibacterial liquid metals: biofilm treatment magnetic activation
  publication-title: ACS Nano
– volume: 450
  year: 2022
  ident: bib16
  article-title: Synergistic antibacterial strategy based on photodynamic therapy: progress and perspectives
  publication-title: Chem. Eng. J.
– volume: 290
  year: 2022
  ident: bib28
  article-title: Ferrous sulfate-loaded hydrogel cures infection via facilitating a ferroptosis-like bacterial cell death in a mouse keratitis model
  publication-title: Biomaterials
– volume: 2
  start-page: 347
  year: 2004
  end-page: 362
  ident: bib49
  article-title: XPS study of group IA carbonates
  publication-title: Cent. Eur. J. Chem.
– volume: 20
  start-page: 1368
  year: 2019
  end-page: 1374
  ident: bib48
  article-title: Multifunctional antibacterial and hydrophobic cotton fabrics treated with cyclic polysiloxane quaternary ammonium salt
  publication-title: Fibers Polym.
– volume: 111
  year: 2020
  ident: bib20
  article-title: Bactericidal and antifouling electrospun PVA nanofibers modified with a quaternary ammonium salt and zwitterionic sulfopropylbetaine
  publication-title: Mat Sci Eng C-Mater
– year: 2023
  ident: bib12
  article-title: Functional textile materials for blocking COVID-19 transmission
  publication-title: ACS Nano
– volume: 33
  year: 2021
  ident: bib37
  article-title: A liquid metal mediated metallic coating for antimicrobial and antiviral fabrics
  publication-title: Adv. Mater.
– volume: 953
  year: 2023
  ident: bib53
  article-title: A new design rule for high entropy alloy diffusion barriers in Cu metallization
  publication-title: J. Alloys Compd.
– volume: 16
  start-page: 136
  year: 2021
  end-page: 149
  ident: bib59
  article-title: Characterization of an antibacterial agent targeting ferrous iron transport protein FeoB against and gram-positive bacteria
  publication-title: ACS Chem. Biol.
– volume: 9
  year: 2022
  ident: bib33
  article-title: Interactions between liquid metal droplets and bacterial, fungal, and mammalian cells
  publication-title: Adv. Mater. Interfac.
– volume: 335
  year: 2023
  ident: bib27
  article-title: Exploring the potential of metal and metal oxide nanomaterials for sustainable water and wastewater treatment: a review of their antimicrobial properties
  publication-title: Chemosphere
– year: 2023
  ident: bib11
  article-title: Tri-layered bicomponent microfilament composite fabric for highly efficient cold protection
  publication-title: Small
– volume: 33
  start-page: 1571
  year: 2021
  end-page: 1580
  ident: bib35
  article-title: Facile synthesis of a library of hollow metallic particles through the galvanic replacement of liquid gallium
  publication-title: Chem. Mater.
– volume: 59
  start-page: 651
  year: 2019
  end-page: 686
  ident: bib15
  article-title: Towards sustainable and multifunctional air-filters: a review on biopolymer-based filtration materials
  publication-title: Polym. Rev.
– volume: 8
  start-page: 7932
  year: 2018
  end-page: 7941
  ident: bib9
  article-title: Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture
  publication-title: RSC Adv.
– volume: 296
  year: 2021
  ident: bib45
  article-title: Daylight-driven photosensitive antibacterial melt-blown membranes for medical use
  publication-title: J. Clean. Prod.
– volume: 30
  start-page: 1061
  year: 2020
  end-page: 1062
  ident: bib60
  article-title: Ferroptosis: the good, the bad and the ugly
  publication-title: Cell Res.
– volume: 120
  start-page: 838
  year: 2015
  end-page: 843
  ident: bib57
  article-title: Magnetic properties of manganites doped with gallium, iron, and chromium ions
  publication-title: J. Exp. Theor. Phys.
– volume: 253
  year: 2023
  ident: bib17
  article-title: Biomimetic helical fiber cellulose acetate/thermoplastic polyurethanes photodynamic antibacterial membrane: synthesis, characterization, and antibacterial application
  publication-title: Int. J. Biol. Macromol.
– volume: 14
  year: 2019
  ident: bib8
  article-title: Branched polyethylene glycol/polypropylene micro-nanofiber nonwovens for fast liquid planar transmission
  publication-title: J Eng Fiber Fabr.
– volume: 23
  start-page: 52
  year: 2018
  end-page: 58
  ident: bib5
  article-title: Antibacterial and effective air filtration membranes by "green" electrospinning and citric acid crosslinking
  publication-title: Colloid Interface Sci.
– volume: 221
  year: 2023
  ident: bib43
  article-title: Ferrous iron-induced formation of glycyrrhizic acid hydrogels for aureus-infected wound healing
  publication-title: Colloids Surf., B
– volume: 477
  year: 2023
  ident: bib21
  article-title: Antimicrobial photodynamic therapy encapsulation technology: frontier exploration and application prospects of novel antimicrobial technology
  publication-title: Chem. Eng. J.
– volume: 244
  year: 2023
  ident: bib58
  article-title: Divalent metal ion binding toFeoB transporter regions
  publication-title: J. Inorg. Biochem.
– volume: 13
  start-page: 7857
  year: 2023
  end-page: 7866
  ident: bib10
  article-title: Regulation of polylactic acid using irradiation and preparation of PLA-SiO-ZnO melt-blown nonwovens for antibacterial and air filtration
  publication-title: RSC Adv.
– volume: 400
  start-page: 2221
  year: 2022
  end-page: 2248
  ident: bib4
  article-title: Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019
  publication-title: Lancet
– volume: 34
  year: 2023
  ident: bib36
  article-title: Silver-gallium nano-amalgamated particles as a novel, biocompatible solution for antibacterial coatings
  publication-title: Adv. Funct. Mater.
– volume: 157
  year: 2023
  ident: bib55
  article-title: Dynamic mechanical relaxation behavior of TiZrHfCu-Ni/Be/NiBe high-entropy metallic glasses
  publication-title: Intermetallics
– volume: 33
  start-page: 4605
  year: 2022
  end-page: 4609
  ident: bib44
  article-title: A hybrid nano-assembly with synergistically promoting photothermal and catalytic radical activity for antibacterial therapy
  publication-title: Chin. Chem. Lett.
– volume: 257
  start-page: 2717
  year: 2011
  end-page: 2730
  ident: bib52
  article-title: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni
  publication-title: Appl. Surf. Sci.
– volume: 16
  start-page: 332
  year: 2023
  end-page: 341
  ident: bib38
  article-title: Metallic gallium droplets exhibit poor antibacterial properties
  publication-title: Acs Appl Mater Inter
– volume: 9
  year: 2021
  ident: bib39
  article-title: Superior antibacterial activity of gallium based liquid metals due to Ga induced intracellular ROS generation
  publication-title: J. Mater. Chem. B
– volume: 51
  start-page: 3324
  year: 2022
  end-page: 3340
  ident: bib2
  article-title: Organic photosensitizers for antimicrobial phototherapy
  publication-title: Chem. Soc. Rev.
– volume: 14
  year: 2023
  ident: bib31
  article-title: Microbial synthesis of titanium dioxide nanoparticles and their importance in wastewater treatment and antimicrobial activities: a review
  publication-title: Front. Microbiol.
– volume: 6
  start-page: 4470
  year: 2021
  end-page: 4490
  ident: bib29
  article-title: Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications
  publication-title: Bioact. Mater.
– volume: 23
  start-page: 1947
  year: 2022
  end-page: 1955
  ident: bib47
  article-title: High-performance electret and antibacterial polypropylene meltblown nonwoven materials doped with boehmite and ZnO nanoparticles for air filtration
  publication-title: Fibers Polym.
– volume: 16
  year: 2018
  ident: bib23
  article-title: Measuring and mapping the global burden of antimicrobial resistance
  publication-title: BMC Med.
– volume: 32
  year: 2020
  ident: bib34
  article-title: Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives
  publication-title: Adv. Mater.
– volume: 4
  year: 2018
  ident: bib22
  article-title: Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications
  publication-title: Sci. Adv.
– volume: 435
  year: 2022
  ident: bib25
  article-title: Metal organic frameworks for antibacterial applications
  publication-title: Chem. Eng. J.
– volume: 10
  year: 2023
  ident: bib24
  article-title: High efficiency antibacterial, moisture permeable, and low temperature comfortable janus nanofiber membranes for high performance air filters and respiration monitoring sensors
  publication-title: Adv. Mater. Interfac.
– volume: 22
  start-page: 7212
  year: 2022
  end-page: 7219
  ident: bib6
  article-title: Saving 80% polypropylene in facemasks by laser-assisted melt-blown nanofibers
  publication-title: Nano Lett.
– volume: 51
  start-page: 619
  year: 2012
  end-page: 629
  ident: bib13
  article-title: Effects of tourmaline particles on structure and properties of polypropylene filtration melt-blown nonwoven electrets
  publication-title: J. Macromol. Sci. B
– volume: 18
  year: 2023
  ident: bib26
  article-title: Transition metal-based nanoparticles as potential antimicrobial agents: recent advancements, mechanistic, challenges, and future prospects
  publication-title: Discov Nano
– volume: 303
  start-page: 83
  year: 2002
  end-page: 87
  ident: bib50
  article-title: Characterization of ALCVD-AlO and ZrO layer using X-ray photoelectron spectroscopy
  publication-title: J. Non-Cryst. Solids
– volume: 209
  year: 2021
  ident: bib61
  article-title: Investigating the antibacterial activity of salen/salophene metal complexes: induction of ferroptosis as part of the mode of action
  publication-title: Eur. J. Med. Chem.
– volume: 399
  start-page: 629
  year: 2022
  end-page: 655
  ident: bib3
  article-title: Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis
  publication-title: Lancet
– volume: 458
  start-page: 1043
  year: 2018
  end-page: 1049
  ident: bib51
  article-title: XPS analysis of ZnO:Ga films deposited by magnetron sputtering: substrate bias effect
  publication-title: Appl. Surf. Sci.
– volume: 60
  start-page: 288
  year: 2016
  end-page: 295
  ident: bib56
  article-title: Gallium potentiates the antibacterial effect of gentamicin against
  publication-title: Antimicrob. Agents Chemother.
– volume: 6
  start-page: 11804
  year: 2021
  end-page: 11812
  ident: bib19
  article-title: Biopolymer-based filtration materials
  publication-title: ACS Omega
– volume: 11
  year: 2021
  ident: bib18
  article-title: Application of electrospinning in antibacterial field
  publication-title: Nanomaterials-Basel
– volume: 56
  start-page: 9509
  year: 2023
  end-page: 9522
  ident: bib14
  article-title: Facile photopolymerization of high-molecular-weight polyaniline composites induced by g-C3N4 at room temperature for trace Fe ion sensors
  publication-title: Macromolecules
– volume: 16
  start-page: 5831
  year: 2021
  end-page: 5867
  ident: bib30
  article-title: Emerging trends in nanomaterials for antibacterial applications
  publication-title: Int. J. Nanomed.
– volume: 16
  start-page: 8891
  year: 2022
  end-page: 8903
  ident: bib42
  article-title: Gallium nanodroplets are anti-inflammatory without interfering with iron homeostasis
  publication-title: ACS Nano
– volume: 317
  year: 2023
  ident: bib1
  article-title: Nanocelluloses as sustainable membrane materials for separation and filtration technologies: principles, opportunities, and challenges
  publication-title: Carbohydr. Polym.
– volume: 330
  year: 2024
  ident: bib7
  article-title: A review on recent trends of the antibacterial nonwovens air filter materials: classification, fabrication, and application
  publication-title: Sep. Purif. Technol.
– volume: 14
  start-page: 9685
  year: 2022
  end-page: 9696
  ident: bib40
  article-title: Antimicrobial and anti-inflammatory gallium-defensin surface coatings for implantable devices
  publication-title: Acs Appl Mater Inter
– volume: 14
  start-page: 802
  issue: 1
  year: 2020
  ident: 10.1016/j.mtchem.2024.102260_bib41
  article-title: Antibacterial liquid metals: biofilm treatment magnetic activation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b07861
– volume: 8
  start-page: 7932
  issue: 15
  year: 2018
  ident: 10.1016/j.mtchem.2024.102260_bib9
  article-title: Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture
  publication-title: RSC Adv.
  doi: 10.1039/C7RA10916D
– volume: 23
  start-page: 1947
  issue: 7
  year: 2022
  ident: 10.1016/j.mtchem.2024.102260_bib47
  article-title: High-performance electret and antibacterial polypropylene meltblown nonwoven materials doped with boehmite and ZnO nanoparticles for air filtration
  publication-title: Fibers Polym.
  doi: 10.1007/s12221-022-4786-8
– volume: 51
  start-page: 3324
  issue: 9
  year: 2022
  ident: 10.1016/j.mtchem.2024.102260_bib2
  article-title: Organic photosensitizers for antimicrobial phototherapy
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00647A
– volume: 33
  start-page: 1571
  issue: 5
  year: 2021
  ident: 10.1016/j.mtchem.2024.102260_bib35
  article-title: Facile synthesis of a library of hollow metallic particles through the galvanic replacement of liquid gallium
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c03969
– volume: 120
  start-page: 838
  issue: 5
  year: 2015
  ident: 10.1016/j.mtchem.2024.102260_bib57
  article-title: Magnetic properties of manganites doped with gallium, iron, and chromium ions
  publication-title: J. Exp. Theor. Phys.
  doi: 10.1134/S1063776115040160
– volume: 6
  start-page: 11804
  issue: 18
  year: 2021
  ident: 10.1016/j.mtchem.2024.102260_bib19
  article-title: Biopolymer-based filtration materials
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c00791
– volume: 2
  start-page: 347
  issue: 2
  year: 2004
  ident: 10.1016/j.mtchem.2024.102260_bib49
  article-title: XPS study of group IA carbonates
  publication-title: Cent. Eur. J. Chem.
– volume: 157
  year: 2023
  ident: 10.1016/j.mtchem.2024.102260_bib55
  article-title: Dynamic mechanical relaxation behavior of TiZrHfCu-Ni/Be/NiBe high-entropy metallic glasses
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2023.107887
– volume: 22
  start-page: 7212
  issue: 17
  year: 2022
  ident: 10.1016/j.mtchem.2024.102260_bib6
  article-title: Saving 80% polypropylene in facemasks by laser-assisted melt-blown nanofibers
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c02693
– year: 2023
  ident: 10.1016/j.mtchem.2024.102260_bib11
  article-title: Tri-layered bicomponent microfilament composite fabric for highly efficient cold protection
  publication-title: Small
  doi: 10.1002/smll.202370365
– volume: 23
  start-page: 52
  year: 2018
  ident: 10.1016/j.mtchem.2024.102260_bib5
  article-title: Antibacterial and effective air filtration membranes by "green" electrospinning and citric acid crosslinking
  publication-title: Colloid Interface Sci.
  doi: 10.1016/j.colcom.2018.01.002
– volume: 51
  start-page: 619
  issue: 4
  year: 2012
  ident: 10.1016/j.mtchem.2024.102260_bib13
  article-title: Effects of tourmaline particles on structure and properties of polypropylene filtration melt-blown nonwoven electrets
  publication-title: J. Macromol. Sci. B
  doi: 10.1080/00222348.2011.598098
– volume: 34
  issue: 31
  year: 2023
  ident: 10.1016/j.mtchem.2024.102260_bib36
  article-title: Silver-gallium nano-amalgamated particles as a novel, biocompatible solution for antibacterial coatings
  publication-title: Adv. Funct. Mater.
– year: 2023
  ident: 10.1016/j.mtchem.2024.102260_bib12
  article-title: Functional textile materials for blocking COVID-19 transmission
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c08894
– volume: 330
  year: 2024
  ident: 10.1016/j.mtchem.2024.102260_bib7
  article-title: A review on recent trends of the antibacterial nonwovens air filter materials: classification, fabrication, and application
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2023.125404
– volume: 399
  start-page: 629
  issue: 10325
  year: 2022
  ident: 10.1016/j.mtchem.2024.102260_bib3
  article-title: Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)02724-0
– volume: 59
  start-page: 651
  issue: 4
  year: 2019
  ident: 10.1016/j.mtchem.2024.102260_bib15
  article-title: Towards sustainable and multifunctional air-filters: a review on biopolymer-based filtration materials
  publication-title: Polym. Rev.
  doi: 10.1080/15583724.2019.1599391
– volume: 9
  issue: 1
  year: 2021
  ident: 10.1016/j.mtchem.2024.102260_bib39
  article-title: Superior antibacterial activity of gallium based liquid metals due to Ga induced intracellular ROS generation
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB00174K
– volume: 11
  issue: 7
  year: 2021
  ident: 10.1016/j.mtchem.2024.102260_bib18
  article-title: Application of electrospinning in antibacterial field
  publication-title: Nanomaterials-Basel
– volume: 10
  issue: 8
  year: 2023
  ident: 10.1016/j.mtchem.2024.102260_bib24
  article-title: High efficiency antibacterial, moisture permeable, and low temperature comfortable janus nanofiber membranes for high performance air filters and respiration monitoring sensors
  publication-title: Adv. Mater. Interfac.
  doi: 10.1002/admi.202201952
– volume: 111
  year: 2020
  ident: 10.1016/j.mtchem.2024.102260_bib20
  article-title: Bactericidal and antifouling electrospun PVA nanofibers modified with a quaternary ammonium salt and zwitterionic sulfopropylbetaine
  publication-title: Mat Sci Eng C-Mater
  doi: 10.1016/j.msec.2020.110855
– volume: 6
  start-page: 4470
  issue: 12
  year: 2021
  ident: 10.1016/j.mtchem.2024.102260_bib29
  article-title: Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications
  publication-title: Bioact. Mater.
– volume: 14
  year: 2023
  ident: 10.1016/j.mtchem.2024.102260_bib31
  article-title: Microbial synthesis of titanium dioxide nanoparticles and their importance in wastewater treatment and antimicrobial activities: a review
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2023.1270245
– volume: 14
  year: 2019
  ident: 10.1016/j.mtchem.2024.102260_bib8
  article-title: Branched polyethylene glycol/polypropylene micro-nanofiber nonwovens for fast liquid planar transmission
  publication-title: J Eng Fiber Fabr.
– volume: 60
  start-page: 288
  issue: 1
  year: 2016
  ident: 10.1016/j.mtchem.2024.102260_bib56
  article-title: Gallium potentiates the antibacterial effect of gentamicin against
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01240-15
– volume: 16
  start-page: 8891
  issue: 6
  year: 2022
  ident: 10.1016/j.mtchem.2024.102260_bib42
  article-title: Gallium nanodroplets are anti-inflammatory without interfering with iron homeostasis
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c10981
– volume: 33
  issue: 45
  year: 2021
  ident: 10.1016/j.mtchem.2024.102260_bib37
  article-title: A liquid metal mediated metallic coating for antimicrobial and antiviral fabrics
  publication-title: Adv. Mater.
– volume: 458
  start-page: 1043
  year: 2018
  ident: 10.1016/j.mtchem.2024.102260_bib51
  article-title: XPS analysis of ZnO:Ga films deposited by magnetron sputtering: substrate bias effect
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.07.135
– volume: 20
  start-page: 1368
  issue: 7
  year: 2019
  ident: 10.1016/j.mtchem.2024.102260_bib48
  article-title: Multifunctional antibacterial and hydrophobic cotton fabrics treated with cyclic polysiloxane quaternary ammonium salt
  publication-title: Fibers Polym.
  doi: 10.1007/s12221-019-1091-2
– volume: 16
  year: 2018
  ident: 10.1016/j.mtchem.2024.102260_bib23
  article-title: Measuring and mapping the global burden of antimicrobial resistance
  publication-title: BMC Med.
  doi: 10.1186/s12916-018-1073-z
– volume: 953
  year: 2023
  ident: 10.1016/j.mtchem.2024.102260_bib53
  article-title: A new design rule for high entropy alloy diffusion barriers in Cu metallization
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2023.170166
– volume: 16
  start-page: 5831
  year: 2021
  ident: 10.1016/j.mtchem.2024.102260_bib30
  article-title: Emerging trends in nanomaterials for antibacterial applications
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S328767
– volume: 13
  start-page: 7857
  issue: 12
  year: 2023
  ident: 10.1016/j.mtchem.2024.102260_bib10
  article-title: Regulation of polylactic acid using irradiation and preparation of PLA-SiO-ZnO melt-blown nonwovens for antibacterial and air filtration
  publication-title: RSC Adv.
  doi: 10.1039/D2RA08274H
– volume: 244
  year: 2023
  ident: 10.1016/j.mtchem.2024.102260_bib58
  article-title: Divalent metal ion binding toFeoB transporter regions
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2023.112203
– volume: 14
  start-page: 9685
  issue: 7
  year: 2022
  ident: 10.1016/j.mtchem.2024.102260_bib40
  article-title: Antimicrobial and anti-inflammatory gallium-defensin surface coatings for implantable devices
  publication-title: Acs Appl Mater Inter
  doi: 10.1021/acsami.1c19579
– volume: 16
  start-page: 136
  issue: 1
  year: 2021
  ident: 10.1016/j.mtchem.2024.102260_bib59
  article-title: Characterization of an antibacterial agent targeting ferrous iron transport protein FeoB against and gram-positive bacteria
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.0c00842
– volume: 435
  year: 2022
  ident: 10.1016/j.mtchem.2024.102260_bib25
  article-title: Metal organic frameworks for antibacterial applications
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.134975
– volume: 30
  start-page: 1061
  issue: 12
  year: 2020
  ident: 10.1016/j.mtchem.2024.102260_bib60
  article-title: Ferroptosis: the good, the bad and the ugly
  publication-title: Cell Res.
  doi: 10.1038/s41422-020-00434-0
– volume: 290
  year: 2022
  ident: 10.1016/j.mtchem.2024.102260_bib28
  article-title: Ferrous sulfate-loaded hydrogel cures infection via facilitating a ferroptosis-like bacterial cell death in a mouse keratitis model
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2022.121842
– volume: 335
  year: 2023
  ident: 10.1016/j.mtchem.2024.102260_bib27
  article-title: Exploring the potential of metal and metal oxide nanomaterials for sustainable water and wastewater treatment: a review of their antimicrobial properties
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2023.139103
– volume: 33
  start-page: 4605
  issue: 10
  year: 2022
  ident: 10.1016/j.mtchem.2024.102260_bib44
  article-title: A hybrid nano-assembly with synergistically promoting photothermal and catalytic radical activity for antibacterial therapy
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2022.03.076
– volume: 17
  start-page: 14406
  issue: 15
  year: 2023
  ident: 10.1016/j.mtchem.2024.102260_bib32
  article-title: Gallium liquid metal: nanotoolbox for antimicrobial applications
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c06486
– volume: 18
  issue: 1
  year: 2023
  ident: 10.1016/j.mtchem.2024.102260_bib26
  article-title: Transition metal-based nanoparticles as potential antimicrobial agents: recent advancements, mechanistic, challenges, and future prospects
  publication-title: Discov Nano
  doi: 10.1186/s11671-023-03861-1
– volume: 296
  year: 2021
  ident: 10.1016/j.mtchem.2024.102260_bib45
  article-title: Daylight-driven photosensitive antibacterial melt-blown membranes for medical use
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126395
– volume: 209
  year: 2021
  ident: 10.1016/j.mtchem.2024.102260_bib61
  article-title: Investigating the antibacterial activity of salen/salophene metal complexes: induction of ferroptosis as part of the mode of action
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2020.112907
– volume: 317
  year: 2023
  ident: 10.1016/j.mtchem.2024.102260_bib1
  article-title: Nanocelluloses as sustainable membrane materials for separation and filtration technologies: principles, opportunities, and challenges
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2023.121057
– volume: 400
  start-page: 2221
  issue: 10369
  year: 2022
  ident: 10.1016/j.mtchem.2024.102260_bib4
  article-title: Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019
  publication-title: Lancet
  doi: 10.1016/S0140-6736(22)02185-7
– volume: 473
  year: 2023
  ident: 10.1016/j.mtchem.2024.102260_bib54
  article-title: Refractory high entropy metal sublattice nitride thin films as diffusion barriers in Cu metallizations
  publication-title: Surf. Coating. Technol.
  doi: 10.1016/j.surfcoat.2023.130016
– volume: 450
  year: 2022
  ident: 10.1016/j.mtchem.2024.102260_bib16
  article-title: Synergistic antibacterial strategy based on photodynamic therapy: progress and perspectives
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.138129
– volume: 477
  year: 2023
  ident: 10.1016/j.mtchem.2024.102260_bib21
  article-title: Antimicrobial photodynamic therapy encapsulation technology: frontier exploration and application prospects of novel antimicrobial technology
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.146773
– volume: 9
  issue: 7
  year: 2022
  ident: 10.1016/j.mtchem.2024.102260_bib33
  article-title: Interactions between liquid metal droplets and bacterial, fungal, and mammalian cells
  publication-title: Adv. Mater. Interfac.
– volume: 32
  issue: 18
  year: 2020
  ident: 10.1016/j.mtchem.2024.102260_bib34
  article-title: Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202070138
– volume: 56
  start-page: 9509
  issue: 23
  year: 2023
  ident: 10.1016/j.mtchem.2024.102260_bib14
  article-title: Facile photopolymerization of high-molecular-weight polyaniline composites induced by g-C3N4 at room temperature for trace Fe ion sensors
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.3c01970
– volume: 16
  start-page: 332
  issue: 1
  year: 2023
  ident: 10.1016/j.mtchem.2024.102260_bib38
  article-title: Metallic gallium droplets exhibit poor antibacterial properties
  publication-title: Acs Appl Mater Inter
  doi: 10.1021/acsami.3c15497
– volume: 303
  start-page: 83
  issue: 1
  year: 2002
  ident: 10.1016/j.mtchem.2024.102260_bib50
  article-title: Characterization of ALCVD-AlO and ZrO layer using X-ray photoelectron spectroscopy
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(02)00970-5
– volume: 253
  year: 2023
  ident: 10.1016/j.mtchem.2024.102260_bib17
  article-title: Biomimetic helical fiber cellulose acetate/thermoplastic polyurethanes photodynamic antibacterial membrane: synthesis, characterization, and antibacterial application
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2023.126737
– volume: 4
  issue: 3
  year: 2018
  ident: 10.1016/j.mtchem.2024.102260_bib22
  article-title: Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aar5931
– volume: 257
  start-page: 2717
  issue: 7
  year: 2011
  ident: 10.1016/j.mtchem.2024.102260_bib52
  article-title: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.10.051
– volume: 221
  year: 2023
  ident: 10.1016/j.mtchem.2024.102260_bib43
  article-title: Ferrous iron-induced formation of glycyrrhizic acid hydrogels for aureus-infected wound healing
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2022.112977
– volume: 39
  start-page: 1337
  issue: 12
  year: 2007
  ident: 10.1016/j.mtchem.2024.102260_bib46
  article-title: Study on properties of polymer blends from polypropylene with polycaprolactone and their biodegradability
  publication-title: Polym. J.
  doi: 10.1295/polymj.PJ2006250
SSID ssj0002013456
Score 2.2670693
Snippet Bacterial infections result in serious impacts on human health. Non-toxic, potent, and flexible antimicrobial particles loaded onto nonwoven materials offer a...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 102260
SubjectTerms Antimicrobial
Ferrous
Gallium
Multiple antimicrobial particles
Substitution reaction
Title Crafting and analyzing nonwovens enhanced with antimicrobial metal particles and diverse mechanisms via substitution reaction
URI https://dx.doi.org/10.1016/j.mtchem.2024.102260
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5zO-hF_InzFzl4LUubNEmPYzim4i468FZemxQrbo5tKgr-776krSiIBw89pG1C-zV970vyvRdCziCCjHET4p8mikAYXQSZBhFEKoZEM6uFdSu612M5mojLu_iuRQZNLIyTVda2v7Lp3lrXZ3o1mr15WfZuIiGRLiTCqSC5lPEa6UQ8kdi1O_2Lq9H4a6oFfRwXfh_XyMcZYZ0miM4rvaYOHxeVHgmXySDy6Sp_cVLfHM9wi2zWjJH2q4faJi072yHrg2ajtl3yMVhA4dTLFGYGD3h8e3clHNi_PqEtW1I7u_cL_dTNuuIdq3Ja-gRM2O7UIv2m80Yg59swXqxh8ZqLCy6X0yV9KYEu0ch4ZQF-S4pk04dE7JHJ8Px2MArqXRWCHIcPqwAYgzhjhU60LBSEWueWqdyqAp11HCpuCqYzp5Yx0uQKGZaVYKVQSMQ0cOD7pI0vYA8I1cCk4wh5bkKhBOjIcEg4xEwYSPKwS4IGxnReJc9IG1XZQ1rBnjrY0wr2LlEN1umPTpCiff-z5uG_ax6RDVeqZGPHpL1aPNsT5Bmr7LTuR59LFNN2
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEJ7oetCL8RnXZw9eyRYobTmajWZ97UVNvJGBlohx1427ajTxvzstYDQxHjxwgNIGPsrM1_abKcAhRpjz2IT0p4kyEEaXQa5RBJFKMNXcamHdiu7lUA5uxNltcjsH_TYWxskqG9tf23RvrZsrvQbN3qSqeleRkEQXUuFUkLGUyTwsuOxUSQcWjk7PB8OvqRbycbHw-7hGPs6I6rRBdF7pNXL4uKj0SLhMBpFPV_mLk_rmeE5WYLlhjOyofqhVmLPjNVjstxu1rcNH_wlLp15mODZ04MPbuzujgf3rI9myKbPjO7_Qz9ysK90xq0aVT8BE7Y4s0W82aQVyvg3jxRqWylxccDUdTdlLhWxKRsYrC-hbMiKbPiRiA25Ojq_7g6DZVSEoaPgwC5BzTHJe6lTLUmGodWG5KqwqyVknoYpNyXXu1DJGmkIRw7ISrRSKiJjGGONN6NAL2C1gGrl0HKEoTCiUQB2ZGNMYEy4MpkXYhaCFMZvUyTOyVlV2n9WwZw72rIa9C6rFOvvRCTKy73_W3P53zQNYHFxfXmQXp8PzHVhyJbWEbBc6s6dnu0ecY5bvN33qE0uF1lw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crafting+and+analyzing+nonwovens+enhanced+with+antimicrobial+metal+particles+and+diverse+mechanisms+via+substitution+reaction&rft.jtitle=Materials+today+chemistry&rft.au=Shou%2C+Bing-Bing&rft.au=Li%2C+Ting-Ting&rft.au=Hu%2C+Xian-Jin&rft.au=Liu%2C+Guo-Hua&rft.date=2024-09-01&rft.issn=2468-5194&rft.eissn=2468-5194&rft.volume=40&rft.spage=102260&rft_id=info:doi/10.1016%2Fj.mtchem.2024.102260&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mtchem_2024_102260
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-5194&client=summon