Efficient Algorithms for Range Mode Queries in the Big Data Era

The mode is a fundamental descriptive statistic in data analysis, signifying the most frequent element within a dataset. The range mode query (RMQ) problem expands upon this concept by preprocessing an array A containing n natural numbers. This allows for the swift determination of the mode within a...

Full description

Saved in:
Bibliographic Details
Published inInformation (Basel) Vol. 15; no. 8; p. 450
Main Authors Karras, Christos, Theodorakopoulos, Leonidas, Karras, Aristeidis, Krimpas, George A.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mode is a fundamental descriptive statistic in data analysis, signifying the most frequent element within a dataset. The range mode query (RMQ) problem expands upon this concept by preprocessing an array A containing n natural numbers. This allows for the swift determination of the mode within any subarray A[a..b], thus optimizing the computation of the mode for a multitude of range queries. The efficacy of this process bears considerable importance in data analytics and retrieval across diverse platforms, including but not limited to online shopping experiences and financial auditing systems. This study is dedicated to exploring and benchmarking different algorithms and data structures designed to tackle the RMQ problem. The goal is to not only address the theoretical aspects of RMQ but also to provide practical solutions that can be applied in real-world scenarios, such as the optimization of an online shopping platform’s understanding of customer preferences, enhancing the efficiency and effectiveness of data retrieval in large datasets.
AbstractList The mode is a fundamental descriptive statistic in data analysis, signifying the most frequent element within a dataset. The range mode query (RMQ) problem expands upon this concept by preprocessing an array A containing n natural numbers. This allows for the swift determination of the mode within any subarray A[a..b], thus optimizing the computation of the mode for a multitude of range queries. The efficacy of this process bears considerable importance in data analytics and retrieval across diverse platforms, including but not limited to online shopping experiences and financial auditing systems. This study is dedicated to exploring and benchmarking different algorithms and data structures designed to tackle the RMQ problem. The goal is to not only address the theoretical aspects of RMQ but also to provide practical solutions that can be applied in real-world scenarios, such as the optimization of an online shopping platform’s understanding of customer preferences, enhancing the efficiency and effectiveness of data retrieval in large datasets.
Audience Academic
Author Krimpas, George A
Theodorakopoulos, Leonidas
Karras, Christos
Karras, Aristeidis
Author_xml – sequence: 1
  givenname: Christos
  orcidid: 0000-0002-4253-7661
  surname: Karras
  fullname: Karras, Christos
– sequence: 2
  givenname: Leonidas
  orcidid: 0000-0002-0891-6780
  surname: Theodorakopoulos
  fullname: Theodorakopoulos, Leonidas
– sequence: 3
  givenname: Aristeidis
  orcidid: 0000-0002-4632-6511
  surname: Karras
  fullname: Karras, Aristeidis
– sequence: 4
  givenname: George A.
  orcidid: 0009-0007-0008-547X
  surname: Krimpas
  fullname: Krimpas, George A.
BookMark eNpNUU1PHDEMjRBIBcqtPyASV5bmc5KcqgW2LRIVAsE58iTOkNXuBDKzh_77hm5VYR9sWX7Pz_YJORzLiIR84exSSse-5jEVrpllSrMDciyYsQuhrDv8kH8iZ9O0Zs2MscryY_JtlVIOGceZLjdDqXl-2U40lUofYRyQ_ioR6cMOa8aJ5pHOL0iv8kBvYAa6qvCZHCXYTHj2L56S5--rp-ufi7v7H7fXy7tFEFrPCyeVbVO1tbED1FqZpF3nHNquw55LEQF6K6JIymnrQgpgTM9QCmOiAC1Pye2eNxZY-9eat1B_-wLZ_y2UOniocw4b9Gg61XYLVpuoXDAOeeRa9j0TJkCvGtf5nuu1lrcdTrNfl10dm3wvmTNOcNuJ1nW57xqgkb5fd64Qmkfc5tBun3KrLy2z3Kq2WwNc7AGhlmmqmP7L5My_v8h_fJH8A5oPgf0
Cites_doi 10.1016/j.jmsy.2021.03.005
10.1016/j.eswa.2022.116821
10.3390/info14040223
10.1109/TIP.2022.3192706
10.1109/ICBATS57792.2023.10111374
10.1155/2022/4892046
10.1109/TDSC.2021.3061611
10.3390/eng5030068
10.3390/s21072376
10.1016/j.jsis.2017.07.003
10.1016/j.ins.2019.09.055
10.1016/j.iheduc.2022.100881
10.1016/j.ipl.2008.10.007
10.1109/AICT50176.2020.9368781
10.1108/MEDAR-03-2020-0838
10.1145/3575879.3575977
10.1016/j.isprsjprs.2015.11.006
10.1007/978-3-030-00479-8_17
10.1145/3397271.3401327
10.1109/TR.2020.2973403
10.1063/1674-0068/cjcp2005077
10.1080/14697688.2017.1402125
10.2139/ssrn.3637784
10.3389/fpsyg.2023.1140972
10.1016/j.intaccaudtax.2020.100357
10.1007/s10115-018-1183-0
10.2307/j.ctv14jx6sm
10.3390/sym12081288
10.1007/978-3-031-33437-5_2
10.26599/BDMA.2019.9020015
10.1016/j.knosys.2020.106462
10.1108/MAJ-08-2018-1980
10.1016/j.pce.2023.103421
10.1145/1290672.1290680
10.1109/JIOT.2018.2823498
10.1007/s00224-013-9455-2
10.1186/s41044-016-0014-0
10.1007/s11042-022-13954-1
10.21511/bbs.17(3).2022.05
10.1016/j.ssci.2019.09.015
10.1016/j.dib.2021.107061
10.14778/3436905.3436910
10.1007/978-3-030-39105-8
10.1007/978-3-031-14054-9_20
10.1109/ICCAKM54721.2022.9990045
10.1080/0144929X.2017.1355014
10.1080/23322039.2022.2148363
10.1016/B978-0-12-809474-7.00019-7
10.1108/JFC-11-2019-0147
10.1002/nme.4857
10.1007/978-3-031-21047-1_33
10.1587/transinf.E92.D.2025
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7X5
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K6~
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/info15080450
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Entrepreneurship Database
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Entrepreneurship
Advanced Technologies & Aerospace Collection
Business Premium Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2078-2489
ExternalDocumentID oai_doaj_org_article_e764481c857d49c79e1d153bb027cab4
A808184000
10_3390_info15080450
GroupedDBID .4I
3V.
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
M0N
MK~
ML~
MODMG
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
7SC
7X5
7XB
8AL
8FD
8FK
BEZIV
JQ2
K6~
L7M
L~C
L~D
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c255t-9348000588d6ae5547f59699e866eb132daab82d2f49589cfca77b0e3277d2a53
IEDL.DBID DOA
ISSN 2078-2489
IngestDate Tue Oct 22 15:04:28 EDT 2024
Thu Oct 10 22:04:31 EDT 2024
Tue Sep 17 04:00:52 EDT 2024
Wed Jul 31 12:48:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-9348000588d6ae5547f59699e866eb132daab82d2f49589cfca77b0e3277d2a53
ORCID 0000-0002-4632-6511
0000-0002-0891-6780
0000-0002-4253-7661
0009-0007-0008-547X
OpenAccessLink https://doaj.org/article/e764481c857d49c79e1d153bb027cab4
PQID 3097921862
PQPubID 2032384
ParticipantIDs doaj_primary_oai_doaj_org_article_e764481c857d49c79e1d153bb027cab4
proquest_journals_3097921862
gale_infotracacademiconefile_A808184000
crossref_primary_10_3390_info15080450
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Information (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Petersen (ref_5) 2009; 109
Liu (ref_22) 2020; 70
Raman (ref_64) 2007; 3
Hou (ref_25) 2020; 208
Tang (ref_9) 2017; 36
ref_14
ref_13
Akingboye (ref_42) 2023; 131
ref_53
ref_52
Liu (ref_40) 2016; 115
ref_51
ref_19
Alazzabi (ref_24) 2023; 30
ref_16
ref_15
ref_59
Alrashidi (ref_12) 2022; 9
Bu (ref_18) 2020; 512
Ma (ref_58) 2020; 33
Mehrizi (ref_61) 2017; 26
Zheng (ref_27) 2021; 19
Rakipi (ref_7) 2021; 42
Ahmed (ref_50) 2019; 58
Hatala (ref_45) 2023; 56
Rahman (ref_37) 2019; 17
Si (ref_17) 2022; 2022
ref_66
McWalter (ref_47) 2018; 18
ref_63
ref_62
Zhao (ref_56) 2018; 5
Wang (ref_54) 2015; 102
(ref_11) 2021; 29
Theodorakopoulos (ref_34) 2024; 5
Putra (ref_21) 2022; 10
ref_36
ref_35
Mahmud (ref_29) 2020; 3
ref_33
Pena (ref_43) 2022; 198
ref_32
ref_31
ref_30
Fourny (ref_28) 2020; 14
ref_38
Krizanc (ref_1) 2005; 12
Na (ref_65) 2009; 92
Raja (ref_39) 2023; 82
Oussous (ref_55) 2018; 30
Luengo (ref_44) 2016; 1
ref_46
Wang (ref_57) 2022; 31
Theodorakopoulos (ref_6) 2022; 17
Nietert (ref_60) 2022; 35
Shabani (ref_10) 2022; Volume 2
ref_41
Wang (ref_26) 2022; 62
ref_3
Turetken (ref_23) 2020; 35
Baatwah (ref_67) 2021; 36
Chan (ref_2) 2014; 55
ref_49
ref_48
ref_8
Hegde (ref_20) 2020; 122
ref_4
References_xml – volume: 62
  start-page: 738
  year: 2022
  ident: ref_26
  article-title: Big data analytics for intelligent manufacturing systems: A review
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.03.005
  contributor:
    fullname: Wang
– volume: 198
  start-page: 116821
  year: 2022
  ident: ref_43
  article-title: Normalization method for quantitative and qualitative attributes in multiple attribute decision-making problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116821
  contributor:
    fullname: Pena
– ident: ref_49
– ident: ref_33
  doi: 10.3390/info14040223
– volume: 31
  start-page: 5257
  year: 2022
  ident: ref_57
  article-title: Extendable multiple nodes recurrent tracking framework with RTU++
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2022.3192706
  contributor:
    fullname: Wang
– ident: ref_13
  doi: 10.1109/ICBATS57792.2023.10111374
– volume: 17
  start-page: 44
  year: 2019
  ident: ref_37
  article-title: Statistics-based data preprocessing methods and machine learning algorithms for big data analysis
  publication-title: Int. J. Artif. Intell.
  contributor:
    fullname: Rahman
– volume: 2022
  start-page: 4892046
  year: 2022
  ident: ref_17
  article-title: Construction and application of enterprise internal audit data analysis model based on decision tree algorithm
  publication-title: Discret. Dyn. Nat. Soc.
  doi: 10.1155/2022/4892046
  contributor:
    fullname: Si
– volume: 19
  start-page: 2501
  year: 2021
  ident: ref_27
  article-title: Efficient and privacy-preserving similarity range query over encrypted time series data
  publication-title: IEEE Trans. Dependable Secur. Comput.
  doi: 10.1109/TDSC.2021.3061611
  contributor:
    fullname: Zheng
– volume: 5
  start-page: 1266
  year: 2024
  ident: ref_34
  article-title: A State-of-the-Art Review in Big Data Management Engineering: Real-Life Case Studies, Challenges, and Future Research Directions
  publication-title: Eng
  doi: 10.3390/eng5030068
  contributor:
    fullname: Theodorakopoulos
– ident: ref_15
  doi: 10.3390/s21072376
– volume: 26
  start-page: 191
  year: 2017
  ident: ref_61
  article-title: Debating big data: A literature review on realizing value from big data
  publication-title: J. Strateg. Inf. Syst.
  doi: 10.1016/j.jsis.2017.07.003
  contributor:
    fullname: Mehrizi
– volume: 512
  start-page: 123
  year: 2020
  ident: ref_18
  article-title: A convolutional neural-based learning classifier system for detecting database intrusion via insider attack
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.09.055
  contributor:
    fullname: Bu
– volume: 56
  start-page: 100881
  year: 2023
  ident: ref_45
  article-title: Progression of students’ SRL processes in subsequent programming problem-solving tasks and its association with tasks outcomes
  publication-title: Internet High. Educ.
  doi: 10.1016/j.iheduc.2022.100881
  contributor:
    fullname: Hatala
– volume: 109
  start-page: 225
  year: 2009
  ident: ref_5
  article-title: Range mode and range median queries in constant time and sub-quadratic space
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2008.10.007
  contributor:
    fullname: Petersen
– ident: ref_19
  doi: 10.1109/AICT50176.2020.9368781
– volume: 29
  start-page: 1088
  year: 2021
  ident: ref_11
  article-title: Big data and data analytics in auditing: In search of legitimacy
  publication-title: Meditari Account. Res.
  doi: 10.1108/MEDAR-03-2020-0838
– ident: ref_35
  doi: 10.1145/3575879.3575977
– volume: 115
  start-page: 134
  year: 2016
  ident: ref_40
  article-title: Rethinking big data: A review on the data quality and usage issues
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.11.006
  contributor:
    fullname: Liu
– ident: ref_53
  doi: 10.1007/978-3-030-00479-8_17
– ident: ref_51
  doi: 10.1145/3397271.3401327
– volume: 70
  start-page: 163
  year: 2020
  ident: ref_22
  article-title: A new integrated approach for risk evaluation and classification with dynamic expert weights
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2020.2973403
  contributor:
    fullname: Liu
– volume: 33
  start-page: 727
  year: 2020
  ident: ref_58
  article-title: NeuDATool: An open source neutron data analysis tools, supporting GPU hardware acceleration, and across-computer cluster nodes parallel
  publication-title: Chin. J. Chem. Phys.
  doi: 10.1063/1674-0068/cjcp2005077
  contributor:
    fullname: Ma
– volume: 18
  start-page: 693
  year: 2018
  ident: ref_47
  article-title: Recursive marginal quantization of higher-order schemes
  publication-title: Quant. Financ.
  doi: 10.1080/14697688.2017.1402125
  contributor:
    fullname: McWalter
– ident: ref_48
  doi: 10.2139/ssrn.3637784
– volume: 9
  start-page: 93
  year: 2022
  ident: ref_12
  article-title: The impact of big data analytics on audit procedures: Evidence from the Middle East
  publication-title: J. Asian Financ. Econ. Bus.
  contributor:
    fullname: Alrashidi
– ident: ref_4
– ident: ref_8
  doi: 10.3389/fpsyg.2023.1140972
– volume: 35
  start-page: 28179
  year: 2022
  ident: ref_60
  article-title: Statistical, robustness, and computational guarantees for sliced wasserstein distances
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Nietert
– ident: ref_41
– volume: 42
  start-page: 100357
  year: 2021
  ident: ref_7
  article-title: Correlates of the internal audit function’s use of data analytics in the big data era: Global evidence
  publication-title: J. Int. Account. Audit. Tax.
  doi: 10.1016/j.intaccaudtax.2020.100357
  contributor:
    fullname: Rakipi
– volume: 58
  start-page: 249
  year: 2019
  ident: ref_50
  article-title: Data summarization: A survey
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-018-1183-0
  contributor:
    fullname: Ahmed
– ident: ref_66
– ident: ref_62
– ident: ref_38
– ident: ref_46
  doi: 10.2307/j.ctv14jx6sm
– volume: Volume 2
  start-page: 362
  year: 2022
  ident: ref_10
  article-title: A Study of Big Data Analytics in Internal Auditing
  publication-title: Intelligent Systems and Applications, Proceedings of the 2021 Intelligent Systems Conference (IntelliSys), Virtual, 2–3 September 2021
  contributor:
    fullname: Shabani
– volume: 12
  start-page: 1
  year: 2005
  ident: ref_1
  article-title: Range mode and range median queries on lists and trees
  publication-title: Nord. J. Comput.
  contributor:
    fullname: Krizanc
– ident: ref_59
  doi: 10.3390/sym12081288
– ident: ref_31
  doi: 10.1007/978-3-031-33437-5_2
– volume: 3
  start-page: 85
  year: 2020
  ident: ref_29
  article-title: A survey of data partitioning and sampling methods to support big data analysis
  publication-title: Big Data Min. Anal.
  doi: 10.26599/BDMA.2019.9020015
  contributor:
    fullname: Mahmud
– volume: 208
  start-page: 106462
  year: 2020
  ident: ref_25
  article-title: A novel dynamic ensemble selection classifier for an imbalanced data set: An application for credit risk assessment
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106462
  contributor:
    fullname: Hou
– ident: ref_3
– volume: 35
  start-page: 238
  year: 2020
  ident: ref_23
  article-title: Internal audit effectiveness: Operationalization and influencing factors
  publication-title: Manag. Audit. J.
  doi: 10.1108/MAJ-08-2018-1980
  contributor:
    fullname: Turetken
– volume: 131
  start-page: 103421
  year: 2023
  ident: ref_42
  article-title: RQD modeling using statistical-assisted SRT with compensated ERT methods: Correlations between borehole-based and SRT-based RMQ models
  publication-title: Phys. Chem. Earth Parts A/B/C
  doi: 10.1016/j.pce.2023.103421
  contributor:
    fullname: Akingboye
– volume: 3
  start-page: 43-es
  year: 2007
  ident: ref_64
  article-title: Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets
  publication-title: ACM Trans. Algorithms (TALG)
  doi: 10.1145/1290672.1290680
  contributor:
    fullname: Raman
– volume: 5
  start-page: 3606
  year: 2018
  ident: ref_56
  article-title: Deploying edge computing nodes for large-scale IoT: A diversity aware approach
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2823498
  contributor:
    fullname: Zhao
– volume: 55
  start-page: 719
  year: 2014
  ident: ref_2
  article-title: Linear-space data structures for range mode query in arrays
  publication-title: Theory Comput. Syst.
  doi: 10.1007/s00224-013-9455-2
  contributor:
    fullname: Chan
– volume: 1
  start-page: 9
  year: 2016
  ident: ref_44
  article-title: Big data preprocessing: Methods and prospects
  publication-title: Big Data Anal.
  doi: 10.1186/s41044-016-0014-0
  contributor:
    fullname: Luengo
– ident: ref_14
– ident: ref_63
– volume: 82
  start-page: 12635
  year: 2023
  ident: ref_39
  article-title: Analysis of anomaly detection in surveillance video: Recent trends and future vision
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-13954-1
  contributor:
    fullname: Raja
– volume: 17
  start-page: 49
  year: 2022
  ident: ref_6
  article-title: The drivers of volume volatility: A big data analysis based on economic uncertainty measures for the Greek banking system
  publication-title: Banks Bank Syst.
  doi: 10.21511/bbs.17(3).2022.05
  contributor:
    fullname: Theodorakopoulos
– volume: 122
  start-page: 104492
  year: 2020
  ident: ref_20
  article-title: Applications of machine learning methods for engineering risk assessment—A review
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2019.09.015
  contributor:
    fullname: Hegde
– volume: 36
  start-page: 107061
  year: 2021
  ident: ref_67
  article-title: Dataset for audit dimensions in an emerging market: Developing a panel database of audit effectiveness and efficiency
  publication-title: Data Brief
  doi: 10.1016/j.dib.2021.107061
  contributor:
    fullname: Baatwah
– volume: 14
  start-page: 498
  year: 2020
  ident: ref_28
  article-title: Rumble: Data independence for large messy data sets
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3436905.3436910
  contributor:
    fullname: Fourny
– ident: ref_36
  doi: 10.1007/978-3-030-39105-8
– ident: ref_32
  doi: 10.1007/978-3-031-14054-9_20
– ident: ref_16
  doi: 10.1109/ICCAKM54721.2022.9990045
– volume: 36
  start-page: 1125
  year: 2017
  ident: ref_9
  article-title: Exploring perceptions of data analytics in the internal audit function
  publication-title: Behav. Inf. Technol.
  doi: 10.1080/0144929X.2017.1355014
  contributor:
    fullname: Tang
– volume: 10
  start-page: 2148363
  year: 2022
  ident: ref_21
  article-title: The influence of internal audit, risk management, whistleblowing system and big data analytics on the financial crime behavior prevention
  publication-title: Cogent Econ. Financ.
  doi: 10.1080/23322039.2022.2148363
  contributor:
    fullname: Putra
– ident: ref_52
  doi: 10.1016/B978-0-12-809474-7.00019-7
– volume: 30
  start-page: 569
  year: 2023
  ident: ref_24
  article-title: Risk management, top management support, internal audit activities and fraud mitigation
  publication-title: J. Financ. Crime
  doi: 10.1108/JFC-11-2019-0147
  contributor:
    fullname: Alazzabi
– volume: 102
  start-page: 1638
  year: 2015
  ident: ref_54
  article-title: Numerical techniques on improving computational efficiency of spectral boundary integral method
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4857
  contributor:
    fullname: Wang
– ident: ref_30
  doi: 10.1007/978-3-031-21047-1_33
– volume: 92
  start-page: 2025
  year: 2009
  ident: ref_65
  article-title: Fast computation of rank and select functions for succinct representation
  publication-title: IEICE Trans. Inf. Syst.
  doi: 10.1587/transinf.E92.D.2025
  contributor:
    fullname: Na
– volume: 30
  start-page: 431
  year: 2018
  ident: ref_55
  article-title: Big Data technologies: A survey
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
  contributor:
    fullname: Oussous
SSID ssj0000778481
Score 2.3333917
Snippet The mode is a fundamental descriptive statistic in data analysis, signifying the most frequent element within a dataset. The range mode query (RMQ) problem...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 450
SubjectTerms Algorithms
Big Data
Boolean
Compliance
Data analysis
Data retrieval
Data structures
Datasets
Effectiveness
Electronic commerce
Information management
internal audit
Number theory
Queries
Query processing
RAM
range mode queries
Social networks
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWgXOCAWEWhIB9AnCJiZ3F8Qi20QkggQCBxi8ZLChK00Ib_ZyZ1WQ5wTSLHmrFn3vPyhrFDAV6aTNioMB6iVBiITCpwXmVQWZ3EJm9uuV5d5xcP6eVj9hgW3KbhWOU8JjaB2o0trZGfJLFWmgooydO394iqRtHuaiihsciWJDKFuMWWev3rm7uvVZZYKdKLn514T5Dfn5DfSAMdoUz8Kxc1kv1_BeYm2wzW2GqAibw78-s6W_CjDbbyQzxwk532G_UHTBq8-zLErtZPr1OOGJTf0YUBTlXO-O0HCRlP-fOII9LjvechP4caeH8CW-xh0L8_u4hCOYTIIu6vI52kBUGsonA5eIQBqsp0rrUv8hwjbiIdgCmkkxWSnkLbyoJSJvaJVMpJyJJt1hqNR36HcaOEc4lwSE8MNlpBVZHKj9QIxjIBcZsdzQ1Tvs1UL0pkC2TA8qcB26xHVvv6hrSqmwfjybAMQ7_0ijigsEWmXKqt0l44jLPGICO2YNI2OyabNw3XE7AQLgZgV0mbquxScRDkoTH-rjN3Sxmm2rT8Hhi7_7_eY8sSEcns9F6HterJh99HRFGbgzBsPgFz5sjL
  priority: 102
  providerName: ProQuest
Title Efficient Algorithms for Range Mode Queries in the Big Data Era
URI https://www.proquest.com/docview/3097921862
https://doaj.org/article/e764481c857d49c79e1d153bb027cab4
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF58XPQgPrE-yh4UT8Hs5rG7J2m1VQRFRcFbmH1EC1qljf_fmSRKPYgXryFshpnMzPfB7DeMHQgI0mbCRdoGiFJhIbKpwLzKoHQmiW1e33K9us4vHtLLx-xxZtUXzYQ18sCN446DIgYhnM6UT41TJgiPWWot8ikHtlECjc0MmaprsFKkE99MuifI648pXqR9jhAm_tGDaqn-3wpy3WWGq2ylhYe815i1xubCeJ0tz4gGbrCTQa36gM2C916e3pDcP79OOWJPfkcXBThtN-O3HyRgPOWjMUeEx_ujJ34GFfDBBDbZw3Bwf3oRtWsQIod4v4pMkmqCVlr7HAK2f1VmJjcm6DzHSptID2C19LJEsqONKx0oZeOQSKW8hCzZYgvjt3HYZtwq4X0iPNISi4eWUJak7iMNgrBMQNxhh1-OKd4btYsCWQI5sJh1YIf1yWvf75BGdf0AI1e0kSv-ilyHHZHP64OrCThoLwSgqaRJVfRoKQjyzxg_t_cVlqJNsWmRxEYZ2qgld_7Dml22JBGvNLN9e2yhmnyEfcQble2yeT0877LF_uD65q5b_2ifwHDSLQ
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELaAHqAHRAuI5VUfinqKiO0kjk9oaXe7PCUQSNys8SPbldpd2A3_vzPZLIVDuSaRY43tme-zPd8w9lVAlC4XPildhCQTDhKXCVxXOVTeqNQVTZbr1XUxuM_OH_KHdsNt1l6rXPjExlGHiac98mOVGm2ogJI8eXxKqGoUna62JTSW2YdMYaymTPH-z5c9llRrUouf33dXyO6PadRIAR2BTPomEjWC_f9zy02s6W-w9RYk8u58VD-xpTj-zD6-kg7cZCe9RvsBQwbv_h5iR-tff2YcESi_pXQBTjXO-M0zyRjP-GjMEefx09GQ_4AaeG8KW-y-37v7PkjaYgiJR9RfJ0ZlJQGssgwFRAQBuspNYUwsiwL9rZIBwJUyyAopT2l85UFrl0YltQ4ScrXNVsaTcdxh3GkRghIByYnDRiuoKtL4kQahWC4g7bCjhWHs41zzwiJXIAPa1wbssFOy2ss3pFTdPJhMh7ad-DZqYoDCl7kOmfHaRBHQyzqHfNiDyzrsG9m8abiegoc2LQC7SspUtkulQZCFpvi7_cWw2Hahzey_abH7_usvbHVwd3VpL8-uL_bYmkRsMr_Ht89W6ulzPEBsUbvDZgL9BZlPylY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELUKlRA9VG0BsZS2PlBxijZ2Pmyf0FJ2S0uLAIHEzRp_ZEEqu3Q3_P_OZL2UHug1iRxrPJ55Lxm_YWxPQJSuEj7TLkJWCgeZKwXuqwoab4rc1d0p15-n9fFV-f26uk71T_NUVrmMiV2gDlNP38j7RW6UoQZKst-ksoizo9HB_e-MOkjRn9bUTmOFvcSsWJOH69HXx-8tuVKkHL-ofS-Q6fdpBUkNHUFN_k9W6sT7nwvRXd4ZvWGvE2Dkg8UKv2Uv4uQde_VERnCDHQw7HQhMH3zwa4wTbW_u5hzRKL-gowOc-p3x8weSNJ7z2wlHzMcPb8f8CFrgwxlssqvR8PLLcZYaI2QeGUCbmaLUBLa0DjVEBASqqUxtTNR1jbG3kAHAaRlkg_RHG994UMrlsZBKBQlVscVWJ9NJ3GbcKRFCIQISFYeDNtA0pPcjDcKySkDeY5-XhrH3C_0Li7yBDGifGrDHDslqj8-QanV3YTob27QJbFTEBoXXlQql8cpEETDiOofc2IMre2yfbN4N3M7AQzoigFMllSo7oDYhyEhzfN3uclls2nRz-9dFdv5_-xNbQ9-xP76dnrxn6xJhyqKkb5ettrOH-AFhRus-dv7zByfizpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Algorithms+for+Range+Mode+Queries+in+the+Big+Data+Era&rft.jtitle=Information+%28Basel%29&rft.au=Karras%2C+Christos&rft.au=Theodorakopoulos%2C+Leonidas&rft.au=Karras%2C+Aristeidis&rft.au=Krimpas%2C+George+A.&rft.date=2024-08-01&rft.issn=2078-2489&rft.eissn=2078-2489&rft.volume=15&rft.issue=8&rft.spage=450&rft_id=info:doi/10.3390%2Finfo15080450&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_info15080450
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-2489&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-2489&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-2489&client=summon