Efficient Algorithms for Range Mode Queries in the Big Data Era
The mode is a fundamental descriptive statistic in data analysis, signifying the most frequent element within a dataset. The range mode query (RMQ) problem expands upon this concept by preprocessing an array A containing n natural numbers. This allows for the swift determination of the mode within a...
Saved in:
Published in | Information (Basel) Vol. 15; no. 8; p. 450 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mode is a fundamental descriptive statistic in data analysis, signifying the most frequent element within a dataset. The range mode query (RMQ) problem expands upon this concept by preprocessing an array A containing n natural numbers. This allows for the swift determination of the mode within any subarray A[a..b], thus optimizing the computation of the mode for a multitude of range queries. The efficacy of this process bears considerable importance in data analytics and retrieval across diverse platforms, including but not limited to online shopping experiences and financial auditing systems. This study is dedicated to exploring and benchmarking different algorithms and data structures designed to tackle the RMQ problem. The goal is to not only address the theoretical aspects of RMQ but also to provide practical solutions that can be applied in real-world scenarios, such as the optimization of an online shopping platform’s understanding of customer preferences, enhancing the efficiency and effectiveness of data retrieval in large datasets. |
---|---|
AbstractList | The mode is a fundamental descriptive statistic in data analysis, signifying the most frequent element within a dataset. The range mode query (RMQ) problem expands upon this concept by preprocessing an array A containing n natural numbers. This allows for the swift determination of the mode within any subarray A[a..b], thus optimizing the computation of the mode for a multitude of range queries. The efficacy of this process bears considerable importance in data analytics and retrieval across diverse platforms, including but not limited to online shopping experiences and financial auditing systems. This study is dedicated to exploring and benchmarking different algorithms and data structures designed to tackle the RMQ problem. The goal is to not only address the theoretical aspects of RMQ but also to provide practical solutions that can be applied in real-world scenarios, such as the optimization of an online shopping platform’s understanding of customer preferences, enhancing the efficiency and effectiveness of data retrieval in large datasets. |
Audience | Academic |
Author | Krimpas, George A Theodorakopoulos, Leonidas Karras, Christos Karras, Aristeidis |
Author_xml | – sequence: 1 givenname: Christos orcidid: 0000-0002-4253-7661 surname: Karras fullname: Karras, Christos – sequence: 2 givenname: Leonidas orcidid: 0000-0002-0891-6780 surname: Theodorakopoulos fullname: Theodorakopoulos, Leonidas – sequence: 3 givenname: Aristeidis orcidid: 0000-0002-4632-6511 surname: Karras fullname: Karras, Aristeidis – sequence: 4 givenname: George A. orcidid: 0009-0007-0008-547X surname: Krimpas fullname: Krimpas, George A. |
BookMark | eNpNUU1PHDEMjRBIBcqtPyASV5bmc5KcqgW2LRIVAsE58iTOkNXuBDKzh_77hm5VYR9sWX7Pz_YJORzLiIR84exSSse-5jEVrpllSrMDciyYsQuhrDv8kH8iZ9O0Zs2MscryY_JtlVIOGceZLjdDqXl-2U40lUofYRyQ_ioR6cMOa8aJ5pHOL0iv8kBvYAa6qvCZHCXYTHj2L56S5--rp-ufi7v7H7fXy7tFEFrPCyeVbVO1tbED1FqZpF3nHNquw55LEQF6K6JIymnrQgpgTM9QCmOiAC1Pye2eNxZY-9eat1B_-wLZ_y2UOniocw4b9Gg61XYLVpuoXDAOeeRa9j0TJkCvGtf5nuu1lrcdTrNfl10dm3wvmTNOcNuJ1nW57xqgkb5fd64Qmkfc5tBun3KrLy2z3Kq2WwNc7AGhlmmqmP7L5My_v8h_fJH8A5oPgf0 |
Cites_doi | 10.1016/j.jmsy.2021.03.005 10.1016/j.eswa.2022.116821 10.3390/info14040223 10.1109/TIP.2022.3192706 10.1109/ICBATS57792.2023.10111374 10.1155/2022/4892046 10.1109/TDSC.2021.3061611 10.3390/eng5030068 10.3390/s21072376 10.1016/j.jsis.2017.07.003 10.1016/j.ins.2019.09.055 10.1016/j.iheduc.2022.100881 10.1016/j.ipl.2008.10.007 10.1109/AICT50176.2020.9368781 10.1108/MEDAR-03-2020-0838 10.1145/3575879.3575977 10.1016/j.isprsjprs.2015.11.006 10.1007/978-3-030-00479-8_17 10.1145/3397271.3401327 10.1109/TR.2020.2973403 10.1063/1674-0068/cjcp2005077 10.1080/14697688.2017.1402125 10.2139/ssrn.3637784 10.3389/fpsyg.2023.1140972 10.1016/j.intaccaudtax.2020.100357 10.1007/s10115-018-1183-0 10.2307/j.ctv14jx6sm 10.3390/sym12081288 10.1007/978-3-031-33437-5_2 10.26599/BDMA.2019.9020015 10.1016/j.knosys.2020.106462 10.1108/MAJ-08-2018-1980 10.1016/j.pce.2023.103421 10.1145/1290672.1290680 10.1109/JIOT.2018.2823498 10.1007/s00224-013-9455-2 10.1186/s41044-016-0014-0 10.1007/s11042-022-13954-1 10.21511/bbs.17(3).2022.05 10.1016/j.ssci.2019.09.015 10.1016/j.dib.2021.107061 10.14778/3436905.3436910 10.1007/978-3-030-39105-8 10.1007/978-3-031-14054-9_20 10.1109/ICCAKM54721.2022.9990045 10.1080/0144929X.2017.1355014 10.1080/23322039.2022.2148363 10.1016/B978-0-12-809474-7.00019-7 10.1108/JFC-11-2019-0147 10.1002/nme.4857 10.1007/978-3-031-21047-1_33 10.1587/transinf.E92.D.2025 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7X5 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K6~ K7- L7M L~C L~D M0N P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.3390/info15080450 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Entrepreneurship Database ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Entrepreneurship Advanced Technologies & Aerospace Collection Business Premium Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2078-2489 |
ExternalDocumentID | oai_doaj_org_article_e764481c857d49c79e1d153bb027cab4 A808184000 10_3390_info15080450 |
GroupedDBID | .4I 3V. 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABUWG ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 M0N MK~ ML~ MODMG M~E OK1 P2P P62 PIMPY PQQKQ PROAC 7SC 7X5 7XB 8AL 8FD 8FK BEZIV JQ2 K6~ L7M L~C L~D PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c255t-9348000588d6ae5547f59699e866eb132daab82d2f49589cfca77b0e3277d2a53 |
IEDL.DBID | DOA |
ISSN | 2078-2489 |
IngestDate | Tue Oct 22 15:04:28 EDT 2024 Thu Oct 10 22:04:31 EDT 2024 Tue Sep 17 04:00:52 EDT 2024 Wed Jul 31 12:48:14 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-9348000588d6ae5547f59699e866eb132daab82d2f49589cfca77b0e3277d2a53 |
ORCID | 0000-0002-4632-6511 0000-0002-0891-6780 0000-0002-4253-7661 0009-0007-0008-547X |
OpenAccessLink | https://doaj.org/article/e764481c857d49c79e1d153bb027cab4 |
PQID | 3097921862 |
PQPubID | 2032384 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e764481c857d49c79e1d153bb027cab4 proquest_journals_3097921862 gale_infotracacademiconefile_A808184000 crossref_primary_10_3390_info15080450 |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Information (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Petersen (ref_5) 2009; 109 Liu (ref_22) 2020; 70 Raman (ref_64) 2007; 3 Hou (ref_25) 2020; 208 Tang (ref_9) 2017; 36 ref_14 ref_13 Akingboye (ref_42) 2023; 131 ref_53 ref_52 Liu (ref_40) 2016; 115 ref_51 ref_19 Alazzabi (ref_24) 2023; 30 ref_16 ref_15 ref_59 Alrashidi (ref_12) 2022; 9 Bu (ref_18) 2020; 512 Ma (ref_58) 2020; 33 Mehrizi (ref_61) 2017; 26 Zheng (ref_27) 2021; 19 Rakipi (ref_7) 2021; 42 Ahmed (ref_50) 2019; 58 Hatala (ref_45) 2023; 56 Rahman (ref_37) 2019; 17 Si (ref_17) 2022; 2022 ref_66 McWalter (ref_47) 2018; 18 ref_63 ref_62 Zhao (ref_56) 2018; 5 Wang (ref_54) 2015; 102 (ref_11) 2021; 29 Theodorakopoulos (ref_34) 2024; 5 Putra (ref_21) 2022; 10 ref_36 ref_35 Mahmud (ref_29) 2020; 3 ref_33 Pena (ref_43) 2022; 198 ref_32 ref_31 ref_30 Fourny (ref_28) 2020; 14 ref_38 Krizanc (ref_1) 2005; 12 Na (ref_65) 2009; 92 Raja (ref_39) 2023; 82 Oussous (ref_55) 2018; 30 Luengo (ref_44) 2016; 1 ref_46 Wang (ref_57) 2022; 31 Theodorakopoulos (ref_6) 2022; 17 Nietert (ref_60) 2022; 35 Shabani (ref_10) 2022; Volume 2 ref_41 Wang (ref_26) 2022; 62 ref_3 Turetken (ref_23) 2020; 35 Baatwah (ref_67) 2021; 36 Chan (ref_2) 2014; 55 ref_49 ref_48 ref_8 Hegde (ref_20) 2020; 122 ref_4 |
References_xml | – volume: 62 start-page: 738 year: 2022 ident: ref_26 article-title: Big data analytics for intelligent manufacturing systems: A review publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.03.005 contributor: fullname: Wang – volume: 198 start-page: 116821 year: 2022 ident: ref_43 article-title: Normalization method for quantitative and qualitative attributes in multiple attribute decision-making problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116821 contributor: fullname: Pena – ident: ref_49 – ident: ref_33 doi: 10.3390/info14040223 – volume: 31 start-page: 5257 year: 2022 ident: ref_57 article-title: Extendable multiple nodes recurrent tracking framework with RTU++ publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2022.3192706 contributor: fullname: Wang – ident: ref_13 doi: 10.1109/ICBATS57792.2023.10111374 – volume: 17 start-page: 44 year: 2019 ident: ref_37 article-title: Statistics-based data preprocessing methods and machine learning algorithms for big data analysis publication-title: Int. J. Artif. Intell. contributor: fullname: Rahman – volume: 2022 start-page: 4892046 year: 2022 ident: ref_17 article-title: Construction and application of enterprise internal audit data analysis model based on decision tree algorithm publication-title: Discret. Dyn. Nat. Soc. doi: 10.1155/2022/4892046 contributor: fullname: Si – volume: 19 start-page: 2501 year: 2021 ident: ref_27 article-title: Efficient and privacy-preserving similarity range query over encrypted time series data publication-title: IEEE Trans. Dependable Secur. Comput. doi: 10.1109/TDSC.2021.3061611 contributor: fullname: Zheng – volume: 5 start-page: 1266 year: 2024 ident: ref_34 article-title: A State-of-the-Art Review in Big Data Management Engineering: Real-Life Case Studies, Challenges, and Future Research Directions publication-title: Eng doi: 10.3390/eng5030068 contributor: fullname: Theodorakopoulos – ident: ref_15 doi: 10.3390/s21072376 – volume: 26 start-page: 191 year: 2017 ident: ref_61 article-title: Debating big data: A literature review on realizing value from big data publication-title: J. Strateg. Inf. Syst. doi: 10.1016/j.jsis.2017.07.003 contributor: fullname: Mehrizi – volume: 512 start-page: 123 year: 2020 ident: ref_18 article-title: A convolutional neural-based learning classifier system for detecting database intrusion via insider attack publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.09.055 contributor: fullname: Bu – volume: 56 start-page: 100881 year: 2023 ident: ref_45 article-title: Progression of students’ SRL processes in subsequent programming problem-solving tasks and its association with tasks outcomes publication-title: Internet High. Educ. doi: 10.1016/j.iheduc.2022.100881 contributor: fullname: Hatala – volume: 109 start-page: 225 year: 2009 ident: ref_5 article-title: Range mode and range median queries in constant time and sub-quadratic space publication-title: Inf. Process. Lett. doi: 10.1016/j.ipl.2008.10.007 contributor: fullname: Petersen – ident: ref_19 doi: 10.1109/AICT50176.2020.9368781 – volume: 29 start-page: 1088 year: 2021 ident: ref_11 article-title: Big data and data analytics in auditing: In search of legitimacy publication-title: Meditari Account. Res. doi: 10.1108/MEDAR-03-2020-0838 – ident: ref_35 doi: 10.1145/3575879.3575977 – volume: 115 start-page: 134 year: 2016 ident: ref_40 article-title: Rethinking big data: A review on the data quality and usage issues publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.11.006 contributor: fullname: Liu – ident: ref_53 doi: 10.1007/978-3-030-00479-8_17 – ident: ref_51 doi: 10.1145/3397271.3401327 – volume: 70 start-page: 163 year: 2020 ident: ref_22 article-title: A new integrated approach for risk evaluation and classification with dynamic expert weights publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2020.2973403 contributor: fullname: Liu – volume: 33 start-page: 727 year: 2020 ident: ref_58 article-title: NeuDATool: An open source neutron data analysis tools, supporting GPU hardware acceleration, and across-computer cluster nodes parallel publication-title: Chin. J. Chem. Phys. doi: 10.1063/1674-0068/cjcp2005077 contributor: fullname: Ma – volume: 18 start-page: 693 year: 2018 ident: ref_47 article-title: Recursive marginal quantization of higher-order schemes publication-title: Quant. Financ. doi: 10.1080/14697688.2017.1402125 contributor: fullname: McWalter – ident: ref_48 doi: 10.2139/ssrn.3637784 – volume: 9 start-page: 93 year: 2022 ident: ref_12 article-title: The impact of big data analytics on audit procedures: Evidence from the Middle East publication-title: J. Asian Financ. Econ. Bus. contributor: fullname: Alrashidi – ident: ref_4 – ident: ref_8 doi: 10.3389/fpsyg.2023.1140972 – volume: 35 start-page: 28179 year: 2022 ident: ref_60 article-title: Statistical, robustness, and computational guarantees for sliced wasserstein distances publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Nietert – ident: ref_41 – volume: 42 start-page: 100357 year: 2021 ident: ref_7 article-title: Correlates of the internal audit function’s use of data analytics in the big data era: Global evidence publication-title: J. Int. Account. Audit. Tax. doi: 10.1016/j.intaccaudtax.2020.100357 contributor: fullname: Rakipi – volume: 58 start-page: 249 year: 2019 ident: ref_50 article-title: Data summarization: A survey publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-018-1183-0 contributor: fullname: Ahmed – ident: ref_66 – ident: ref_62 – ident: ref_38 – ident: ref_46 doi: 10.2307/j.ctv14jx6sm – volume: Volume 2 start-page: 362 year: 2022 ident: ref_10 article-title: A Study of Big Data Analytics in Internal Auditing publication-title: Intelligent Systems and Applications, Proceedings of the 2021 Intelligent Systems Conference (IntelliSys), Virtual, 2–3 September 2021 contributor: fullname: Shabani – volume: 12 start-page: 1 year: 2005 ident: ref_1 article-title: Range mode and range median queries on lists and trees publication-title: Nord. J. Comput. contributor: fullname: Krizanc – ident: ref_59 doi: 10.3390/sym12081288 – ident: ref_31 doi: 10.1007/978-3-031-33437-5_2 – volume: 3 start-page: 85 year: 2020 ident: ref_29 article-title: A survey of data partitioning and sampling methods to support big data analysis publication-title: Big Data Min. Anal. doi: 10.26599/BDMA.2019.9020015 contributor: fullname: Mahmud – volume: 208 start-page: 106462 year: 2020 ident: ref_25 article-title: A novel dynamic ensemble selection classifier for an imbalanced data set: An application for credit risk assessment publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106462 contributor: fullname: Hou – ident: ref_3 – volume: 35 start-page: 238 year: 2020 ident: ref_23 article-title: Internal audit effectiveness: Operationalization and influencing factors publication-title: Manag. Audit. J. doi: 10.1108/MAJ-08-2018-1980 contributor: fullname: Turetken – volume: 131 start-page: 103421 year: 2023 ident: ref_42 article-title: RQD modeling using statistical-assisted SRT with compensated ERT methods: Correlations between borehole-based and SRT-based RMQ models publication-title: Phys. Chem. Earth Parts A/B/C doi: 10.1016/j.pce.2023.103421 contributor: fullname: Akingboye – volume: 3 start-page: 43-es year: 2007 ident: ref_64 article-title: Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets publication-title: ACM Trans. Algorithms (TALG) doi: 10.1145/1290672.1290680 contributor: fullname: Raman – volume: 5 start-page: 3606 year: 2018 ident: ref_56 article-title: Deploying edge computing nodes for large-scale IoT: A diversity aware approach publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2823498 contributor: fullname: Zhao – volume: 55 start-page: 719 year: 2014 ident: ref_2 article-title: Linear-space data structures for range mode query in arrays publication-title: Theory Comput. Syst. doi: 10.1007/s00224-013-9455-2 contributor: fullname: Chan – volume: 1 start-page: 9 year: 2016 ident: ref_44 article-title: Big data preprocessing: Methods and prospects publication-title: Big Data Anal. doi: 10.1186/s41044-016-0014-0 contributor: fullname: Luengo – ident: ref_14 – ident: ref_63 – volume: 82 start-page: 12635 year: 2023 ident: ref_39 article-title: Analysis of anomaly detection in surveillance video: Recent trends and future vision publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-13954-1 contributor: fullname: Raja – volume: 17 start-page: 49 year: 2022 ident: ref_6 article-title: The drivers of volume volatility: A big data analysis based on economic uncertainty measures for the Greek banking system publication-title: Banks Bank Syst. doi: 10.21511/bbs.17(3).2022.05 contributor: fullname: Theodorakopoulos – volume: 122 start-page: 104492 year: 2020 ident: ref_20 article-title: Applications of machine learning methods for engineering risk assessment—A review publication-title: Saf. Sci. doi: 10.1016/j.ssci.2019.09.015 contributor: fullname: Hegde – volume: 36 start-page: 107061 year: 2021 ident: ref_67 article-title: Dataset for audit dimensions in an emerging market: Developing a panel database of audit effectiveness and efficiency publication-title: Data Brief doi: 10.1016/j.dib.2021.107061 contributor: fullname: Baatwah – volume: 14 start-page: 498 year: 2020 ident: ref_28 article-title: Rumble: Data independence for large messy data sets publication-title: Proc. VLDB Endow. doi: 10.14778/3436905.3436910 contributor: fullname: Fourny – ident: ref_36 doi: 10.1007/978-3-030-39105-8 – ident: ref_32 doi: 10.1007/978-3-031-14054-9_20 – ident: ref_16 doi: 10.1109/ICCAKM54721.2022.9990045 – volume: 36 start-page: 1125 year: 2017 ident: ref_9 article-title: Exploring perceptions of data analytics in the internal audit function publication-title: Behav. Inf. Technol. doi: 10.1080/0144929X.2017.1355014 contributor: fullname: Tang – volume: 10 start-page: 2148363 year: 2022 ident: ref_21 article-title: The influence of internal audit, risk management, whistleblowing system and big data analytics on the financial crime behavior prevention publication-title: Cogent Econ. Financ. doi: 10.1080/23322039.2022.2148363 contributor: fullname: Putra – ident: ref_52 doi: 10.1016/B978-0-12-809474-7.00019-7 – volume: 30 start-page: 569 year: 2023 ident: ref_24 article-title: Risk management, top management support, internal audit activities and fraud mitigation publication-title: J. Financ. Crime doi: 10.1108/JFC-11-2019-0147 contributor: fullname: Alazzabi – volume: 102 start-page: 1638 year: 2015 ident: ref_54 article-title: Numerical techniques on improving computational efficiency of spectral boundary integral method publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.4857 contributor: fullname: Wang – ident: ref_30 doi: 10.1007/978-3-031-21047-1_33 – volume: 92 start-page: 2025 year: 2009 ident: ref_65 article-title: Fast computation of rank and select functions for succinct representation publication-title: IEICE Trans. Inf. Syst. doi: 10.1587/transinf.E92.D.2025 contributor: fullname: Na – volume: 30 start-page: 431 year: 2018 ident: ref_55 article-title: Big Data technologies: A survey publication-title: J. King Saud Univ.-Comput. Inf. Sci. contributor: fullname: Oussous |
SSID | ssj0000778481 |
Score | 2.3333917 |
Snippet | The mode is a fundamental descriptive statistic in data analysis, signifying the most frequent element within a dataset. The range mode query (RMQ) problem... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 450 |
SubjectTerms | Algorithms Big Data Boolean Compliance Data analysis Data retrieval Data structures Datasets Effectiveness Electronic commerce Information management internal audit Number theory Queries Query processing RAM range mode queries Social networks |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWgXOCAWEWhIB9AnCJiZ3F8Qi20QkggQCBxi8ZLChK00Ib_ZyZ1WQ5wTSLHmrFn3vPyhrFDAV6aTNioMB6iVBiITCpwXmVQWZ3EJm9uuV5d5xcP6eVj9hgW3KbhWOU8JjaB2o0trZGfJLFWmgooydO394iqRtHuaiihsciWJDKFuMWWev3rm7uvVZZYKdKLn514T5Dfn5DfSAMdoUz8Kxc1kv1_BeYm2wzW2GqAibw78-s6W_CjDbbyQzxwk532G_UHTBq8-zLErtZPr1OOGJTf0YUBTlXO-O0HCRlP-fOII9LjvechP4caeH8CW-xh0L8_u4hCOYTIIu6vI52kBUGsonA5eIQBqsp0rrUv8hwjbiIdgCmkkxWSnkLbyoJSJvaJVMpJyJJt1hqNR36HcaOEc4lwSE8MNlpBVZHKj9QIxjIBcZsdzQ1Tvs1UL0pkC2TA8qcB26xHVvv6hrSqmwfjybAMQ7_0ijigsEWmXKqt0l44jLPGICO2YNI2OyabNw3XE7AQLgZgV0mbquxScRDkoTH-rjN3Sxmm2rT8Hhi7_7_eY8sSEcns9F6HterJh99HRFGbgzBsPgFz5sjL priority: 102 providerName: ProQuest |
Title | Efficient Algorithms for Range Mode Queries in the Big Data Era |
URI | https://www.proquest.com/docview/3097921862 https://doaj.org/article/e764481c857d49c79e1d153bb027cab4 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF58XPQgPrE-yh4UT8Hs5rG7J2m1VQRFRcFbmH1EC1qljf_fmSRKPYgXryFshpnMzPfB7DeMHQgI0mbCRdoGiFJhIbKpwLzKoHQmiW1e33K9us4vHtLLx-xxZtUXzYQ18sCN446DIgYhnM6UT41TJgiPWWot8ikHtlECjc0MmaprsFKkE99MuifI648pXqR9jhAm_tGDaqn-3wpy3WWGq2ylhYe815i1xubCeJ0tz4gGbrCTQa36gM2C916e3pDcP79OOWJPfkcXBThtN-O3HyRgPOWjMUeEx_ujJ34GFfDBBDbZw3Bwf3oRtWsQIod4v4pMkmqCVlr7HAK2f1VmJjcm6DzHSptID2C19LJEsqONKx0oZeOQSKW8hCzZYgvjt3HYZtwq4X0iPNISi4eWUJak7iMNgrBMQNxhh1-OKd4btYsCWQI5sJh1YIf1yWvf75BGdf0AI1e0kSv-ilyHHZHP64OrCThoLwSgqaRJVfRoKQjyzxg_t_cVlqJNsWmRxEYZ2qgld_7Dml22JBGvNLN9e2yhmnyEfcQble2yeT0877LF_uD65q5b_2ifwHDSLQ |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELaAHqAHRAuI5VUfinqKiO0kjk9oaXe7PCUQSNys8SPbldpd2A3_vzPZLIVDuSaRY43tme-zPd8w9lVAlC4XPildhCQTDhKXCVxXOVTeqNQVTZbr1XUxuM_OH_KHdsNt1l6rXPjExlGHiac98mOVGm2ogJI8eXxKqGoUna62JTSW2YdMYaymTPH-z5c9llRrUouf33dXyO6PadRIAR2BTPomEjWC_f9zy02s6W-w9RYk8u58VD-xpTj-zD6-kg7cZCe9RvsBQwbv_h5iR-tff2YcESi_pXQBTjXO-M0zyRjP-GjMEefx09GQ_4AaeG8KW-y-37v7PkjaYgiJR9RfJ0ZlJQGssgwFRAQBuspNYUwsiwL9rZIBwJUyyAopT2l85UFrl0YltQ4ScrXNVsaTcdxh3GkRghIByYnDRiuoKtL4kQahWC4g7bCjhWHs41zzwiJXIAPa1wbssFOy2ss3pFTdPJhMh7ad-DZqYoDCl7kOmfHaRBHQyzqHfNiDyzrsG9m8abiegoc2LQC7SspUtkulQZCFpvi7_cWw2Hahzey_abH7_usvbHVwd3VpL8-uL_bYmkRsMr_Ht89W6ulzPEBsUbvDZgL9BZlPylY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELUKlRA9VG0BsZS2PlBxijZ2Pmyf0FJ2S0uLAIHEzRp_ZEEqu3Q3_P_OZL2UHug1iRxrPJ55Lxm_YWxPQJSuEj7TLkJWCgeZKwXuqwoab4rc1d0p15-n9fFV-f26uk71T_NUVrmMiV2gDlNP38j7RW6UoQZKst-ksoizo9HB_e-MOkjRn9bUTmOFvcSsWJOH69HXx-8tuVKkHL-ofS-Q6fdpBUkNHUFN_k9W6sT7nwvRXd4ZvWGvE2Dkg8UKv2Uv4uQde_VERnCDHQw7HQhMH3zwa4wTbW_u5hzRKL-gowOc-p3x8weSNJ7z2wlHzMcPb8f8CFrgwxlssqvR8PLLcZYaI2QeGUCbmaLUBLa0DjVEBASqqUxtTNR1jbG3kAHAaRlkg_RHG994UMrlsZBKBQlVscVWJ9NJ3GbcKRFCIQISFYeDNtA0pPcjDcKySkDeY5-XhrH3C_0Li7yBDGifGrDHDslqj8-QanV3YTob27QJbFTEBoXXlQql8cpEETDiOofc2IMre2yfbN4N3M7AQzoigFMllSo7oDYhyEhzfN3uclls2nRz-9dFdv5_-xNbQ9-xP76dnrxn6xJhyqKkb5ettrOH-AFhRus-dv7zByfizpQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Algorithms+for+Range+Mode+Queries+in+the+Big+Data+Era&rft.jtitle=Information+%28Basel%29&rft.au=Karras%2C+Christos&rft.au=Theodorakopoulos%2C+Leonidas&rft.au=Karras%2C+Aristeidis&rft.au=Krimpas%2C+George+A.&rft.date=2024-08-01&rft.issn=2078-2489&rft.eissn=2078-2489&rft.volume=15&rft.issue=8&rft.spage=450&rft_id=info:doi/10.3390%2Finfo15080450&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_info15080450 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-2489&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-2489&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-2489&client=summon |