CSP-Net: Common spatial pattern empowered neural networks for EEG-based motor imagery classification

Electroencephalogram-based motor imagery (MI) classification is an important paradigm of non-invasive brain–computer interfaces. Common spatial pattern (CSP), which exploits different energy distributions on the scalp while performing different MI tasks, is very popular in MI classification. Convolu...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 305; p. 112668
Main Authors Jiang, Xue, Meng, Lubin, Chen, Xinru, Xu, Yifan, Wu, Dongrui
Format Journal Article
LanguageEnglish
Published Elsevier B.V 03.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalogram-based motor imagery (MI) classification is an important paradigm of non-invasive brain–computer interfaces. Common spatial pattern (CSP), which exploits different energy distributions on the scalp while performing different MI tasks, is very popular in MI classification. Convolutional neural networks (CNNs) have also achieved great success, due to their powerful learning capabilities. This paper proposes two CSP-empowered neural networks (CSP-Nets), which integrate knowledge-driven CSP filters with data-driven CNNs to enhance the performance in MI classification. CSP-Net-1 directly adds a CSP layer before a CNN to improve the input discriminability. CSP-Net-2 replaces a convolutional layer in CNN with a CSP layer. The CSP layer parameters in both CSP-Nets are initialized with CSP filters designed from the training data. During training, they can either be kept fixed or optimized using gradient descent. Experiments on four public MI datasets demonstrated that the two CSP-Nets consistently improved over their CNN backbones, in both within-subject and cross-subject classifications. They are particularly useful when the number of training samples is very small. Our work demonstrates the advantage of integrating knowledge-driven traditional machine learning with data-driven deep learning in EEG-based brain–computer interfaces. •Explain the advantage of knowledge-data fusion in EEG-based BCIs.•Propose two CSP-empowered neural networks (CSP-Nets) for knowledge-data fusion.•Validate the effectiveness of CSP-Nets on 4 MI datasets in different scenarios.
AbstractList Electroencephalogram-based motor imagery (MI) classification is an important paradigm of non-invasive brain–computer interfaces. Common spatial pattern (CSP), which exploits different energy distributions on the scalp while performing different MI tasks, is very popular in MI classification. Convolutional neural networks (CNNs) have also achieved great success, due to their powerful learning capabilities. This paper proposes two CSP-empowered neural networks (CSP-Nets), which integrate knowledge-driven CSP filters with data-driven CNNs to enhance the performance in MI classification. CSP-Net-1 directly adds a CSP layer before a CNN to improve the input discriminability. CSP-Net-2 replaces a convolutional layer in CNN with a CSP layer. The CSP layer parameters in both CSP-Nets are initialized with CSP filters designed from the training data. During training, they can either be kept fixed or optimized using gradient descent. Experiments on four public MI datasets demonstrated that the two CSP-Nets consistently improved over their CNN backbones, in both within-subject and cross-subject classifications. They are particularly useful when the number of training samples is very small. Our work demonstrates the advantage of integrating knowledge-driven traditional machine learning with data-driven deep learning in EEG-based brain–computer interfaces. •Explain the advantage of knowledge-data fusion in EEG-based BCIs.•Propose two CSP-empowered neural networks (CSP-Nets) for knowledge-data fusion.•Validate the effectiveness of CSP-Nets on 4 MI datasets in different scenarios.
ArticleNumber 112668
Author Wu, Dongrui
Jiang, Xue
Chen, Xinru
Xu, Yifan
Meng, Lubin
Author_xml – sequence: 1
  givenname: Xue
  orcidid: 0000-0002-1378-1315
  surname: Jiang
  fullname: Jiang, Xue
  email: xuejiang@hust.edu.cn
– sequence: 2
  givenname: Lubin
  surname: Meng
  fullname: Meng, Lubin
  email: lubinmeng@hust.edu.cn
– sequence: 3
  givenname: Xinru
  surname: Chen
  fullname: Chen, Xinru
  email: xrchen@hust.edu.cn
– sequence: 4
  givenname: Yifan
  surname: Xu
  fullname: Xu, Yifan
  email: yfxu@hust.edu.cn
– sequence: 5
  givenname: Dongrui
  orcidid: 0000-0002-7153-9703
  surname: Wu
  fullname: Wu, Dongrui
  email: drwu@hust.edu.cn
BookMark eNp9kM1KAzEcxHOoYFt9Aw95gV3ztd2NB0GWWoWignoOafKPpO0mJVktfXu3rGdPwzDMMPxmaBJiAIRuKCkpoYvbbbkLMZ9yyQgTJaVssWgmaEpkRYqaVPQSzXLeEkIYo80U2fb9rXiB_g63setiwPmge6_3eJAeUsDQHeIRElgc4DsNQYD-GNMuYxcTXi5XxUbnIe1iP3jf6S9IJ2z2OmfvvBnGYrhCF07vM1z_6Rx9Pi4_2qdi_bp6bh_WhWFV1ReNrYjkteNa1hZs5YQkRgpBLeNMaOFqrbnlhje11NJJ5zak3tRGcjBEVJTPkRh3TYo5J3DqkIZH6aQoUWc6aqtGOupMR410htr9WIPh24-HpLLxEAxYn8D0ykb__8Av_MV1Yw
Cites_doi 10.1109/86.895946
10.1088/1741-2552/ab0ab5
10.1109/TBME.2010.2082539
10.1016/0028-3932(95)00073-C
10.1109/TNSRE.2012.2189584
10.1016/S1388-2457(98)00038-8
10.1109/MSP.2008.4408441
10.1088/1741-2552/aace8c
10.1109/TBME.2004.827088
10.1109/5.939829
10.1002/hbm.23730
10.1016/j.neuroimage.2023.120209
10.1109/TNSRE.2022.3230250
10.1007/BF01129656
10.1007/s00521-021-06352-5
10.1038/nature11076
10.1109/TBME.2011.2172210
10.3389/fnins.2012.00055
10.1109/IJCNN.2008.4634130
10.1038/s41586-019-1119-1
10.1016/j.neuroimage.2010.03.022
10.1088/1741-2552/aadea0
10.1109/TBME.2022.3168570
10.3390/s120201211
10.1016/S0013-4694(97)00080-1
10.1016/j.bspc.2020.102172
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2024.112668
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_knosys_2024_112668
S0950705124013029
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SSH
UHS
WUQ
ID FETCH-LOGICAL-c255t-8d50937f3a97ded5f490c9441d2324a4f7aa3d3c3879a9f9ffb07b7c93ec04513
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Tue Jul 01 00:20:32 EDT 2025
Sat Dec 28 15:50:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Motor imagery
Common spatial pattern
Electroencephalogram
Brain–computer interfaces
Convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-8d50937f3a97ded5f490c9441d2324a4f7aa3d3c3879a9f9ffb07b7c93ec04513
ORCID 0000-0002-1378-1315
0000-0002-7153-9703
ParticipantIDs crossref_primary_10_1016_j_knosys_2024_112668
elsevier_sciencedirect_doi_10_1016_j_knosys_2024_112668
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-03
PublicationDateYYYYMMDD 2024-12-03
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-03
  day: 03
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lotte, Guan (b14) 2010; 58
Song, Zheng, Liu, Gao (b21) 2023; 31
Krauledat, Grzeska, Sagebaum, Blankertz, Vidaurre, Müller, Schröder (b5) 2008; 21
Jeannerod (b7) 1995; 33
Miao, Zhao, Zhang, Ming (b29) 2023
Al-Saegh, Dawwd, Abdul-Jabbar (b17) 2021; 63
Tangermann, Müller, Aertsen, Birbaumer, Braun, Brunner, Leeb, Mehring, Miller, Mueller-Putz, Nolte, Pfurtscheller, Preissl, Schalk, Schlögl, Vidaurre, Waldert, Blankertz (b24) 2012; 6
Ramoser, Muller-Gerking, Pfurtscheller (b10) 2000; 8
Graimann, Allison, Pfurtscheller (b1) 2009
Nicolas-Alonso, Gomez-Gil (b2) 2012; 12
Barachant, Bonnet, Congedo, Jutten (b28) 2012; 59
K.K. Ang, Z.Y. Chin, H. Zhang, C. Guan, Filter bank common spatial pattern (FBCSP) in brain-computer interface, in: Proc. IEEE Int’L Joint Conf. on Neural Networks, Hong Kong, China, 2008, pp. 2390–2397.
Altaheri, Muhammad, Alsulaiman, Amin, Altuwaijri, Abdul, Bencherif, Faisal (b16) 2023; 35
Blankertz, Sannelli, Halder, Hammer, Kübler, Müller, Curio, Dickhaus (b9) 2010; 51
Blankertz, Tomioka, Lemm, Kawanabe, r. Muller (b11) 2008; 25
Mane, Chew, Chua, Ang, Robinson, Vinod, Lee, Guan (b20) 2021
Faller, Vidaurre, Solis-Escalante, Neuper, Scherer (b25) 2012; 20
Dornhege, Blankertz, Curio, Muller (b12) 2004; 51
Koles, Lazar, Zhou (b22) 1990; 2
Müller-Gerking, Pfurtscheller, Flyvbjerg (b23) 1999; 110
Hochberg, Bacher, Jarosiewicz, Masse, Simeral, Vogel, Haddadin, Liu, Cash, Van Der Smagt (b3) 2012; 485
Xia, Deng, Duch, Wu (b26) 2022; 69
Pfurtscheller, Neuper, Flotzinger, Pregenzer (b8) 1997; 103
Anumanchipalli, Chartier, Chang (b4) 2019; 568
Pfurtscheller, Neuper (b6) 2001; 89
Craik, He, Contreras-Vidal (b15) 2019; 16
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b19) 2018; 15
Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (b18) 2017; 38
Jayaram, Barachant (b27) 2018; 15
Schirrmeister (10.1016/j.knosys.2024.112668_b18) 2017; 38
Pfurtscheller (10.1016/j.knosys.2024.112668_b8) 1997; 103
Jayaram (10.1016/j.knosys.2024.112668_b27) 2018; 15
Altaheri (10.1016/j.knosys.2024.112668_b16) 2023; 35
Pfurtscheller (10.1016/j.knosys.2024.112668_b6) 2001; 89
Anumanchipalli (10.1016/j.knosys.2024.112668_b4) 2019; 568
Dornhege (10.1016/j.knosys.2024.112668_b12) 2004; 51
Song (10.1016/j.knosys.2024.112668_b21) 2023; 31
Faller (10.1016/j.knosys.2024.112668_b25) 2012; 20
Koles (10.1016/j.knosys.2024.112668_b22) 1990; 2
Graimann (10.1016/j.knosys.2024.112668_b1) 2009
Nicolas-Alonso (10.1016/j.knosys.2024.112668_b2) 2012; 12
Blankertz (10.1016/j.knosys.2024.112668_b11) 2008; 25
Jeannerod (10.1016/j.knosys.2024.112668_b7) 1995; 33
Hochberg (10.1016/j.knosys.2024.112668_b3) 2012; 485
Tangermann (10.1016/j.knosys.2024.112668_b24) 2012; 6
Miao (10.1016/j.knosys.2024.112668_b29) 2023
10.1016/j.knosys.2024.112668_b13
Al-Saegh (10.1016/j.knosys.2024.112668_b17) 2021; 63
Blankertz (10.1016/j.knosys.2024.112668_b9) 2010; 51
Lotte (10.1016/j.knosys.2024.112668_b14) 2010; 58
Ramoser (10.1016/j.knosys.2024.112668_b10) 2000; 8
Craik (10.1016/j.knosys.2024.112668_b15) 2019; 16
Krauledat (10.1016/j.knosys.2024.112668_b5) 2008; 21
Mane (10.1016/j.knosys.2024.112668_b20) 2021
Xia (10.1016/j.knosys.2024.112668_b26) 2022; 69
Barachant (10.1016/j.knosys.2024.112668_b28) 2012; 59
Lawhern (10.1016/j.knosys.2024.112668_b19) 2018; 15
Müller-Gerking (10.1016/j.knosys.2024.112668_b23) 1999; 110
References_xml – volume: 51
  start-page: 1303
  year: 2010
  end-page: 1309
  ident: b9
  article-title: Neurophysiological predictor of SMR-based BCI performance
  publication-title: NeuroImage
– volume: 33
  start-page: 1419
  year: 1995
  end-page: 1432
  ident: b7
  article-title: Mental imagery in the motor context
  publication-title: Neuropsychologia
– volume: 38
  start-page: 5391
  year: 2017
  end-page: 5420
  ident: b18
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp.
– volume: 568
  start-page: 493
  year: 2019
  end-page: 498
  ident: b4
  article-title: Speech synthesis from neural decoding of spoken sentences
  publication-title: Nature
– volume: 51
  start-page: 993
  year: 2004
  end-page: 1002
  ident: b12
  article-title: Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 1
  year: 2009
  end-page: 27
  ident: b1
  article-title: Brain-Computer Interfaces: A Gentle Introduction
– reference: K.K. Ang, Z.Y. Chin, H. Zhang, C. Guan, Filter bank common spatial pattern (FBCSP) in brain-computer interface, in: Proc. IEEE Int’L Joint Conf. on Neural Networks, Hong Kong, China, 2008, pp. 2390–2397.
– volume: 485
  start-page: 372
  year: 2012
  end-page: 375
  ident: b3
  article-title: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm
  publication-title: Nature
– volume: 25
  start-page: 41
  year: 2008
  end-page: 56
  ident: b11
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Process. Mag.
– volume: 8
  start-page: 441
  year: 2000
  end-page: 446
  ident: b10
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 63
  year: 2021
  ident: b17
  article-title: Deep learning for motor imagery EEG-based classification: A review
  publication-title: Biomed. Signal Process. Control
– volume: 2
  start-page: 275
  year: 1990
  end-page: 284
  ident: b22
  article-title: Spatial patterns underlying population differences in the background EEG
  publication-title: Brain Topogr.
– volume: 15
  year: 2018
  ident: b27
  article-title: MOABB: trustworthy algorithm benchmarking for BCIs
  publication-title: J. Neural Eng.
– volume: 12
  start-page: 1211
  year: 2012
  end-page: 1279
  ident: b2
  article-title: Brain computer interfaces, a review
  publication-title: Sensors
– volume: 69
  start-page: 3365
  year: 2022
  end-page: 3376
  ident: b26
  article-title: Privacy-preserving domain adaptation for motor imagery-based brain-computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 89
  start-page: 1123
  year: 2001
  end-page: 1134
  ident: b6
  article-title: Motor imagery and direct brain-computer communication
  publication-title: Proc. IEEE
– volume: 31
  start-page: 710
  year: 2023
  end-page: 719
  ident: b21
  article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 16
  year: 2019
  ident: b15
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review
  publication-title: J. Neural Eng.
– volume: 20
  start-page: 313
  year: 2012
  end-page: 319
  ident: b25
  article-title: Autocalibration and recurrent adaptation: Towards a plug and play online ERD-BCI
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– year: 2023
  ident: b29
  article-title: LMDA-Net: A lightweight multi-dimensional attention network for general EEG-based brain-computer interfaces and interpretability
  publication-title: NeuroImage
– volume: 103
  start-page: 642
  year: 1997
  end-page: 651
  ident: b8
  article-title: EEG-based discrimination between imagination of right and left hand movement
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 58
  start-page: 355
  year: 2010
  end-page: 362
  ident: b14
  article-title: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 59
  start-page: 920
  year: 2012
  end-page: 928
  ident: b28
  article-title: Multiclass brain-computer interface classification by Riemannian geometry
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 15
  year: 2018
  ident: b19
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: J. Neural Eng.
– volume: 35
  start-page: 14681
  year: 2023
  end-page: 14722
  ident: b16
  article-title: Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: A review
  publication-title: Neural Comput. Appl.
– volume: 110
  start-page: 787
  year: 1999
  end-page: 798
  ident: b23
  article-title: Designing optimal spatial filters for single-trial EEG classification in a movement task
  publication-title: Clin. Neurophysiol.
– year: 2021
  ident: b20
  article-title: FBCNet: A multi-view convolutional neural network for brain-computer interface
– volume: 21
  start-page: 1641
  year: 2008
  end-page: 1648
  ident: b5
  article-title: Playing pinball with non-invasive BCI
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 6
  start-page: 55
  year: 2012
  ident: b24
  article-title: Review of the BCI competition IV
  publication-title: Front. Neurosci.
– volume: 8
  start-page: 441
  issue: 4
  year: 2000
  ident: 10.1016/j.knosys.2024.112668_b10
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/86.895946
– volume: 16
  issue: 3
  year: 2019
  ident: 10.1016/j.knosys.2024.112668_b15
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab0ab5
– volume: 58
  start-page: 355
  issue: 2
  year: 2010
  ident: 10.1016/j.knosys.2024.112668_b14
  article-title: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2082539
– volume: 33
  start-page: 1419
  issue: 11
  year: 1995
  ident: 10.1016/j.knosys.2024.112668_b7
  article-title: Mental imagery in the motor context
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(95)00073-C
– volume: 20
  start-page: 313
  issue: 3
  year: 2012
  ident: 10.1016/j.knosys.2024.112668_b25
  article-title: Autocalibration and recurrent adaptation: Towards a plug and play online ERD-BCI
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2012.2189584
– volume: 110
  start-page: 787
  issue: 5
  year: 1999
  ident: 10.1016/j.knosys.2024.112668_b23
  article-title: Designing optimal spatial filters for single-trial EEG classification in a movement task
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(98)00038-8
– volume: 25
  start-page: 41
  issue: 1
  year: 2008
  ident: 10.1016/j.knosys.2024.112668_b11
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2008.4408441
– volume: 15
  issue: 5
  year: 2018
  ident: 10.1016/j.knosys.2024.112668_b19
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– volume: 51
  start-page: 993
  issue: 6
  year: 2004
  ident: 10.1016/j.knosys.2024.112668_b12
  article-title: Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827088
– volume: 89
  start-page: 1123
  issue: 7
  year: 2001
  ident: 10.1016/j.knosys.2024.112668_b6
  article-title: Motor imagery and direct brain-computer communication
  publication-title: Proc. IEEE
  doi: 10.1109/5.939829
– volume: 38
  start-page: 5391
  issue: 11
  year: 2017
  ident: 10.1016/j.knosys.2024.112668_b18
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23730
– year: 2023
  ident: 10.1016/j.knosys.2024.112668_b29
  article-title: LMDA-Net: A lightweight multi-dimensional attention network for general EEG-based brain-computer interfaces and interpretability
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2023.120209
– volume: 31
  start-page: 710
  year: 2023
  ident: 10.1016/j.knosys.2024.112668_b21
  article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3230250
– volume: 2
  start-page: 275
  year: 1990
  ident: 10.1016/j.knosys.2024.112668_b22
  article-title: Spatial patterns underlying population differences in the background EEG
  publication-title: Brain Topogr.
  doi: 10.1007/BF01129656
– volume: 35
  start-page: 14681
  issue: 20
  year: 2023
  ident: 10.1016/j.knosys.2024.112668_b16
  article-title: Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: A review
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06352-5
– volume: 21
  start-page: 1641
  year: 2008
  ident: 10.1016/j.knosys.2024.112668_b5
  article-title: Playing pinball with non-invasive BCI
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 485
  start-page: 372
  issue: 7398
  year: 2012
  ident: 10.1016/j.knosys.2024.112668_b3
  article-title: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm
  publication-title: Nature
  doi: 10.1038/nature11076
– volume: 59
  start-page: 920
  issue: 4
  year: 2012
  ident: 10.1016/j.knosys.2024.112668_b28
  article-title: Multiclass brain-computer interface classification by Riemannian geometry
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2172210
– volume: 6
  start-page: 55
  year: 2012
  ident: 10.1016/j.knosys.2024.112668_b24
  article-title: Review of the BCI competition IV
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00055
– start-page: 1
  year: 2009
  ident: 10.1016/j.knosys.2024.112668_b1
– ident: 10.1016/j.knosys.2024.112668_b13
  doi: 10.1109/IJCNN.2008.4634130
– volume: 568
  start-page: 493
  issue: 7753
  year: 2019
  ident: 10.1016/j.knosys.2024.112668_b4
  article-title: Speech synthesis from neural decoding of spoken sentences
  publication-title: Nature
  doi: 10.1038/s41586-019-1119-1
– volume: 51
  start-page: 1303
  issue: 4
  year: 2010
  ident: 10.1016/j.knosys.2024.112668_b9
  article-title: Neurophysiological predictor of SMR-based BCI performance
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.03.022
– volume: 15
  issue: 6
  year: 2018
  ident: 10.1016/j.knosys.2024.112668_b27
  article-title: MOABB: trustworthy algorithm benchmarking for BCIs
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aadea0
– volume: 69
  start-page: 3365
  issue: 11
  year: 2022
  ident: 10.1016/j.knosys.2024.112668_b26
  article-title: Privacy-preserving domain adaptation for motor imagery-based brain-computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2022.3168570
– volume: 12
  start-page: 1211
  issue: 2
  year: 2012
  ident: 10.1016/j.knosys.2024.112668_b2
  article-title: Brain computer interfaces, a review
  publication-title: Sensors
  doi: 10.3390/s120201211
– year: 2021
  ident: 10.1016/j.knosys.2024.112668_b20
– volume: 103
  start-page: 642
  issue: 6
  year: 1997
  ident: 10.1016/j.knosys.2024.112668_b8
  article-title: EEG-based discrimination between imagination of right and left hand movement
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(97)00080-1
– volume: 63
  year: 2021
  ident: 10.1016/j.knosys.2024.112668_b17
  article-title: Deep learning for motor imagery EEG-based classification: A review
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102172
SSID ssj0002218
Score 2.436966
Snippet Electroencephalogram-based motor imagery (MI) classification is an important paradigm of non-invasive brain–computer interfaces. Common spatial pattern (CSP),...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 112668
SubjectTerms Brain–computer interfaces
Common spatial pattern
Convolutional neural network
Electroencephalogram
Motor imagery
Title CSP-Net: Common spatial pattern empowered neural networks for EEG-based motor imagery classification
URI https://dx.doi.org/10.1016/j.knosys.2024.112668
Volume 305
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH4MvXjxtzh_jBy8xm1N2jTexticikOYg91KmjQwxW64iuzi325e2qKCePCYNg_KS_Le1_Z73wO4EFpZGQWWumQeUR50LVVBGtGujVIRKpkKX8d9P45GU347C2cN6Ne1MEirrGJ_GdN9tK6utCtvtpfzeXviwIHbry5hcf_3DYv4OBe4yy8_vmgeQeC_8eFkirPr8jnP8XrOF6s1inYH3NfSoODqb-npW8oZ7sJ2hRVJr3ycPWhk-T7s1H0YSHUsD8D0Jw90nBVXBMs9FjlZIU3aWS69eGZOUH7qHZtyEpSvdDfykvy9Ig6yksHgmmIyM8QtmxvPX1DXYk00AmtkEvnFO4TpcPDYH9GqewLV7jWhoLFxWIAJy5QUJjOh5bKjpUM_BkGU4lYoxQzTLBZSSSutTTsiFVqyTKPoDDuCjXyRZ8dAlNShTU2MVA5uIqVQg94d5IxbFpuIN4HWTkuWpUhGUrPHnpLSyQk6OSmd3ARRezb5sdiJi-N_Wp782_IUtnDkmSjsDDaK17fs3OGJIm35DdOCzd7N3Wj8CQQhy38
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB58HPTiW6zPPehxrWa32a7gQWq1voqggre4yWahimmxFenFP-UfdGaToIJ4EHpMlgmbyTDzJfnmG4BtlRinw8BxLOYhl8G-4yaIQ77vwljVjI6V7-O-aoetO3l-X7sfg4-yF4ZolUXuz3O6z9bFmWrhzWqv06neIDjAeMWCJf3fN10wKy_S4Ru-t_UPz47xIe8EwUnzttHixWgBniCGHvC6xUIplBNGK5vampN6L9EIDSwhDCOdMkZYkYi60kY77Vy8p2KVaJEmpMgi8LrjMCkxXdDYhN33L15JEPiPirQ7Ttsr-_U8qewp6_aHpBIeSN-8Qwqvv9XDbzXuZA5mCnDKjvL7n4exNFuA2XLwAyvywCLYxs01b6eDA0b9Jd2M9YmXjZY9r9aZMdK7eqMpoIz0MnEhy9nmfYYYmTWbp5yqp2UYJ3jceSYhjSFLCMkTdclHyxLcjcSnyzCRdbN0BZjRSc3Ftk7cEWlDY0j0HjNHKp2o21BWgJdOi3q5KkdU0tUeo9zJETk5yp1cAVV6NvoRXREWjj8tV_9tuQVTrdury-jyrH2xBtO04mkwYh0mBi-v6QaCmUG86YOHwcOoo_UTJSQHIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CSP-Net%3A+Common+spatial+pattern+empowered+neural+networks+for+EEG-based+motor+imagery+classification&rft.jtitle=Knowledge-based+systems&rft.au=Jiang%2C+Xue&rft.au=Meng%2C+Lubin&rft.au=Chen%2C+Xinru&rft.au=Xu%2C+Yifan&rft.date=2024-12-03&rft.issn=0950-7051&rft.volume=305&rft.spage=112668&rft_id=info:doi/10.1016%2Fj.knosys.2024.112668&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2024_112668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon