CSP-Net: Common spatial pattern empowered neural networks for EEG-based motor imagery classification
Electroencephalogram-based motor imagery (MI) classification is an important paradigm of non-invasive brain–computer interfaces. Common spatial pattern (CSP), which exploits different energy distributions on the scalp while performing different MI tasks, is very popular in MI classification. Convolu...
Saved in:
Published in | Knowledge-based systems Vol. 305; p. 112668 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
03.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalogram-based motor imagery (MI) classification is an important paradigm of non-invasive brain–computer interfaces. Common spatial pattern (CSP), which exploits different energy distributions on the scalp while performing different MI tasks, is very popular in MI classification. Convolutional neural networks (CNNs) have also achieved great success, due to their powerful learning capabilities. This paper proposes two CSP-empowered neural networks (CSP-Nets), which integrate knowledge-driven CSP filters with data-driven CNNs to enhance the performance in MI classification. CSP-Net-1 directly adds a CSP layer before a CNN to improve the input discriminability. CSP-Net-2 replaces a convolutional layer in CNN with a CSP layer. The CSP layer parameters in both CSP-Nets are initialized with CSP filters designed from the training data. During training, they can either be kept fixed or optimized using gradient descent. Experiments on four public MI datasets demonstrated that the two CSP-Nets consistently improved over their CNN backbones, in both within-subject and cross-subject classifications. They are particularly useful when the number of training samples is very small. Our work demonstrates the advantage of integrating knowledge-driven traditional machine learning with data-driven deep learning in EEG-based brain–computer interfaces.
•Explain the advantage of knowledge-data fusion in EEG-based BCIs.•Propose two CSP-empowered neural networks (CSP-Nets) for knowledge-data fusion.•Validate the effectiveness of CSP-Nets on 4 MI datasets in different scenarios. |
---|---|
AbstractList | Electroencephalogram-based motor imagery (MI) classification is an important paradigm of non-invasive brain–computer interfaces. Common spatial pattern (CSP), which exploits different energy distributions on the scalp while performing different MI tasks, is very popular in MI classification. Convolutional neural networks (CNNs) have also achieved great success, due to their powerful learning capabilities. This paper proposes two CSP-empowered neural networks (CSP-Nets), which integrate knowledge-driven CSP filters with data-driven CNNs to enhance the performance in MI classification. CSP-Net-1 directly adds a CSP layer before a CNN to improve the input discriminability. CSP-Net-2 replaces a convolutional layer in CNN with a CSP layer. The CSP layer parameters in both CSP-Nets are initialized with CSP filters designed from the training data. During training, they can either be kept fixed or optimized using gradient descent. Experiments on four public MI datasets demonstrated that the two CSP-Nets consistently improved over their CNN backbones, in both within-subject and cross-subject classifications. They are particularly useful when the number of training samples is very small. Our work demonstrates the advantage of integrating knowledge-driven traditional machine learning with data-driven deep learning in EEG-based brain–computer interfaces.
•Explain the advantage of knowledge-data fusion in EEG-based BCIs.•Propose two CSP-empowered neural networks (CSP-Nets) for knowledge-data fusion.•Validate the effectiveness of CSP-Nets on 4 MI datasets in different scenarios. |
ArticleNumber | 112668 |
Author | Wu, Dongrui Jiang, Xue Chen, Xinru Xu, Yifan Meng, Lubin |
Author_xml | – sequence: 1 givenname: Xue orcidid: 0000-0002-1378-1315 surname: Jiang fullname: Jiang, Xue email: xuejiang@hust.edu.cn – sequence: 2 givenname: Lubin surname: Meng fullname: Meng, Lubin email: lubinmeng@hust.edu.cn – sequence: 3 givenname: Xinru surname: Chen fullname: Chen, Xinru email: xrchen@hust.edu.cn – sequence: 4 givenname: Yifan surname: Xu fullname: Xu, Yifan email: yfxu@hust.edu.cn – sequence: 5 givenname: Dongrui orcidid: 0000-0002-7153-9703 surname: Wu fullname: Wu, Dongrui email: drwu@hust.edu.cn |
BookMark | eNp9kM1KAzEcxHOoYFt9Aw95gV3ztd2NB0GWWoWignoOafKPpO0mJVktfXu3rGdPwzDMMPxmaBJiAIRuKCkpoYvbbbkLMZ9yyQgTJaVssWgmaEpkRYqaVPQSzXLeEkIYo80U2fb9rXiB_g63setiwPmge6_3eJAeUsDQHeIRElgc4DsNQYD-GNMuYxcTXi5XxUbnIe1iP3jf6S9IJ2z2OmfvvBnGYrhCF07vM1z_6Rx9Pi4_2qdi_bp6bh_WhWFV1ReNrYjkteNa1hZs5YQkRgpBLeNMaOFqrbnlhje11NJJ5zak3tRGcjBEVJTPkRh3TYo5J3DqkIZH6aQoUWc6aqtGOupMR410htr9WIPh24-HpLLxEAxYn8D0ykb__8Av_MV1Yw |
Cites_doi | 10.1109/86.895946 10.1088/1741-2552/ab0ab5 10.1109/TBME.2010.2082539 10.1016/0028-3932(95)00073-C 10.1109/TNSRE.2012.2189584 10.1016/S1388-2457(98)00038-8 10.1109/MSP.2008.4408441 10.1088/1741-2552/aace8c 10.1109/TBME.2004.827088 10.1109/5.939829 10.1002/hbm.23730 10.1016/j.neuroimage.2023.120209 10.1109/TNSRE.2022.3230250 10.1007/BF01129656 10.1007/s00521-021-06352-5 10.1038/nature11076 10.1109/TBME.2011.2172210 10.3389/fnins.2012.00055 10.1109/IJCNN.2008.4634130 10.1038/s41586-019-1119-1 10.1016/j.neuroimage.2010.03.022 10.1088/1741-2552/aadea0 10.1109/TBME.2022.3168570 10.3390/s120201211 10.1016/S0013-4694(97)00080-1 10.1016/j.bspc.2020.102172 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.knosys.2024.112668 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_knosys_2024_112668 S0950705124013029 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L AAQXK AATTM AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SSH UHS WUQ |
ID | FETCH-LOGICAL-c255t-8d50937f3a97ded5f490c9441d2324a4f7aa3d3c3879a9f9ffb07b7c93ec04513 |
IEDL.DBID | .~1 |
ISSN | 0950-7051 |
IngestDate | Tue Jul 01 00:20:32 EDT 2025 Sat Dec 28 15:50:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Motor imagery Common spatial pattern Electroencephalogram Brain–computer interfaces Convolutional neural network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-8d50937f3a97ded5f490c9441d2324a4f7aa3d3c3879a9f9ffb07b7c93ec04513 |
ORCID | 0000-0002-1378-1315 0000-0002-7153-9703 |
ParticipantIDs | crossref_primary_10_1016_j_knosys_2024_112668 elsevier_sciencedirect_doi_10_1016_j_knosys_2024_112668 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-03 |
PublicationDateYYYYMMDD | 2024-12-03 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-03 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lotte, Guan (b14) 2010; 58 Song, Zheng, Liu, Gao (b21) 2023; 31 Krauledat, Grzeska, Sagebaum, Blankertz, Vidaurre, Müller, Schröder (b5) 2008; 21 Jeannerod (b7) 1995; 33 Miao, Zhao, Zhang, Ming (b29) 2023 Al-Saegh, Dawwd, Abdul-Jabbar (b17) 2021; 63 Tangermann, Müller, Aertsen, Birbaumer, Braun, Brunner, Leeb, Mehring, Miller, Mueller-Putz, Nolte, Pfurtscheller, Preissl, Schalk, Schlögl, Vidaurre, Waldert, Blankertz (b24) 2012; 6 Ramoser, Muller-Gerking, Pfurtscheller (b10) 2000; 8 Graimann, Allison, Pfurtscheller (b1) 2009 Nicolas-Alonso, Gomez-Gil (b2) 2012; 12 Barachant, Bonnet, Congedo, Jutten (b28) 2012; 59 K.K. Ang, Z.Y. Chin, H. Zhang, C. Guan, Filter bank common spatial pattern (FBCSP) in brain-computer interface, in: Proc. IEEE Int’L Joint Conf. on Neural Networks, Hong Kong, China, 2008, pp. 2390–2397. Altaheri, Muhammad, Alsulaiman, Amin, Altuwaijri, Abdul, Bencherif, Faisal (b16) 2023; 35 Blankertz, Sannelli, Halder, Hammer, Kübler, Müller, Curio, Dickhaus (b9) 2010; 51 Blankertz, Tomioka, Lemm, Kawanabe, r. Muller (b11) 2008; 25 Mane, Chew, Chua, Ang, Robinson, Vinod, Lee, Guan (b20) 2021 Faller, Vidaurre, Solis-Escalante, Neuper, Scherer (b25) 2012; 20 Dornhege, Blankertz, Curio, Muller (b12) 2004; 51 Koles, Lazar, Zhou (b22) 1990; 2 Müller-Gerking, Pfurtscheller, Flyvbjerg (b23) 1999; 110 Hochberg, Bacher, Jarosiewicz, Masse, Simeral, Vogel, Haddadin, Liu, Cash, Van Der Smagt (b3) 2012; 485 Xia, Deng, Duch, Wu (b26) 2022; 69 Pfurtscheller, Neuper, Flotzinger, Pregenzer (b8) 1997; 103 Anumanchipalli, Chartier, Chang (b4) 2019; 568 Pfurtscheller, Neuper (b6) 2001; 89 Craik, He, Contreras-Vidal (b15) 2019; 16 Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b19) 2018; 15 Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (b18) 2017; 38 Jayaram, Barachant (b27) 2018; 15 Schirrmeister (10.1016/j.knosys.2024.112668_b18) 2017; 38 Pfurtscheller (10.1016/j.knosys.2024.112668_b8) 1997; 103 Jayaram (10.1016/j.knosys.2024.112668_b27) 2018; 15 Altaheri (10.1016/j.knosys.2024.112668_b16) 2023; 35 Pfurtscheller (10.1016/j.knosys.2024.112668_b6) 2001; 89 Anumanchipalli (10.1016/j.knosys.2024.112668_b4) 2019; 568 Dornhege (10.1016/j.knosys.2024.112668_b12) 2004; 51 Song (10.1016/j.knosys.2024.112668_b21) 2023; 31 Faller (10.1016/j.knosys.2024.112668_b25) 2012; 20 Koles (10.1016/j.knosys.2024.112668_b22) 1990; 2 Graimann (10.1016/j.knosys.2024.112668_b1) 2009 Nicolas-Alonso (10.1016/j.knosys.2024.112668_b2) 2012; 12 Blankertz (10.1016/j.knosys.2024.112668_b11) 2008; 25 Jeannerod (10.1016/j.knosys.2024.112668_b7) 1995; 33 Hochberg (10.1016/j.knosys.2024.112668_b3) 2012; 485 Tangermann (10.1016/j.knosys.2024.112668_b24) 2012; 6 Miao (10.1016/j.knosys.2024.112668_b29) 2023 10.1016/j.knosys.2024.112668_b13 Al-Saegh (10.1016/j.knosys.2024.112668_b17) 2021; 63 Blankertz (10.1016/j.knosys.2024.112668_b9) 2010; 51 Lotte (10.1016/j.knosys.2024.112668_b14) 2010; 58 Ramoser (10.1016/j.knosys.2024.112668_b10) 2000; 8 Craik (10.1016/j.knosys.2024.112668_b15) 2019; 16 Krauledat (10.1016/j.knosys.2024.112668_b5) 2008; 21 Mane (10.1016/j.knosys.2024.112668_b20) 2021 Xia (10.1016/j.knosys.2024.112668_b26) 2022; 69 Barachant (10.1016/j.knosys.2024.112668_b28) 2012; 59 Lawhern (10.1016/j.knosys.2024.112668_b19) 2018; 15 Müller-Gerking (10.1016/j.knosys.2024.112668_b23) 1999; 110 |
References_xml | – volume: 51 start-page: 1303 year: 2010 end-page: 1309 ident: b9 article-title: Neurophysiological predictor of SMR-based BCI performance publication-title: NeuroImage – volume: 33 start-page: 1419 year: 1995 end-page: 1432 ident: b7 article-title: Mental imagery in the motor context publication-title: Neuropsychologia – volume: 38 start-page: 5391 year: 2017 end-page: 5420 ident: b18 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp. – volume: 568 start-page: 493 year: 2019 end-page: 498 ident: b4 article-title: Speech synthesis from neural decoding of spoken sentences publication-title: Nature – volume: 51 start-page: 993 year: 2004 end-page: 1002 ident: b12 article-title: Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms publication-title: IEEE Trans. Biomed. Eng. – start-page: 1 year: 2009 end-page: 27 ident: b1 article-title: Brain-Computer Interfaces: A Gentle Introduction – reference: K.K. Ang, Z.Y. Chin, H. Zhang, C. Guan, Filter bank common spatial pattern (FBCSP) in brain-computer interface, in: Proc. IEEE Int’L Joint Conf. on Neural Networks, Hong Kong, China, 2008, pp. 2390–2397. – volume: 485 start-page: 372 year: 2012 end-page: 375 ident: b3 article-title: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm publication-title: Nature – volume: 25 start-page: 41 year: 2008 end-page: 56 ident: b11 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: IEEE Signal Process. Mag. – volume: 8 start-page: 441 year: 2000 end-page: 446 ident: b10 article-title: Optimal spatial filtering of single trial EEG during imagined hand movement publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 63 year: 2021 ident: b17 article-title: Deep learning for motor imagery EEG-based classification: A review publication-title: Biomed. Signal Process. Control – volume: 2 start-page: 275 year: 1990 end-page: 284 ident: b22 article-title: Spatial patterns underlying population differences in the background EEG publication-title: Brain Topogr. – volume: 15 year: 2018 ident: b27 article-title: MOABB: trustworthy algorithm benchmarking for BCIs publication-title: J. Neural Eng. – volume: 12 start-page: 1211 year: 2012 end-page: 1279 ident: b2 article-title: Brain computer interfaces, a review publication-title: Sensors – volume: 69 start-page: 3365 year: 2022 end-page: 3376 ident: b26 article-title: Privacy-preserving domain adaptation for motor imagery-based brain-computer interfaces publication-title: IEEE Trans. Biomed. Eng. – volume: 89 start-page: 1123 year: 2001 end-page: 1134 ident: b6 article-title: Motor imagery and direct brain-computer communication publication-title: Proc. IEEE – volume: 31 start-page: 710 year: 2023 end-page: 719 ident: b21 article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 16 year: 2019 ident: b15 article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review publication-title: J. Neural Eng. – volume: 20 start-page: 313 year: 2012 end-page: 319 ident: b25 article-title: Autocalibration and recurrent adaptation: Towards a plug and play online ERD-BCI publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – year: 2023 ident: b29 article-title: LMDA-Net: A lightweight multi-dimensional attention network for general EEG-based brain-computer interfaces and interpretability publication-title: NeuroImage – volume: 103 start-page: 642 year: 1997 end-page: 651 ident: b8 article-title: EEG-based discrimination between imagination of right and left hand movement publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 58 start-page: 355 year: 2010 end-page: 362 ident: b14 article-title: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms publication-title: IEEE Trans. Biomed. Eng. – volume: 59 start-page: 920 year: 2012 end-page: 928 ident: b28 article-title: Multiclass brain-computer interface classification by Riemannian geometry publication-title: IEEE Trans. Biomed. Eng. – volume: 15 year: 2018 ident: b19 article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces publication-title: J. Neural Eng. – volume: 35 start-page: 14681 year: 2023 end-page: 14722 ident: b16 article-title: Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: A review publication-title: Neural Comput. Appl. – volume: 110 start-page: 787 year: 1999 end-page: 798 ident: b23 article-title: Designing optimal spatial filters for single-trial EEG classification in a movement task publication-title: Clin. Neurophysiol. – year: 2021 ident: b20 article-title: FBCNet: A multi-view convolutional neural network for brain-computer interface – volume: 21 start-page: 1641 year: 2008 end-page: 1648 ident: b5 article-title: Playing pinball with non-invasive BCI publication-title: Adv. Neural Inf. Process. Syst. – volume: 6 start-page: 55 year: 2012 ident: b24 article-title: Review of the BCI competition IV publication-title: Front. Neurosci. – volume: 8 start-page: 441 issue: 4 year: 2000 ident: 10.1016/j.knosys.2024.112668_b10 article-title: Optimal spatial filtering of single trial EEG during imagined hand movement publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/86.895946 – volume: 16 issue: 3 year: 2019 ident: 10.1016/j.knosys.2024.112668_b15 article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab0ab5 – volume: 58 start-page: 355 issue: 2 year: 2010 ident: 10.1016/j.knosys.2024.112668_b14 article-title: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2082539 – volume: 33 start-page: 1419 issue: 11 year: 1995 ident: 10.1016/j.knosys.2024.112668_b7 article-title: Mental imagery in the motor context publication-title: Neuropsychologia doi: 10.1016/0028-3932(95)00073-C – volume: 20 start-page: 313 issue: 3 year: 2012 ident: 10.1016/j.knosys.2024.112668_b25 article-title: Autocalibration and recurrent adaptation: Towards a plug and play online ERD-BCI publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2189584 – volume: 110 start-page: 787 issue: 5 year: 1999 ident: 10.1016/j.knosys.2024.112668_b23 article-title: Designing optimal spatial filters for single-trial EEG classification in a movement task publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(98)00038-8 – volume: 25 start-page: 41 issue: 1 year: 2008 ident: 10.1016/j.knosys.2024.112668_b11 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2008.4408441 – volume: 15 issue: 5 year: 2018 ident: 10.1016/j.knosys.2024.112668_b19 article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – volume: 51 start-page: 993 issue: 6 year: 2004 ident: 10.1016/j.knosys.2024.112668_b12 article-title: Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827088 – volume: 89 start-page: 1123 issue: 7 year: 2001 ident: 10.1016/j.knosys.2024.112668_b6 article-title: Motor imagery and direct brain-computer communication publication-title: Proc. IEEE doi: 10.1109/5.939829 – volume: 38 start-page: 5391 issue: 11 year: 2017 ident: 10.1016/j.knosys.2024.112668_b18 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23730 – year: 2023 ident: 10.1016/j.knosys.2024.112668_b29 article-title: LMDA-Net: A lightweight multi-dimensional attention network for general EEG-based brain-computer interfaces and interpretability publication-title: NeuroImage doi: 10.1016/j.neuroimage.2023.120209 – volume: 31 start-page: 710 year: 2023 ident: 10.1016/j.knosys.2024.112668_b21 article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3230250 – volume: 2 start-page: 275 year: 1990 ident: 10.1016/j.knosys.2024.112668_b22 article-title: Spatial patterns underlying population differences in the background EEG publication-title: Brain Topogr. doi: 10.1007/BF01129656 – volume: 35 start-page: 14681 issue: 20 year: 2023 ident: 10.1016/j.knosys.2024.112668_b16 article-title: Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: A review publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06352-5 – volume: 21 start-page: 1641 year: 2008 ident: 10.1016/j.knosys.2024.112668_b5 article-title: Playing pinball with non-invasive BCI publication-title: Adv. Neural Inf. Process. Syst. – volume: 485 start-page: 372 issue: 7398 year: 2012 ident: 10.1016/j.knosys.2024.112668_b3 article-title: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm publication-title: Nature doi: 10.1038/nature11076 – volume: 59 start-page: 920 issue: 4 year: 2012 ident: 10.1016/j.knosys.2024.112668_b28 article-title: Multiclass brain-computer interface classification by Riemannian geometry publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2172210 – volume: 6 start-page: 55 year: 2012 ident: 10.1016/j.knosys.2024.112668_b24 article-title: Review of the BCI competition IV publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00055 – start-page: 1 year: 2009 ident: 10.1016/j.knosys.2024.112668_b1 – ident: 10.1016/j.knosys.2024.112668_b13 doi: 10.1109/IJCNN.2008.4634130 – volume: 568 start-page: 493 issue: 7753 year: 2019 ident: 10.1016/j.knosys.2024.112668_b4 article-title: Speech synthesis from neural decoding of spoken sentences publication-title: Nature doi: 10.1038/s41586-019-1119-1 – volume: 51 start-page: 1303 issue: 4 year: 2010 ident: 10.1016/j.knosys.2024.112668_b9 article-title: Neurophysiological predictor of SMR-based BCI performance publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.03.022 – volume: 15 issue: 6 year: 2018 ident: 10.1016/j.knosys.2024.112668_b27 article-title: MOABB: trustworthy algorithm benchmarking for BCIs publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aadea0 – volume: 69 start-page: 3365 issue: 11 year: 2022 ident: 10.1016/j.knosys.2024.112668_b26 article-title: Privacy-preserving domain adaptation for motor imagery-based brain-computer interfaces publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2022.3168570 – volume: 12 start-page: 1211 issue: 2 year: 2012 ident: 10.1016/j.knosys.2024.112668_b2 article-title: Brain computer interfaces, a review publication-title: Sensors doi: 10.3390/s120201211 – year: 2021 ident: 10.1016/j.knosys.2024.112668_b20 – volume: 103 start-page: 642 issue: 6 year: 1997 ident: 10.1016/j.knosys.2024.112668_b8 article-title: EEG-based discrimination between imagination of right and left hand movement publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(97)00080-1 – volume: 63 year: 2021 ident: 10.1016/j.knosys.2024.112668_b17 article-title: Deep learning for motor imagery EEG-based classification: A review publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102172 |
SSID | ssj0002218 |
Score | 2.436966 |
Snippet | Electroencephalogram-based motor imagery (MI) classification is an important paradigm of non-invasive brain–computer interfaces. Common spatial pattern (CSP),... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 112668 |
SubjectTerms | Brain–computer interfaces Common spatial pattern Convolutional neural network Electroencephalogram Motor imagery |
Title | CSP-Net: Common spatial pattern empowered neural networks for EEG-based motor imagery classification |
URI | https://dx.doi.org/10.1016/j.knosys.2024.112668 |
Volume | 305 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH4MvXjxtzh_jBy8xm1N2jTexticikOYg91KmjQwxW64iuzi325e2qKCePCYNg_KS_Le1_Z73wO4EFpZGQWWumQeUR50LVVBGtGujVIRKpkKX8d9P45GU347C2cN6Ne1MEirrGJ_GdN9tK6utCtvtpfzeXviwIHbry5hcf_3DYv4OBe4yy8_vmgeQeC_8eFkirPr8jnP8XrOF6s1inYH3NfSoODqb-npW8oZ7sJ2hRVJr3ycPWhk-T7s1H0YSHUsD8D0Jw90nBVXBMs9FjlZIU3aWS69eGZOUH7qHZtyEpSvdDfykvy9Ig6yksHgmmIyM8QtmxvPX1DXYk00AmtkEvnFO4TpcPDYH9GqewLV7jWhoLFxWIAJy5QUJjOh5bKjpUM_BkGU4lYoxQzTLBZSSSutTTsiFVqyTKPoDDuCjXyRZ8dAlNShTU2MVA5uIqVQg94d5IxbFpuIN4HWTkuWpUhGUrPHnpLSyQk6OSmd3ARRezb5sdiJi-N_Wp782_IUtnDkmSjsDDaK17fs3OGJIm35DdOCzd7N3Wj8CQQhy38 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB58HPTiW6zPPehxrWa32a7gQWq1voqggre4yWahimmxFenFP-UfdGaToIJ4EHpMlgmbyTDzJfnmG4BtlRinw8BxLOYhl8G-4yaIQ77vwljVjI6V7-O-aoetO3l-X7sfg4-yF4ZolUXuz3O6z9bFmWrhzWqv06neIDjAeMWCJf3fN10wKy_S4Ru-t_UPz47xIe8EwUnzttHixWgBniCGHvC6xUIplBNGK5vampN6L9EIDSwhDCOdMkZYkYi60kY77Vy8p2KVaJEmpMgi8LrjMCkxXdDYhN33L15JEPiPirQ7Ttsr-_U8qewp6_aHpBIeSN-8Qwqvv9XDbzXuZA5mCnDKjvL7n4exNFuA2XLwAyvywCLYxs01b6eDA0b9Jd2M9YmXjZY9r9aZMdK7eqMpoIz0MnEhy9nmfYYYmTWbp5yqp2UYJ3jceSYhjSFLCMkTdclHyxLcjcSnyzCRdbN0BZjRSc3Ftk7cEWlDY0j0HjNHKp2o21BWgJdOi3q5KkdU0tUeo9zJETk5yp1cAVV6NvoRXREWjj8tV_9tuQVTrdury-jyrH2xBtO04mkwYh0mBi-v6QaCmUG86YOHwcOoo_UTJSQHIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CSP-Net%3A+Common+spatial+pattern+empowered+neural+networks+for+EEG-based+motor+imagery+classification&rft.jtitle=Knowledge-based+systems&rft.au=Jiang%2C+Xue&rft.au=Meng%2C+Lubin&rft.au=Chen%2C+Xinru&rft.au=Xu%2C+Yifan&rft.date=2024-12-03&rft.issn=0950-7051&rft.volume=305&rft.spage=112668&rft_id=info:doi/10.1016%2Fj.knosys.2024.112668&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2024_112668 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |