An efficient cloud-integrated distributed deep neural network framework for IoT malware classification
The proliferation of interconnected devices in the Internet of Things (IoT) landscape has introduced significant security concerns. With the integration of android devices, the potential for attackers to exploit vulnerabilities becomes a crucial issue. Timely detection of malware attacks has emerged...
Saved in:
Published in | Future generation computer systems Vol. 157; pp. 603 - 617 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The proliferation of interconnected devices in the Internet of Things (IoT) landscape has introduced significant security concerns. With the integration of android devices, the potential for attackers to exploit vulnerabilities becomes a crucial issue. Timely detection of malware attacks has emerged as a critical challenge, especially in industrial IoT (IIoT), to prevent permanent damage. The slow inference speed of the current algorithms causes limited performance and a significant delay in the detection and mitigation of malware, especially in large-scale environments such as IIoT. High resource utilization can limit the size of the model (number of parameters), which could be implemented in embedded devices, which causes lower accuracy of the model. Hence, we proposed a HierarchicalCloudDNN, a distributed malware detection framework that used modified state-of-the-art deep learning algorithms in a boosting ensemble architecture. The proposed method could scale efficiently from IIoT devices up to the edge and cloud to speed up malware detection, simultaneously reduce resource utilization, and maintain a controllable level of accuracy compared to rival methods in malware detection. The objective is to minimize both run-time and resource consumption while maintaining performance characteristics. The performance analysis of the HierarchicalCloudDNN method was evaluated using standard performance measures on the frequently used BIG 2015 dataset. Based on evaluations, the proposed approach has demonstrated an impressive accuracy rate of 98.90%, outperforming many state-of-the-art models in performance, response time, and resource utilization. These findings suggest a notable decrease in both false positives and false negatives while maintaining accuracy. The proposed distributed malware analysis framework is scalable, robust, and helpful for the timely detection of malicious activity, especially in geographically distributed environments such as the IIoT.
•We proposed a distributed malware detection framework especially in geographically distributed environments such as the IIoT that used modified state-of-the-art deep learning algorithms in a boosting ensemble architecture.•The method could scale efficiently from IIoT devices up to the edge and cloud to speed up malware detection, and simultaneously reduce resource utilization and maintain a controllable level of accuracy for malware detection.•Based on evaluations and implementation of our framework on an embedded device (Nvidia Jetson Nano) the proposed approach has demonstrated an impressive accuracy rate of 98.90%, outperforming many state-of-the-art models in performance, response time, and resource utilization. |
---|---|
AbstractList | The proliferation of interconnected devices in the Internet of Things (IoT) landscape has introduced significant security concerns. With the integration of android devices, the potential for attackers to exploit vulnerabilities becomes a crucial issue. Timely detection of malware attacks has emerged as a critical challenge, especially in industrial IoT (IIoT), to prevent permanent damage. The slow inference speed of the current algorithms causes limited performance and a significant delay in the detection and mitigation of malware, especially in large-scale environments such as IIoT. High resource utilization can limit the size of the model (number of parameters), which could be implemented in embedded devices, which causes lower accuracy of the model. Hence, we proposed a HierarchicalCloudDNN, a distributed malware detection framework that used modified state-of-the-art deep learning algorithms in a boosting ensemble architecture. The proposed method could scale efficiently from IIoT devices up to the edge and cloud to speed up malware detection, simultaneously reduce resource utilization, and maintain a controllable level of accuracy compared to rival methods in malware detection. The objective is to minimize both run-time and resource consumption while maintaining performance characteristics. The performance analysis of the HierarchicalCloudDNN method was evaluated using standard performance measures on the frequently used BIG 2015 dataset. Based on evaluations, the proposed approach has demonstrated an impressive accuracy rate of 98.90%, outperforming many state-of-the-art models in performance, response time, and resource utilization. These findings suggest a notable decrease in both false positives and false negatives while maintaining accuracy. The proposed distributed malware analysis framework is scalable, robust, and helpful for the timely detection of malicious activity, especially in geographically distributed environments such as the IIoT.
•We proposed a distributed malware detection framework especially in geographically distributed environments such as the IIoT that used modified state-of-the-art deep learning algorithms in a boosting ensemble architecture.•The method could scale efficiently from IIoT devices up to the edge and cloud to speed up malware detection, and simultaneously reduce resource utilization and maintain a controllable level of accuracy for malware detection.•Based on evaluations and implementation of our framework on an embedded device (Nvidia Jetson Nano) the proposed approach has demonstrated an impressive accuracy rate of 98.90%, outperforming many state-of-the-art models in performance, response time, and resource utilization. |
Author | Sharifian, Saeed Babaei Mosleh, Mohammad Reza |
Author_xml | – sequence: 1 givenname: Mohammad Reza surname: Babaei Mosleh fullname: Babaei Mosleh, Mohammad Reza email: R.Babaeimosleh@gmail.com – sequence: 2 givenname: Saeed orcidid: 0000-0001-7392-7892 surname: Sharifian fullname: Sharifian, Saeed email: Sharifian_s@aut.ac.ir |
BookMark | eNp9kM1KAzEURoMo2FbfwEVeYMZkMsnMbIRS_CkU3FRwF9LkRlKnk5JkLL69qePa1f243O9wOXN0OfgBELqjpKSEivt9acc0BigrUtUlYSXh9ALNaNtURUMpv0SzfNYUDever9E8xj0hhDaMzpBdDhisddrBkLDu_WgKNyT4CCqBwcbFFNxu_M0ARzzAGFSfRzr58IltUAeYkg947bf4oPqTCpBRKkaXwSo5P9ygK6v6CLd_c4Henh63q5di8_q8Xi03ha44T0VTM17pTlBb07zR7W4nmK6MIoJRzhUQYiwXrQDRWg6g24aajjFhqNVEdGyB6omrg48xgJXH4A4qfEtK5NmV3MvJlTy7koTJ7CrXHqYa5N--HAQZz0I0GBdAJ2m8-x_wA_sSeLI |
Cites_doi | 10.1109/CVPR.2016.90 10.1109/ACCESS.2020.3039985 10.1109/MSP.2018.2825478 10.1016/j.comnet.2020.107138 10.1007/s11416-015-0249-8 10.1109/MCE.2019.2953740 10.1016/j.diin.2018.04.024 10.1145/155870.155881 10.1109/ACCESS.2019.2963724 10.1145/1076211.1076237 10.1016/j.csi.2013.06.004 10.1016/j.neucom.2022.06.111 10.1145/2016904.2016908 10.1016/j.cose.2020.102133 10.1155/2022/5724168 10.1109/CVPR.2018.00474 10.1016/j.procs.2015.02.149 10.3390/smartcities4010008 10.3390/electronics7070109 10.1016/j.future.2021.06.029 10.2139/ssrn.3603739 10.1109/32.677185 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.future.2024.03.051 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7115 |
EndPage | 617 |
ExternalDocumentID | 10_1016_j_future_2024_03_051 S0167739X24001237 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c255t-74352c961f41c25c8bb63c2da063155ae00df5686e68f5eec871d9336d1fc0693 |
IEDL.DBID | .~1 |
ISSN | 0167-739X |
IngestDate | Tue Jul 01 02:30:15 EDT 2025 Sat May 25 15:40:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cloud computing CNN Cyber security Malware classification Edge computing IoT |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-74352c961f41c25c8bb63c2da063155ae00df5686e68f5eec871d9336d1fc0693 |
ORCID | 0000-0001-7392-7892 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1016_j_future_2024_03_051 elsevier_sciencedirect_doi_10_1016_j_future_2024_03_051 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2024 2024-08-00 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
PublicationDecade | 2020 |
PublicationTitle | Future generation computer systems |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mehta, Rastegari (b28) 2021 D. Soni, A. Makwana, A survey on mqtt: a protocol of Internet of Things (iot), in: International Conference on Telecommunication, Power Analysis and Computing Techniques, ICTPACT-2017, Vol. 20, 2017, pp. 173–177. Aslan, Samet (b5) 2020; 8 Fielding, Gettys, Mogul, Frystyk, Masinter, Leach, Berners-Lee (b36) 1999 Naeem, Guo, Naeem (b23) 2018 Gopinath, Sethuraman (b31) 2023; 47 Ali, Ahmed, Almogren, Raza, Shah, Khan, Gani (b9) 2020; 8 Aqeel, Ali, Iqbal, Rana, Arif, Auwul (b12) 2022; 2022 Kapratwar, Di Troia, Stamp (b15) 2017; Vol. 2 Kancherla, Donahue, Mukkamala (b22) 2016; 12 Venkatraman, Alazab, Vinayakumar (b18) 2019; 47 H. Jaidka, N. Sharma, R. Singh, Evolution of iot to iiot: Applications & challenges, in: Proceedings of the International Conference on Innovative Computing & Communications, ICICC, 2020. Kumar (b19) 2021; 125 Çayır, Ünal, Dağ (b25) 2021; 102 Thomas (b33) 2008; 9 Lin, Chen, Yan (b40) 2013 Dubey, Singh, Chaudhuri (b46) 2022 NVIDIA (b44) 2023 Marzano, Alexander, Fonseca, Fazzion, Hoepers, Steding-Jessen, Chaves, Cunha, Guedes, Meira (b6) 2018 Alsmadi, Alqudah (b32) 2021 Chollet (b41) 2017 K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. Ferrari, Flammini, Rinaldi, Sisinni, Maffei, Malara (b2) 2018; 7 Shijo, Salim (b14) 2015; 46 Mohurle, Patil (b10) 2017; 8 Venu, Arun Kumar, Vaigandla (b3) 2022; 8 Carminati, Sinha, Mohdiwale, Ullo (b4) 2021; 4 Go, Jan, Mohanty, Patel, Puthal, Prasad (b26) 2020 Iandola, Han, Moskewicz, Ashraf, Dally, Keutzer (b27) 2016 Kitchenham (b42) 1998; 24 L. Nataraj, S. Karthikeyan, G. Jacob, B.S. Manjunath, Malware images: visualization and automatic classification, in: Proceedings of the 8th International Symposium on Visualization for Cyber Security, 2011, pp. 1–7. Grandini, Bagli, Visani (b45) 2020 Alladi, Chamola, Sikdar, Choo (b8) 2020; 9 Popić, Pezer, Mrazovac, Teslić (b39) 2016 Wang, Zhao, Zhu (b38) 1993; 27 Kessler (b34) 2004; Vol. 29 Thompson (b11) 2005; 48 Stoian (b17) 2020 Williams, McMahon, Samtani, Patton, Chen (b7) 2017 Vasan, Alazab, Wassan, Naeem, Safaei, Zheng (b21) 2020; 171 Cavalieri, Chiacchio (b35) 2013; 36 Jeatrakul, Wong, Fung (b43) 2010 M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, Mobilenetv2: Inverted residuals and linear bottlenecks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520. Le, Boydell, Mac Namee, Scanlon (b24) 2018; 26 James, Rabbi (b13) 2023; 6 Xiao, Wan, Lu, Zhang, Wu (b16) 2018; 35 Carminati (10.1016/j.future.2024.03.051_b4) 2021; 4 Venkatraman (10.1016/j.future.2024.03.051_b18) 2019; 47 Le (10.1016/j.future.2024.03.051_b24) 2018; 26 Naeem (10.1016/j.future.2024.03.051_b23) 2018 Vasan (10.1016/j.future.2024.03.051_b21) 2020; 171 Lin (10.1016/j.future.2024.03.051_b40) 2013 Thompson (10.1016/j.future.2024.03.051_b11) 2005; 48 Iandola (10.1016/j.future.2024.03.051_b27) 2016 Aqeel (10.1016/j.future.2024.03.051_b12) 2022; 2022 Popić (10.1016/j.future.2024.03.051_b39) 2016 Fielding (10.1016/j.future.2024.03.051_b36) 1999 James (10.1016/j.future.2024.03.051_b13) 2023; 6 Xiao (10.1016/j.future.2024.03.051_b16) 2018; 35 Jeatrakul (10.1016/j.future.2024.03.051_b43) 2010 Venu (10.1016/j.future.2024.03.051_b3) 2022; 8 Grandini (10.1016/j.future.2024.03.051_b45) 2020 10.1016/j.future.2024.03.051_b30 Alsmadi (10.1016/j.future.2024.03.051_b32) 2021 Çayır (10.1016/j.future.2024.03.051_b25) 2021; 102 Aslan (10.1016/j.future.2024.03.051_b5) 2020; 8 10.1016/j.future.2024.03.051_b37 Ali (10.1016/j.future.2024.03.051_b9) 2020; 8 Ferrari (10.1016/j.future.2024.03.051_b2) 2018; 7 Alladi (10.1016/j.future.2024.03.051_b8) 2020; 9 Mohurle (10.1016/j.future.2024.03.051_b10) 2017; 8 Mehta (10.1016/j.future.2024.03.051_b28) 2021 Gopinath (10.1016/j.future.2024.03.051_b31) 2023; 47 Cavalieri (10.1016/j.future.2024.03.051_b35) 2013; 36 Shijo (10.1016/j.future.2024.03.051_b14) 2015; 46 Stoian (10.1016/j.future.2024.03.051_b17) 2020 Kessler (10.1016/j.future.2024.03.051_b34) 2004; Vol. 29 10.1016/j.future.2024.03.051_b1 Williams (10.1016/j.future.2024.03.051_b7) 2017 NVIDIA (10.1016/j.future.2024.03.051_b44) 2023 Dubey (10.1016/j.future.2024.03.051_b46) 2022 Thomas (10.1016/j.future.2024.03.051_b33) 2008; 9 Chollet (10.1016/j.future.2024.03.051_b41) 2017 Kitchenham (10.1016/j.future.2024.03.051_b42) 1998; 24 Kapratwar (10.1016/j.future.2024.03.051_b15) 2017; Vol. 2 Go (10.1016/j.future.2024.03.051_b26) 2020 10.1016/j.future.2024.03.051_b20 Wang (10.1016/j.future.2024.03.051_b38) 1993; 27 Kancherla (10.1016/j.future.2024.03.051_b22) 2016; 12 Marzano (10.1016/j.future.2024.03.051_b6) 2018 Kumar (10.1016/j.future.2024.03.051_b19) 2021; 125 10.1016/j.future.2024.03.051_b29 |
References_xml | – start-page: 1 year: 2020 end-page: 7 ident: b26 article-title: Visualization approach for malware classification with ResNeXt publication-title: 2020 IEEE Congress on Evolutionary Computation – reference: L. Nataraj, S. Karthikeyan, G. Jacob, B.S. Manjunath, Malware images: visualization and automatic classification, in: Proceedings of the 8th International Symposium on Visualization for Cyber Security, 2011, pp. 1–7. – volume: 12 start-page: 101 year: 2016 end-page: 111 ident: b22 article-title: Packer identification using Byte plot and Markov plot publication-title: J. Comput. Virol. Hack. Tech. – volume: 48 start-page: 41 year: 2005 end-page: 43 ident: b11 article-title: Why spyware poses multiple threats to security publication-title: Commun. ACM – start-page: 261 year: 2016 end-page: 265 ident: b39 article-title: Performance evaluation of using protocol buffers in the internet of things communication publication-title: 2016 International Conference on Smart Systems and Technologies – volume: 47 start-page: 377 year: 2019 end-page: 389 ident: b18 article-title: A hybrid deep learning image-based analysis for effective malware detection publication-title: J. Inf. Secur. Appl. – reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. – reference: M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, Mobilenetv2: Inverted residuals and linear bottlenecks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520. – volume: 9 start-page: 1 year: 2008 end-page: 4 ident: b33 article-title: Introduction to the modbus protocol publication-title: Extension – volume: 8 start-page: 212220 year: 2020 end-page: 212232 ident: b9 article-title: Systematic literature review on IoT-based botnet attack publication-title: IEEE Access – volume: Vol. 29 start-page: 42 year: 2004 ident: b34 article-title: An overview of TCP/IP protocols and the internet publication-title: InterNIC Document, Dec – volume: 36 start-page: 165 year: 2013 end-page: 177 ident: b35 article-title: Analysis of OPC UA performances publication-title: Comput. Stand. Interfaces – volume: 46 start-page: 804 year: 2015 end-page: 811 ident: b14 article-title: Integrated static and dynamic analysis for malware detection publication-title: Procedia Comput. Sci. – year: 2021 ident: b28 article-title: Mobilevit: light-weight, general-purpose, and mobile-friendly vision transformer – volume: 8 start-page: 1938 year: 2017 end-page: 1940 ident: b10 article-title: A brief study of wannacry threat: Ransomware attack 2017 publication-title: Int. J. Adv. Res. Comput. Sci. – volume: 24 start-page: 278 year: 1998 end-page: 301 ident: b42 article-title: A procedure for analyzing unbalanced datasets publication-title: IEEE Trans. Softw. Eng. – reference: D. Soni, A. Makwana, A survey on mqtt: a protocol of Internet of Things (iot), in: International Conference on Telecommunication, Power Analysis and Computing Techniques, ICTPACT-2017, Vol. 20, 2017, pp. 173–177. – start-page: 1251 year: 2017 end-page: 1258 ident: b41 article-title: Xception: Deep learning with depthwise separable convolutions publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2020 ident: b45 article-title: Metrics for multi-class classification: an overview – start-page: 240 year: 2018 end-page: 244 ident: b23 article-title: A light-weight malware static visual analysis for IoT infrastructure publication-title: 2018 International Conference on Artificial Intelligence and Big Data – year: 1999 ident: b36 article-title: RFC2616: Hypertext transfer protocol–HTTP/1.1 – start-page: 179 year: 2017 end-page: 181 ident: b7 article-title: Identifying vulnerabilities of consumer Internet of Things (IoT) devices: A scalable approach publication-title: 2017 IEEE International Conference on Intelligence and Security Informatics – volume: 102 year: 2021 ident: b25 article-title: Random CapsNet forest model for imbalanced malware type classification task publication-title: Comput. Secur. – year: 2013 ident: b40 article-title: Network in network – start-page: 152 year: 2010 end-page: 159 ident: b43 article-title: Classification of imbalanced data by combining the complementary neural network and SMOTE algorithm publication-title: Neural Information Processing. Models and Applications: 17th International Conference, ICONIP 2010, Sydney, Australia, November 22-25, 2010, Proceedings, Part II 17 – volume: 35 start-page: 41 year: 2018 end-page: 49 ident: b16 article-title: IoT security techniques based on machine learning: How do IoT devices use AI to enhance security? publication-title: IEEE Signal Process. Mag. – volume: 7 start-page: 109 year: 2018 ident: b2 article-title: Impact of quality of service on cloud-based industrial IoT applications with OPC UA publication-title: Electronics – volume: Vol. 2 start-page: 653 year: 2017 end-page: 662 ident: b15 article-title: Static and dynamic analysis of android malware publication-title: International Workshop on FORmal Methods for Security Engineering – volume: 6 start-page: 32 year: 2023 end-page: 46 ident: b13 article-title: Fortifying the IoT landscape: Strategies to counter security risks in connected systems publication-title: Tensorgate J. Sustain. Technol. Infrastruct. Dev. Ctries. – volume: 125 start-page: 334 year: 2021 end-page: 351 ident: b19 article-title: MCFT-CNN: Malware classification with fine-tune convolution neural networks using traditional and transfer learning in Internet of Things publication-title: Future Gener. Comput. Syst. – start-page: 371 year: 2021 end-page: 376 ident: b32 article-title: A survey on malware detection techniques publication-title: 2021 International Conference on Information Technology – volume: 171 year: 2020 ident: b21 article-title: IMCFN: Image-based malware classification using fine-tuned convolutional neural network architecture publication-title: Comput. Netw. – start-page: 00813 year: 2018 end-page: 00818 ident: b6 article-title: The evolution of bashlite and mirai iot botnets publication-title: 2018 IEEE Symposium on Computers and Communications – volume: 9 start-page: 17 year: 2020 end-page: 25 ident: b8 article-title: Consumer IoT: Security vulnerability case studies and solutions publication-title: IEEE Consum. Electron. Mag. – volume: 27 start-page: 75 year: 1993 end-page: 86 ident: b38 article-title: GRPC: A communication cooperation mechanism in distributed systems publication-title: Oper. Syst. Rev. – volume: 4 start-page: 146 year: 2021 end-page: 155 ident: b4 article-title: Miniaturized pervasive sensors for indoor health monitoring in smart cities publication-title: Smart Cities – volume: 26 start-page: S118 year: 2018 end-page: S126 ident: b24 article-title: Deep learning at the shallow end: Malware classification for non-domain experts publication-title: Digit. Invest. – year: 2020 ident: b17 article-title: Machine Learning for Anomaly Detection in Iot Networks: Malware Analysis on the Iot-23 Data Set – volume: 47 year: 2023 ident: b31 article-title: A comprehensive survey on deep learning based malware detection techniques publication-title: Comp. Sci. Rev. – year: 2023 ident: b44 article-title: Jetson Nano Developer Kit – reference: H. Jaidka, N. Sharma, R. Singh, Evolution of iot to iiot: Applications & challenges, in: Proceedings of the International Conference on Innovative Computing & Communications, ICICC, 2020. – volume: 8 start-page: 6249 year: 2020 end-page: 6271 ident: b5 article-title: A comprehensive review on malware detection approaches publication-title: IEEE Access – year: 2016 ident: b27 article-title: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and – year: 2022 ident: b46 article-title: Activation functions in deep learning: A comprehensive survey and benchmark publication-title: Neurocomputing – volume: 8 start-page: 01 year: 2022 end-page: 08 ident: b3 article-title: Review of Internet of Things (IoT) for future generation wireless communications publication-title: Int. J. Modern Trends Sci. Technol. – volume: 2022 year: 2022 ident: b12 article-title: A review of security and privacy concerns in the Internet of Things (IoT) publication-title: J. Sens. – year: 1999 ident: 10.1016/j.future.2024.03.051_b36 – volume: 47 year: 2023 ident: 10.1016/j.future.2024.03.051_b31 article-title: A comprehensive survey on deep learning based malware detection techniques publication-title: Comp. Sci. Rev. – start-page: 1 year: 2020 ident: 10.1016/j.future.2024.03.051_b26 article-title: Visualization approach for malware classification with ResNeXt – start-page: 152 year: 2010 ident: 10.1016/j.future.2024.03.051_b43 article-title: Classification of imbalanced data by combining the complementary neural network and SMOTE algorithm – volume: 8 start-page: 1938 issue: 5 year: 2017 ident: 10.1016/j.future.2024.03.051_b10 article-title: A brief study of wannacry threat: Ransomware attack 2017 publication-title: Int. J. Adv. Res. Comput. Sci. – ident: 10.1016/j.future.2024.03.051_b30 doi: 10.1109/CVPR.2016.90 – start-page: 00813 year: 2018 ident: 10.1016/j.future.2024.03.051_b6 article-title: The evolution of bashlite and mirai iot botnets – year: 2020 ident: 10.1016/j.future.2024.03.051_b17 – ident: 10.1016/j.future.2024.03.051_b37 – volume: 8 start-page: 212220 year: 2020 ident: 10.1016/j.future.2024.03.051_b9 article-title: Systematic literature review on IoT-based botnet attack publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3039985 – year: 2023 ident: 10.1016/j.future.2024.03.051_b44 – volume: 35 start-page: 41 issue: 5 year: 2018 ident: 10.1016/j.future.2024.03.051_b16 article-title: IoT security techniques based on machine learning: How do IoT devices use AI to enhance security? publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2018.2825478 – volume: 8 start-page: 01 issue: 03 year: 2022 ident: 10.1016/j.future.2024.03.051_b3 article-title: Review of Internet of Things (IoT) for future generation wireless communications publication-title: Int. J. Modern Trends Sci. Technol. – year: 2016 ident: 10.1016/j.future.2024.03.051_b27 – start-page: 371 year: 2021 ident: 10.1016/j.future.2024.03.051_b32 article-title: A survey on malware detection techniques – volume: 171 year: 2020 ident: 10.1016/j.future.2024.03.051_b21 article-title: IMCFN: Image-based malware classification using fine-tuned convolutional neural network architecture publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107138 – volume: 12 start-page: 101 year: 2016 ident: 10.1016/j.future.2024.03.051_b22 article-title: Packer identification using Byte plot and Markov plot publication-title: J. Comput. Virol. Hack. Tech. doi: 10.1007/s11416-015-0249-8 – volume: 9 start-page: 17 issue: 2 year: 2020 ident: 10.1016/j.future.2024.03.051_b8 article-title: Consumer IoT: Security vulnerability case studies and solutions publication-title: IEEE Consum. Electron. Mag. doi: 10.1109/MCE.2019.2953740 – volume: 26 start-page: S118 year: 2018 ident: 10.1016/j.future.2024.03.051_b24 article-title: Deep learning at the shallow end: Malware classification for non-domain experts publication-title: Digit. Invest. doi: 10.1016/j.diin.2018.04.024 – volume: 27 start-page: 75 issue: 3 year: 1993 ident: 10.1016/j.future.2024.03.051_b38 article-title: GRPC: A communication cooperation mechanism in distributed systems publication-title: Oper. Syst. Rev. doi: 10.1145/155870.155881 – start-page: 1251 year: 2017 ident: 10.1016/j.future.2024.03.051_b41 article-title: Xception: Deep learning with depthwise separable convolutions – volume: 8 start-page: 6249 year: 2020 ident: 10.1016/j.future.2024.03.051_b5 article-title: A comprehensive review on malware detection approaches publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2963724 – volume: 48 start-page: 41 issue: 8 year: 2005 ident: 10.1016/j.future.2024.03.051_b11 article-title: Why spyware poses multiple threats to security publication-title: Commun. ACM doi: 10.1145/1076211.1076237 – volume: 9 start-page: 1 issue: 4 year: 2008 ident: 10.1016/j.future.2024.03.051_b33 article-title: Introduction to the modbus protocol publication-title: Extension – volume: 36 start-page: 165 issue: 1 year: 2013 ident: 10.1016/j.future.2024.03.051_b35 article-title: Analysis of OPC UA performances publication-title: Comput. Stand. Interfaces doi: 10.1016/j.csi.2013.06.004 – year: 2021 ident: 10.1016/j.future.2024.03.051_b28 – year: 2022 ident: 10.1016/j.future.2024.03.051_b46 article-title: Activation functions in deep learning: A comprehensive survey and benchmark publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.06.111 – start-page: 179 year: 2017 ident: 10.1016/j.future.2024.03.051_b7 article-title: Identifying vulnerabilities of consumer Internet of Things (IoT) devices: A scalable approach – volume: 47 start-page: 377 year: 2019 ident: 10.1016/j.future.2024.03.051_b18 article-title: A hybrid deep learning image-based analysis for effective malware detection publication-title: J. Inf. Secur. Appl. – ident: 10.1016/j.future.2024.03.051_b20 doi: 10.1145/2016904.2016908 – start-page: 240 year: 2018 ident: 10.1016/j.future.2024.03.051_b23 article-title: A light-weight malware static visual analysis for IoT infrastructure – volume: 102 year: 2021 ident: 10.1016/j.future.2024.03.051_b25 article-title: Random CapsNet forest model for imbalanced malware type classification task publication-title: Comput. Secur. doi: 10.1016/j.cose.2020.102133 – volume: Vol. 29 start-page: 42 year: 2004 ident: 10.1016/j.future.2024.03.051_b34 article-title: An overview of TCP/IP protocols and the internet – start-page: 261 year: 2016 ident: 10.1016/j.future.2024.03.051_b39 article-title: Performance evaluation of using protocol buffers in the internet of things communication – volume: 2022 year: 2022 ident: 10.1016/j.future.2024.03.051_b12 article-title: A review of security and privacy concerns in the Internet of Things (IoT) publication-title: J. Sens. doi: 10.1155/2022/5724168 – ident: 10.1016/j.future.2024.03.051_b29 doi: 10.1109/CVPR.2018.00474 – year: 2013 ident: 10.1016/j.future.2024.03.051_b40 – volume: 46 start-page: 804 year: 2015 ident: 10.1016/j.future.2024.03.051_b14 article-title: Integrated static and dynamic analysis for malware detection publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.02.149 – volume: 4 start-page: 146 issue: 1 year: 2021 ident: 10.1016/j.future.2024.03.051_b4 article-title: Miniaturized pervasive sensors for indoor health monitoring in smart cities publication-title: Smart Cities doi: 10.3390/smartcities4010008 – volume: Vol. 2 start-page: 653 year: 2017 ident: 10.1016/j.future.2024.03.051_b15 article-title: Static and dynamic analysis of android malware – year: 2020 ident: 10.1016/j.future.2024.03.051_b45 – volume: 7 start-page: 109 issue: 7 year: 2018 ident: 10.1016/j.future.2024.03.051_b2 article-title: Impact of quality of service on cloud-based industrial IoT applications with OPC UA publication-title: Electronics doi: 10.3390/electronics7070109 – volume: 125 start-page: 334 year: 2021 ident: 10.1016/j.future.2024.03.051_b19 article-title: MCFT-CNN: Malware classification with fine-tune convolution neural networks using traditional and transfer learning in Internet of Things publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2021.06.029 – volume: 6 start-page: 32 issue: 1 year: 2023 ident: 10.1016/j.future.2024.03.051_b13 article-title: Fortifying the IoT landscape: Strategies to counter security risks in connected systems publication-title: Tensorgate J. Sustain. Technol. Infrastruct. Dev. Ctries. – ident: 10.1016/j.future.2024.03.051_b1 doi: 10.2139/ssrn.3603739 – volume: 24 start-page: 278 issue: 4 year: 1998 ident: 10.1016/j.future.2024.03.051_b42 article-title: A procedure for analyzing unbalanced datasets publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/32.677185 |
SSID | ssj0001731 |
Score | 2.4107826 |
Snippet | The proliferation of interconnected devices in the Internet of Things (IoT) landscape has introduced significant security concerns. With the integration of... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 603 |
SubjectTerms | Cloud computing CNN Cyber security Edge computing IoT Malware classification |
Title | An efficient cloud-integrated distributed deep neural network framework for IoT malware classification |
URI | https://dx.doi.org/10.1016/j.future.2024.03.051 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27asMwFBUhXbr0XZo-goauamRblq0xhIakpVmaQDZhS1eQkjohJHTrt_fKjz6gdOhmC0mYK_noCM49l5BbI7nLU8WZym3IhOWO5dIAgiFkwsRJJgOfO_w0kaOZeJjH8xYZNLkwXlZZY3-F6SVa1y29Opq99WLRe_YC-iRSc6-CRPz1GeVCJH6X371_yTyCpK5JiIDgezfpc6XGq_LtwFtiKEqr0zj4_Xj6duQMj8hBzRVpv_qcY9KC4oQcNnUYaP1bnhLXLyiUVhB4glCzXO0s-7SBsNR6b1xf1so_A6yp97DEeYtKAU5do8-iSGDpeDWlr9nyLdsAToXU2muJyuU7I7Ph_XQwYnX9BGbworBlSA7i0CgZOBFgi0nzXEYmtBnSEqQRGXBuXSxTCTJ1MYDBy5NVUSRt4AyXKjon7WJVwAWhSe79jGXEnUqFSqWKcZpMAnAwMnK2Q1gTNr2ubDJ0ox970VWYtQ-z5pHGMHdI0sRW_1hujUj-58jLf4-8Ivv-rVLvXZP2drODG2QU27xbbpku2euPH0eTD05Zze8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEB3S5NBeupemqw69msiRLVvHEBqcZrk0gdyErQVSWieEhP5-R15CC6WH3oyMBjOS3zzB0xuAJ8WpzWJBPZHprhdoar2MK4NgaNJAhVHKfXd3eDLlyTx4WYSLBvTruzBOVllhf4npBVpXI50qm531ctl5dQL6iImFU0Ei_kYH0HLuVGETWr3hKJnuAdmPqraEiAluQn2DrpB5ldYdeFDsBoXbaej_XqG-VZ3BKRxXdJH0yi86g4bJz-GkbsVAqj_zAmwvJ6Zwg8AiQtT7aqe9vROEJtrZ47rOVu7ZmDVxNpYYNy9F4MTWEi2CHJYMVzPykb5_phuDoZBdOzlRsYKXMB88z_qJV7VQ8BSeFbYe8oOwqwT3beDjiIqzjDPV1SkyE2QSqaFU25DH3PDYhsYoPD9pwRjXvlWUC3YFzXyVm2sgUeYsjTmjVsSBiLkIMUzKjaFGcWZ1G7w6bXJdOmXIWkL2Jss0S5dmSZnENLchqnMrf6y4RDD_c-bNv2c-wmEym4zleDgd3cKRe1OK-e6gud3szD0SjG32UG2gL2mX0KA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+cloud-integrated+distributed+deep+neural+network+framework+for+IoT+malware+classification&rft.jtitle=Future+generation+computer+systems&rft.au=Babaei+Mosleh%2C+Mohammad+Reza&rft.au=Sharifian%2C+Saeed&rft.date=2024-08-01&rft.issn=0167-739X&rft.volume=157&rft.spage=603&rft.epage=617&rft_id=info:doi/10.1016%2Fj.future.2024.03.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2024_03_051 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |