An efficient cloud-integrated distributed deep neural network framework for IoT malware classification

The proliferation of interconnected devices in the Internet of Things (IoT) landscape has introduced significant security concerns. With the integration of android devices, the potential for attackers to exploit vulnerabilities becomes a crucial issue. Timely detection of malware attacks has emerged...

Full description

Saved in:
Bibliographic Details
Published inFuture generation computer systems Vol. 157; pp. 603 - 617
Main Authors Babaei Mosleh, Mohammad Reza, Sharifian, Saeed
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The proliferation of interconnected devices in the Internet of Things (IoT) landscape has introduced significant security concerns. With the integration of android devices, the potential for attackers to exploit vulnerabilities becomes a crucial issue. Timely detection of malware attacks has emerged as a critical challenge, especially in industrial IoT (IIoT), to prevent permanent damage. The slow inference speed of the current algorithms causes limited performance and a significant delay in the detection and mitigation of malware, especially in large-scale environments such as IIoT. High resource utilization can limit the size of the model (number of parameters), which could be implemented in embedded devices, which causes lower accuracy of the model. Hence, we proposed a HierarchicalCloudDNN, a distributed malware detection framework that used modified state-of-the-art deep learning algorithms in a boosting ensemble architecture. The proposed method could scale efficiently from IIoT devices up to the edge and cloud to speed up malware detection, simultaneously reduce resource utilization, and maintain a controllable level of accuracy compared to rival methods in malware detection. The objective is to minimize both run-time and resource consumption while maintaining performance characteristics. The performance analysis of the HierarchicalCloudDNN method was evaluated using standard performance measures on the frequently used BIG 2015 dataset. Based on evaluations, the proposed approach has demonstrated an impressive accuracy rate of 98.90%, outperforming many state-of-the-art models in performance, response time, and resource utilization. These findings suggest a notable decrease in both false positives and false negatives while maintaining accuracy. The proposed distributed malware analysis framework is scalable, robust, and helpful for the timely detection of malicious activity, especially in geographically distributed environments such as the IIoT. •We proposed a distributed malware detection framework especially in geographically distributed environments such as the IIoT that used modified state-of-the-art deep learning algorithms in a boosting ensemble architecture.•The method could scale efficiently from IIoT devices up to the edge and cloud to speed up malware detection, and simultaneously reduce resource utilization and maintain a controllable level of accuracy for malware detection.•Based on evaluations and implementation of our framework on an embedded device (Nvidia Jetson Nano) the proposed approach has demonstrated an impressive accuracy rate of 98.90%, outperforming many state-of-the-art models in performance, response time, and resource utilization.
AbstractList The proliferation of interconnected devices in the Internet of Things (IoT) landscape has introduced significant security concerns. With the integration of android devices, the potential for attackers to exploit vulnerabilities becomes a crucial issue. Timely detection of malware attacks has emerged as a critical challenge, especially in industrial IoT (IIoT), to prevent permanent damage. The slow inference speed of the current algorithms causes limited performance and a significant delay in the detection and mitigation of malware, especially in large-scale environments such as IIoT. High resource utilization can limit the size of the model (number of parameters), which could be implemented in embedded devices, which causes lower accuracy of the model. Hence, we proposed a HierarchicalCloudDNN, a distributed malware detection framework that used modified state-of-the-art deep learning algorithms in a boosting ensemble architecture. The proposed method could scale efficiently from IIoT devices up to the edge and cloud to speed up malware detection, simultaneously reduce resource utilization, and maintain a controllable level of accuracy compared to rival methods in malware detection. The objective is to minimize both run-time and resource consumption while maintaining performance characteristics. The performance analysis of the HierarchicalCloudDNN method was evaluated using standard performance measures on the frequently used BIG 2015 dataset. Based on evaluations, the proposed approach has demonstrated an impressive accuracy rate of 98.90%, outperforming many state-of-the-art models in performance, response time, and resource utilization. These findings suggest a notable decrease in both false positives and false negatives while maintaining accuracy. The proposed distributed malware analysis framework is scalable, robust, and helpful for the timely detection of malicious activity, especially in geographically distributed environments such as the IIoT. •We proposed a distributed malware detection framework especially in geographically distributed environments such as the IIoT that used modified state-of-the-art deep learning algorithms in a boosting ensemble architecture.•The method could scale efficiently from IIoT devices up to the edge and cloud to speed up malware detection, and simultaneously reduce resource utilization and maintain a controllable level of accuracy for malware detection.•Based on evaluations and implementation of our framework on an embedded device (Nvidia Jetson Nano) the proposed approach has demonstrated an impressive accuracy rate of 98.90%, outperforming many state-of-the-art models in performance, response time, and resource utilization.
Author Sharifian, Saeed
Babaei Mosleh, Mohammad Reza
Author_xml – sequence: 1
  givenname: Mohammad Reza
  surname: Babaei Mosleh
  fullname: Babaei Mosleh, Mohammad Reza
  email: R.Babaeimosleh@gmail.com
– sequence: 2
  givenname: Saeed
  orcidid: 0000-0001-7392-7892
  surname: Sharifian
  fullname: Sharifian, Saeed
  email: Sharifian_s@aut.ac.ir
BookMark eNp9kM1KAzEURoMo2FbfwEVeYMZkMsnMbIRS_CkU3FRwF9LkRlKnk5JkLL69qePa1f243O9wOXN0OfgBELqjpKSEivt9acc0BigrUtUlYSXh9ALNaNtURUMpv0SzfNYUDever9E8xj0hhDaMzpBdDhisddrBkLDu_WgKNyT4CCqBwcbFFNxu_M0ARzzAGFSfRzr58IltUAeYkg947bf4oPqTCpBRKkaXwSo5P9ygK6v6CLd_c4Henh63q5di8_q8Xi03ha44T0VTM17pTlBb07zR7W4nmK6MIoJRzhUQYiwXrQDRWg6g24aajjFhqNVEdGyB6omrg48xgJXH4A4qfEtK5NmV3MvJlTy7koTJ7CrXHqYa5N--HAQZz0I0GBdAJ2m8-x_wA_sSeLI
Cites_doi 10.1109/CVPR.2016.90
10.1109/ACCESS.2020.3039985
10.1109/MSP.2018.2825478
10.1016/j.comnet.2020.107138
10.1007/s11416-015-0249-8
10.1109/MCE.2019.2953740
10.1016/j.diin.2018.04.024
10.1145/155870.155881
10.1109/ACCESS.2019.2963724
10.1145/1076211.1076237
10.1016/j.csi.2013.06.004
10.1016/j.neucom.2022.06.111
10.1145/2016904.2016908
10.1016/j.cose.2020.102133
10.1155/2022/5724168
10.1109/CVPR.2018.00474
10.1016/j.procs.2015.02.149
10.3390/smartcities4010008
10.3390/electronics7070109
10.1016/j.future.2021.06.029
10.2139/ssrn.3603739
10.1109/32.677185
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2024.03.051
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 617
ExternalDocumentID 10_1016_j_future_2024_03_051
S0167739X24001237
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c255t-74352c961f41c25c8bb63c2da063155ae00df5686e68f5eec871d9336d1fc0693
IEDL.DBID .~1
ISSN 0167-739X
IngestDate Tue Jul 01 02:30:15 EDT 2025
Sat May 25 15:40:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Cloud computing
CNN
Cyber security
Malware classification
Edge computing
IoT
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-74352c961f41c25c8bb63c2da063155ae00df5686e68f5eec871d9336d1fc0693
ORCID 0000-0001-7392-7892
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_future_2024_03_051
elsevier_sciencedirect_doi_10_1016_j_future_2024_03_051
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mehta, Rastegari (b28) 2021
D. Soni, A. Makwana, A survey on mqtt: a protocol of Internet of Things (iot), in: International Conference on Telecommunication, Power Analysis and Computing Techniques, ICTPACT-2017, Vol. 20, 2017, pp. 173–177.
Aslan, Samet (b5) 2020; 8
Fielding, Gettys, Mogul, Frystyk, Masinter, Leach, Berners-Lee (b36) 1999
Naeem, Guo, Naeem (b23) 2018
Gopinath, Sethuraman (b31) 2023; 47
Ali, Ahmed, Almogren, Raza, Shah, Khan, Gani (b9) 2020; 8
Aqeel, Ali, Iqbal, Rana, Arif, Auwul (b12) 2022; 2022
Kapratwar, Di Troia, Stamp (b15) 2017; Vol. 2
Kancherla, Donahue, Mukkamala (b22) 2016; 12
Venkatraman, Alazab, Vinayakumar (b18) 2019; 47
H. Jaidka, N. Sharma, R. Singh, Evolution of iot to iiot: Applications & challenges, in: Proceedings of the International Conference on Innovative Computing & Communications, ICICC, 2020.
Kumar (b19) 2021; 125
Çayır, Ünal, Dağ (b25) 2021; 102
Thomas (b33) 2008; 9
Lin, Chen, Yan (b40) 2013
Dubey, Singh, Chaudhuri (b46) 2022
NVIDIA (b44) 2023
Marzano, Alexander, Fonseca, Fazzion, Hoepers, Steding-Jessen, Chaves, Cunha, Guedes, Meira (b6) 2018
Alsmadi, Alqudah (b32) 2021
Chollet (b41) 2017
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
Ferrari, Flammini, Rinaldi, Sisinni, Maffei, Malara (b2) 2018; 7
Shijo, Salim (b14) 2015; 46
Mohurle, Patil (b10) 2017; 8
Venu, Arun Kumar, Vaigandla (b3) 2022; 8
Carminati, Sinha, Mohdiwale, Ullo (b4) 2021; 4
Go, Jan, Mohanty, Patel, Puthal, Prasad (b26) 2020
Iandola, Han, Moskewicz, Ashraf, Dally, Keutzer (b27) 2016
Kitchenham (b42) 1998; 24
L. Nataraj, S. Karthikeyan, G. Jacob, B.S. Manjunath, Malware images: visualization and automatic classification, in: Proceedings of the 8th International Symposium on Visualization for Cyber Security, 2011, pp. 1–7.
Grandini, Bagli, Visani (b45) 2020
Alladi, Chamola, Sikdar, Choo (b8) 2020; 9
Popić, Pezer, Mrazovac, Teslić (b39) 2016
Wang, Zhao, Zhu (b38) 1993; 27
Kessler (b34) 2004; Vol. 29
Thompson (b11) 2005; 48
Stoian (b17) 2020
Williams, McMahon, Samtani, Patton, Chen (b7) 2017
Vasan, Alazab, Wassan, Naeem, Safaei, Zheng (b21) 2020; 171
Cavalieri, Chiacchio (b35) 2013; 36
Jeatrakul, Wong, Fung (b43) 2010
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, Mobilenetv2: Inverted residuals and linear bottlenecks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520.
Le, Boydell, Mac Namee, Scanlon (b24) 2018; 26
James, Rabbi (b13) 2023; 6
Xiao, Wan, Lu, Zhang, Wu (b16) 2018; 35
Carminati (10.1016/j.future.2024.03.051_b4) 2021; 4
Venkatraman (10.1016/j.future.2024.03.051_b18) 2019; 47
Le (10.1016/j.future.2024.03.051_b24) 2018; 26
Naeem (10.1016/j.future.2024.03.051_b23) 2018
Vasan (10.1016/j.future.2024.03.051_b21) 2020; 171
Lin (10.1016/j.future.2024.03.051_b40) 2013
Thompson (10.1016/j.future.2024.03.051_b11) 2005; 48
Iandola (10.1016/j.future.2024.03.051_b27) 2016
Aqeel (10.1016/j.future.2024.03.051_b12) 2022; 2022
Popić (10.1016/j.future.2024.03.051_b39) 2016
Fielding (10.1016/j.future.2024.03.051_b36) 1999
James (10.1016/j.future.2024.03.051_b13) 2023; 6
Xiao (10.1016/j.future.2024.03.051_b16) 2018; 35
Jeatrakul (10.1016/j.future.2024.03.051_b43) 2010
Venu (10.1016/j.future.2024.03.051_b3) 2022; 8
Grandini (10.1016/j.future.2024.03.051_b45) 2020
10.1016/j.future.2024.03.051_b30
Alsmadi (10.1016/j.future.2024.03.051_b32) 2021
Çayır (10.1016/j.future.2024.03.051_b25) 2021; 102
Aslan (10.1016/j.future.2024.03.051_b5) 2020; 8
10.1016/j.future.2024.03.051_b37
Ali (10.1016/j.future.2024.03.051_b9) 2020; 8
Ferrari (10.1016/j.future.2024.03.051_b2) 2018; 7
Alladi (10.1016/j.future.2024.03.051_b8) 2020; 9
Mohurle (10.1016/j.future.2024.03.051_b10) 2017; 8
Mehta (10.1016/j.future.2024.03.051_b28) 2021
Gopinath (10.1016/j.future.2024.03.051_b31) 2023; 47
Cavalieri (10.1016/j.future.2024.03.051_b35) 2013; 36
Shijo (10.1016/j.future.2024.03.051_b14) 2015; 46
Stoian (10.1016/j.future.2024.03.051_b17) 2020
Kessler (10.1016/j.future.2024.03.051_b34) 2004; Vol. 29
10.1016/j.future.2024.03.051_b1
Williams (10.1016/j.future.2024.03.051_b7) 2017
NVIDIA (10.1016/j.future.2024.03.051_b44) 2023
Dubey (10.1016/j.future.2024.03.051_b46) 2022
Thomas (10.1016/j.future.2024.03.051_b33) 2008; 9
Chollet (10.1016/j.future.2024.03.051_b41) 2017
Kitchenham (10.1016/j.future.2024.03.051_b42) 1998; 24
Kapratwar (10.1016/j.future.2024.03.051_b15) 2017; Vol. 2
Go (10.1016/j.future.2024.03.051_b26) 2020
10.1016/j.future.2024.03.051_b20
Wang (10.1016/j.future.2024.03.051_b38) 1993; 27
Kancherla (10.1016/j.future.2024.03.051_b22) 2016; 12
Marzano (10.1016/j.future.2024.03.051_b6) 2018
Kumar (10.1016/j.future.2024.03.051_b19) 2021; 125
10.1016/j.future.2024.03.051_b29
References_xml – start-page: 1
  year: 2020
  end-page: 7
  ident: b26
  article-title: Visualization approach for malware classification with ResNeXt
  publication-title: 2020 IEEE Congress on Evolutionary Computation
– reference: L. Nataraj, S. Karthikeyan, G. Jacob, B.S. Manjunath, Malware images: visualization and automatic classification, in: Proceedings of the 8th International Symposium on Visualization for Cyber Security, 2011, pp. 1–7.
– volume: 12
  start-page: 101
  year: 2016
  end-page: 111
  ident: b22
  article-title: Packer identification using Byte plot and Markov plot
  publication-title: J. Comput. Virol. Hack. Tech.
– volume: 48
  start-page: 41
  year: 2005
  end-page: 43
  ident: b11
  article-title: Why spyware poses multiple threats to security
  publication-title: Commun. ACM
– start-page: 261
  year: 2016
  end-page: 265
  ident: b39
  article-title: Performance evaluation of using protocol buffers in the internet of things communication
  publication-title: 2016 International Conference on Smart Systems and Technologies
– volume: 47
  start-page: 377
  year: 2019
  end-page: 389
  ident: b18
  article-title: A hybrid deep learning image-based analysis for effective malware detection
  publication-title: J. Inf. Secur. Appl.
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– reference: M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, Mobilenetv2: Inverted residuals and linear bottlenecks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520.
– volume: 9
  start-page: 1
  year: 2008
  end-page: 4
  ident: b33
  article-title: Introduction to the modbus protocol
  publication-title: Extension
– volume: 8
  start-page: 212220
  year: 2020
  end-page: 212232
  ident: b9
  article-title: Systematic literature review on IoT-based botnet attack
  publication-title: IEEE Access
– volume: Vol. 29
  start-page: 42
  year: 2004
  ident: b34
  article-title: An overview of TCP/IP protocols and the internet
  publication-title: InterNIC Document, Dec
– volume: 36
  start-page: 165
  year: 2013
  end-page: 177
  ident: b35
  article-title: Analysis of OPC UA performances
  publication-title: Comput. Stand. Interfaces
– volume: 46
  start-page: 804
  year: 2015
  end-page: 811
  ident: b14
  article-title: Integrated static and dynamic analysis for malware detection
  publication-title: Procedia Comput. Sci.
– year: 2021
  ident: b28
  article-title: Mobilevit: light-weight, general-purpose, and mobile-friendly vision transformer
– volume: 8
  start-page: 1938
  year: 2017
  end-page: 1940
  ident: b10
  article-title: A brief study of wannacry threat: Ransomware attack 2017
  publication-title: Int. J. Adv. Res. Comput. Sci.
– volume: 24
  start-page: 278
  year: 1998
  end-page: 301
  ident: b42
  article-title: A procedure for analyzing unbalanced datasets
  publication-title: IEEE Trans. Softw. Eng.
– reference: D. Soni, A. Makwana, A survey on mqtt: a protocol of Internet of Things (iot), in: International Conference on Telecommunication, Power Analysis and Computing Techniques, ICTPACT-2017, Vol. 20, 2017, pp. 173–177.
– start-page: 1251
  year: 2017
  end-page: 1258
  ident: b41
  article-title: Xception: Deep learning with depthwise separable convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: b45
  article-title: Metrics for multi-class classification: an overview
– start-page: 240
  year: 2018
  end-page: 244
  ident: b23
  article-title: A light-weight malware static visual analysis for IoT infrastructure
  publication-title: 2018 International Conference on Artificial Intelligence and Big Data
– year: 1999
  ident: b36
  article-title: RFC2616: Hypertext transfer protocol–HTTP/1.1
– start-page: 179
  year: 2017
  end-page: 181
  ident: b7
  article-title: Identifying vulnerabilities of consumer Internet of Things (IoT) devices: A scalable approach
  publication-title: 2017 IEEE International Conference on Intelligence and Security Informatics
– volume: 102
  year: 2021
  ident: b25
  article-title: Random CapsNet forest model for imbalanced malware type classification task
  publication-title: Comput. Secur.
– year: 2013
  ident: b40
  article-title: Network in network
– start-page: 152
  year: 2010
  end-page: 159
  ident: b43
  article-title: Classification of imbalanced data by combining the complementary neural network and SMOTE algorithm
  publication-title: Neural Information Processing. Models and Applications: 17th International Conference, ICONIP 2010, Sydney, Australia, November 22-25, 2010, Proceedings, Part II 17
– volume: 35
  start-page: 41
  year: 2018
  end-page: 49
  ident: b16
  article-title: IoT security techniques based on machine learning: How do IoT devices use AI to enhance security?
  publication-title: IEEE Signal Process. Mag.
– volume: 7
  start-page: 109
  year: 2018
  ident: b2
  article-title: Impact of quality of service on cloud-based industrial IoT applications with OPC UA
  publication-title: Electronics
– volume: Vol. 2
  start-page: 653
  year: 2017
  end-page: 662
  ident: b15
  article-title: Static and dynamic analysis of android malware
  publication-title: International Workshop on FORmal Methods for Security Engineering
– volume: 6
  start-page: 32
  year: 2023
  end-page: 46
  ident: b13
  article-title: Fortifying the IoT landscape: Strategies to counter security risks in connected systems
  publication-title: Tensorgate J. Sustain. Technol. Infrastruct. Dev. Ctries.
– volume: 125
  start-page: 334
  year: 2021
  end-page: 351
  ident: b19
  article-title: MCFT-CNN: Malware classification with fine-tune convolution neural networks using traditional and transfer learning in Internet of Things
  publication-title: Future Gener. Comput. Syst.
– start-page: 371
  year: 2021
  end-page: 376
  ident: b32
  article-title: A survey on malware detection techniques
  publication-title: 2021 International Conference on Information Technology
– volume: 171
  year: 2020
  ident: b21
  article-title: IMCFN: Image-based malware classification using fine-tuned convolutional neural network architecture
  publication-title: Comput. Netw.
– start-page: 00813
  year: 2018
  end-page: 00818
  ident: b6
  article-title: The evolution of bashlite and mirai iot botnets
  publication-title: 2018 IEEE Symposium on Computers and Communications
– volume: 9
  start-page: 17
  year: 2020
  end-page: 25
  ident: b8
  article-title: Consumer IoT: Security vulnerability case studies and solutions
  publication-title: IEEE Consum. Electron. Mag.
– volume: 27
  start-page: 75
  year: 1993
  end-page: 86
  ident: b38
  article-title: GRPC: A communication cooperation mechanism in distributed systems
  publication-title: Oper. Syst. Rev.
– volume: 4
  start-page: 146
  year: 2021
  end-page: 155
  ident: b4
  article-title: Miniaturized pervasive sensors for indoor health monitoring in smart cities
  publication-title: Smart Cities
– volume: 26
  start-page: S118
  year: 2018
  end-page: S126
  ident: b24
  article-title: Deep learning at the shallow end: Malware classification for non-domain experts
  publication-title: Digit. Invest.
– year: 2020
  ident: b17
  article-title: Machine Learning for Anomaly Detection in Iot Networks: Malware Analysis on the Iot-23 Data Set
– volume: 47
  year: 2023
  ident: b31
  article-title: A comprehensive survey on deep learning based malware detection techniques
  publication-title: Comp. Sci. Rev.
– year: 2023
  ident: b44
  article-title: Jetson Nano Developer Kit
– reference: H. Jaidka, N. Sharma, R. Singh, Evolution of iot to iiot: Applications & challenges, in: Proceedings of the International Conference on Innovative Computing & Communications, ICICC, 2020.
– volume: 8
  start-page: 6249
  year: 2020
  end-page: 6271
  ident: b5
  article-title: A comprehensive review on malware detection approaches
  publication-title: IEEE Access
– year: 2016
  ident: b27
  article-title: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and
– year: 2022
  ident: b46
  article-title: Activation functions in deep learning: A comprehensive survey and benchmark
  publication-title: Neurocomputing
– volume: 8
  start-page: 01
  year: 2022
  end-page: 08
  ident: b3
  article-title: Review of Internet of Things (IoT) for future generation wireless communications
  publication-title: Int. J. Modern Trends Sci. Technol.
– volume: 2022
  year: 2022
  ident: b12
  article-title: A review of security and privacy concerns in the Internet of Things (IoT)
  publication-title: J. Sens.
– year: 1999
  ident: 10.1016/j.future.2024.03.051_b36
– volume: 47
  year: 2023
  ident: 10.1016/j.future.2024.03.051_b31
  article-title: A comprehensive survey on deep learning based malware detection techniques
  publication-title: Comp. Sci. Rev.
– start-page: 1
  year: 2020
  ident: 10.1016/j.future.2024.03.051_b26
  article-title: Visualization approach for malware classification with ResNeXt
– start-page: 152
  year: 2010
  ident: 10.1016/j.future.2024.03.051_b43
  article-title: Classification of imbalanced data by combining the complementary neural network and SMOTE algorithm
– volume: 8
  start-page: 1938
  issue: 5
  year: 2017
  ident: 10.1016/j.future.2024.03.051_b10
  article-title: A brief study of wannacry threat: Ransomware attack 2017
  publication-title: Int. J. Adv. Res. Comput. Sci.
– ident: 10.1016/j.future.2024.03.051_b30
  doi: 10.1109/CVPR.2016.90
– start-page: 00813
  year: 2018
  ident: 10.1016/j.future.2024.03.051_b6
  article-title: The evolution of bashlite and mirai iot botnets
– year: 2020
  ident: 10.1016/j.future.2024.03.051_b17
– ident: 10.1016/j.future.2024.03.051_b37
– volume: 8
  start-page: 212220
  year: 2020
  ident: 10.1016/j.future.2024.03.051_b9
  article-title: Systematic literature review on IoT-based botnet attack
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3039985
– year: 2023
  ident: 10.1016/j.future.2024.03.051_b44
– volume: 35
  start-page: 41
  issue: 5
  year: 2018
  ident: 10.1016/j.future.2024.03.051_b16
  article-title: IoT security techniques based on machine learning: How do IoT devices use AI to enhance security?
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2018.2825478
– volume: 8
  start-page: 01
  issue: 03
  year: 2022
  ident: 10.1016/j.future.2024.03.051_b3
  article-title: Review of Internet of Things (IoT) for future generation wireless communications
  publication-title: Int. J. Modern Trends Sci. Technol.
– year: 2016
  ident: 10.1016/j.future.2024.03.051_b27
– start-page: 371
  year: 2021
  ident: 10.1016/j.future.2024.03.051_b32
  article-title: A survey on malware detection techniques
– volume: 171
  year: 2020
  ident: 10.1016/j.future.2024.03.051_b21
  article-title: IMCFN: Image-based malware classification using fine-tuned convolutional neural network architecture
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107138
– volume: 12
  start-page: 101
  year: 2016
  ident: 10.1016/j.future.2024.03.051_b22
  article-title: Packer identification using Byte plot and Markov plot
  publication-title: J. Comput. Virol. Hack. Tech.
  doi: 10.1007/s11416-015-0249-8
– volume: 9
  start-page: 17
  issue: 2
  year: 2020
  ident: 10.1016/j.future.2024.03.051_b8
  article-title: Consumer IoT: Security vulnerability case studies and solutions
  publication-title: IEEE Consum. Electron. Mag.
  doi: 10.1109/MCE.2019.2953740
– volume: 26
  start-page: S118
  year: 2018
  ident: 10.1016/j.future.2024.03.051_b24
  article-title: Deep learning at the shallow end: Malware classification for non-domain experts
  publication-title: Digit. Invest.
  doi: 10.1016/j.diin.2018.04.024
– volume: 27
  start-page: 75
  issue: 3
  year: 1993
  ident: 10.1016/j.future.2024.03.051_b38
  article-title: GRPC: A communication cooperation mechanism in distributed systems
  publication-title: Oper. Syst. Rev.
  doi: 10.1145/155870.155881
– start-page: 1251
  year: 2017
  ident: 10.1016/j.future.2024.03.051_b41
  article-title: Xception: Deep learning with depthwise separable convolutions
– volume: 8
  start-page: 6249
  year: 2020
  ident: 10.1016/j.future.2024.03.051_b5
  article-title: A comprehensive review on malware detection approaches
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2963724
– volume: 48
  start-page: 41
  issue: 8
  year: 2005
  ident: 10.1016/j.future.2024.03.051_b11
  article-title: Why spyware poses multiple threats to security
  publication-title: Commun. ACM
  doi: 10.1145/1076211.1076237
– volume: 9
  start-page: 1
  issue: 4
  year: 2008
  ident: 10.1016/j.future.2024.03.051_b33
  article-title: Introduction to the modbus protocol
  publication-title: Extension
– volume: 36
  start-page: 165
  issue: 1
  year: 2013
  ident: 10.1016/j.future.2024.03.051_b35
  article-title: Analysis of OPC UA performances
  publication-title: Comput. Stand. Interfaces
  doi: 10.1016/j.csi.2013.06.004
– year: 2021
  ident: 10.1016/j.future.2024.03.051_b28
– year: 2022
  ident: 10.1016/j.future.2024.03.051_b46
  article-title: Activation functions in deep learning: A comprehensive survey and benchmark
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.06.111
– start-page: 179
  year: 2017
  ident: 10.1016/j.future.2024.03.051_b7
  article-title: Identifying vulnerabilities of consumer Internet of Things (IoT) devices: A scalable approach
– volume: 47
  start-page: 377
  year: 2019
  ident: 10.1016/j.future.2024.03.051_b18
  article-title: A hybrid deep learning image-based analysis for effective malware detection
  publication-title: J. Inf. Secur. Appl.
– ident: 10.1016/j.future.2024.03.051_b20
  doi: 10.1145/2016904.2016908
– start-page: 240
  year: 2018
  ident: 10.1016/j.future.2024.03.051_b23
  article-title: A light-weight malware static visual analysis for IoT infrastructure
– volume: 102
  year: 2021
  ident: 10.1016/j.future.2024.03.051_b25
  article-title: Random CapsNet forest model for imbalanced malware type classification task
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2020.102133
– volume: Vol. 29
  start-page: 42
  year: 2004
  ident: 10.1016/j.future.2024.03.051_b34
  article-title: An overview of TCP/IP protocols and the internet
– start-page: 261
  year: 2016
  ident: 10.1016/j.future.2024.03.051_b39
  article-title: Performance evaluation of using protocol buffers in the internet of things communication
– volume: 2022
  year: 2022
  ident: 10.1016/j.future.2024.03.051_b12
  article-title: A review of security and privacy concerns in the Internet of Things (IoT)
  publication-title: J. Sens.
  doi: 10.1155/2022/5724168
– ident: 10.1016/j.future.2024.03.051_b29
  doi: 10.1109/CVPR.2018.00474
– year: 2013
  ident: 10.1016/j.future.2024.03.051_b40
– volume: 46
  start-page: 804
  year: 2015
  ident: 10.1016/j.future.2024.03.051_b14
  article-title: Integrated static and dynamic analysis for malware detection
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.02.149
– volume: 4
  start-page: 146
  issue: 1
  year: 2021
  ident: 10.1016/j.future.2024.03.051_b4
  article-title: Miniaturized pervasive sensors for indoor health monitoring in smart cities
  publication-title: Smart Cities
  doi: 10.3390/smartcities4010008
– volume: Vol. 2
  start-page: 653
  year: 2017
  ident: 10.1016/j.future.2024.03.051_b15
  article-title: Static and dynamic analysis of android malware
– year: 2020
  ident: 10.1016/j.future.2024.03.051_b45
– volume: 7
  start-page: 109
  issue: 7
  year: 2018
  ident: 10.1016/j.future.2024.03.051_b2
  article-title: Impact of quality of service on cloud-based industrial IoT applications with OPC UA
  publication-title: Electronics
  doi: 10.3390/electronics7070109
– volume: 125
  start-page: 334
  year: 2021
  ident: 10.1016/j.future.2024.03.051_b19
  article-title: MCFT-CNN: Malware classification with fine-tune convolution neural networks using traditional and transfer learning in Internet of Things
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2021.06.029
– volume: 6
  start-page: 32
  issue: 1
  year: 2023
  ident: 10.1016/j.future.2024.03.051_b13
  article-title: Fortifying the IoT landscape: Strategies to counter security risks in connected systems
  publication-title: Tensorgate J. Sustain. Technol. Infrastruct. Dev. Ctries.
– ident: 10.1016/j.future.2024.03.051_b1
  doi: 10.2139/ssrn.3603739
– volume: 24
  start-page: 278
  issue: 4
  year: 1998
  ident: 10.1016/j.future.2024.03.051_b42
  article-title: A procedure for analyzing unbalanced datasets
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/32.677185
SSID ssj0001731
Score 2.4107826
Snippet The proliferation of interconnected devices in the Internet of Things (IoT) landscape has introduced significant security concerns. With the integration of...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 603
SubjectTerms Cloud computing
CNN
Cyber security
Edge computing
IoT
Malware classification
Title An efficient cloud-integrated distributed deep neural network framework for IoT malware classification
URI https://dx.doi.org/10.1016/j.future.2024.03.051
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27asMwFBUhXbr0XZo-goauamRblq0xhIakpVmaQDZhS1eQkjohJHTrt_fKjz6gdOhmC0mYK_noCM49l5BbI7nLU8WZym3IhOWO5dIAgiFkwsRJJgOfO_w0kaOZeJjH8xYZNLkwXlZZY3-F6SVa1y29Opq99WLRe_YC-iRSc6-CRPz1GeVCJH6X371_yTyCpK5JiIDgezfpc6XGq_LtwFtiKEqr0zj4_Xj6duQMj8hBzRVpv_qcY9KC4oQcNnUYaP1bnhLXLyiUVhB4glCzXO0s-7SBsNR6b1xf1so_A6yp97DEeYtKAU5do8-iSGDpeDWlr9nyLdsAToXU2muJyuU7I7Ph_XQwYnX9BGbworBlSA7i0CgZOBFgi0nzXEYmtBnSEqQRGXBuXSxTCTJ1MYDBy5NVUSRt4AyXKjon7WJVwAWhSe79jGXEnUqFSqWKcZpMAnAwMnK2Q1gTNr2ubDJ0ox970VWYtQ-z5pHGMHdI0sRW_1hujUj-58jLf4-8Ivv-rVLvXZP2drODG2QU27xbbpku2euPH0eTD05Zze8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEB3S5NBeupemqw69msiRLVvHEBqcZrk0gdyErQVSWieEhP5-R15CC6WH3oyMBjOS3zzB0xuAJ8WpzWJBPZHprhdoar2MK4NgaNJAhVHKfXd3eDLlyTx4WYSLBvTruzBOVllhf4npBVpXI50qm531ctl5dQL6iImFU0Ei_kYH0HLuVGETWr3hKJnuAdmPqraEiAluQn2DrpB5ldYdeFDsBoXbaej_XqG-VZ3BKRxXdJH0yi86g4bJz-GkbsVAqj_zAmwvJ6Zwg8AiQtT7aqe9vROEJtrZ47rOVu7ZmDVxNpYYNy9F4MTWEi2CHJYMVzPykb5_phuDoZBdOzlRsYKXMB88z_qJV7VQ8BSeFbYe8oOwqwT3beDjiIqzjDPV1SkyE2QSqaFU25DH3PDYhsYoPD9pwRjXvlWUC3YFzXyVm2sgUeYsjTmjVsSBiLkIMUzKjaFGcWZ1G7w6bXJdOmXIWkL2Jss0S5dmSZnENLchqnMrf6y4RDD_c-bNv2c-wmEym4zleDgd3cKRe1OK-e6gud3szD0SjG32UG2gL2mX0KA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+cloud-integrated+distributed+deep+neural+network+framework+for+IoT+malware+classification&rft.jtitle=Future+generation+computer+systems&rft.au=Babaei+Mosleh%2C+Mohammad+Reza&rft.au=Sharifian%2C+Saeed&rft.date=2024-08-01&rft.issn=0167-739X&rft.volume=157&rft.spage=603&rft.epage=617&rft_id=info:doi/10.1016%2Fj.future.2024.03.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2024_03_051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon