Spectral Extremal Graphs for Disjoint Cliques

Let $kK_{r+1}$ be the graph consisting of $k$ vertex-disjoint copies of the complete graph $K_{r+1}$. Moon [Canad. J. Math. 20 (1968) 95--102] and Simonovits [Theory of Graphs (Proc. colloq., Tihany, 1996)] independently showed that if $n$ is sufficiently large, then the join of a complete graph $K_...

Full description

Saved in:
Bibliographic Details
Published inThe Electronic journal of combinatorics Vol. 30; no. 1
Main Authors Ni, Zhenyu, Wang, Jing, Kang, Liying
Format Journal Article
LanguageEnglish
Published 27.01.2023
Online AccessGet full text

Cover

Loading…
Abstract Let $kK_{r+1}$ be the graph consisting of $k$ vertex-disjoint copies of the complete graph $K_{r+1}$. Moon [Canad. J. Math. 20 (1968) 95--102] and Simonovits [Theory of Graphs (Proc. colloq., Tihany, 1996)] independently showed that if $n$ is sufficiently large, then the join of a complete graph $K_{k-1}$ and an $r$-partite Turán graph $T_{n-k+1,r}$ is the unique extremal graph for $kK_{r+1}$. In this paper we consider the graph which has the maximum spectral radius among all graphs without $k$ disjoint cliques. We show that if $G$ attains the maximum spectral radius over all $n$-vertex $kK_{r+1}$-free graphs for sufficiently large $n$, then $G$ is isomorphic to the join of a complete graph $K_{k-1}$ and an $r$-partite Turán graph $T_{n-k+1,r}$.
AbstractList Let $kK_{r+1}$ be the graph consisting of $k$ vertex-disjoint copies of the complete graph $K_{r+1}$. Moon [Canad. J. Math. 20 (1968) 95--102] and Simonovits [Theory of Graphs (Proc. colloq., Tihany, 1996)] independently showed that if $n$ is sufficiently large, then the join of a complete graph $K_{k-1}$ and an $r$-partite Turán graph $T_{n-k+1,r}$ is the unique extremal graph for $kK_{r+1}$. In this paper we consider the graph which has the maximum spectral radius among all graphs without $k$ disjoint cliques. We show that if $G$ attains the maximum spectral radius over all $n$-vertex $kK_{r+1}$-free graphs for sufficiently large $n$, then $G$ is isomorphic to the join of a complete graph $K_{k-1}$ and an $r$-partite Turán graph $T_{n-k+1,r}$.
Author Ni, Zhenyu
Wang, Jing
Kang, Liying
Author_xml – sequence: 1
  givenname: Zhenyu
  surname: Ni
  fullname: Ni, Zhenyu
– sequence: 2
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
– sequence: 3
  givenname: Liying
  surname: Kang
  fullname: Kang, Liying
BookMark eNpdjz1PwzAYhC1UJNoCvyETEwZ_xF8jCqUgVepQmCPHeS1cpUmwjQT_nqgwoE53w3OnuwWa9UMPCF1TcscV4_KeUkHlGZpTohTWhsnZP3-BFintCaHMGDFHeDeCy9F2xeorRzhMZh3t-J4KP8TiMaT9EPpcVF34-IR0ic697RJc_ekSvT2tXqtnvNmuX6qHDXZMiIyldE5p1paN0LKU2nIDChrPnPdEMQZlyVUjFXDjCNetEQ1jUxJ0C0ILw5fo9rfXxSGlCL52Idschn6aGrqakvp4tT5enfCbE3yM4WDj9yn4A9kAUoY
CitedBy_id crossref_primary_10_1016_j_ejc_2025_104136
crossref_primary_10_1016_j_dam_2024_08_004
crossref_primary_10_1016_j_laa_2023_11_015
crossref_primary_10_1016_j_ejc_2025_104142
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.37236/11516
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1077-8926
ExternalDocumentID 10_37236_11516
GroupedDBID -~9
29G
2WC
5GY
5VS
AAFWJ
AAYXX
ACGFO
ACIPV
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
E3Z
EBS
EJD
FRP
GROUPED_DOAJ
H13
KWQ
M~E
OK1
OVT
P2P
REM
RNS
TR2
XSB
ID FETCH-LOGICAL-c255t-66cc782d4b586468a39e7ebf2cff0722e4437b67e39c038d95b22255e8de58593
ISSN 1077-8926
IngestDate Thu Apr 24 23:10:24 EDT 2025
Tue Jul 01 04:24:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-66cc782d4b586468a39e7ebf2cff0722e4437b67e39c038d95b22255e8de58593
OpenAccessLink https://www.combinatorics.org/ojs/index.php/eljc/article/download/v30i1p20/pdf
ParticipantIDs crossref_citationtrail_10_37236_11516
crossref_primary_10_37236_11516
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-27
PublicationDateYYYYMMDD 2023-01-27
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-27
  day: 27
PublicationDecade 2020
PublicationTitle The Electronic journal of combinatorics
PublicationYear 2023
SSID ssj0012995
Score 2.3980536
Snippet Let $kK_{r+1}$ be the graph consisting of $k$ vertex-disjoint copies of the complete graph $K_{r+1}$. Moon [Canad. J. Math. 20 (1968) 95--102] and Simonovits...
SourceID crossref
SourceType Enrichment Source
Index Database
Title Spectral Extremal Graphs for Disjoint Cliques
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46X_RBvOK8zD7o04jWNk3bRxnVIW5PGwxfRpOmOJmdbB04H_ztnqTpxTHwQqGUQ1LafmnynSTnOwhdRBEVfhibOLSiGJMbEWJGXRML03ZC7nhRTGSAc6dL233yMHAGZYJFFV2Ssiv-sTKu5D-ogg1wlVGyf0C2uCkY4BrwhTMgDOdfYSyTx8uZimbwnk7FK1zcS_1pJbEgdTVfJqMkbbbGUqN1VqWhsnEEZQKcinwEPCb4yqGSDinodlct-T89i2QxL2fg9V7efOyTvba2PY4WuVVPKFhyOxXO4vN1H2i6MHD5llaoXmHTHadeUKk0kOX-2HYtlTEGaOfNCsHrpYGo2B4IjomqOVT11tGGBT6ATE_R-QyKJSIYR51sQ2n2ZFniKFXvWtWrMI0KZejtoG3N9Y3bDLhdtCaSPbTVKYRyZ_sI5xAaOYRGBqEBEBo5hIaG8AD174Jeq411BgvMwVVLMaWcAwWLCHM8SqgX2r5wBYstHscmvJIgxHbh3xC2z03bi3yHSf_bEV4kHKlEd4hqySQRR8gggnkU2LhUDCTA6hjxbS7gINRnPCR1dJm_7ZBreXeZZWQ8_P416-i8KPeWCZoslTj-scQJ2iwbzimqpdO5OANulrKGmtNoKKS-ACx1OeQ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+Extremal+Graphs+for+Disjoint+Cliques&rft.jtitle=The+Electronic+journal+of+combinatorics&rft.au=Ni%2C+Zhenyu&rft.au=Wang%2C+Jing&rft.au=Kang%2C+Liying&rft.date=2023-01-27&rft.issn=1077-8926&rft.eissn=1077-8926&rft.volume=30&rft.issue=1&rft_id=info:doi/10.37236%2F11516&rft.externalDBID=n%2Fa&rft.externalDocID=10_37236_11516
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-8926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-8926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-8926&client=summon